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ABSTRACT Urdu word spotting is among the most challenging tasks in image processing and word
spotting of hand written Urdu text is even more so. When it comes to handwritten Urdu documents,
variation among the same words of various writers is significant. The orientation and style of the handwriting
makes it really challenging for a word spotting system to correctly recognize the instances of the keyword.
In this research, we tend to overcome this hurdle. We propose a system that takes a database of hand
written Urdu text and generates random, yet, similar images to improve the classifier’s ability to recognize
variations caused by difference in handwriting. For image generation, we used geometric transformations and
variants of Generative Adversarial Network (GAN). For the word spotting process, Histogram of Oriented
Gradients (HOG) features are extracted from ligature images and then used to train a Long Short-Term
Memory (LSTM) network for the classification task. This is the first study that focuses on improving word
spotting by generating arbitrary samples using GANs and its variants. The system achieved a promising
recognition rate of 98.96% due to the sample generation using Cycle-GANS.

INDEX TERMS Word spotting, HOG features, hand written text, LSTM, GANs.

I. INTRODUCTION

Word spotting has acquired high significance in the field of
Document Analysis and Recognition, as large amount of doc-
uments have been and are still being digitized. Researchers
have proposed several word spotting techniques for Latin
and Hanzi scripts but word spotting in Arabic script serves
more of a challenge. The Arabic script is comprised of highly
cursive characters. Moreover, shape of the characters also
vary with respect to their position in the word. The language
consists of many dots and diacritics that are essential for
defining the pronunciation and grammar of the word. Also,
the intra-word and inter-word spaces vary in the Arabic script.
In case of hand written text, the most crucial problem is
that the hand writing of each writer differs, which adds to
the complications of this task. In Fig. 1, it can be seen that
the handwriting can induce a major change in the geometry,
shape, orientation and even the size of the words. Due to
the varying shape, spaces, diacritics and writing style of the
Arabic script, it is very difficult to segment hand written
Arabic words into characters. Hence, most of the work on
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FIGURE 1. A phrase of Urdu text hand written by three different writers.

Arabic script is performed on connected components that are
extracted from Arabic words called Ligatures.

To overcome this hurdle, we have opted for random sample
generation to introduce flexibility in the classifier. The system
takes the ligature images and generates random ligatures of
that image using various data generation methods. Then, His-
togram of Oriented Gradients (HOG) features are extracted
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from the generated ligatures and the original ligatures. These
HOG features are used to train the LSTM classifier.
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For the purpose of random data generation, we have used
geometric transforms, as well as, learning based techniques
that consist of different variants of Generative Adversarial
Network (GAN). GAN [1] is a type of generative model,
which means that they can produce new content. GAN consist
of two parts; the generator G and the discriminator D. The G
generates new samples with an aim to replicate the training
samples. The D then classifies the generated sample as real or
fake. According to the discriminator’s output, the G weights
are updated to better replicate the true data and similarly,
the D weights are updated to better classify the true data from
the false. By competing against each other, the models are
trained to create data very similar to the target data using any
arbitrary input.

Traditional Neural Networks (NN) do not incorporate the
effect of previous output on the next one. Contrarily, Recur-
rent Neural Networks (RNN) address this short coming by
allowing information to persist while creating loop in a cell.
Hence, every previous output contributes to the next output.
In this study, we have exploited the use of LSTM for word
spotting in hand written Urdu text using extracted HOG fea-
tures as an input. The research shows that training the LSTM
on HOG features yields better results as compared to training
it on ligature images. The major contributions of this paper

are as follows:
« This is the first study that exploits the use of random data

generation for word spotting task. The proposed system
uses random data generation (geometric and variants
of GAN) to train the classifier as a handwriting style
independent word spotting system.

« Because the system is trained on randomly varying data,
it does not require lengthy transformations and correc-
tions for normalizing the text in the pre-processing phase
during run time.

o This is the first study that uses HOG features and LSTM
classifier for word spotting of handwritten text, irrespec-
tive of any language.

o We empirically demonstrate the effectiveness of our
proposed methodology on a trained LSTM network
(as shown in Table 2), and compare the results with
existing techniques of [2]-[4].

The remaining article is structured as follows. Section II
outlines the related work in context of word spotting and data
generation methods. Section III presents our methodology for
(1) segregation of ligatures from document images (2) advan-
tage of data generation techniques, and (3) extraction of HOG
features for classification of ligatures using LSTM network.
The section also contains details of each part of the system
and their execution. Section I'V discusses the results in context
of qualitative analysis of GANSs, classification results, and
presents a performance comparison with existing systems.
Finally, Section V concludes the paper with a discussion.

Il. BACKGROUND AND RELATED WORK
While performing document analysis, they are categorized
into two categories — modern documents and historical
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documents [5]. The modern documents are further divided
into two sub-categories — printed text documents (machine
generated) and handwritten text documents. In printed text
documents, the characters and hence, the instances of a word
are similar, where as, in handwritten text, the characters and
words vary with the difference in handwriting styles. Thus,
it becomes harder to recognize such texts. For the task of
document retrieval, word spotting based methods are favored
over traditional OCR, which requires the system to recognize
each word [6].

A. WORD SPOTTING METHODS

The word spotting methods can be categorized into two major
types: Non Learning-Based and Learning-Based. In Non
Learning-Based approach, all the possible instances of query
word existing in the training set are compared to the word
images in the test set. Among the most popular approaches in
this category are Dynamic Time Warping (DTW) [7], [8] and
various matching techniques like soft matching done in [9],
string matching in [10] and multi-level matching in [11].

In Learning-Based word spotting systems, various learn-
ing algorithms and their modified versions are used such as
BLSTM [12], CNN [9], HMMs [13] and SVM [2]. These
techniques require a learning phase, and generally perform
better than the non learning based techniques [5]. However,
they do require a large amount of training data for efficient
performance.

1) WORD SPOTTING USING LEARNING BASED METHODS
Various attempts have been made to apply word spotting on
hand written text of different languages, such as, Urdu, Arabic
and Farsi language using various methods, such as, geomet-
ric transformations and morphological operations, etc. [5].
In all these methods, the pre-processing phase includes
correction of slants, curves, pen pressure and strokes to
normalize the text using transformations, as discussed by
Abu ain et al. in [14]. This approach is effective, however,
the pre-processing phase will take longer time if each ligature
or character is to be normalized before locating the keyword.
There have been researches that attempt to train a system
that can adapt to various handwriting styles, making it eas-
ier for a system with a pre-trained classifier to locate the
keywords without normalizing each ligature in the document
images. Graves and Schmidhuber [15] were the first to use
multidimensional long short term memory (MDLSTM) with
recurrent neural networks (RNN) for the recognition of hand-
written text. Connectionist temporal classification (CTC)
layer was used at the end of this network. Text line images
are fed to the system. Then the system recognized the let-
ters in the image. In [16], features were extracted from
the handwritten word images using Resnet18 and were fed
to a BLSTM network which recognized the words. Refer-
ences [17] and [18] used attention based RNN networks.
In [17], the framework consisted of an encoder, attention
mechanism and a decoder. The encoder had two parts:
A VGG-19-BN [19] and a bidirectional Gated Recurrent Unit
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network (BGRU) [20]. The decoder consisted of unilayered
GRUs. While in [18], the authors used Lenet-5 [21] for fea-
ture extraction. The encoders and decoders both were LSTM
networks. In addition to that, the only attempt to incorporate
reinforcement learning in an attention based network for hand
writing recognition was made by Gui et al. [22].

On the other hand, the researches have extensively used
Convolutional Neural Networks (CNN) in combination with
embedded attributes. In these techniques the words are tran-
scribed using an attribute representation rather than the labels.
So these systems are trained on the attribute representations
instead of the labels. The Pyramidal Histogram of Charac-
ters (PHOC) embedding [23] is the most popular among the
attribute representations. In the testing phase, the attributes
predicted by the fully connected layer are used to recognize
the word. In [24], the authors proposed to use a spatial pyra-
mid pooling layer [25] before the fully connected layer so
that the CNN can handle arbitrary sized images. They termed
their model as PHOCNet. Gurjar et al. [26], first trained the
PHOCNet on synthetic data created using handwriting like
fonts and data augmentation techniques e.g. affine transfor-
mations and elastic deformations. After that the system was
trained on the original hand written data. Retsinas et al. [27]
used PHOCNet to extract features by using the activations of
its different layers. They also proved that the use of manifold
learning method called t-sne [28] improved the results.

Biadsy et al. [29] and Dreuw et al. [30] used HMMs to
classify various handwritten texts. Biadsy et al. in [29] used
local orientation angle, stroke and loops of a character to train
the classifier, where as, Dreuw et al. in [30] extracted Maxi-
mum Mutual Information and used discriminative training to
train a writer independent classifier.

B. DATA GENERATION METHODS

When the transcribed data is available in limited amount,
it may not be enough to successfully train a learning classifier.
A solution to this problem is data augmentation. In data
augmentation, new images are generated which are called
“synthesized images”. Data augmentation techniques can
be used to enhance the amount of data in the dataset. Data
augmentation in handwritten images can be done by many
different ways e.g. 1) Using deep learning generative mod-
els e.g. GANs [1] 2) applying affine transformations like
rotation and scaling on the original data and generating
new images [31]. The first technique, i.e. generating images
using deep learning generative models, is different from the
other techniques. The generative models have the ability
to synthesize images, which look very similar to handwrit-
ten images. This application of synthesizing images is new
but is rapidly improving and getting popularity. These net-
works have the ability to generate new training data that
may result in better performing classification models [32].
Auto encoders and Generative adversarial Networks (GANSs)
are examples of generative models. Auto encoders suffer
from the drawback of generating blurry images while vanilla
GANSs (based on Multilayer perceptron) generate noisy and
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incomprehensible images [33]. On the other hand, the deep
convolutional GANs (DCGANSs) and their variants proposed
later on, have continuously improved the quality of generated
images. Alonso et al. [34] proposed a GAN with the aim of
generating string images. Their system architecture consists
of a generator (G) and a discriminator (D) network as in any
GAN network. They introduced two new networks in the
GAN: 1) a bidirectional LSTM network 2) a gated convo-
lutional neural network having convolutional layers followed
by LSTM layers. They generated Arabic as well as French
handwritten image strings. They included these images in
the original datasets and reported improved accuracy. How-
ever, recognizer’s performance solely on the GAN generated
images was not found competitive. Qian et al. [35] proposed
a generative adversarial classifier to generate high-resolution
character images from low-resolution images. They propose
an addition of a classifier network in the traditional GAN
architecture. The generator network takes a low-resolution
image as input and generates a high-resolution image. The
discriminator is trained to distinguish between real and high
resolution images. The classifier network recognizes the
generated image. Chang et al. [36] propose a version of
GANs with an objective to generate character images of a
font using character images from another font. The input
character image and the output image do not need to be
same. Their proposed network can also generate handwritten
character images when given character images from a typed
font as input. The network architecture consists of an encoder
network, which generates a low dimensional representation
of the input image character. This representation is fed to
a transfer module that generates the feature representation
in the output font style. This output representation is then
fed into a decoder module, which generates a character in
the target font style. Then the discriminator identifies that
whether the generated image is from the target font style or
not. The generated images are then fed to HCCRGoogleNet
classifier [37] for recognition. GANs were used to generate
handwritten text by Wang et al. [38]. The generator of this
model consisted of LSTM layers with Variational Autoen-
coder and the discriminator network was made of convolu-
tional layers. Bakker ez al. in [39] used machine generated and
handwritten text simultaneously to train the GAN for hand
written text generation.

Rico et al. in [40] selected most prominent features by text
rendering and applied distortion and curvature to transform
these features in machine generated text to generate hand-
written text. Kumar et al. [41] trained LSTM for writer inde-
pendent classifier using bernoulli and gaussian distributions
to determine strokes and pen lifts in the various handwriting
style texts.

ill. PROPOSED APPROACH

In this paper, we aim to devise a methodology that can
avoid the lengthy transformation and correction procedures,
and generates a diverse, yet, similar kind of handwrit-
ten language data through geometric and learning based
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FIGURE 2. Detailed illustration of our proposed methodology.

augmentation techniques. The approach produces an efficient
word spotting process with an improved accuracy results
which outperforms existing word spotting techniques. In this
section, we look forward to address the following three key
questions:

1) How to segregate the ligatures and perform word spot-
ting in real-time?

2) Advantage of data generation techniques over lengthy
transformation procedures?

3) How HOG features are extracted for classification of
ligatures in LSTM network?

131122

The detailed workflow of our proposed methodology com-
prising of three main steps is illustrated in Fig. 2. We describe
the methodology of each individual step in detail below.

A. HOW TO SEGREGATE THE LIGATURES AND PERFORM
WORD SPOTTING IN REAL-TIME?

In Arabic word spotting, pre-processing phase is very impor-
tant due to the cursive nature of the script. It is easier to
perform word spotting on a printed text document [8], [13].
However, it is very difficult to process the hand written
text documents due to slants, line orientations, writing style
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variations [2], [42], etc. In case of hand written data, it is
essential to apply transforms to normalize the database and
make it easier to process. In this research, Urdu Nastaleeq
Handwritten Dataset (UNHD) has been used. The dataset
was published by Ahmed et al. in [43]. The data set contains
grayscale images of 6 pages of 8 lines each, hand written by
various candidates, as shown in Fig. 1.

In order to augment the dataset and perform ligature clas-
sification, we segregate a document image of handwritten
lines into individual ligatures by performing binarization,
segmentation and resizing. As a result, we generate our lig-
ature images database consisting of 317 different ligatures,
i.e., 317 different classes to train a LSTM classifier, as shown
in Fig. 2. The details of complete pre-processing phase is
explained in the subsection III-E.

Once, the LSTM classifier is trained, the network per-
forms the word spotting in real time using the Query-by-
Example (QBE) method. In this method, query image is
taken as an input by the system. The image of the query
word is pre-processed (binarized, segmented and resized) to
determine the composition and sequence of ligatures in that
word.

Following the QBE method, all document images are
then searched by binarizing, segmenting into ligatures, and
dynamically resizing the ligatures. When the system detects
the sequence of ligatures in a word in the document similar to
the sequence of ligatures in the query word, it will label the
word as an instance of the query word. The detailed method
for word spotting of a query word is described in Algorithm 1.

B. ADVANTAGE OF DATA GENERATION TECHNIQUES

In most studies conducted in this area, the system normalizes
each ligature or character image before extracting the features
and classifying it which takes up more computation time as
well as effort [5]. At the same time, it is still necessary to
normalize the images for the classifier to correctly recognize
them. In our study, we propose a system that will generate
images similar to the parent database but with random trans-
formations which we use to train the classifier. Using these
images for training will enable the classifier to recognize sim-
ilar ligatures in various handwriting styles without normaliz-
ing the ligature images. This will speed up the classification
process, as system will not have a need to apply normalization
to each ligature before classifying it.

In our work, we have exploited the use of non-learning
and learning based methods for the task of random data
generation. In non-learning based method, we have used two
geometric transformation techniques — Rotation and Scaling,
where as, in learning based method, we have used standard
GAN and its convolutional variant, i.e., Deep Convolutional
GAN (DCGAN); two GAN models with a control condi-
tioning and structural improvements, i.e, Conditional GAN
(CGAN), Auxiliary Classifier GAN (ACGAN), the latest
GAN structures with an improved objective function and
better performance results, i.e., Wasserstein GAN (WGAN),

VOLUME 8, 2020

Algorithm 1 Pseudo-Code for Query Word Segregation and
Spotting Process in Real-Time
Require: Extract label sequence of the query word

1: Load the query word image I,

2: Binarize the query word image I, as I

3: Segment the binarized word I, into its respective liga-

tures Ligsg
4: Dynamically resize each ligature image and store in Ligs,

5. Extracting HOG features of each ligature image
6: Classify the ligatures using the pre-trained LSTM net-
work with cross entropy cost function as Labels;, =
S 1y Inyy
Require: Extract label sequence of each word of the test
document images
7: Binarize all test document images
8: Segment the test document into lines
9: Segment each line into ligatures Ligsy
10: Dynamically resize each ligature image and store in
Ligsiq
11: Extract HOG features of each ligature image hfeatures;y

12: Classify ligatures using pre-trained LSTM network to get
their label and store the ligature labels in the sequence of
occurrence Labels;;

Require: Compare the sequence of ligatures in query word
and test document to get the instances of the query word

13: for iterations i = number of ligatures in test document
do

14:  if Labels,(1) == Labels;; (i) then

15: if Labels,(2) == Labels,;(i + 1) then

16: # up till n i.e. the last ligature in the query word
17: if Labels,(n) == Labels;; (i + n — 1) then

18: mark the ligatures i to i + n — 1 in the test

document as instance of the query word

19: else

20: # skip the iteration if any of the ligature labels
in the query word do not match the ligatures in
the test document in their respective sequence

return
21: end if
22: else
23: return
24: end if
25:  else
26: return
27:  end if
28: end for

and Wasserstein GAN with Gradient Penalty (WGAN-GP),
and cycle-consistent adversarial network (CycleGAN) which
make use of adversarial loss and cycle constraint to achieve
the image translation from X domain to ¥ domain, and vice
versa. The data generated using the trained GAN models
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are stored in generated ligature image database, as shown
in Fig. 2.

C. HOW HOG FEATURES ARE EXTRACTED FOR
CLASSIFICATION OF LIGATURES IN LSTM NETWORK?
HOG features are very helpful, as they provide information
regarding the image geometry even in the form of a vec-
tor. It is a feature similar to Scale Invariant Feature Trans-
form (SIFT) in which gradients are calculated in pre-defined
patches or cells in an image and are combined later on. This
task is performed using complex masks, such as, Prewitt or
Sobel operators [44]. The occurrences of similar gradient
orientations in each patch of an image are counted. Based
on the number of gradient orientations in a cell, histogram
is produced. The HOG features are acquired by combining
the histograms of all the patches of an image in a vector form.
This is the reason that HOG features are chosen for this study.
A 1-D LSTM network take images in a vector form, and not
directly as input, the geometrical information and shape of
an image is lost. Hence, HOG features provide the classifier
with image gradients which cater for the geometry and shape
of the foreground in an image.

Once the HOG features are acquired, they are given to
LSTM network for the classification of ligatures. LSTMs [45]
are memory-based learning systems that belong to the cat-
egory of RNNs. LSTMs are designed to learn sequential
information, such as, one dimensional signals and sequences.
LSTMs were introduced as a solution to vanishing gradient
problem [46] with its main idea being the insertion of gates
to an RNN cell. The gates are external control inputs passed
through sigmoid activation function to control the functions
of a cell. A generic scheme of LSTM is shown in Fig. 3.

Input Dutput

—Vht

e Forget Gate
FIGURE 3. A block diagram of the LSTM cell with the gates used to
control the weights [47].

In Fig. 3, i, f and o represent the input, forget and output
gates respectively, while C represents the hidden state of the
cell. The input gate i; determines the information used to
update the hidden state C. The forget gate f determines the
information from previous cell state C;_; to be used, while
the output gate o, decides what information to output to get
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the cell state C;. Hence, the corresponding gate equations are
represented as:

S = o(Wrlhi—1 x, 1+ by) (H
ir = o (Wilhi—1 5,1+ bi) 2
or = o (Wolhi—1.x,]1+ bo) 3)
h; = o; * tanh(Cy) @)

D. DATA COLLECTION

To demonstrate the -effectiveness of proposed frame-
work, we evaluate our methodology on UNHD database,
as described in subsection III-A. In this section, we shall
explain the experimental procedure to extract the liga-
ture images from handwritten document images (UNHD
database). This involves the techniques of binarization, seg-
mentation, and resizing. Following these steps, we shall
generate a ligature image dataset comprising of 317 liga-
ture classes (52086 samples). Later on, we shall report the
hyperparameters and architectural modifications in a GAN
and its variants. Lastly, we shall explain the procedure of
HOG features acquisition and report the architecture details
of LSTM network.

E. PRE-PROCESSING

Fig. 4 shows the pre-processing phase comprising of three
steps (binarize, segment, resize) to extract the ligature images
from document images (UNHD database). Each step is
explained independently in the next sub-sections.

Binarization

)9

3

Segmentation

E=d/ 191

FIGURE 4. Pre-processing phase.The words are binarized, segmented into
ligatures and dynamically resized before extracting the HOG features.

1) BINARIZATION

The document images in the database are binarized
using Otsu’s binarization technique [48]. The algorithm
tends to maximize the inter-class variance between fore-
ground (white) and the background (black). First, the prob-
abilities wo(f) (background) and w(¢) (foreground) of each
intensity level is computed using a random threshold #, and a
histogram is created, as given in following equations:

wo(t) = ZIZ1p(i) (5)
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wi(t) = B p() (6)

where ¢ is the threshold, and L is the number of pixels in a
document image. We then calculate the means. Taking u as
the total mean and (g and p as class means, are given by:

Z):‘—l S
oty = Zi=0P0 %)
Z.L_l' .
) = %”(’) @®)
pr = S tip() 9)

the goal here is to maximize the inter-class variance, as:
0(1) = 0% — o (1) = wowi [po(t) — i (®]*  (10)

The threshold 7 is increased in each iteration. For each ¢,
we calculate the variance 002, and we select that value of ¢ for
which ag is the maximum.

2) SEGMENTATION

The characters in Urdu text change their shapes with their
position in the word, which makes it difficult for a machine
to recognize them. Hence in our work, we have segmented
the images of handwritten documents into ligature images.
Following are the steps involved in the segmentation process:

o Detect and segment lines using vertical run length
smoothing algorithm. For each line, we performed the
following steps

o Connected components are detected using a 2 x 2 cell
in 8 connectivity. The bounding boxes and centroids of
all components are extracted.

« Area of each component is calculated from the bounding
box.

o The components are split into major and minor com-
ponents. If a component is less than 1/4 of the average
component area, then, it is a minor component.

o Get the baseline of the entire line by performing linear
regression of the centroids of all major components.

o Check the position of the minor components. If the
minor component is above the baseline, assign it to the
major component below it (vertically overlapping) to
make the main components. In case, if there are more
than one major components vertically overlapping the
minor component, assign it to the closest major compo-
nent. Similarly, if the minor component is below base-
line, assign it to the closest major component above it.

o Get the contour of the main components (major and its
assigned minors).

o Get the cut points for the segmentation of each main
component.

« Segment the main components using the cut points to get
the ligature images.

3) DYNAMIC RESIZING
Once, the complete document images are binarized and
segmented into ligatures, it is resized to 55 x 55 pixels.
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FIGURE 5. Original ligature image (left), Conventionally resized image
(middle), Dynamically resized image (right).

<

In this research, we perform dynamic resizing [49] of images,
as shown in Fig 5. The conventional resizing method stretches
image to the required size, hence, disturbing the geometry and
aspect ratio of an image. In our approach, the longer dimen-
sion, irrespective of the image width or height, is stretched to
55 pixels while still maintaining the aspect ratio. The shorter
dimension is increased to 55 pixels by padding zeros. The
binarization and segmentation of the database is done before
the data generation. After the data is generated, the original
ligatures, as well as, the generated ligatures are dynamically
resized.

F. DATA GENERATION

After image segmentation and binarization, original database
is used to generate similar, yet, random images to enhance
the classifier’s ability to recognize ligatures despite the
variation in writing style, size and orientation. The parent
database is divided into training and testing data. The train-
ing data consists of 41,669 images and test data comprises
of 10,417 images non-uniformly distributed in each class due
to difference of number of occurrences of ligatures in the
database. In each method, 100 samples are generated per class
using the training data which made a total of 31,700 gen-
erated images that were added to the original database for
training the classifier. In this sub-section, we shall explain
the basic setup of geometric techniques, as well as, introduce
the network architectures of learning-based data generation
techniques. Later on, in Section IV, we shall analyze the
experimental results with respect to the qualitative analysis,
and also compare the classification results acquired from
LSTM network.

1) GEOMETRIC TECHNIQUES
In this category, we have used rotation and scaling to generate
images.

a: ROTATION

The images from original data set are rotated 5 times through
random rotations within the angle range of (—25, 25) degrees.
In doing so, each image generates 5 randomly rotated images
to create a modified dataset, as shown in Fig. 6.

b: SCALING
To create this variant, each image in the original data set
is randomly scaled down 5 times between the range of
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FIGURE 6. Comparisons of images generated through data generation techniques. The samples in the first row of subfigure (a) are original ligature
images from UNHD dataset. The remaining rows (subfigure (b)-subfigure (f)) contain samples generated from data generation techniques (b) rotation
(c) scaling (d) standard GAN (e) DCGAN (f) CGAN (g) ACGAN (h) WGAN (i) WGAN-GP (j) CycleGAN

0.251t0 0.75, as shown in Fig. 6. After downsizing, each
image is padded with zeros around it’s border so as to main-
tain the original image height and width.

2) LEARNING-BASED TECHNIQUES

GAN is known for its delicate and unstable training process,
and it may produce blurry image generation for a diversi-
fied dataset. In the past, researchers have opted out different
customization in the architecture of GAN, thus, providing an
improved learning stability and avoiding the mode collapse
and balancing problems [50].

To better control the model stability, we have used differ-
ent variants of GAN (DCGAN, CGAN, ACGAN, WGAN,
WGAN-GP, CycleGAN) to diversify our dataset. Each GAN
model, except WGAN, is trained using ADAM optimizer [51]
with mini-batches of size 64 and initial learning rate of
Ir =0.0002, g1 = 0.5, B2 = 0.999 is used. Also, momen-
tum [52] with the value of 0.6 and dropout [53] with
probability of 0.25 is applied to the D network of stan-
dard GAN, DCGAN, ACGAN, and CGAN. For standard
GAN, DCGAN, ACGAN and CycleGAN, ReLU is used
as an activation function in G network, whereas, Leaky
ReLU (LReLU) [54] with a leaky slope o = 0.2 is applied
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in D network. Contrarily, LReLU with ¢ = 0.2 is used in G
and D architectures of CGAN, WGAN, and WGAN-GP. Each
GAN model, except CycleGAN, is trained for 1000 number
of epochs.

For each GAN model, we customized the architectures of
G and D networks, which are shown in Appendix A, there-
fore, allowing the models to reproduce synthesized images
of dimension (56 x 56 1) at the G output. In the G network
of each GAN (except CycleGAN), a latent noise vector z
with dimension 100 is drawn from a uniform distribution. The
samples synthesized using standard GAN, DCGAN, WGAN,
and WGAN-GP may belong to any class present in the train-
ing dataset, as these models do not employ any conditioning
content. Hence, we train these models on individual ligature
classes. From each class, we generated 100 images. Thus, for
each GAN (standard GAN, DCGAN, WGAN, WGAN-GP),
a total of 31,700 images were added to the original database.

Contrarily, CGAN and ACGAN provide an approach to
produce images with user-specified content, thus, we train
each model in the form of subsets. We separated our database
comprising of 317 classes into subsets of 10 classes. As a
result, we have 31 subsets that consist of 10 classes in each
subset, whereas, the last subset has 7 classes. Each GAN
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TABLE 1. The loss functions of generator and discriminator network.

(1= aG(2)) || -1)%]

Model Discriminator Loss Function Generator Loss Function
GAN [1] mnggAN = Banpgara [109(D(2))] + Eznp, [log(1 — D(G(2)))] mgmLGAN Ezp. [log(1 — D(G(2)))]
DCGAN [33] | mazLBCCAN = Eynpyy,,[log(D(2))] + Bznp. llog(1 — D(G(2)))] minLBCGAN = E.y. [log(1 — D(G(2)))]
CGAN [56] maeLEEAN = E(a,y)npgq,, [log(D(@, y)]+ minLGEAN = Bynpgqiq,znp. [log(1—
By~pgara,z~p:[log(1 — D(y, G(z,9)))] D(y,G(z,v)))]
mazminL 5N = Brpgy, [109(D(@)] + By~pyara,z~p- %’LigLéCGAN = Ey~paata,=~p-[log(1—
ACGAN[S7] | [log(1 — D(G(2,9)))] + Ex,y~paqra llog(1 — C(z,y))]+ D(G(z,y))]+
Eprdatu,vapz [lOg(l - C( (Z y) y) ] Eympiatarz~ps log(l - C(G’(z, Y)s y))]
WGAN[59] | mazLFOAN = Bonpyyo [D(@)] = Eznp. [D(G(2))] minL SAN = —B. . [D(G(2))]
LWEAN=GP _ [WGAN _ \E, vD
WGAN-GP [61] | D" P b =~paara (I VD(az+ mé;nLg;VGAN‘GP = —E.np, [D(G(2))]

CycleGAN [62]

mnggyclecAN = mgngAN(G, Dy, X,Y) + mgngAN(F, Dy,
Y, X) + AEarpyar, [l F(G(@)) — 2 1] + ABympyoa (| G(F @) =y (1] | T

mcénLgycleGAN — minLgAN(G, Dy,

X,Y) + mgnLgAN(F, Dx,Y, X)

variant (CGAN or ACGAN) is trained on individual subset,
and from each class, we generated 100 samples. As a result,
31,700 generated images were added to the original database.

a: STANDARD GAN
Goodfellow et al. in [1] introduced the concept of GAN,
which utilizes two feed-forward neural networks that are
pitted against each other in an adversarial manner. It consists
of two neural networks, that are, the generator G and the
discriminator D. The G learns a mapping from random noise
vector z to produce the realistic data samples G(z), approxi-
mating the training set. The goal is to generate samples such
that the D can not distinguish between generated samples
and the real samples from training set. Formally, it can be
expressed as G : G(z) — R™!, where zeR! is a sample from
latent space, xeR¥! is an image G(z) generated from latent
space z, and | - | corresponds to the number of dimensions.
In a basic GAN, the task of D is to estimate, whether an
image comes from training dataset (real ~1) or it is a sample
generated by G (fake ~0), i.e., D : D(x) — (0, 1). The
goal is to correctly differentiate between samples and not
to be get fooled by G. Hence, the approach leads the two
networks partake in a min-max zero-sum two player game,
which allows the G network to learn the data distribution of
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training data set. A formal definition of GAN is formulated
in Table 1, while the network architecture details are shown
in Appendix A (Table 4).

b: DCGAN
A Deep Convolutional or DCGAN [33] works same as the
standard GAN, taking noise z as an input to generate similar
kind of samples existing in our database. However, in this
GAN, the G and the D models consist of convolutional layers
instead of fully connected layers which makes it more suitable
to learn intrinsic properties of an image. The formal expres-
sion of DCGAN is the same as expressed for standard GAN.
The G in a DCGAN consists of a latent noise vector z
which is mapped to a dense layer to produce an output of
7 x 7x 128 (reshaped). The dense layer is passed onto
subsequent convolutional layers (Upsampling, Convolution,
Zero Padding) to produce an output image G(z) of 56 x 56 x
1. The convolutional layers make use of fractional strided
operations which allow upsample operators to be learned dur-
ing training. Furthermore, to stabilize the training process, all
convolutional layers, except the last layer, is passed through
batch normalization technique [55] followed by ReLLU activa-
tion function, whereas, the last convolutional layer is passed
through Tanh activation function.
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Similarly, D in a DCGAN takes an input image (real image
x or fake image G(z)) of dimension 56 x 56x 1 which
is passed through a series of strided convolutional layers.
The last convolutional layer of dimensions 8 x 8x 256 is
flattened out and passed through sigmoid activation function,
therefore, providing the degree of real (~1) or fake (~0)
score of an image. Each convolutional layer (except dense
layer) passes through batch normalization technique [55],
which is followed by LReL.U activation function. Appendix A
(Table 5) shows the network architecture of DCGAN, while
the loss function of DCGAN is formulated in Table 1.

¢: CONDITIONAL GAN

The Conditional GAN or CGAN [56] is an extension of GAN
in which the G not only requires random noise z as an input,
but also incorporates the label y of a particular sample x from
the training data. The G then attempts to generate a fake
image G(z, y) with respect to the provided label y. Formally,
it can be expressed as: G : G(z,y) — RY!, where, zeRV!
is sample from latent space z, yeR¥! is the corresponding
label of a particular training sample x, seR"! is a generated
sample image G(z, y), and | - | corresponds to the number of
dimensions.

Similarly, the D network is given fake image G(z, y), label
y and real image x, label y as an input. Here, the goal is to fool
the G by maximizing the probability of real image, label pair
(=~ 1) at the output. Hence, discriminator classifies between
real image, label and fake image, label pair.

In this work, we have followed conventional CGAN archi-
tecture which comprises of dense layers in G and D network.
However, in the G architecture, we have mapped the latent
noise vector z and conditioning label y onto individual dense
layers, which comprises of 256 units each respectively. The
individual dense operations from z and y are concatenated
together (output shape of 512 units) before they are finally
fed into the subsequent dense layers. Each dense layer (except
last layer) is passed through batch normalization technique,
which is followed by LReLLU operation.

The similar procedure is adopted in the D architecture,
where, the real image x or generated image G(z, y) is mapped
to 4096 units, while, the label y is mapped to 256 units
respectively. The output from both dense operations is con-
catenated together to produce a vector of 4352 x 1 x 1. The
concatenated vector is passed through series of dense layers to
provide the estimate that whether an image, label pair comes
from the training dataset or it is a sample generated by G.
In each dense layer (except last layer), LReLU and dropout is
applied. Appendix A (Table 6) shows the network architec-
ture of CGAN, while, the loss function of CGAN is shown
in Table 1.

d: AUXILIARY CLASSIFIER GAN

The Auxiliary Conditional or ACGAN [57] is a further exten-
sion of the Conditional GAN. The G of ACGAN functions
same as the CGAN. The difference is in the D network.
The D in the ACGAN is not provided with a class label c,

131128

as in the case of CGAN. The D of the ACGAN takes only
the generated image as input and tells if it is a fake or
not, while, also predicting a label for the generated image.
The G in ACGAN consists of a latent noise vector z and
conditional class label y which is concatented together and
passed into a dense layer to produce an output of 7 x 7x
128 (reshaped). The dense layer is projected onto subse-
quent fractionally-strided convolutional layers (Upsampling,
Convolution, Zero Padding) to produce a fake output image
G(z,y) of dimensions 56 x 56x 1. Each convolutional layer
passes (except last layer) is passed through batch normal-
ization technique, which is followed by ReLU activation
function.

Similarly, D in a ACGAN takes an input image (real image
x or fake image G(z, y)) of dimension 56 x 56x 1 which is
passed onto series of strided convolutional layers. The last
convolutional layer 8 x 8 x 256 is flattened out and passed into
sigmoid activation function to provide the degree of real (= 1)
or fake (=~ 0) score of an image. Each convolutional layer
(except dense layer) is passed through batch normalization
technique, which is followed by LReL.U activation function.

Furthermore, to access the side information of predicting
class labels y of training data x or generated data G(z,y),
the final dense layer of D network is passed through softmax
activation function. Appendix A (Table 7) shows the network
architecture of ACGAN. The loss function of ACGAN is
formulated in Table 1.

e: WASSERSTEIN GAN

In standard GAN, generator is generally an encoding vec-
tor sampled from random distribution of low dimensions
(z = 100), which is then mapped to a high dimensional space
(e.g., 4096 dimensions) to generate synthesized images. Dur-
ing the training phase, the G is encouraged to produce
the distribution of samples p,(x) to match the real sample
data p,4(x). For an optimal trained GAN, these distributions
should nearly match each other [1]. However, probability dis-
tribution of generated samples defined by a high-dimensional
space (4096 dimensions) is still defined under a definite sam-
ple dimensions (100 dimensions). Hence, the support set for
generated sample distributions constitutes a low-dimensional
manifold with upto 100 dimensions in a 4096-dimensional
space. As a result, the probability of overlapping between
generated samples p,(x) and real data samples py(x) is
close to 0. This leads to gradient disappearance problem,
as Jensen-Shannon (JS) divergence, which is a measure of
similarity between probability distribution of real samples
and generated samples will become a constant, therefore,
halting the training process [58].

To solve the unstable training process of GAN, Wasserstein
distance, also called as Earth-Mover (EM) distance, is used
to measure the distance between real samples and generated
samples, defined as:

Wpr.pa) = inf  Exy~ vyl x-y |l (1)

ve[1@r.pa)
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where [](pr, pa) is set of all joint distributions whose
marginals are p, and py respectively. y is every possi-
ble distribution. Unlike the standard GAN cost function,
WGAN [59] is more likely to provide gradients update for
generator, however, the cost function derived for WGAN
relies on discriminator that is usually termed as the critic. The
critic should satisfy strong conditional lipschitz continuity.

Practically, the lipschitz continuity is implemented by
clamping the D parameters to be in a certain range. In the G
network, a latent noise vector z with dimension 100 is drawn
from a uniform distribution, which is mapped to series of
high dimensional dense layers to produce fake image G(z) of
dimension 56 x56 x 1. Each dense operation is passed through
batch normalization (8 = 0.6) followed by LReLU (o = 0.2)
activation function. The D network takes real image x or fake
image G(z) which is passed through series of multiple dense
layers to provide a discrimination of real images from fake
ones. We train the WGAN using RMSProp [60] optimizer.
After each gradient update, we clamp the D weights to lie in
a range of (—0.01, 0.01), whereas, we train the G network
after every nc,isic = 5 iterations. Appendix A (Table 8) shows
the network architecture of WGAN, and the loss function is
tabulated in Table 1.

f: WASSERSTEIN GAN WITH GRADIENT PENALTY

WGAN improves the optimization of standard GAN by
improvising constraint without changing the architecture of
it. However, WGAN limits the D weights to strongly meet
the conditional Lipschitz continuity. Thus, the forced weight
cutting can easily cause the gradients to vanish or explode.
To solve this problem, Gulrajani et al. in [61] proposed a
gradient penalty method termed as WGAN with Gradient
Penalty (WGAN-GP). Instead of using weight pruning of
WGAN, WGAN-GP calculates the weight gradient according
to the input of D network, then, it penalizes the gradient norm
to satisfy the Lipschitz constraint [61]. The loss function of
WGAN-GP is formulated in Table 1.

In order to generate synthetic ligature images using
WGAN-GP, we followed the same dense layer architecture
that is implemented for WGAN, as shown in Appendix A
(Table 8). The value for gradient penalty co-efficient A is kept
to 10, as according to authors in [61], it works well across
different architectures and datasets. Furthermore, no batch
normalization is applied to the D network, as we penalize
the norm of D's gradients with respect to each individual
sample, and not on the entire batch. [61]. We train the G after
every nerisie = 5 iterations, whereas, ADAM optimizer with
learning rate Ir = 0.0002, 81 = 0.5, and B> = 0.999 is used
in the training phase.

g: CYCLE GAN

The above incorporated GAN models produce synthesize
images from random noise distribution z or embedding an
extra conditioning constraint y to augment a ligature spe-
cific images. However, these GAN models can not ensure
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the validity that the generated ligatures are similar to the
input set of ligatures but with different style. Style GAN is
another interesting application of GAN, which is also known
as image translation, commonly used for transforming images
from one style to another. Earlier, image-to-image transla-
tion (pix2pix) framework [63] is used to translate one pos-
sible representation of a scene into another scene. However,
such one-to-one style transfer model requires a paired set of
training data forehand, and in many cases, obtaining paired
training data can be difficult and equally expensive. To break
the constraints of paired datasets, the Cycle Consistent Gener-
ative Adversarial Network (CycleGAN) [62] utilizes a cycle
loss function that learns image-to-image translation between
two un-ordered image collections.

Given one set of domain image in domain X and a different
set in domain Y, we train a mapping G : X — Y, such
that, the output y = G(x), x € X, remains indistinguishable
from images y € Y by an adversary Dy, which is trained
to distinguish y from y. Similarly, the other domain Y per-
forms the opposite by training a generator F : ¥ — X
to produce x = F(y), which is further passed on to its
adversarial discriminator Dy to check whether it is indis-
tinguishable from domain X. We train both the mapping G
and F simultaneously, and introduce two cycle consistency
losses that encourage the reconstruction of image x using
x — G(x) = F(G(x)) =~ x (forward cycle-consistency loss)
and image y using y — F(y) — G(F(y)) ~ y (backward
cycle-consistency loss) respectively. Combining the stan-
dard GAN adversarial loss function and cycle-consistency
loss function, the loss function of CycleGAN is formulated
in Table 1.

In our work, we have incorporated CycleGAN to translate
original ligatures images to its rotated counterpart and vice
versa. The rotation based augmentation technique achieved
better accuracy results as compared to the scaling technique.
Thus, we created unpaired training dataset comprising of
original ligatures and a target set consisting of random rotated
ligatures (—25°,25°), with no information provided as to
which original ligature matches which rotated ligature. Each
ligature class is trained on an individual CycleGAN model
and from each model, we generated 100 ligature images.
In the G network, we inserted 9 residual blocks between
convolutional blocks which make use of strided and fractional
strided operations. Each convolutional layer is instance nor-
malized which is followed by ReLU activation function. For
the D network, we used 3 x 3 overlapping patches at the output
of last convolutional layer, whose aim is to classify whether
these patches are real or fake. Except first layer, each con-
volutional layer is instance normalized which is followed by
LReLU activation function. For all the experiments, we used
ADAM optimizer with a batch size of 1. All the networks
were trained from scratch for 10 number of epochs, with a
learning rate Ir = 0.0002, 81 = 0.5, and B, = 0.999.
Appendix A (Table 9) shows the network architecture of
CycleGAN.
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G. HOG FEATURE EXTRACTION

Assuming an image with size vector S ([rows columns]),
the HOG extraction cell size C, extraction block size B,
block overlap Bp and number of bins in the histogram Bins,
the HOG feature vector size of N elements is calculated by
the following equations:

BPI = (S./C —B)./(B—Bo+ 1) (12)
N = TI(BPI, B, Bins) (13)

Here, in equation (12), BPI is the blocks per image. We can
get the vector size N by calculating the element-vise product
of BPI, B and Bins.

The data generation techniques provided a synthesized
database comprising of diverse ligature images for a respec-
tive class. For each ligature image, we extract a HOG feature
vector of 5184 (4 x 4 cell) and 900 (8 x 8 cell) elements using
equations (12) and (13). The feature vectors are then used to
train the LSTM network. In our study, we took B = [2 2],
Bo =11 1]and Bins =9. The cell sizes used are 4 x4 and 8 x 8.
Higher cell sizes were not used because from equation (12)
it can be seen that larger cell sizes will produce smaller feature
vectors and hence, less information for the classifier.

H. LONG SHORT TERM MEMORY (LSTM) NETWORK

Two different LSTM networks are used according to the
input vector sizes. The LSTM layer consists of 4000 neurons
and a ReLU as an activation function. The size of output
classification layer is equal to the number of classes of the
database, which in our case is 317. The database is distributed
into mini-batches of 50 images and is trained for 50 epochs.
The Stochastic Gradient Descent with Momentum (SGDM)
optimizer with L2 regularization factor of 0.0001, initial
learning rate of Ir = 0.01, learning rate drop factor of 0.1 and
learn rate drop period 10 is used to train the LSTM Network.

IV. RESULTS

To evaluate the performance of different GAN models, that
are, standard GAN, DCGAN, CGAN, ACGAN, WGAN,
WGAN-GP, and CycleGAN are compared on UNHD dataset.
The results of these models are verified through qualitative
analysis and further classifying the HOG features of gener-
ated samples using LSTM network.

A. QUALITATIVE ANALYSIS
The basic application of GAN as a generative model is sample
generation, however, the quality of generated samples is a
key indicator to analyze the performance of GAN models.
Fig. 6 shows the ligature images generated using geometric
and learning based techniques. The performance results of
different GAN models are obtained after evaluating each vari-
ant after 1000 number of epochs, except CycleGAN which is
evaluated after 10 number of epochs.

The samples generated by standard GAN are not at par
as compared to other GAN models with structural improve-
ments. DCGAN upgraded the quality of image synthesis by
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incorporating a pair of deep convolutional G and D net-
works. As a result, the generated images are more diverse as
compared to standard GAN, as found in Fig. 6. This is due
to the inclusion of batch normalization technique [55] and
Leaky ReLUs [33] which enhances the network stability and
performance. However, in DCGAN, the quality of generated
ligatures from UNHD database are still of low resolution.
The reason can be incurred that, training dataset contains
a versatile pattern of handwritten ligatures. The generated
ligatures are diversified, yet, it could not precisely reproduced
clean patterns of ligatures.

Compared to image generation of standard GAN and
DCGAN, the quality of ligatures generated through CGAN
and ACGAN produced better resolution results, as these
models add controllable condition to the G network. This
results in a faster convergence rate. The earlier implemen-
tation of CGAN produced noisy ligature images which
contain high volume of salt and pepper noise originat-
ing at the background. As a result, lower accuracy was
achieved when HOG features were trained on LSTM net-
work. To compensate this problem, we have introduced
individual dense operations for random noise vector z and
conditional label y. The notion of using such dense opera-
tions in CGAN is to capture the required non-spatial map-
ping from respective latent vector and image label to the
intermediate image features. A random distribution of noise
vector produces different set of noise values, thus, incor-
porating a prior dense operation learns the inherent rela-
tionship between different noise vectors and intermediate
features that belong to an individual ligature class during the
training phase [64]. As a result, a better and clean ligature
images are generated as compared to the conventional CGAN
counterpart.

On the other hand, the quality of generated ligatures in
ACGAN are not at par as compared to CGAN. This is because
of fractional-srided and strided convolutional layers in a
respective G and D architecture of ACGAN. The inclusion of
shared weights in convolutional layers prevent the network
to gather any subtle variations that occur in different spatial
zones of the same convolutional filter, whereas, the initial
dense layers of CGAN explicitly transfer the subtle infor-
mation to intermediate layers, and produce more realistic
ligatures at the output [64]. Hence, ACGAN restricted its
capacity to generate different writing styles of an individual
ligature class.

A better training stability is obtained using WGAN and
WGAN-GP, which theoretically modifies the loss function of
standard GAN. As WGAN reduces the horizontal distance
(Wasserstein distance) between generated samples G(z) and
real samples x, the quality of ligatures produced by WGAN
are more diverse as compared to earlier versions of GANs
(Standard GAN, DCGAN, CGAN, ACGAN). WGAN cap-
tured the ability to learn the probability distribution of ver-
satile ligatures originating from a single class. This includes
minute details that correspond to dots or a tiny slash running
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diagonally above the ligature (from upper right to lower
right). Fig. 6 shows the ligatures that are produced through
WGAN.

Compared to WGAN, the quality of ligatures generated
by WGAN-GP is more better and stable, as WGAN-GP
further adds a constraint and optimizes the WGAN loss
function, as shown in Table 1. WGAN-GP does not require
hyperparameter tuning and trains successfully on variety of
image generation tasks [61]. However, the training proce-
dure showed that convergence rate of WGAN-GP is slowest,
as it took more time to converge under the same UNHD
dataset.

CycleGAN model works better when the two datasets have
a similar structural pattern. By utilizing a two-step transfor-
mation procedure to realize a self-constraint, the model learns
to generate rotated ligature images from the original liga-
tures, and vice-versa. Compared to WGAN and WGAN-GP,
the quality of samples generated using both the generators G
(original to rotated) and F (rotated to original) of CycleGAN
are equally consistent in terms of capturing the minute details
of ligature images. Fig. 7 shows the original ligature images
generated from the rotated ligature image database. The gen-
erator F(y) learns a mapping F : ¥ — X from rotated
database to the original database and produces the equivalent
distribution of original ligature X from the rotated one y.

FIGURE 7. Rotated ligatures and its original counterpart. The samples in
the first row are rotated ligature images (input y), and the samples in
the second row are the generated ligatures X = F(y).

B. CLASSIFICATION OF HOG FEATURES USING LSTM
Table 2 shows the results of this study. Simulations were
conducted for each sample generation technique where the
cell size from feature extraction process was varied. Note that,
LSTM classifier does not yield good results when trained on
scaled data. In fact, the accuracy obtained while training the
network on original UNHD data set was 10% higher than that
obtained from the scaled data. The rotated images produced
much better results than the scaled images. This shows that
variation within a class varies more in slants and orientation
rather than the size. The reason can be incurred that the
writing styles of different people varies more in slants and
curves of the words instead of the size.

As expected, the learning based techniques proved to
be more efficient in recognizing the ligatures than the
non-learning based techniques. The rotated images however,
out performed the standard GAN generated images, as stan-
dard GAN could not capture the prominent ligature patterns
in a single class. Compared to the standard GAN, for HOG
cell size 4 x 4, almost 15% increase in accuracy is obtained
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TABLE 2. Accuracy results of different data generation techniques when
HOG features are classified using LSTM.

. . HOG Cell size

Data Generation Technique Ixd X8
Without Data Generation 57.9% 51.9%
Scaled 47.86% 43.1%
Rotated 74.38% | 69.38%
GAN 70.01% | 58.39%
DCGAN 84.72% | 68.09%
ACGAN 85.72% | 64.52%
CGAN 96.69% | 95.52%
WGAN 97.36% | 90.55%
WGAN-GP 98.45% | 89.71%
Cycle-GAN 98.96% | 94.64%

in DCGAN, while, a 10% increase is obtained for HOG cell
size 8 x 8. Therefore, DCGAN performed better than standard
GAN, as it consists of convolutional layers which are more
prone to locate spatial correlations and thus, a better option
for image generation.

The CGAN performed even better than the former two.
GAN is conventionally an unsupervised learning technique,
which means it does not incorporate the effect of labels.
Hence, the GAN does not know the identity of each sample
with respect to its class. However, in CGAN, the G and
D take label of the sample as an input, which makes the
job much easier, as the network is now being trained in a
supervised manner. This results in a more stable training
of the network and allows the G to produce images of the
desired class. For HOG cell size 4 x 4, CGAN achieved
the notable accuracy of 96.69%, thus, a significant increase
in performance (more than 10%) is obtained as compare to
the results of DCGAN. For HOG cell size 8 x 8, a 25%
increase in accuracy can be seen as compared to the DCGAN
results.

The results acquired from ACGAN generated images were
not at par with those generated by the CGAN. For HOG cell
size 4 x 4, accuracy results are declined by 10% as com-
pared to CGAN, where it achieved an accuracy of 85.72%.
This is because, even though the G in both networks are
similar, the D in ACGAN is not given the label of tar-
get image as an input. Furthermore, the network archi-
tecture comparison of ACGAN and CGAN, discussed in
the previous subsection IV-A also reveals the reason that
why CGAN out performed ACGAN in the word spotting
process.

Compared to CGAN, the WGAN and WGAN-GP pro-
duced better performance results. For HOG cell size 4 x 4,
WGAN and WGAN-GP obtained an accuracy of 97.36%
and 98.45% respectively, whereas, for cell size 8 x 8, both
GANs (WGAN and WGAN-GP) performed better than the
other variants of GAN (except CGAN). This is because of the
Wasserstein computation that WGAN and WGAN-GP per-
forms, thus, providing the ability to produce diverse ligatures,
and hence, improved performance results.

Under the domain of image translation, we incorpo-
rated CycleGAN to translate between (un-ordered) original
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TABLE 3. A comparison of proposed methodology with existing word spotting techniques.

System Language | Segmentation | Classifier | Accuracy
Proposed System Urdu Ligatures LSTM 98.96%
(Cycle-GAN using 4x4 cell)
Khayyat et al. [2] Arabic Ligatures SVM 84%
Dehghan et al. [3] Farsi Characters SVM 95%
Patthan et al. [4] Urdu Characters HMM 93.59%

TABLE 4. Standard GAN architecture details for generator and
discriminator network.

Generator Activation  Output Shape

Latent vector - 100x1x1
Dense ReLU 128x1x1
Dense ReLU 256x1x1
Dense ReLU 512x1x1
Dense ReLU 1024 x1x1
Dense ReLU 2048x1x1
Dense ReLU 4096x1x1
Dense Tanh 3136x1x1

Discriminator ~ Activation = Qutput Shape

Input Image - 3136x1x1
Dense LReLU 2048 x1x1
Dense LReLU 1024x1x1
Dense LReLU 512x1x1
Dense LReLU 256x1x1
Dense LReLU 128x1x1
Dense Sigmoid 1x1

ligatures and rotated ligatures, and vice-versa. CycleGAN
provides an auxiliary cycle-consistent loss function along
with the standard adversarial loss, hence, the generated lig-
ature images are equally diverse as in the case of WGAN and
WGAN-GP. We achieved the best accuracy results using the
CycleGAN on HOG cell size 4 x 4. In general, it was observed
that training the LSTM network with HOG features extracted
using a 4 x 4 cell produces better results than 8 x 8 cell. This
is because the larger cells extract gradients from a larger area
in the image and minor details may get ignored. As 4 x 4
cell is smaller, it covers a smaller area in the image and
hence, captures more minute details of the image. Therefore,
it produces better results as training on more detail of the
image, enables the LSTM network to classify with better
efficiency.

A comparison with previous state of the art works regard-
ing word spotting on Arabic script languages is provided
in Table 3. The previous studies use normalization in the
pre-processing phase to make the images suitable for the clas-
sifier. This will add delay in real-time word spotting process.
It can also be seen that random data generated through GANs
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TABLE 5. DCGAN architecture details for generator and discriminator
network.

Generator Activation  Output Shape
Latent vector - 100x1x1
Dense ReLU TXTx128
Upsample
Conv 3x3 ReLU 14x14x128
Zero pad 1
Upsample
Conv 3x3 ReLU 28x28x 64
Zero pad 1
Upsample
Conv 3x3 ReLU 56x56x32
Zero pad 1
Conv 3x3
Zero pad 1 Tanh 56x56x1
Discriminator ~ Activation = Qutput Shape
Input Image - 56x56x1
Conv 3x3
Zero pad 1 LReLU 28x28x32
Stride 2
Conv 3x3
Zero pad 1 - 14x14x64
Stride 2
Zero pad 1 LReLU 15x15%x64
Conv 3x3
Zero pad 1 LReLU 8x8x 128
Stride 2
Conv 3x3
Zero pad 1 LReLU 8x8x256
Stride 1
Dense Sigmoid 1x1

produced better accuracy results, as compared to normaliza-
tion and correction techniques required in the pre-processing
stage. Due to random data generation, the images generated
by GANs are devoid of human intervention. Thus, train-
ing the classifier on such images also enables it to recog-
nize words, despite of unforeseen variations in hand writing
styles.

Furthermore, the classifiers used in the the previous studies
are not deep networks, whereas, in our work, the system
learns to capture a better distribution due to the deep network.
Even, if it takes a longer time to train, but, during real-time,
the classifier operates with a better efficiency.
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TABLE 6. Conditional GAN architecture details for generator and
discriminator network.

Generator Activation  Output Shape
Latent Vector+Labels ) s12%1x1
(Concatenated Vector)

Dense LReLU 1024 x1x1
Dense LReLU 2048 x1x1
Dense LReLU 4096x 1x1
Dense Tanh 3136x1x1
Discriminator Activation  Output Shape
Concatenated Veeror) 435211
Dense LReLU 2048x1x1
Dense LReLU 1024x1x1
Dense LReLU 512x1x1
Dense LReLU 256x1x1
Dense Sigmoid 1x1

TABLE 7. ACGAN architecture details for generator and discriminator
network.

Generator Activation  Output Shape
Latent vector + Labels - 110x1x1
Dense ReLU TxTx128
Upsample
Conv 3x3 ReLU 14x14x128
Zero pad 1
Upsample
Conv 3x3 ReLU 28x28x 64
Zero pad 1
Upsample
Conv 3x3 ReLU 56Xx56x32
Zero pad 1
Conv 3x3
Zero pad 1 Tanh 56x56x%1
Discriminator ~ Activation = Output Shape
Input Image - 56x56x1
Conv 3x3
Zero pad 1 LReLU 28%x28x32
Stride 2
Conv 3x3
Zero pad 1 - 14x14x64
Stride 2
Zero pad 1 LReLU 15x15x64
Conv 3x3
Zero pad 1 LReLU 8x8x128
Stride 2
Conv 3x3
Zero pad 1 LReLU 8x8x256
Stride 1
Dense Sigmoid 1x1

V. CONCLUSION
In this study, a system was proposed for the task of word spot-
ting of hand written Urdu text. We proposed the methodology
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TABLE 8. WGAN and WGAN-GP architecture details for generator and
discriminator network.

Generator Activation  Output Shape

Latent vector - 100x1x1
Dense LReLU 128x1x1
Dense LReLU 256x1x1
Dense LReLU 512x1x1
Dense LReLU 1024x1x1
Dense LReLU 2048x1x1
Dense LReLU 4096 1x1
Dense Tanh 3136x1x1

Discriminator ~ Activation  Output Shape

Input Image - 3136x1x1
Dense LReLU 4096x1x1
Dense LReLU 2048x1x1
Dense LReLU 1024x1x1
Dense LReLU 512x1x1
Dense LReLU 256x1x1
Dense Sigmoid 1x1

of generating handwritten ligature image database by segre-
gating the ligatures from handwritten document image lines.
We also explained the procedure of generating a diversified
synthetic database that allows the classifier to spot similar
ligatures in various handwriting styles without normaliz-
ing the ligatures. We have also shown the effectiveness of
extracting HoG features of ligature images that captures the
ligature geometrical information in a form of vector. This
provides a better recognition rate when trained on LSTM
network.

The overall aim of this paper is to present a learn-
ing based word spotting approach that has the ability to
recognize the instances of a keyword, irrespective of ori-
entation and the style of handwriting. The experimental
results of Section IV-B shows a successful impact of learn-
ing based data generation results on defined LSTM network
(Fig. 2).

The overall result shows that the system trained on scaled
data did not yield good results, but rotated data produced
much better results. This proves that the variation in writ-
ing style is more due to rotation and slants, rather than in
the size of text. The standard GAN produced much better
results than the scaled data. However, the DCGAN outper-
formed standard GAN due to convolutional layers in the
generator and the discriminator. The ACGAN also showed
a higher recognition rate than standard GAN and DCGAN.
This is because the generator in ACGAN is provided with
the label of the target image to be produced. The other GAN
with conditioning label, i.e., CGAN outperformed ACGAN,
as this GAN provides label to the generator, as well as,
the discriminator making the task easier for both networks.
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TABLE 9. CycleGAN architecture details for generator and discriminator

network.

Generator

Activation

Output Shape

Input Image

- 56x56x1

ReflectionPad2D
Conv 2x2
InstanceNorm2d

ReLU 57Tx57x64

Conv 3x3
InstanceNorm2d

ReLU 29x29x128

Conv 3x3
InstanceNorm2d

ReLU 15x15%256

9 Residual blocks of
ReflectionPad2D
Conv 2x2
InstanceNorm2d

ReLU 15x15%256

Upsample

Conv 3x3

Zero pad 1
InstanceNorm2d

ReLU 30x30x128

Upsample

Conv 3x3

Zero pad 1
InstanceNorm2d

ReLU 60x60x64

ReflectionPad2D
Conv 7x7

Tanh 56x56x1

Discriminator

Activation  Output Shape

Input Image

- 56x56x1

Conv 4x4
Zero pad 1
Stride 2

LReLU 28x28x64

Conv 4 x4
Zero pad 1
Stride 2
InstanceNorm2d

LReLU 14x14x128

Conv 4x4
Zero pad 1
Stride 2
InstanceNorm2d

LReLU Tx7x256

Conv 4x4
Zero pad 1
Stride 2
InstanceNorm2d

LReLU 3x3x512

Zero pad 2D
Conv 4 x4
Zero pad 1

(patchGAN)

- 3x3x512

The best performance was shown by WGAN-GP and Cycle-
GAN, i.e., 98.45% and 98.96% respectively, as these GANSs,
because of their strong theoretical loss function foundation
learn to replicate the ligature images from training data. This
proves that the minute patterns in ligature images which can
be a dot or slash running diagonally above the ligature (from
upper right to lower right) is equally important to achieve a
high recognition rate. Therefore, the higher recognition rate
is what makes a network robust to learn the distribution of
a language, irrespective of different orientation, pattern or

styles.
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APPENDIX A GAN ARCHITECTURES
See Tables 4-9.
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