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ABSTRACT Ensemble methods based on k-NN models minimise the effect of outliers in a training dataset
by searching groups of the k closest data points to estimate the response of an unseen observation. However,
traditional k-NN based ensemble methods use the arithmetic mean of the training points’ responses for
estimation which has several weaknesses. Traditional k-NN based models are also adversely affected by the
presence of non-informative features in the data. This paper suggests a novel ensemble procedure consisting
of a class of base k-NN models each constructed on a bootstrap sample drawn from the training dataset
with a random subset of features. In the k nearest neighbours determined by each k-NN model, stepwise
regression is fitted to predict the test point. The final estimate of the target observation is then obtained
by averaging the estimates from all the models in the ensemble. The proposed method is compared with
some other state-of-the-art procedures on 16 benchmark datasets in terms of coefficient of determination
(R2), Pearson’s product-moment correlation coefficient (r), mean square predicted error (MSPE), root mean
squared error (RMSE) and mean absolute error (MAE) as performance metrics. Furthermore, boxplots of the
results are also constructed. The suggested ensemble procedure has outperformed the other procedures on
almost all the datasets. The efficacy of the method has also been verified by assessing the proposed method
in comparison with the other methods by adding non-informative features to the datasets considered. The
results reveal that the proposed method is more robust to the issue of non-informative features in the data as
compared to the rest of the methods.

INDEX TERMS k-NN, random k-NN, regression, stepwise model selection, ensemble learning,
non-informative features.

I. INTRODUCTION
Supervised learning is a machine learning task dealing with
functions that map an input to an output based on samples in
pairs of input and outputs. k-nearest neighbours (k-NN) algo-
rithm is considered as one of the top ten supervised learning
methods used for classification and regression [1]–[3]. It uses
a set of k-nearest observations to decide on the response value
of a test case thus trying to minimize the effect of outliers in
a training dataset. This algorithm is fast, simple and easy to
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understand, robust to outliers in training data and effective
if training data is large [4], [5]. Despite being simple, k-NN
gives viable results and in some cases even beats other com-
plex learning methods. However, k-NN suffers from various
data related issues, for example, non-informative features and
noise in the data.

Combination of individual k-NN models in conjunction
with randomization technique(s) further improves predic-
tion accuracy. Randomization techniques usually involves
taking random samples from the training data and/or the
given feature set for building the base k-NN models. This
increases diversity in the base models reducing their chances
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to repeat the same error [6]–[9]. Several ensemble techniques
have been proposed based on the above notion. Examples of
the algorithms are bootstrap aggregated k-NN [10], random
k-NN [11], ensemble of subset of k-NN [12], etc. Majority
of the k-NN ensembles use simple or weighted mean of the
target variable values in the neighbourhood of the test point
determined by each of the base models. Final estimate is
computed by pooling all base k-NN models results. Such an
estimate is highly sensitive to non-informative features and
scale of the data [8].

This paper presents the idea of an ensemble of k-NN
models, the optimal k-NN ensemble (Ok-NN-E) based on
fitting stepwise regression for observations in the test data.
The stepwise model selection minimizes the effect of the
non-informative features in the data on the response vari-
able. The k-NN models are constructed on bootstrap samples
taken from the training data along with taking a random sub-
set of features. Sequential backward and/or forward model
selection based on the k-nearest neighbours identified by
each k-NN model and the selected feature subset is used
for predicting the test sample. The final estimate of the test
point is obtained by averaging the results of all the optimal
k-NN models in the ensemble. A total of 16 bench mark
datasets have been used to assess the performance of the
proposed Ok-NN-E. For further assessment, non-informative
features generated random from uniform distribution over the
interval [0, 1] are added to the datasets used in the paper.
The number of non-informative features added to each of
the dataset is the same as the original number of features in
the data. Coefficient of determination (R2), Pearson’s product
moment correlation coefficient (r), mean square predicted
error (MSPE), root mean squared error (RMSE) and mean
absolute error (MAE) have been used as performancemetrics.
Boxplots of the results have also been constructed. The rest
of the paper is organized as follows. A summary of the related
work is given in Section II. The proposed method, its mathe-
matical description and its algorithm are given in Section III-
B. Experiments are given in Section IV. This section consits
of a brief description of the datasets used, the addition of
non-informative features, experimental set-up and a detailed
description of the results obtained. The paper ends with a
conclusion given in Section V.

II. RELATED WORK
Many authors have developed methods for improving the
performance of the standard k-NN method. As the standard
k-NN method assigns equal weights to observations in the
neighbourhood of a test observation, Bailey [13] proposed
weighted k nearest neighbour (Wk-NN) to overcome this
problem by assigning weights to the neighbours according
to the distance calculated. This method, however, uses all
the training observations in the training data thus making
the method global. To reduce size of the data and boost up
query time of the k-NN method, Gowda and Krishna [14],
Angiulli [15] and Alpaydin [16] suggested the idea of con-
densed nearest neighbour (C-NN) by removing observations

showing similarity and not adding extra information. How-
ever, C-NN depends on the order of data and is likely to
ignore points on the boundary. Gates [17] proposed a similar
method, the reduced nearest neighbour (R-NN), by removing
patterns which do not affect the results in the training data.
This method reduces training data size and removes tem-
plates. However, this method, like C-NN, is computationally
complex. Guo et al. [18] proposedmodel based k-NNmethod
that estimates test data using a model based on the training
data. This method also reduces training data size and is shown
to improve prediction accuracy. This method fails to consider
marginal data outside the region. Clustered k nearest neigh-
bor [19] selects the nearest neighbours from the clusters to
overcome defects of uneven distributions of training samples
and is consequently robust in nature. Selection of the thresh-
old used for distances between observations within clusters
in this method is difficult. Criteria for finding the optimum k
value for each category is also unknown. Modified k nearest
neighbour (Mk-NN) [20], uses weights and validity of data
point to classify nearest neighbour. k-d tree nearest neigh-
bour (kd-NN) [21], divides the training data exactly into half
plane and it is used for the organisation of multi-dimensional
points. It is simple, fast and produces perfectly balanced tree.
However, it is computationally complex, requires intensive
search and blindly slice points into half which may miss data
structure.

In addition to the above work, there are several ensem-
ble methods using k-NN or its modification as the base
learner. One of the fundamental ensemble methods is bag-
ging (bootstrap aggregation) [22] which construct a new
model to approximate the exact bootstrap expectation of the
model [23]–[25]. This method has become the fundamental
step in various state-of-the-art ensemble learning methods.
In bagging, a large number B of bootstrap samples are ran-
domly drawn from the learning data and the base learning
model is applied on each of the sample. Response for a
new observation is predicted by averaging (for regression
problems) or majority voting (for classification problems)
based on predictions made by all the B base models [22]. The
method proposed in this paper also uses bagging as one of
the steps for improved prediction performance. Steele [10]
extended the idea of exact bagging to bootstrap sub-sampling
schemes (with and without replacement). Various ensemble
methods exist that combine bagging with feature subspace
for building base k-NN models [11], [12], [53]. This is done
by randomly selecting a subset of features for each bootstrap
sample to build the base model [11], [12]. Random feature
subset selection is also implemented in the proposed method
as one of the steps of the method. The proposed method uses
the subspace idea in a novel way in that a further search is
made in the subset of features selected initially for best fitting
observations in nearest neighbourhood of a test point in each
base k-NN model. This inculcates additional randomness in
the models and thus improves the overall performance of the
ensemble method. Other studies have considered optimiz-
ing the number of nearest neighbours, k , in the base k-NN
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models for ensemble learning [26], [31]. Garcia-Pedrajas
and Ortiz-Boyer [9] proposed boosting k-NN by using two
methodologies. The first method involves selecting a subset
of the features and the second transform the inputs by using
non-linear projection of the features. Several other studies
consider boosting methods for k-NN model to gain improved
performance [27], [28].

Furthermore, there has been several methods proposed in
literature based on the idea of locally linear models. The
ensemble of locally linear models predict each data point in
the test dataset based on a model build on its nearest neigh-
bours in the training dataset. This idea was initially presented
for classification problems by Bottou and Vapnik [46] and
later used for regression problems choosing models based on
leave-one-out cross validation [47]. A locally linear regres-
sion fits a linear model for each observation in the data in the
form of a linear combination of its nearest neighbours [47].
The current paper has used locally linear model fitting for
each k-NN model in conjunction with bootstrapping and
random feature selection for each bootstrap to produce diver-
sity and accuracy in the base models. Locally linear model
fitting is done for each observation in the test data using
both forward and backward model selection methods based
on selected subset of features.

Kainulainen et al. [29] proposed a k-NN ensemble using
feature subsets selected by forward model selection method
on random samples of the data for building each base k-NN
model. They also suggested using values of k , the number
of nearest neighbours, optimized for each k-NN base model.
The current paper has considered feature selection for each
base k-NN model based on a random subset of features
and a bootstrap sample taken from the training data. Model
selection is done by using the nearest observations identified
by each base k-NN model unlike the method in [29]. The
proposed method is also inspired from the method of Kang
and Kang [30] where ensemble of multiple linear models is
used. The proposedmethod improves prediction performance
in three ways.

1) Each base model is based on random bootstrap sample
of the training data with random subset of features
making the base models diverse.

2) Model selection in each base model is done based on
the observations in the nearest neighbourhood com-
posed of k samples.

3) The effect of non-informative features is eliminated by
forward/backward stepwise regression. The fittedmod-
els are also allowed to predict the test observations thus
avoiding the adverse effects of simple mean estimation.

III. METHOD
Suppose a training data L = (X ,Y ), where X is p features
matrix with n rows (observations) and Y is the response vari-
able. Let x ′ be a p-dimensional query/test observation, and it
is required to predict the target value i.e. ŷ for x ′. Let B be
the number of bootstrap samples drawn from training dataset
L = (X ,Y ). The samples are drawn such that a random subset

of features of size d < p is considered with each sample.
The k nearest nieghbours for x ′ are identified in each of the
bootstrap samples using some distance metric, say, Euclidean
distance. Each bootstrap sample thus reduces to a data matrix
Mk×(d+1). Let Hj(.) be a linear regression model consisting
of j = 0, 1, 2, . . . , d variables and Cj(.) be the corresponding
value of the objective function used for model assessment.
The proposed method fits an initial (empty) regression model
H0(.). H0(.) is then updated as H1(.) by adding one from
the d variables that optimizes the objective function value
C1(.). Similarly H1(.) is updated as H2(.) by adding another
from the remaining d − 1 variables optimizing the objective
function value C2(.). Stop updating Hj(.) to Hj+1(.) when
Cj+1(.) − Cj(.) < τ , where τ a threshold set for the gain in
predictive capability of model Hj+1(.) as compared to model
Hj(.). Call the final model from the data matrix Mk×(d+1) as
Ĥj(.). Let ŷt , (t = 1, 2, . . . ,B), be the value predicted for
x ′ by the stepwise regression model. In this way, estimates
ŷ1, ŷ2, . . . , ŷB of the same test point (x ′) are obtained, which
are B predicted values. To get the overall estimated of the
test point, the arithmetic mean of all these predicted values
is calculated.

In this method one can use; forward, backward and both
stepwise model selection procedures. In case of forward
selection, there is no issue with the value of k , that is k may be
less, equal or greater than the number of features. In case of
backward selection, the value of k should be taken equal to or
greater than the number of features, in that backward selec-
tion starts from the full model. In cases where the number of
features is more than the number of observations, a random
sample (with replacement) of the required size need to be
selected to use backward model selection.

A. MATHEMATICAL MODEL
Let b is a ‘‘campaigner’’ value for the true model parameter
vector β and the amount yi − (xi)T b, known as the residual
term for the ith sample, which measures the perpendicular
distance between the hyperplane y = xT b and the point
(xi, yi). Thus, it measures the level of fit between the true data
points and the model values. The ‘‘sum of squared residuals’’
is a quantity which measures the whole model fit, i.e.,

St (b) =
k∑
i=1

(yi − xTi b)
2
= (y− Xb)T (y− Xb),

where, t = 1, 2, . . . ,B and i = 1, 2, . . . , k , T is used
for matrix transpose and k is the number of samples in the
neighbourhood of the test point. St (b) is a quadratic function
of b and hence it possesses a single minimum value at b = β̂,
which can be obtained through the explicit expression:

β̂t = argminbε<St (b) = (XTX )−1XT y.

By this way, B stepwise models are obtained for a test
point x ′. Each of the models is built on a subset of features
taken randomly from the given feature space. Estimate the
response of x ′ by all these functions to obtain B values i.e.
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ŷ1, ŷ2, . . . , ŷB and pool them as

ŷ =
1
B

B∑
t=1

ŷt ,

to get the final overall estimate of the response.

B. ALGORITHM
The proposed O-k-NN-E takes the following steps.

1) Take B bootstrap samples from training data along with
randomly selecting a subset of d < p features.

2) Apply k-NN on each sample to identify the k nearest
neighbours for a test observation x ′.

3) Form a data matrixMk×(d+1) consisting of the k obser-
vations identified by k-NN and d features from each
bootstrap sample.

4) Fit stepwise linear regression models on the Bmatrices
and use them to predict x ′.

5) Final prediction for x ′ is the average of all the B pre-
dictions by the regression models.

Pseudo code of the proposed method Ok-NN-E is given in
Algorithm 1 along with an illustrating flow chart in Figure 1.

Algorithm 1 Pseudo Code for Ok-NN-E
/* Construct B k-NN models each on a bootstrap sample
and d < p features */
p← number of features in the dataset;
d ← number of features for each k-NN;
B← number of k-NN learners;
k← number of nearest nieghbours in each k-NN;

for t = 1→ B do
F Built base k-NN;
F Identify k nearest samples for test point x ′ in base
k-NN model using Euclidean distance;
F Fit stepwise regression model Hj(.) using k points in
k-NN model to estimate x ′;
F Predict x ′ through Hj(.) model;
F Save all the results obtained by Hj(.);

end for

Pool all B estimates to get final result i.e., ŷ =
∑B

t=1 ŷt

IV. EXPERIMENTS AND RESULTS
A. BENCHMARK DATASETS
1) BENCHMARK DATASETS WITH ORIGINAL FEATURES
To compare the proposed method with the other state-of-the-
art methods, a total of 16 datasets are used. These datasets
are taken from various open sources. A brief summary of
the datasets is given in Table 1. The table shows the number
of observations, number of variables and the sources against
each dataset. Datasets are arranged in ascending order with
respect to the number of features.

FIGURE 1. Flow chart of the proposed ‘‘Ok-NN-E’’ method.

2) BENCHMARK DATASETS WITH CONTRIVED FEATURES
To further assess the method, random non-informative fea-
tures are added to the datasets. Number of non-informative
features added to each dataset is the same as the original num-
ber of features in the dataset. All the features are generated
from uniform distribution over the interval [0, 1].

B. EXPERIMENTAL SETUP
Experiments carried out on the given datasets are designed
as follows. Each dataset is divided randomly into two
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FIGURE 2. Bar plots for R2 and r for datasets with original features.

TABLE 1. Benchmark datsets. Table shows the number of observations n,
number of features p and source against each dataset.

non-overlapping parts; a training part with 70% observations
and a testing part with the remaining 30% of observations.
For the proposed method, the values of hyper-parameters are
fixed for simplicity purpose as given below. A total of five
hundred k-NN models are constructed each on a bootstrap
sample from the training part along with randomly selecting
d =

√
(p) number of features. The value of k is fixed for

all the given datasets at k = 0.1 × n, forward stepwise
model selection is executed using AIC as the model selection
criterion in each k-NN model using the k nearest observa-
tions and the random set of d features. Final results are the
average of the results obtained from all the 500 runs. The
hyper-parameters might effect the performance of the pro-
posed method and could be fine-tuned using cross-validation,
for example. A discussion on the effect of hyper-parameters
on the prediction performance of the proposed method is
given in Section IV-D.

Random forest is used as implemented in the R package
randomForest [42]. For random k-NN, the R package
rknn [45] is used, whereas for SVM, R package kernlab
[41] is used. For k-NN, R package knn [44] is used. For
random forest, nodesize, ntree and mtry are fine-tuned
using tune.randomForest function available within the
R-Package e1071 [40]. For selecting the node size value a
grid search is made in the values (1, 5, 10, 15, 20, 25, 30), for
tuning ntree we tried values (500, 1000, 1500, 2000) and
for tuning mtry, a search in values (

√
p, p/5, p/4, p/3, p/2)

is made. All the possible values of mtry are checked
in cases where p < 12. k-NN is fine-tuned by using
the R function tune.knn within the R library ‘‘e1071’’
for different values of the hyper-parameter k i.e. k =
1, . . . , 10. Similarly, random k-NN is fine-tuned by search-
ing values of k = 1, . . . , 10 and the number of fea-
tures in

√
p, p/5, p/4, p/3, p/2. The rest of the settings are

kept intact as given in the Rk-NN [45] R package. All the
above hyper-parameters values are fine-tuned using 10-fold
cross validation on the training data by searching the best
values from the given search spaces. The same is imple-
mented in the R packages used, i.e. tune.randomForest
and tune.knn, for tuning the hyper-parameters. SVM is
used with linear kernel as implemented in the R package
kernlab [41] with default setting.

C. RESULTS
The results given in Table 2 reveal that the proposed
Ok-NN-E has outperformed all the other methods on almost
all the datasets. For quick insights, the results are also given
in the form of bar plots (see Figures 2, 3). Ok-NN-E is giving
higher R2 values than the other methods on 13 datasets, ran-
dom forest is giving the highest R2 values on 2 datasets. k-NN
gave better results than the other on 1 dataset in terms of R2.
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FIGURE 3. Bar plots for R2 and r for datasets with adding non-informative features.

TABLE 2. Proportion of explained variations R2, Pearson’s product moment correlation coefficient r , predicted mean square error PMSE , root mean
square error RMSE and mean absolute error MAE for the methods against each dataset with original features.

Random k-NN and SVM did not outperform the other meth-
ods on any of the datasets considered. In terms of Pearson’s
product moment correlation coefficients (r), the proposed

methods is better than the others on 12 datasets and similar
to random forest on 1 dataset. Random forest is better than
the others on 3 datasets. In terms of predicted mean square
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TABLE 3. Proportion of explained variations R2, Pearson’s product moment correlation coefficient r , predicted mean square error PMSE , root mean
square error RMSE and mean absolute error MAE for the methods against each dataset with added non-informative features.

error (PMSE), Ok-NN-E has outperformed the other methods
on 13 datasets and similar to random forest on 1 dataset.
Random forest gives the best results on 2 datasets. Random
k-NN, k-NN and SVM could not perform well on any of
the datasets compared to the rest of the methods. Similarly,
Ok-NN-E outperformed all the other methods based on root
mean square error (RMSE) and mean absolute error (MAE).
For the case of added non-informative features, the results

are given in Table 3 for randomly selected 10 datasets. It is
evident from the results that the proposed Ok-NN-E is robust
to the issue of non-informative features in the data. The pro-
posed Ok-NN-E is giving promising results on 5 datasets in
terms of each of the performance measures considered. Ran-
dom forest has outperformed the other methods on 2 datasets
based on each of the performance measures. Random forest
and Ok-NN-E gave similar results on 1 dataset based on
RMSE .
For further assessment, boxplots of R2, r , predicted mean

square error RMSE , root mean square error RMSE and mean
absolute error MAE values obtained from all the 500 runs of
the experiments are also constructed. The boxplots are given

FIGURE 4. Boxplots for Merc.

in Figures 4-13. The left panel in the figures are boxplots for
datasets with their original features whereas the right panel
are the ones for datasets with added non-informative features.
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FIGURE 5. Boxplots for Hap.

FIGURE 6. Boxplots for CPU.

FIGURE 7. Boxplots for Kc1.

The figures reveal that the proposed Ok-NN-E is less affected
by non-informative features in the data as compared to the
other methods considered.

FIGURE 8. Boxplots for Chat.

FIGURE 9. Boxplots for Pah.

FIGURE 10. Boxplots for SMSA.

D. HYPER-PARAMETERS ASSESSMENT
This section presents the effect of hyper-parameters involved
in Ok-NN-E on its performance. There are 3 hyper-
parameters that could effect the performance of the
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FIGURE 11. Boxplots for Bfat.

FIGURE 12. Boxplots for Slmp.

FIGURE 13. Boxplots for Andro.

proposed method. These are, the number of nearest neigh-
bours (k), the number of features (d) selected randomly
for each base k-NN model and the number of bootstrap
samples (B) taken from the training data. For assessing

FIGURE 14. Plot of R2 for different number of nearest neighbours (k).

FIGURE 15. Plot of R2 for different feature subset size (d ).

FIGURE 16. Plot of R2 for different number of bootstrap samples (B).

each parameter, 6 datasets are randomly selected from the
given benchmark problems. Effect of these parameters on
Ok-NN-E is shown in Figures 14-16. It is evident from
Figure 14 that the number of nearest neighbours does effect
the performance of the method and should therefore be fine-
tuned. Similarly, the number of features taken randomly for
bootstrapping also effect the performance of the method and
needs to be fine-tuned. For the case of bootstrap samples (B),
the method becomes stable after increasing this number from
B = 500. Thus it suggests that B = 500 is a decent number as
increasing this involves additional computational cost. In the
current paper, hyper-parameter values are fixed for simplicity
purposes as mentioned in Section IV-B. However, one could
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use cross-validation to select appropriate values for these
parameters.

V. CONCLUSION
This paper presented the idea of model selection based on
a random feature subset in the k-nearest neighbours of each
test data observation. The process of model selection is
stretched to a large pool of k nearest neighbours models by
bootstrapping method to construct an ensemble model. The
proposed method is compared with k-NN, random k-NN,
random forest and support vector machine on 16 datasets
usingR2, Pearson’s product moment correlation coefficient r ,
predicted mean square error RMSE , root mean square error
RMSE andmean absolute errorMAE as performancemetrics.
The results given in the paper show that the proposed method
has outperformed the rest of the methods on almost all the
datasets considering the performance metrics used.
k-NN and random k-NN have consistently performed

poor as compared to the proposed Ok-NN-E method due
to their sensitivity to non-informative features in the data.
Non-informative features in the data adversely affect k-NN
and k-NN based ensembles in that non-informative features
still play their role in the estimation of the response based
on the nearest neighbours. The proposed method fixes this
problem by selecting the best features in a stepwise fashion
to estimate the response variable value via linear regression
model. This phenomenon has also been demonstrated by
adding extra non-informative features to the existing datasets.
By the addition of non-informative features, the proposed
method has shown more robust as compared to the rest of
the methods. As k-NN and Rk-NN are based on the standard
approach of averaging the responses of the k-nearest obser-
vations of a test observations, these methods have shown
poor performance with added non-informative features in
the data. This revealed that model selection in the nearest
neighbourhood of test observations fixes performance issues
of k-NNmodels in general and in the case of non-informative
features in the data in particular.

Moreover, the proposed method constructs each k-NN
model on a subset of features that ensures diversity in the
ensemble in addition to the randomization brought by boot-
strapping. Accuracy in the base k-NN models in ensured by
proposed stepwise model selection based on the k-nearest
observations and the random features set. Thus, the analyses
given in the paper also show that by increased randomization
and accuracy, a more powerful ensemble model could be
constructed.

Model selection in each k-NNmodel in the ensemble could
be time consuming given high dimensional problems and the
proposed method may incur high computational cost as com-
pared to ordinary k-NN methods. One possible way is to use
parallel computing as implanted in the R packageparallel
[43] by parallelizing Step 3 of the algorithm i.e. fitting B
stepwise models. The proposed method in the paper does not
take into account scale of the variables in the datasets and
use them in their original format. Although the results of the

method are promising as compared to the rest of the methods,
it could further be improved by considering the appropriate
distance metric in nearest neighbours identification for each
data accordingly. Another possibility for further improving
the proposed method is to use it in conjunction with feature
selection methods as given in [48]–[52]. This could be done
by selecting features from the entire set of features using
the feature selection methods and then taking random set of
features from the selected features for each base k-NN model
in the ensemble.

This work can also be extended to the situations where the
response variable is categorical i.e. classification problems.
To achieve this, one could use the logit link function and
allowing for stepwise model selection based on the nearest
neighbours in each k-NN base model in the ensemble.
The proposed method is implemented in an R package

OkNNE.
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