
Received June 13, 2020, accepted July 12, 2020, date of publication July 17, 2020, date of current version July 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3009990

A Gray Box for Visualizing Instruction Sequence
Based on Improved Suffix Tree
DONGLIN WANG , (Member, IEEE), AND JIANDONG FANG
Department of Information Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

Corresponding author: Donglin Wang (1104098996@qq.com)

This work was supported in part by the Inner Mongolia Major Science and Technology Project under Grant MZD20180301, in part by the
Inner Mongolia Scientific and Technological Project under Grant N220001000409311 and Grant N220001000409278, and in part by the
Inner Mongolia Natural Science Foundation Project under Grant 2019MS06023.

ABSTRACT Gray box is a kind of device in which the working process of a program or system is locally
recognized. Gray box testing, also known as gray box analysis, is a software debugging method based on
the limited cognition of the internal details of the program. Testers may know how system components
interact with each other, but they lack a detailed understanding of internal program functions and operation.
So the construction of gray box is particularly important. The most original gray boxes are static debugger
and dynamic debugger. And then reflexion model, which reduces the manual work greatly, is developed
and applied. The latest gray boxes are focus on regarding instructions as a natural language using the mature
mathematical model tomine their internal value. Adhering to the idea of latest researches, our paper improves
the original suffix tree and use the improved suffix tree as a mathematical models to analyse and visualize
the internal logic of instructions. Our gray box aims at solving three problems in practical application.
In addition, we explain the complexity of instruction sequence and put forward a prediction formula for
the building part. By experiment, we prove the time complexity of each part and the correctness of the
prediction formula, and show the effect of visualizing part.

INDEX TERMS Gray box, reverse engineering, suffix tree, visualize, instruction preprocess.

I. INTRODUCTION
Gray box testing [1] is between white box testing and black
box testing [2], which not only pays attention to the cor-
rectness of output and input, but also focuses on the internal
situation of the program. Gray box testing is not as detailed
and complete as white box testing, but it pays more attention
to the internal logic of the program than black box testing.
Nowadays, the program size is bigger and bigger, and the
encryption method is more and more complex. Therefore,
there are few opportunities to use white box testing in prac-
tice, and the effect of black box testing is often not up to
standard. The improvement of gray box testing technology
will greatly improve the security quality of programs before
officially released.

Although gray box testing is very advanced, there are three
problems in practical application.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tu Ngoc Nguyen .

1) How to collect the source instructions when facing the
compression encryption?
The compression encryption [3] is different from obfus-
cated code [4] essentially. The obfuscated code blocks
the normal understanding by disturbing instructions’
logic [5], however, we still can get the encrypted source
code whether by static analysis or dynamic analysis.
But when facing the compression encryption such as
UPX [6], the static analysis loses effect immediately,
and the dynamic analysis can be stopped by anti debug
techniques such as timeout detection [7] or attached
detection [8]. So it is necessary to innovate a newmethod
to collect the source instruction effectively.

2) How to compress the source instructions into a suitable
volume for the chosen model?
For example, if a researcher wants to use N-gramsmodel
to analyse the instructions, he has to map the instructions
into the form of vector domain description [9]. But if the
chosen model need O(n2) or more time complexity to
build or traverse such as suffix tree [10], mere mapping

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 132157

https://orcid.org/0000-0002-6098-0026
https://orcid.org/0000-0001-7184-4102

D. Wang, J. Fang: Gray Box for Visualizing Instruction Sequence Based on Improved Suffix Tree

will be not enough for the high-volume instructions,
because the process will cost too much time. So it is nec-
essary to compress the source instructions into suitable
volume without losing the key information.

3) How to reuse the built model quickly and mine the
hierarchical inclusion relationship?
For example, a researcher can use DFS or BFS to
traverse one built suffix tree many times for differ-
ent aims [11]. That does reuse the model but costs
too much time, because each DFS or BFS needs
O(n2) time complexity. And such traverse results are
lack of hierarchical inclusion relationship [12], because
how many times traversing are needed and where
once traversing finishes in are both unknown until
the traversing does finish. In other words, if we
want to get the hierarchical inclusion relationship
among two or more parts of instructions like the
red-bordered ones in figure 1 and figure 2, by the
traditional suffix tree, we have to do n times O(n2)-
time-complexityed traversing, that is, the total pro-
cess for hierarchical inclusion relationship needs O(n3)
time complexity. So it is necessary to find a suitable
model and invent a low-time-complexityed traversing
algorithm.

FIGURE 1. Three parts of instruction.

FIGURE 2. Hierarchical inclusion relationship among three parts of
instruction.

There have been lots of related works aiming to solve these
three problems. And by comparing with the related works,
we explain the innovative points and the corresponding
improvement effect of our paper:
1) For collecting the source instruction when facing the

compression encryption.
The most traditional way, which is still used currently,
uses static analysis or dynamic analysis to crake the
compression encryption [13], although it consumes a
lot of human labor. The latest way can be summed

as ‘‘ignoring the encryption completely, using dynamic
analysis or dump [14] to record the running instructions
simply, mining the instruction’s inner logic by math-
ematical way after all the recording is finished’’. The
latest way reduces human labor greatly and makes the
whole process finish within predictable time.
Our research inherits the idea of the latest way, but
makes innovations in setting breakpoints. Most of the
existing researches are attaching and recording the
instructions from OEP [15], which records lots of irrel-
evant contents. In order to make the recorded instruc-
tions closer to the theme, we propose a method which
searches the aim information’s memory addresses, sets
Dr0 register (8 bits) [16] into the first-searched address’s
value, and sets Dr7 into 0 × 30101. When the first
STATUS_SINGLE_STEP exception is triggered, repeat
to set the TF flag [16] into 1 and record the instructions
like what the dynamic analysis does.
Compared with the latest way which records instruction
from OEP, our debugger can record instruction more
purposefully and avoid timeout detection [7] effectively.

2) For compressing the source instructions into a suitable
volume for the chosen model.
Basicly, the instruction compression here must satisfy
that the compression result can be analysed by the
corresponding model without decompression. So it is
different from the common compression algorithm [17],
[18] used in our daily life. And we can find many related
works satisfying this point [19], [20]. The innovation of
our research is that we compress not only the instructions
but also their corresponding running addresses. Only
both-the-samed recordings can be compressed into the-
same-coloured structure object like figure 3 showing.
And we use three kinds of pointers to save different
relationships between each recording.

FIGURE 3. The compression result in the memory.

Compared with the related works, our algorithm trans-
forms the basic unit from ‘‘char’’ to ‘‘sentence’’ by
compressing. Concretely speaking, we compress 100
chars into a structure object which contains all the key
values of the corresponding sentence. This compression
will make ten thousand times speed improvement for
the latter building process of suffix tree. For example,
in our experiment, our algorithm can finish building

132158 VOLUME 8, 2020

D. Wang, J. Fang: Gray Box for Visualizing Instruction Sequence Based on Improved Suffix Tree

process of 290809 instructions in 213000 ticks (nearly
213 seconds). If we use the ‘‘char’’ as the basic unit,
it will cost about 591 hours (24 days), so the speed
improvement caused by compressing is obvious.

3) For reusing the built model quickly and mine the hierar-
chical inclusion relationship.
The current works surely have noticed the large potential
value of this research. For example, Rainer Koschke’s
research demonstrates how suffix tree can be used
to obtain a scalable comparison in a faster way
[21]. And Kai Huang’s team develops an intelligent
instruction sequence based malware categorization sys-
tem (ISMCS) using a novel weighted subspace clus-
tering method [22]. The most obvious feature of cur-
rent works is reusing and mining through mathematical
calculation, which do improve model utilization effec-
tively and calculate out some hierarchical indexes for the
instructions, but the calculation results are not able to be
expanded any more. In other words, the researches still
have to do lots of redundant calculations for getting the
hierarchical inclusion relationship like figure 2 shown.
The innovation of our research is that we put forward an
‘‘improved suffix tree’’ on the base of traditional suffix
tree [10]. By the improved suffix tree, we can expand the
hierarchical inclusion relationship among different parts
of instructions by traversing the built tree not by mathe-
matical calculation. And we can visualize the traversing
result like the figure 1 and figure 2 showing.
Compared with the traditional suffix tree, the improved
suffix tree can finish traversing the visualizing both in
the linear time complexity strictly.

Our gray box is composed of collecting part, compressing
part, improved suffix tree and visualizing part.The relation-
ship among each part is like figure 4 shown:

FIGURE 4. The composition of our gray box.

This paper is organized as follows. Section I introduces the
background, existing problems, related works, our innovation
points and corresponding improvement effects. Section II
illustrates how our gray box collects the source instructions
when facing the compression encryption. Section III illus-
trates how our gray box compresses the source instructions
into a suitable volume. Section IV illustrates the similarities
and differences between improved suffix tree and traditional
suffix tree, discuss the constructing time consume for suffix
tree, and give out a fast prediction formula for constructing
time consume. Section V illustrates how gray box reuses the

improved suffix tree quickly in order to mine the hierarchical
inclusion relationship of the source instructions. Section VI
summarizes the conclusions of this paper. Finally, the future
works are on Section VII.

II. COLLECTING
This section aims at collecting the source instructions. By set-
ting breakpoints innovatively, we realize a dynamic debugger
which can record the target-specific assembly instructions
and format them into a txt file. Three types of breakpoint
called MBP, DRX and TF are used in this section.

A. DEFINITION
The definitions of related variables in collecting part are like
table 1 shown:

TABLE 1. The variables of collecting part.

The pseudo code of collecting part is described in Algo-
rithm 1:

B. EXPLANATION
1.Why must MBP be set before DRX?

The decision is based on practise. If we set DRX imme-
diately after attaching, the debugged application may reset
them by safeguard function before triggering, so that we can
not accept exception at all. Comparedwith DRX,MBP can be
hardly used in safeguard function, because determining every
instruction in a memory-paged range costs too much time.
That is also the reason why we do not just use ‘‘MBP+TF’’.

2.How many times is MBP set and triggered?
Only the TIA[0] is set as MBP once time, and it is also just

triggered once in loop 1, in which we set DRX at the same
time. The triggering position betweenMBP and DRX can not
be over one memory-paged rage, so the DRX can be hardly
reset.

3.Why does collecting() just have two loops for three types
of breakpoint?

Loop 1 is forMBP obviously. Because DRX and TF trigger
the same exception, the loop 2 triggers once DRX first and
sets 9-th flag bit into 1 at the same time. Except the first DRX,
the rest of loop 2 triggers TF (WB-1) times simply or shuts
down with the crash of debugged program.

VOLUME 8, 2020 132159

D. Wang, J. Fang: Gray Box for Visualizing Instruction Sequence Based on Improved Suffix Tree

Algorithm 1 Collecting()
1:attach to AP
2:search TI and save TI by TIA
3:set MBP by TIA[0]
4:WI=0
5:whileWI<WB
6: wait and record DE
7: if DE==EXCEPTION_ACCESS_VIOLATION
8: set DRX(dr0=TIA[0] dr7= 0× 30101) in all

thread
9: WI=WB
10: continue AP
11: WI++
12:delete MBP
13:WI=0
14:whileWI<WB
15: wait and record DE
16: if DE==EXCEPTION_SINGLE_STEP
17: record AI by TEXT
18: TF=1
19: continue AP
20: WI++
21:detach from AP

C. EXPERIMENT
We chose a large-scale online game to test whether collect-
ing() can effectively obtain the instruction set. The game
program consists of two parts: the starting end (1.09 MB)
and the client end (1.05 GB). When the game starts, the
starting end decompresses the client end. We set the ASCII
code of the game currency as TI. Then we attach our gray
box to the game. When we do currency related operations
in the game, our gray box can record the currency related
instruction set directly. We set WB as one millon. When we
do the different currency related operations, we can record
TEXTs of different length from 2292 to 1000000.

The example of TEXT is like figure 5 shown:

FIGURE 5. The result of collecting().

D. COMPARISON
If we use the traditional way like IDA [23] to debug the game,
just for the starting end (1.09 MB), 1863 functions can be
resolved. To explore call relations among 1863 functions is
like looking for a needle in a haystack. For the client end

which is compressed into some unpublished format, IDA is
unable to load the file into workspace.

Compared with the latest way which dumps [14] or
records the instructions from OEP [15], [24], our gray box
can record instruction more purposefully and avoid timeout
detection [7] effectively. If our gray box runs the game from
OEP, before we do currency related operations, the game
can detect itself is being debugged and kill itself. As a
result we can’t record currency related instruction set at
all.

III. COMPRESSING
This section aims at reading TEXT into memory and map-
ping these context into a 3D LIST. The reason why the
result is called 3D list is that every node in the list
has 3 direction pointers: PRIGHT, PDOWN and PNEXT.
The PRIGHT represents the first-lined, right adjacent and
different kind relationship. The PDOWN represents the
same column, down adjacent and the same kind relation-
ship. The PNEXT represents the order adjacent relation-
ship. And we denote the basic node structure of 3D LIST
as NOOD.

The innovation of this block is rather than the traditional
way of using a single character as the basic analysis unit,
we compress and map the sentence into structure node as
basic unit. Actually we formulate 100 characters as a sentence
and map it into a node. There will be a great execution speed
benefit facing the ‘‘bad situation’’, even promote ten thousand
times.

TABLE 2. The variables of compression.

A. DEFINITION
The definitions of related variables in compressing part are
like table 2 shown:

132160 VOLUME 8, 2020

D. Wang, J. Fang: Gray Box for Visualizing Instruction Sequence Based on Improved Suffix Tree

The pseudo code of compressing part is described in
Algorithm 2:

Algorithm 2 Compressing()
1:RT=0;UT=0;CT=1
2:build ROOT
3:while CT≤SUM/1000+1
4: local FP
5: set TC by FP
6: initial AL
7: IS=1
8: while IS≤AL
9: initial NODE
10: local PTC
11: set NODE by PTC
12: build3D()
13: IS++
14: CT++

The pseudo code of build3D() is described in
Algorithm 2.1:

Algorithm 2.1 Build3D()
1:CN= −1;LN=1;PNEXT=&ROOT;PRIGHT

=&ROOT
2:while PRIGHT!=NULL
3: CN++
4: if PRIGHT->eip==PNODE->eip&&

PRIGHT->opcode==PNODE->opcode
5: PDOWN=PRIGHT
6: while PDOWN->next!=NULL
7: LN++
8: PDOWN=PDOWN->dowm
9: PDOWN->dowm=PNODE
10: PNODE->line=LN+1;PNODE->

column=CN;AF=1
11: PNEXT->next=PNODE;PNEXT=PNODE
12: if AF==1
13: RT++;break
14: if PRIGHT->right==NULL&&AF==0
15: PRIGHT->right=PNODE;UT++
16: PNODE->line-1;PNODE->column=CN+1;
17: PNEXT->next=PNODE;PNEXT=PNODE;

break
18: PRIGHT=PRIGHT->right

B. EXPERIMENT
By the Algorithm 2, we transform the TEXT into 3D LIST
like figure 3 shown. And we test the result by traverse the
3D LIST and print the node contents into txt file like fig-
ure 6 shown:

C. COMPARISON
By compressing the TEXT into 3D LIST, we not only real-
ize the compression of memory space, but also realize the

FIGURE 6. The result of compressing().

conversion of basic unit from ‘‘char’’ to ‘‘sentence’’. Lai
Huoyao’s team improved the UKK suffix tree and proposed
the SBA suffix tree [25]. In their experiment, the basic unit is
‘‘char’’, and the capacity of experiment is 600000 characters.
The time consume of their construction algorithm is like
figure 7 shown:

FIGURE 7. The time consume of Lai Huoyao’s construction algorithm.

According to the figure 7, facing 600000 bytes, the time
consume of SBA or UKK is between 11.700s-15.722s. When
the basic unit is transformed into sentence through our
gray box, the constructing time consume (building tick) of
improved suffix tree is like table 3 shown:

TABLE 3. The constructing time consume of improved suffix tree.

By the 10th data in table 3, we can see that 33133 × 100
bytes, which is nearly five times as much as Lai Huoyao’s
sample, only takes about 1.4s. The sample size is increased
by 5 times and the time consume is reduced to one-tenth. And
the constructing processes of UKK, SBA and our improved
suffix tree have no structural change in nature. In other words,
by compressing part transforms the basic unit from ‘‘char’’ to

VOLUME 8, 2020 132161

D. Wang, J. Fang: Gray Box for Visualizing Instruction Sequence Based on Improved Suffix Tree

‘‘sentence’’, we get a nearly 50 times acceleration facing 3M
TEXT. As the sample size becomes bigger, the acceleration
will be more obvious.

IV. IMPROVED SUFFIX TREE
In this section, we first introduce the two main differences
between our improved suffix tree and the traditional UKK
suffix tree [10]. Then discuss the constructing time consume
of suffix tree. Finally, give out a fast prediction formula for
constructing time consume.

A. DIFFERENCE
The algorithm architectures of UKK [10] and our improved
suffix tree are nearly the same. The differences can be
summed up into two points: first, we change the UKK’s suffix
link (pointer) into SUFFIX LINK (structure list). Second, our
improved suffix tree keeps the necessary reverse relationships
among each kind of structure.

1) SUFFIX LINK
In Ukkonen’s paper [10], the illustration of string ‘‘cacao’’ is
like figure 8 shown:

FIGURE 8. The suffix tree of string ‘‘cacao’’ in Ukkonen’s paper.

Because of the suffix link, the constructing process UKK
looks complicated. We replace suffix link (pointer) with SUF-
FIX LINK (structure list), and save SUFFIX LINK till the
end of gray box testing. We denote the SUFFIX structure
as S(p,n,f,o,l). The p represents the pointer which precisely
locals the compared position on the improved suffix tree. The
n represents the pointer which makes SUFFIXs into a link.
The f represents the flag which represents the state of S. The o
represents the order of corresponding NODE in the 3D LIST.
The l represents the length of corresponding common prefix.

By replacing suffix link with SUFFIX LINK, the illustra-
tion of string ‘‘cacao’’ shown by the improved suffix tree is
like figure 9 shown:

The replacement not only makes the algorithm clear, but
also provides the foundation for the next section to reuse the
improved suffix tree.

2) REVERSE RELATIONSHIP
Because the Ukkonen’s suffix tree [10] is an one-way tree,
it just can be traversed from root (top) to the leaves (bottom).

FIGURE 9. The improved suffix tree of string ‘‘cacao’’.

There is no doubt that the UKK suffix tree has achieved
remarkable success in substring inclusion relationship search
[26] and palindrome detection [27], which just need linear
time to finish traversing. But if we want to use the UKK
suffix tree to get the hierarchical inclusion relationship like
figure 2 shown, we at least need to do DFS or BFS, which
exactly need quadratic time.

For getting the hierarchical inclusion relationship in linear
time, we add two reverse relationship pointer. We denote the
node of improved suffix tree as N(n,e,o). The n represents
the pointer which points to N’s parent node. The e represents
the pointer which points to N’s incoming edge. The o repre-
sents the information which has been defined in UKK suffix
tree.

B. CONSTRUCTING TIME CONSUME
In the abstract of paper On-line construction of suffix trees
[10], Ukkonen said ‘‘Regardless of its quadratic worst case
this latter algorithm can be a good practical method when the
string is not too long’’. Besides Ukkonen’s paper, nearly all
the researches related with suffix tree emphasize that they
can finish constructing process by linear time in specific
background [25]. But what is the constructing time consume
for general situation? The constructing process using suffix
link or SUFFIX LINK is the same essentially. So in the
following paragraphs, the improved suffix tree’s constructing
time consume can be considered the same as traditional UKK
suffix tree’s.

we have denoted the basic unit of improved suffix tree’s
source data as NODE in section III. In Ukkonen’s paper, the
NODE saves the information of ‘‘char’’. For our gray box, the
NODE saves the information of ‘‘sentence’’. And we define
the new-keyworded NODEs as debut NODE, such as the
’1:c’, ’2:a’ and ’5:o’ in the string of ‘‘cacao’’. We define the
NODEs which make more SUFFIXs’ p point to the leaf of
improved suffix tree as acceleration NODE, such as the ’1:c’,
’2:a’ and ’5:o’ in the string of ‘‘cacao’’ shown by figure 9.

Three conclusions are emphasized as following:
Conclusion 1, debut NODE must be acceleration NODE,

and debut NODE must make all the SUFFIX’s p point to
leaves at that time.

132162 VOLUME 8, 2020

D. Wang, J. Fang: Gray Box for Visualizing Instruction Sequence Based on Improved Suffix Tree

Conclusion 2, acceleration NODE can not be debut NODE,
such as the ’6:a’in the string of ‘‘abcabax’’. The a has been
appear in ’1:a’ and ’4:a’ repeatedly, but when the ’6:a’ is
added into improved suffix tree, the end position of the suffix
which begin from ’4:a’ and ’5:b’ are linked to the leaf at that
time. And the acceleration NODE doesn’t ensure to make all
the SUFFIXs’ p point to leaves except the SUFFIX of itself,
such as the ’8:x’ in the string of ‘‘abcbxabxy’’. When ’8:x’
is added, the suffix ‘‘abx’’ has never appeared before, but the
suffix ‘‘bx’’ has appeared from ’4:b’. So the suffix ‘‘abx’’ link
to leaf, the suffix ‘‘bx’’ is still on the edge of improved suffix
tree.

Conclusion 3, the SUFFIXs whose p have pointed to leaves
must be added into the SUFFIX LINK earlier. Like fig-
ure 9 shown, the yellow SUFFIXs must be at the left side
of the green ones.

Till now, we can divide the NODE link (source data) by
the acceleration NODEs. Such as the string ‘‘cacao’’ can
be divided into ‘‘c a cao’’, the string ‘‘abcbxabxy’’ can be
divided into ‘‘a b c bx abx y’’. And we define some variables
like table 4 shown:

TABLE 4. The definition of source data.

Now the NODE link can be represented like (1) showing:

C1,1 . . .C1,t1Ci,1 . . .Ci,tiCn,1 . . .Cn,tn (1)

We suppose that all the acceleration NODEs can make
all the SUFFIXs points to leaves. Now the i-th group’s total
comparing time can be represented by (2).

1+ 2+ 3+ . . .+ ti =
(1+ ti)ti

2
(2)

So the total comparing time of constructing process can be
calculated out by (3).

n∑
i=1

(1+ ti)ti
2

(3)

We use t to represent the total node number of NODE link
and get (4) as the result.

1
2
(
n∑
i=1

t2i + t) (4)

Lower boundary:
The n-dimensional Cauchy-inequality can be represented

by (5).

(a21 + a
2
2 + .+ a2n)× (b21 + b

2
2 + .+ b2n)

≥ (a1b1 + a2b2 + .+ anbn)2 (5)

When all ai are set to ti, and all bi are set to 1, we can
get (6).

t21 + t
2
2 + . . .+ t2n ≥

(t1 + t2 + . . .+ tn)2

n
(6)

Because t=t1 + t2 + . . . + tn, (6) can be converted
to (7).

n∑
i=1

t2i ≥
t2

n
(7)

Then we plus t and divide by 2 at both sides of (7) and
get (8):

1
2
(
n∑
i=1

t2i + t) ≥
1
2
(
t2

n
+ t) (8)

So the lower boundary of the constructing time con-
sume is when n=t. In other words, all the NODEs’
types are different from each other, such as the string of
‘‘ABCDEF12345HIGK’’. At that time, the lower boundary
is t (or n).

Upper boundary:
Because t is a constant value, so the upper boundary of (4)

is depended on the (9)’s upper boundary.
n∑
i=1

t2i (9)

And (9) can be converted to (10).
n∑
i=1

t2i = (
n∑
i=1

ti)2 − 2
n∑

i=1,j=1

titj (10)

Because t=t1+ t2+ . . .+ tn, (10) can be converted to (11).
n∑
i=1

t2i = t2 − 2
n∑

i=1,j=1

titj (11)

Then we plus t and divide by 2 at both sides of (11) to
get (12).

1
2
(
n∑
i=1

t2i + t) ≤
1
2
t2 −

n∑
i=1,j=1

titj +
t
2

(12)

In reality situation, the value of ti(tj) can be 0. And the most
extreme situation (worst case) is that the NODE link only
has two acceleration NODEs at the begin and end, such as
‘‘AAAAAAAAAB’’. The ’1:A’ and ’10:B’ are acceleration
NODEs. And the most extreme situation can be generally
regarded as: The t-lengthed NODE link is divided into 2
(n=2) parts, the first part’s length t1 is 1, and the second part’s
length t2 is t-1. Put t1 and t2 into (12), we can get the upper
boundary as (13).

1
2
(
n∑
i=1

t2i + t) ≤
1
2
t2 −

1
2
t + 1 (13)

VOLUME 8, 2020 132163

D. Wang, J. Fang: Gray Box for Visualizing Instruction Sequence Based on Improved Suffix Tree

Sum up:
The constructing time consume can be represented by (4)

approximately. The exact constructing time consume is more
complex and bigger than (4). Because the acceleration NODE
doesn’t ensure to make all the SUFFIXs’ p point to leaves
except the SUFFIX of itself, such as the ’8:x’ in the string of
‘‘abcbxabxy’’. When ’8:x’ is added, the suffix ‘‘abx’’ link to
leaf, the suffix ‘‘bx’’ is still on the edge of improved suffix
tree,but the (4) regards ‘‘bx’’ links to leaf at the same time.
So when the ’9:y’ is added, the (4) will miss to calculate
‘‘bxy’’, which makes the exact constructing time consume
bigger than the (4).

The (4) is an n-dimensional problem, which is not suit-
able for human to understand. So we use the knowledge
of inequality to reduce the n-dimensional problem into an
one-dimensional problem. And finally the scale result is like
(14) showing:

t ≤
1
2
(
n∑
i=1

t2i + t) ≤
1
2
t2 −

1
2
t + 1 (14)

According to table 3, we can draw the line chart between
length and building tick as figure 10:

FIGURE 10. The line chart between length and building tick.

The figure 10 illustrates that the constructing time consume
is in a growth trend between O(n) and O(n2).
And we can draw the line chart between length and build-

ing index as figure 11:
The figure 11 illustrates that the constructing time consume

of each basic unit is in a growth trend between O(n) and O(n2)
too. And in Prakash’s paper [28], they got the similar line
chart like figure 12 shown:

In conclusion, the time complexity of the improved suf-
fix tree’s constructing process can not strictly maintain at
O(n) level. It depends on the distribution of the acceleration
NODEs mainly. And the final range is between O(n) and
O(n2).

C. FAST PREDICTION FORMULA
We have proved that the constructing time consume of the
improved suffix tree is between O(n) and O(n2), actually,

FIGURE 11. The line chart between length and building index.

FIGURE 12. Prakash’s line chart between length and constructing time
consume.

it is more closer to the O(n2). By the previous exper-
iment data in table 3, we know that 290809 sentences
(28.0 MB) need 213048ms (nearly 3.5 minutes). As the
source data becomes bigger, it is necessary to predict the
time consume before constructing. If the prediction time
is far beyond the time limit, we can stop constructing in
time.

The prediction formula is on the basis of the (4) and like
(15) shown:

P =
1
2
(
n∑
i=1

T 2
i + t)×

D
M

(15)

Let’s explain the (15) in detail.
First, we use debut NODE (Ti) to replace acceleration

NODE (ti) in (4). Becausewe can get all the positions of debut
NODEs before constructing in a very short time.

Second, for compensating the error caused by the above
replacing, we divide (4) by M which represents the ratio
of exact construction time consume to the prediction value
calculated by debut NODE. We can explain M more vividly
with the help of figure 13:

In figure 13, the red area represents the value calculated by
debut NODE. The green area and blue area represent the value
calculated by acceleration NODE. And the green, blue and
yellow ares represent the exact constructing time consume.
So the M can be regarded as the area ratio of red area to the
sum of green, blue and yellow ares.

132164 VOLUME 8, 2020

D. Wang, J. Fang: Gray Box for Visualizing Instruction Sequence Based on Improved Suffix Tree

FIGURE 13. The relationship between the exact constructing time
consume and calculated values.

Third, when calculate the (4), we regard each explicit situa-
tion and implicit situation as the same time unit as Ukkonen’s
paper [10] did. In fact, the average time use of once explicit
situation is longer than that of implicit. And the average time
use of once comparing is related with the hardware condition.
So we use D to represent the two differences between exact
constructing time consume and (4).

In experiment, the T represents the actual number of com-
paring.We can get D by dividing building tick with T. Andwe
can get M by divide (4) with T. The actual measured values
are like table 4 shown:

TABLE 5. The actual measured values.

According to table 5, we can see when the length is over
100000, the value of D is basically fixed near 3 × 10−5.
And the maximum of M is just 4.203176136. Compared with
100000-lengthed source data, we can regard the value of D

M as
a constant represented by C. So the (15) can be transformed
into (16).

P =
1
2
(
n∑
i=1

T 2
i + t)× C (16)

According to our experiment situation, When we set C
as 10−5, the relationship between prediction constructing
time consume and actually recorded time consume is like
figure 14 shown:

FIGURE 14. Length-building tick|length-P.

According to figure 14, we can see that the difference
between the predicted value and the accurate value is not
more than twice. We can finish the prediction of 290809-
lengthed source data in 47959 ms just after compressing,
which is far less than 213048 ms. Because the compressing
process is linear time complexity and the constructing process
is quadratic time complexity, when the source data becomes
bigger, the effect of saving time will be more obvious.

V. REUSING AND VISUALIZING
A. REUSING (TRAVELING)
In the IV.A, we illustrate two differences between improved
suffix tree and traditional UKK suffix tree. Those two dif-
ferences don’t reduce constructing time consume, but change
the traveling (reusing) time consume form quadratic time to
linear time essentially.

For getting the hierarchical inclusion relationship like
figure 2 shown, we need to finish three steps.

Step 1, find all the end position of suffixes on the improved
suffix tree. such as for the string of ‘‘cacao’’, if we want
to get all 5 suffixes end position on UKK suffix tree, once
DFS or BFS is necessary, whose time complexity is O(n2).
In contrast, by improved suffix tree, we just need to do once
linear-timed traversing on the SUFFIX LINK.

Step 2, find common prefixes for all suffixes. For UKK
suffix tree, the DPS or BFS in the Step 1 can achieve this
aim at the same time, whose time complexity is O(n2). For
improved suffix tree, on the basis of SUFFIX LINK and
reverse relationship, we can get all the end position and length
of common prefixes in O(n) time complexity totally like
figure 16 shown:

Step 3, combine the common prefixes to get COMBINE
LINK. The common prefixes whose begin positions are con-
tinuous and end positions are the same can be combined into
COMBINE structure. We denote the COMBINE structure as
C(b,e,n,i,l). The b and e represent the begin and end positions
of the substring respectively. The n represents the pointer
to the neighbouring COMBINE structure. The i represents

VOLUME 8, 2020 132165

D. Wang, J. Fang: Gray Box for Visualizing Instruction Sequence Based on Improved Suffix Tree

FIGURE 15. Find all the end position of suffixes.

FIGURE 16. Find common prefixes for all suffixes.

identification of COMBINEwhich depends on the length and
end position of the according substring. The l represents the
length of the longest prefix.

To get COMBINE LINK, the UKK suffix need to do
once DPS or BFS at least whose time complexity is O(n2).
For improved suffix tree, by traversing the SUFFIX LINK,
we can ensure that the begin positions of common prefixes are
continuous. After combine the SUFFIXs into COMBINEs,
through a simple bubble sort, we can the COMBINEs whose
l are the same into the same i. The process to get the COM-
BINE LINK (blue part) of ‘‘cacao’’ is like figure 17 shown:

FIGURE 17. Combine the common prefixes to get COMBINE LINK.

We denote the variables of traversing as table 6:
The general traversing process can be abstracted into algo-

rithm 3:
When we start to traverse an improved suffix tree, L is

equal to 1, the PSB points to the next position of SUFFIX
HEAD, PSE points to the end position of SUFFIX LINK.
After traversing, we get sorted COMBINE LINK. At this
moment, we can chose any COMBINE whose i appears in
the COMBINE LINK more than once to expand its hierar-
chical relationship further. Now L is equal to 2, the PSB
points to the chosen COMBINE’s b, PSE points to the chosen
COMBINE’s e. We can do the above operations iteratively to

TABLE 6. The variables of traversing.

get the n-lawyered hierarchical inclusion relationship. (when
L=3, when can get the hierarchical inclusion relationship like
figure 2 shown)

Then we do experiments to record the traversing (reusing)
time consume for a 290809-lengthed source data, the
recorded data is like table 7 shown:

TABLE 7. The recorded and calculated values for logicalize.

The 11th-15th data’s traversing tick is 0 ms, the reason is
that the traversing process is so fast and highest recordable
accuracy is millisecond. And we make a chart line about
length and traversing tick like figure 18 shown:

According to figure 8, it is obvious that as the length
becomes bigger, the traversing tick increases at the same time

132166 VOLUME 8, 2020

D. Wang, J. Fang: Gray Box for Visualizing Instruction Sequence Based on Improved Suffix Tree

Algorithm 3 Traversing()
1:for(PS=PSB,t=0;PS!=PSE->n;PS=PS->n)
2: t++
3:for(PS=PSB,t=0;PS!=PSE->n;PS=PS->n)//step 1
4: PES=PS->p
5: for(i=0,DL=0,PEP=PS->p;i<L;i++)//step 2
6: DL=DL+(PS->e->e-PS->e->b)
7: PEP=PEP->n
8: CPL=t-DL-(PS->o-PSB->o+1)
9: PS->l=CPL+PEP/0xfffffff
10:TL=PSB->l;//step 3
11:PC1=new COMBINE
12:PC1->b=PSB->o;PC1->l=PSB->l;PCH->n=PC1
13:for(PS=PSB,t=0;PS!=PSE->n;PS=PS->n)
14: if PS->l!=TL
15: PC1->e=PS->o-1;TL=PS->l
16: PC2=new COMBINE
17: PC2->b=PS->o;PC2->l=PS->l;PC1->n=PC2
18: PC1=PC2
19:do bubble sort the SUFFIX LINK by l

FIGURE 18. Combine the common prefixes to get COMBINE LINK.

by a linear type. And in Huisheng Zhu’s paper [29], they
traversed the suffix tree by DFS, the relationship between
length average running time is like figure 19 shown:

FIGURE 19. Combine the common prefixes to get COMBINE LINK.

It’s obvious that the chart line in the figure 19 shows a trend
of nonlinear growth. In contrast, on the basis of IV.A, our
improved suffix tree can finish traversing by linear time.

B. VISUALIZING
In this subsection, we visualize the COMBINE LINK into
2D defrag picture like figure 1 shown, which then can be
combined into 3D hierarchical inclusion relationship like
figure 2 shown. The pseudo code of visualizing is like
Algorithm 4 shown.

Algorithm 4 Visualizing()
PEC represents pErgodicCombine;
1:width=nodeLinkLength;
2:if width%2==1
3: width=width+1
4:height=width;memorySize=54+width*height*2
5:pMemoryHead=malloc(sizeof(char)*

(54+width*height*2))
6:initializeHeadFile(width,height)
7:pHeadFile=(unsigned char *)pHeadOverAll
8:pInput=pMemoryHead
9:i=0
10:while i<54
11: pInput=pHeadFile;pInput++;pHeadFile
12: i++
13:picWide=0;picHeight=0;debounce=0;before=0
14:gamut=65536;PEC=combineHead.pNext
15:while PEC!=NULL
16: debounce=PEC->rankNumber/(double)colourType

*gamut
17: pInput=pMemoryHead+54
18: i=1
19: while i<=(width*height*2)
20: picHeight=(i+1)/2/width+1;picWide=(i+1)/2%

width
21: if picWide>=PEC->blockBegin

&&picWide<=PEC->blockEnd
&&picHeight>=PEC->blockBegin
&&picHeight<=PEC->blockEnd
*pInput =(int)debounce

22: i++,pInput++
23: PEC=PEC->pNext
24:write pMemoryHead into file

The core idea of visualization is representing the i-equaled
COMBINEs into same-coloured squares. And the diagonal
direction represents the execution process of source code. The
3D hierarchical inclusion relationship is as the final result of
our gray box to show the inner logic of source code.

We make an example for visualizing 290809 instruction
into 3 lawyers.

When L=1, the PSBmust points to the next node of COM-
BINE HEAD, and the PSE must points to the last node of
COMBINE LINK. The 2D defrag picture shows the 1-29089
instructions inner logic. The same-coloured squares in the 2D
defrag picture represent the identical sub-instructions.

The 2D defrag picture of 1-290809 instructions is like
figure 20 shown:

VOLUME 8, 2020 132167

D. Wang, J. Fang: Gray Box for Visualizing Instruction Sequence Based on Improved Suffix Tree

FIGURE 20. L=1 PSB=1th PSE=290809.

By figure 20, we can immediately realize that the most
obvious code block of 1-29089 instructions is like the purple
square shown, and this code block executes twice con-
tinuously. The lower purple square represents the 45014-
154164 instructions, and the upper purple square represents
the 154402-263553 instructions.

Then we expand the 45014-154164 instructions. Now
L=2, PSB points to the 45014th node on the SUFFIX LINK,
PSE points to the 154164th node on the SUFFIX LINK.
After traversing, we can get new COMBINE LIST, and visu-
alize the COMBINE LIST by the 2D defrag picture like
figure 21 shown:

The 2D defrag picture of 45014-154164 instructions is like
figure 21 shown:

FIGURE 21. L=2 PSB=45014th PSE=154164.

We can iterate the results of figure 21 to expand the lower
blue block. Now L=3, PSB points to the 45014th node on
the SUFFIX LINK, PSE points to the 78145th node on the
SUFFIX LINK. The 3th-lawyered 2D defrag picture like
figure 22 shown:

Finally, we combine the figure 19, figure 20 and
figure 21 into a 3D space. The final hierarchical inclusion
relationship is like figure 23 shown:

By the hierarchical inclusion relationship, our gray box can
show the inner logic of source instructions vividly.

There have been lots of similar visualizing researches.
In Fontana’s paper [29], they developed a debugger to show

FIGURE 22. L=3 PSB=45014th PSE=78145.

FIGURE 23. The final hierarchical inclusion relationship.

the inner logic of JAVA source code. Their visualizing result
is like figure 24 shown:

FIGURE 24. The visualizing result of Fontana’s paper.

And the visualizing origin of Fontana’s paper is like
figure 25 shown:

FIGURE 25. The visualizing origin of Fontana’s paper.

Fontana’s research did visualize the JAVA program excel-
lently, but like figure 25 shown, its visualization origin is
based on advanced language code and call stack, which
is suitable for white-box not gray-box. In contrast, our

132168 VOLUME 8, 2020

D. Wang, J. Fang: Gray Box for Visualizing Instruction Sequence Based on Improved Suffix Tree

gray-box can get the similar visualizing effect just by assem-
bly instructions.

VI. CONCLUSION
Through collecting, compressing, constructing (improved
suffix tree), traversing (reusing) and visualizing, our gray box
finally realizes to show the inner logic of on line game’s
currency-related instructions. And the gray-box can be used
to visualize the 32-bit PE structure program in a short time
generally.

The detailed conclusions of each part can be summarized
as the following four points:

1.By II, we prove that the collecting part can record aimed
instructions without the jam of compression encryption.

2.By III, we prove that the compressing part can bring
obvious acceleration to the later constructing part.

3.By IV, with inequality technique, we prove the time
consume range of construction process, and propose a fast
prediction formula.

4.By V, we prove that the improved suffix tree can finish
traversing (reusing) in linear time and achieve similar effect
with white-box testing.

VII. FUTURE WORK
In the future, we plan to simulate the human brain activity by
improved suffix tree, it will be Epoch-making.

What’s the source of human brain’s logic? The answer is
human memory. We can imagine as the memorable things are
saved into a suffix tree and the trifles are abandoned. In other
words, the memory is interrupted but can be reformed into
linear type. And suffix tree can transform the data from left
to right in real time. So we can use suffix tree to record human
memory.

The thing that traditional suffix tree can’t reach is that
the traversing of any data needs O(n2) time complexity,
as the amount of data becomes bigger and bigger with time
going, The O(n2) time complexity is absolutely unacceptable.
In other words, the simulated human brain will be an idiot as
the time goes by.

But with the help of Algorithm 3, we can get all-layered
memory logic in a linear time, which make the simulated
human brain can react quickly and human likely. That is what
we will do in the future.

REFERENCES
[1] L. Meng, M. Lu, B. Huang, and X. Xu, ‘‘Using relative com-

plexity measurement which from complex network method to allo-
cate resources in complex software System’s gray-box testing,’’ pre-
sented at the Int. Symp. Comput. Sci. Soc., Kota Kinabalu, Malaysia,
Jul. 16–17, 2011.

[2] O. Loyola-Gonzalez, ‘‘Black-box vs. white-box: Understanding their
advantages and weaknesses from a practical point of view,’’ IEEE
Access, vol. 7, pp. 154096–154113, Oct. 2019, doi: 10.1109/ACCESS.
2019.2949286.

[3] X. Li, X. Wang, and W. Chang, ‘‘CipherXRay: Exposing cryptographic
operations and transient secrets from monitored binary execution,’’ IEEE
Trans. Dependable Secure Comput., vol. 11, no. 2, pp. 101–114,Mar. 2014,
doi: 10.1109/TDSC.2012.83.

[4] U. Sabir, F. Azam, S. U. Haq, M. W. Anwar, W. H. Butt, and A. Amjad,
‘‘A model driven reverse engineering framework for generating high
level UML models from java source code,’’ IEEE Access, vol. 7,
pp. 158931–158950, Nov. 2019, doi: 10.1109/ACCESS.2019.2950884.

[5] Z. He, G. Ye, L. Yuan, Z. Tang, X. Wang, J. Ren, W. Wang, J. Yang, D.
Fang, and Z. Wang, ‘‘Exploiting binary-level code virtualization to pro-
tect Android applications against app repackaging,’’ IEEE Access, vol. 7,
pp. 115062–115074, Jun. 2019, doi: 10.1109/ACCESS.2019.2921417.

[6] UPX. Accessed: Jan. 23, 2020. [Online]. Available: https://upx.github.io/
[7] O. Nguena Timo, D. Prestat, and F. Avellaneda, ‘‘Fault detection in timed

FSM with timeouts by SAT-solving,’’ presented at the 19th Int. Conf.
Softw. Qual., Rel. Secur. (QRS), Sofia, Bulgaria, Jul. 22–26, 2019.

[8] A. Aggarwal and P. Jalote, ‘‘Monitoring the security health of software
systems,’’ presented at the 17th Int. Symp. Softw. Rel. Eng., Raleigh, NC,
USA, Nov. 7–10, 2006.

[9] M. El Boujnouni, M. Jedra, and N. Zahid, ‘‘New malware detection frame-
work based on N-grams and support vector domain description,’’ presented
at the 11th Int. Conf. Inf. Assurance Secur. (IAS), Marrakech, Morocco,
Dec. 14–16, 2015

[10] E. Ukkonen, ‘‘On-line construction of suffix trees,’’ Algorithmica, vol. 14,
no. 3, pp. 249–260, Sep. 1995, doi: 10.1007/BF01206331.

[11] H. Zhu, L. Chen, J. Li, A. Zhou, P. Wang, and W. Wang, ‘‘A general depth-
first-search based algorithm for frequent episode discovery,’’ presented
at the 14th Int. Conf. Natural Comput., Fuzzy Syst. Knowl. Discovery
(ICNC-FSKD), Huangshan, China, Jul. 28–30, 2018.

[12] M. Burch, ‘‘Visual analysis of compound graphs,’’ presented at the IEEE
Symp. Vis. Lang. Hum.-Centric Comput. (VL/HCC), Cambridge, U.K.,
Sep. 4–8, 2016.

[13] T.-E. Wei, Z.-W. Chen, C.-W. Tien, J.-S. Wu, H.-M. Lee, and A. B. Jeng,
‘‘RePEF—A system for restoring packed executable file for malware
analysis,’’ presented at the Int. Conf. Mach. Learn. Cybern., Guilin, China,
Jul. 10–13, 2011.

[14] B. Egger, Y. Cho, C. Jo, E. Park, and J. Lee, ‘‘Efficient checkpointing of live
virtual machines,’’ IEEE Trans. Comput., vol. 65, no. 10, pp. 3041–3054,
Oct. 2016, doi: 10.1109/TC.2016.2519890.

[15] H. Yang, D. Liu, Z. Zhao, andY. Li, ‘‘Research and implementation of OEP
search based on API-monitoring,’’ presented at the Int. Conf. Comput. Sci.
Service Syst., Nanjing, China, Aug. 11–13, 2012.

[16] DrX, EFlag. Accessed: Dec. 5, 2018. [Online]. Available: https://docs.
microsoft.com/zh-cn/windows/win32/api/winnt/ns-winnt-context

[17] S. Sharmeen, Y. A. Ahmed, S. Huda, B. S. Kocer, and M. M. Hassan,
‘‘Avoiding future digital extortion through robust protection against
ransomware threats using deep learning based adaptive approaches,’’
IEEE Access, vol. 8, pp. 24522–24534, Jan. 2020, doi: 10.
1109/ACCESS.2020.2970466.

[18] H. Jiang and S.-J. Lin, ‘‘A rolling hash algorithm and the implementation
to LZ4 data compression,’’ IEEE Access, vol. 8, pp. 35529–35534, 2020,
doi: 10.1109/ACCESS.2020.2974489.

[19] T. Gong, X. Tan, and M. Zhu, ‘‘Malware detection via classifying with
compression,’’ presented at the 1st Int. Conf. Inf. Sci. Eng., Nanjing, China,
Dec. 26–28, 2009.

[20] Y. Qiao, Y. Yang, L. Ji, C. Tang, and J. He, ‘‘A lightweight design of
malware behavior representation,’’ presented at the 12th IEEE Int. Conf.
Trust, Secur. Privacy Comput. Commun., Melbourne, VIC, Australia,
Jul. 16–18, 2013.

[21] R. Koschke, ‘‘Large-scale inter-system clone detection using suffix trees,’’
presented at the 16th Eur. Conf. Softw. Maintenance Reeng., Szeged,
Hungary, Mar. 27–30, 2012.

[22] K. Huang, Y. Ye, and Q. Jiang, ‘‘ISMCS: An intelligent instruction
sequence based malware categorization system,’’ presented at the 3rd
Int. Conf. Anti-Counterfeiting, Secur., Identificat. Commun., Hong Kong,
Aug. 20 22, 2009.

[23] IDA. Accessed: Jan. 1, 2020. [Online]. Available: https://www.hex-rays.
com/products/ida/

[24] Windbg. Accessed: May 1, 2020. [Online]. Available: www.windbg.org/
[25] L. Huoyao and L. Gongshen, ‘‘On-line linear time construction of sequen-

tial binary suffix trees,’’ J. Syst. Eng. Electron., vol. 20, pp. 1104–1110,
Oct. 2009.

[26] A. Zaky and R. Munir, ‘‘Full-text search on data with access control
using generalized suffix tree,’’ presented at the Int. Conf. Data Softw. Eng.
(ICoDSE), Denpasar, Indonesia, Oct. 26–27, 2016.

[27] S. Gupta, R. Prasad, and S. Yadav, ‘‘Searching gapped palindromes using
inverted suffix array,’’ presented at the IEEE Int. Conf. Comput. Intell.
Commun. Technol., Ghaziabad, India, Feb. 13–14, 2015.

VOLUME 8, 2020 132169

http://dx.doi.org/10.1109/ACCESS.2019.2949286
http://dx.doi.org/10.1109/ACCESS.2019.2949286
http://dx.doi.org/10.1109/TDSC.2012.83
http://dx.doi.org/10.1109/ACCESS.2019.2950884
http://dx.doi.org/10.1109/ACCESS.2019.2921417
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1109/TC.2016.2519890
http://dx.doi.org/10.1109/ACCESS.2020.2970466
http://dx.doi.org/10.1109/ACCESS.2020.2970466
http://dx.doi.org/10.1109/ACCESS.2020.2974489

D. Wang, J. Fang: Gray Box for Visualizing Instruction Sequence Based on Improved Suffix Tree

[28] S. Prakash, H. Agarwal, U. Agarwal, P. Biswas, and S. D. Jaypee, ‘‘Discov-
ering motifs in DNA sequences: A suffix tree based approach,’’ presented
at the IEEE 8th Int. Advance Comput. Conf. (IACC), Greater Noida, India,
Dec. 14–15, 2018.

[29] E. A. Fontana and F. Petrillo, ‘‘Visualizing sequences of debugging
sessions using swarm debugging,’’ presented at the IEEE/ACM 27th
Int. Conf. Program Comprehension (ICPC), Montreal, QC, Canada,
May 25–26, 2019.

DONGLIN WANG (Member, IEEE) was born in
Zhangjiakou, China, in 1994. He received the B.S.
degree in software engineering from the China
University of Petroleum, in 2017. He is currently
pursuing the M.S. degree in computer application
technology with the Inner Mongolia University of
Technology.

He is also an Assistant Lecturer with the Divi-
sion for Digital Electronics Technology and Ana-
log Electronics Technology. He holds two patents

and one software copyright. His main research interests include software
reverse engineering, computer vision, computer simulation, information pro-
cessing, and intelligent control.

JIANDONG FANG was born in Dalian, China,
in 1966. She received the B.S. degree from Inner
Mongolia University, the M.S. degree from the
Taiyuan University of Technology, and the Ph.D.
degree in computer application technology from
Tianjin University.

Since 2010, she has been a Professor with
the Institute of Information Engineering, Inner
Mongolia University of Technology. Since 2016,
she has been the Director of the Inner Mongolia

Key Laboratory of Perceptual Technology and Intelligent Systems. She has
authored four books and more than 60 articles. She holds more than ten
inventions. Her research interests include information processing and intel-
ligent control, intelligent perception and analysis decision, and embedded
intelligent systems.

132170 VOLUME 8, 2020

