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ABSTRACT Multi-Task Learning (MTL) is a method to simultaneously utilize commonalities and differ-
ences across tasks to improve the learning performances with limited data. However, in most real-world
problems, there are many sample noises which might decline the performance of MTL significantly. To
address this challenge, Self-Paced Learning (SPL) method is introduced to improve its performance by
increasing the numbers of instances gradually from the simplest samples to the most difficult samples. In the
current self-paced multi-task learning methods, SPL is introduced as a term in the optimization process,
which causes significant limitations in the combination of SPL and MTL. In this paper, we propose a
new flexible framework, which combines MTL with SPL and has two stages in the learning process to
make it more suitable for learning difficult samples and tasks. With this framework, we are able to take
advantages of both of the existing MTL models and SPL models. Further experiments with the synthetic and
real-world datasets demonstrate the higher efficiency of our approach when compared with other state-of-
the-art models.

INDEX TERMS Multi-task learning, self-paced learning, flexible framework, multi-task self-paced learning.

I. INTRODUCTION
Inspired by human-like reasoning process, MTL can learn
multiple related tasks simultaneously rather than separately,
and also can utilize the shared representations among the
related tasks to fine-tune a generalized model on the original
task [1], [2].

In the past decade, numbers of MTL methods have been
proposed and then applied in various scenarios, which could
be roughly divided into three major categories [3]–[6]. The
first category assumes that all tasks share a common low-rank
feature representation [7]–[10]. The second category assumes
that different tasks might have shared parameters in the
trained model [5], [8], [11], [12]. Although the above two
strategies have achieved good results, they ignored the dif-
ferences of difficulties among different tasks and different
learning samples in the learning process.

To address this deficiency, the third category of MTL [13],
which is called Self-Paced Multi-Task Learning, has been
developed recently. Specifically, this method adapts a
human-like learning mechanism that trains the model from
the simplest samples and tasks to the most difficult sam-
ples and tasks. Thus, this method achieves improved perfor-
mances, e.g. SPMTL [13] and spMMTL [14]. Since these
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models both have a strong coupling between SPL and MTL,
it will make the scalability problem of SPL and MTL worse
for limited data scenarios.

In this paper, we introduce a flexible framework, which is
named Flexible Self-Paced Multi-Task Learning (FSPMTL),
for self-paced multi-task learning to solve the scalability
problem of these methods. Our FSPMTLmodel contains two
stages and can flexibly embed different types of SPL models
and MTL models. Specifically, using the SPL mechanism
named the Balanced Self-Paced Learning (BSPL) [15], our
FSPMTLmodel first obtains sample difficulty levels to select
samples of each task. Secondly, it selects the samples of
different difficulty levels and uses the state-of-the-art MTL
models to train data iteratively until get the final model.

The main contributions of this paper are summarized as
follows:

• To the best our knowledge, this is the first work that
presents a common framework to combine SPL with
MTL.

• We propose a progressive self-paced multi-task learn-
ing mechanism, which is distinct from the conventional
ones.

• We make extensive experiments on both synthetic and
real datasets to show the effectiveness of our proposed
framework.
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II. RELATED WORK
As one of the current research hotspots, MTL can effectively
improve the overall performance and also increase the robust-
ness of the model by sharing information among the related
tasks. Conventional MTL methods assume that the objective
function parameters of different tasks should be similar [16],
or that multiple related tasks should share the same feature
subset [17]. Those early MTL methods tried to use regular
term constraints to minimize the differences between related
tasks. However, these methods are prone to negative transfer.
Thus, the recent studies onMTL are primarily based on sparse
representations [18], [19].

Argyriou et al. [7] came up with a MTL-FEAT model
which shared information by learning sparse representations
among multiple tasks. Kang et al. [3] relaxed the constraints
of the MTL-FEAT model and then presented the DG-MTL
model. Based on the MTL-FEAT and DG-MTL models,
Kumar and Iii [20] proposed the GO-MTL model to selec-
tively share the information across the tasks. Subsequently,
based on previous models, Jeong and Jun [21] proposed the
VSTG-MTL model, performing the variable group structure
between variable selections and learning tasks. Compared
with the previous MTL models, the VSTG-MTL model
greatly improves the prediction performance of the model.

As we know, sample qualities might also affect the model
performance, which could be considered in the model learn-
ing process. Curriculum Learning (CL) mimics the cogni-
tive process of humans and favors a learning algorithm to
follow the logical learning sequence from simple examples
to more difficult ones [22]. Such ‘‘starting small’’ strat-
egy is very similar to the human’s knowledge acquisition
process from childhood to adulthood, and also has been
demonstrated effectively in multi-modal learning [23], [24]
and semi-supervised learning [25]. CL was usually realized
under two frameworks: Self-Paced Learning (SPL) [26] and
Teaching-to-Learn and Learning-toTeach (TLLT) [27], [28].
SPL was formally developed in [26], which initiates the

training process with simple samples, and then gradually
takes more difficult samples into the training. It has been
recently shown that SPL is an effective robust learning
regime [29], [30] and has achieved rapid development such
as SPMoR [31] and C-SPCL [32]. Jiang et al. [33] proved
that SPL could avoid falling into local optimum by taking into
account prior knowledge. Recently, Ren et al. [15] presented
the BSPL model to solve the common imbalanced classifi-
cation problem in SPL. The BSPL model can select training
data proportionally from different category labels, so as to
avoid large changes in the category label ratio of sampled data
according to different distribution of sample difficulty.

Since 2017, people started to utilize the benefits of both
SPL and MTL. Li et al. [13] and Murugesan and Car-
bonell [14] suggested a method to couple MTL closely with
SPL, and achieved relatively good results through simple-
to-difficult MTL. In addition, the SPMTL [13] attempts to
learn the tasks by simultaneously taking into consideration
the difficulty levels of both tasks and instances per task,

and the spMMTL [14] embeds task selection into the model
learning based on the shared knowledge. In their models,
they both optimized the parameters of SPL and MTL at the
same time, by learning the difficulty level coefficient and
coefficient matrix simultaneously. However, the optimization
method leads the models to a low level of scalability and
flexibility.

Therefore, we propose a two-stage framework named
FSPMTL to solve this problem. In the first stage, we use
the SPL model to obtain the sample difficulty matrix E,
whose elements show the difficulties of the samples in each
task. In the second stage, we select new training samples
through the coefficient matrix E, so that we could update the
optimized MTL model to obtain the coefficient matrix W .
More details are discussed in the next section.

III. FLEXIBLE SELF-PACED MULTI-TASK LEARNING
In this scetion, we introduce our FSPMTL model baesd on
the BSPL model [15] and the VSTG-MTL model [21]. The
details are shown below.

A. VARIABLE SELECTION AND TASK GROUPING FOR
MULTI-TASK LEARNING
Suppose there exists T supervised learning tasks, each
of them contains D variables and Nt training instances.
For the t-th task, it has an input matrix X t =[(
x1t
)T
, · · · ,

(
xNtt
)T]T

∈ RNt×D with xnt ∈ RD and an

output vector yt =
[
y1t , · · · , y

Nt
t

]T
∈ RNt . Next, we can use a

linear model to describe the relationship between inputs and
outputs,

ynt = f
(
wTt x

n
t

)
(1)

where f is a logit function for the binary classification prob-
lem ynt ∈ {−1, 1} andw

T
t ∈ RD represents a coefficient vector

for the t-th task. Then, the coefficient vectorwt of T tasks can
generate a coefficient matrixW = [w1, · · · ,wT ].

There is such a low-dimensional latent space that the coef-
ficient matrixW can be represented on low rank factorization
and sparse space.We denoteW as the product of two low rank
matrices U and V , i.e. W = UV . where U ∈ RD×M is the
variable-latent matrix, V ∈ RM×T is the latent-task matrix,
and M � min (D, T ), M is the number of latent basis. For
the t-th task, wt = Uvt , where the t-th column vector vt of V
is weighting vector for the t-th task.

The optimization function for this problem is,

min
U,V

T∑
t=1

1
Nt
L (yt ,X tUvt)+ γ1‖U‖1 + γ2‖U‖1,∞

+µ

T∑
t=1

(
‖vt‖

sp
k

)2 (2)

where L (·, ·) is the empirical loss function, which is the
logistic loss

∑Nt
n=1 log

(
1+ exp

(
−ynt v

T
t U

T xnt
))

for a binary
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classification problem; ‖U‖1 =
∑D

d=1
∑M

m=1 |udm| is the `1
norm; ‖U‖1,∞ =

∑D
d=1

∥∥ud∥∥
∞

is the `1,∞ norm; ‖vt‖
sp
k is

the k-support norm; where γ1, γ2, andµ are the regularization
parameters.

B. BALANCED SELF-PACED LEARNING
In this section, we will use the BSPL model for a single
task to obtain the sample difficulty matrix E of the training
samples. Assume that the training data can be divided into
L levels based on the difficulty of the data samples, E is a
three-dimensional matrix of RL×T ×Nt , whose row vector is
denoted as E = [e1, e2, · · · , eL]T and whose column vector
is denoted as E =

[
e1, e2, · · · , eT

]
. Each element etl in E

can be represented as a vector of RNt and its value range is
the discrete set {0, 1}.

In terms of the t-th single task, the goal of the BSPL
model is to jointly learn the model parameter θ tl , which is the
parameter of the decision function g, and the latent sample
difficulty variable etl =

[
et,1l , · · · , e

t,Nt
l

]
by minimizing:

min
θ tl ,e

t
l

Nt∑
n=1

et,nl L
(
ynt ; g

(
xnt , θ

t
l
))
+ µR

(
θ tl
)
−

K∑
k=1

∑
nk

λke
t,nk
l

xnkt ∈Clk

(3)

where et,nl ∈ {0, 1}, K is the number of classes and
λk (k = 1, · · · ,K ) controls the instance sampling for the k-th
class, R

(
θ tl

)
is the regularization term that can be expressed

as R
(
θ tl

)
=
∑Nt

n=1 Eξ
[
A
((
θ tl

)T x̃nt )] − A ((θ tl )T xnt ), where
x̃nt is the noise feature and Eξ [·] is the expectation according
to a certain distribution. In our method, we add Gaussian
noise to R

(
θ tl

)
. The function A (·) depends on the specific

loss function. µ denotes the corresponding coefficient, and
Clk means the k-th class. With a fixed θ tl , the global optimum

et∗l =
[
et,1l , · · · , e

t,Nt
l

]
can be calculated by the following

rule,

et,n∗l =

{
1, if Lk

(
ynt ; g

(
xnt , θ

t
l

))
< λk

0, otherwise
(4)

where Lk
(
ynt ; g

(
xnt , θ

t
l

))
represents the loss of instances in

the k-th class.

C. UPDATING PROCESS
During the training process of the l-th level, the l-th row
vector el of E represents the sample difficulty vector of the
training samples. Therefore, we can train the model parame-
ters (E,W ) with the following strategies.
The update process of parameters in the model is generally

completed in two stages. In the first stage, by solving the
equation 3, we can obtain the sample difficulty coefficient
etl in the l level of the t-th task by the BSPL model. Spe-
cific calculations are shown in Step 1 and 2. In the second
stage, using the training samples which are selected by el ,
the VSTG-MTL model is used to train W l by solving the

equation 2. Iteratively, when training processes of all L lev-
els are completed, the final training coefficient matrix W
is obtained by calculating the expectation of W1 to WL .
Specific calculations are shown in Step 3 and 4 as follows.

Specifically, the updating process of the model can be
divided into four steps. When L, θl ,U init

l and V init
l are initial-

ized, the following four steps will be iteratively completed.
Step 1: Fix θ tl , update e

t
l .

First, for the t-th task, we fix θ tl and then solve the follow-
ing problem to update etl :

et∗l = argmin
Nt∑
n=1

et,nl L
(
ynt ; g

(
xnt , θ

t
l
))
−

K∑
k=1

∑
nk

λke
t,nk
l

xnkt ∈Clk

= argmin
K∑
k=1

∑
nk

et,nkl

xnkt ∈Clk

(
L
(
ynkt ; g

(
xnkt , θ

t,nk
l

))
− λk

)
(5)

Step 2: Fix etl , update θ
t
l+1.

For the t-th task, we fix etl and update θ tl+1 by solving:

θ t∗l+1 = argmin

( Nt∑
n=1

et,nl L
(
ynt ; g

(
xnt , θ

t
l
))
+ µR

(
θ tl
))

(6)

We use the gradient descent algorithm to update the equa-
tion above, then increase λk and return to the Step 1 until
all the instances are selected. Then, we can get the sample
difficulty coefficient vector etl of the t-th task.

When all tasks are executed, we can obtain el =[
e1l , e

2
l , · · · , e

T
l

]
and E = [e1, e2, · · · , eL]T .

Step 3: Fix el , update U l .
For each level of training tasks, we select the training

sample through el , i.e.

X l = X (el is equal to 1) (7)

Similarly, we select the label yl corresponding to X l . Then,
we update U l with an alternating direction method of mul-
tipliers and an early stopping. The objective function is as
follows:

U l=argmin
U l

 T∑
t=1

1
Nj
L
(
ytl ,X

t
lU lvtl

)
+γ1‖U l‖1+γ2‖U l‖1,∞


(8)

Step 4: Fix U l , update V l .
We use accelerated proximal gradient descent to solve the

following equation and V l =
[
v1l , · · · , v

T
l

]
:

vtl=argmin
vtl

 T∑
t=1

1
Nj
L
(
ytl ,X

t
lU lvtl

)
+µ

T∑
t=1

(∥∥vtl∥∥spk )2
 (9)

Next, the model iteratively executes the step 3 and 4 until
theU l and V l coverage. After that, we calculateW l = U lV l .
Finally, the training process will repeat L times until the

samples of all L levels are trained, then the expectation value
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TABLE 1. The flexible self-paced multi-task learning (FSPMTL) model.

of W1, · · · ,WL could be seemed as the final coefficient
matrixW .

D. FLEXIBLE SELF-PACED MULTI-TASK LEARNING
To sum up, we can extract a general flexible framework for
self-paced multi-task learning, which is named the FSPMTL
model and shown in Algorithm 1.

Let Oe be the time spent for solving the equation 5 and 6
once, and OW be the time spent for solving the equation 8
and 9 once. Thus, the time spent for the SPL part isOe ∗L ∗T
and the time spent for the MTL part is OW ∗ L. From the
Algorithm 1, we can see that themodel based on the FSPMTL
algorithm needs Oe ∗ L ∗ T + OW ∗ L time for each run.
Moreover, as shown in Algorithm 1, the convergence of the
FSPMTL model is depended on the convergence of the SPL
and MTL parts, which means the FSPMTL model will stop
after the SPL model selects all the instances and the MTL
model reaches two residuals’ thresholds [21].

IV. EXPERIMENT
In this section, we aim to verify the effectiveness of the
FSPMTL model under different experimental settings. The
Matlab implementation of our method is available at
the URL: http://yzhou.github.io/#Code.

A. EXPERIMENT SETTINGS
In order to prove the validity of our framework, the FSPMTL
model is implemented based on the VSTG-MTL model and
named as FSP-VSTG-MTL. Here, we compared our FSP-
VSTG-MTL model with the following methods:
• BSPL-STL method: it is a single-task learning method
based on balanced self-paced learning with Gaussian
noises [15].

• VSTG-MTL method: it decomposes the weight matrix
into the product of two low rank matrices in the
model. This model would simultaneously perform vari-
able selection and learn an overlapping group structure
among learning tasks [21].

• spMMTL method: spMMTL is the acronym of
Self-Paced Mean Regularized Multi-task Learning, and
themodel picks up the simple tasks based on the distance
the model parameter vector of each task [14].

The parameter initialization of the FSP-VSTG-MTL
model is divided into two parts. For the BSPL part,
we selected half of the data points during the first iteration
and then updated the λk with rise of 10% in the next iteration,
that is, L = 6. Then we initially set et,nl = 1(n = 1, · · · ,Nt )
and ran the corresponding classification algorithm for 5 iter-
ations to obtain an estimate of θl . For the VSTG-MTL
part,, we selected the hyper-parameters of the VSTG-MTL
model with the best performance according to the previous
works. Specifically, we set the third regularization parameter
µ to be equal to the first regularization parameter γ1. The
regularization parameters are selected from the search grid{
2−10, · · · , 23

}
. Initial estimates of the matrixW init

l is imple-
mented by logistic regression algorithm. The initial estimates
of U init

l and V init
l are given by singular value decomposition

ofW init
l .

For experimental datasets, we first randomly selected the
data in the datasets with a ratio of 9:1 to obtain the training
set and testing set. In the training set, we used the five-fold
cross-validation method to get the model coefficient matrix.
Then, we made predictions on the testing set to get its final
classification effect. We ensured that the datasets used in each
training and testing process are consistent across different
models. We repeated each case 10 times and reported the
average results.

B. SYNTHETIC DATASETS
We generated four synthetic datasets as follows, which have
different number ofD dimensional variables and T tasks. The
instance xnt is sampled from a Standard Normal Distribution
N(0,1), and the response is ynt = sign(wTt x

n
t + ξ

n
t ). To create

difficult instances, we added different noises to instances by
setting ξnt = σ nt θ

n
t , where σ

n
t is drawn i.i.d. from a Normal

Distribution N(0,5), and θnt is drawn i.i.d. from N(0, 1).
A true coefficient matrixW∗ = [w∗1, · · · ,w

∗

T ] has a low-rank
structureM = rank (W ) = 5 and is estimated by UV , where
U ∈ RD×M and V ∈ RM×T . Each synthetic dataset differs
on the structure of the two matrices U and V .

1) SYN1
Syn1 has 25 dimensional variables and 20 tasks. For
r = 1, · · · ,M , the latent basis ur only has non-zero values
from the (3r − 2)-th to the (3r + 3)-th components. The
nonzero values are generated by the Normal Distribution
N(1,0.25). Similarly, for r = 1, · · · ,M , the weighting vec-
tors v4r−3, · · · , v4r only have nonzero values on the r-th
and (r + 1)-th components. The last four weighting vec-
tors v4M−3, · · · , v4M only have the nonzero values on the
(M − 1)-th and M -th components. The nonzero values are
generated through a Uniform Distribution from 1 to 1.5.

2) SYN2
Syn2 has 50 dimensional variables and 20 tasks. For r =
1, · · · ,M , the latent basis ur only has non-zero values from
the (8r − 7)-th to the (8r + 8)-th components. Similarly, V is
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FIGURE 1. Results on four synthetic datasets with different number of instances, the dark blue solid
line represents our proposed FSP-VSTG-MTL model.

generated in the same way as Syn1. The nonzero values are
generated by the same distribution as that used in Syn1.

3) SYN3
Syn3 has 25 dimensional variables and 40 tasks. U is gener-
ated in the same way as Syn1. Similarly, for r = 1, · · · ,M ,
the weighting vectors v8r−7, · · · , v8r only have nonzero val-
ues on the r-th and (r + 1)-th components. The last four
weighting vectors v8M−7, · · · , v8M only have the nonzero
values on the (M − 1)-th andM -th components. The nonzero
values are generated by the same distribution as in Syn1.

4) SYN4
Syn4 has 50 dimensional variables and 40 tasks. Similarly,U
is generated in the same way as Syn2, V is generated in the
same way as Syn3. The nonzero values are generated by the
same distribution as in Syn1.

5) VARYING NUMBER OF INSTANCES
To verify the effect of numbers of instances on the learn-
ing performance of MTL models, we varied the number of
instances in parameter learning. For each task, we increased
the total number of instances of each dataset from 50 to 300,
by adding 25 each time. Each experiment will be repeated for
10 times, and the results are reported with the mean of the

F1-score. Figure 1 summarizes the experimental results on
four synthetic datasets above. As we can see, for single-task
leaning (BSPL-STL), the growth of instance number would
improve learning performance significantly. However, for
MTLmethods, the performance not only relies on the number
of instances, but also depends on the number of dimen-
sions of the instance. In addition, compared to the state-
of-the-art models (VSTG-MTL, spMMTL), our proposed
FSP-VSTG-MTL model is better off in most settings. It’s
worth noting that the performance of our model is 0.022,
0.0328, 0.0155 and 0.01 higher than that of the VSTG-MTL
model on four synthetic datasets on average, respectively.
Besides, to verify the flexibility of our proposed framework,
we extended spMMTL with our FSPMTL framework to see
if the model performance could be further improved.

6) FLEXIBILITY TEST OF THE FSPMTL FRAMEWORK
To further verify the flexibility of our framework,
we extended the FSPMTL framework into the spMMTL
model and named it FSP-spMMTL model. The parameter
initializations of these models are set with reference to [14].
As can be seen in Figure 2, the solid line always goes
higher than its corresponding dotted line. Specifically, the
FSP-spMMTL model is better than the spMMTL model
with 0.0535, 0.0792, 0.059 and 0.0727 on four synthetic
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FIGURE 2. Results on four synthetic datasets with different number of instances, the solid lines
represent the extended FSP-spMMTL model.

datasets on average, respectively, which demonstrates that our
FSPMTL framework has achieved excellent results. There-
fore, adding the FSPMTL framework during the training pro-
cess can effectively improve the performance of the model.

7) ROBUSTNESS TEST OF THE FSPMTL FRAMEWORK
If we change the noise level of instances in the datasets,
the learning difficulty of instances will change as well. Here,
we varied the Normal Distribution of σ nt from N(0,1) to
N(0,10), increasing the variance by one each time. Mean-
while, we set 100 instances for each task. Figure 3 shows
that performances of models are becoming worse as noises
increase. When the noise stays at a low level, the FSPMTL
framework has little impact on model learning. When the
variance of σ nt is 1-5, on average, FSP-VSTG-MTL only
performs better than VSTG-MTL with 0.0103, 0.0254,
0.0128 and −0.0005 and FSP-spMMTL performs better
than spMMTL with 0.0476, 0.1014, 0.0454 and 0.1064 on
four synthetic datasets above. However, with the rise of the
noise, the advantage of the FSPMTL framework is emerging.
Specifically, when the variance of σ nt is 6-10, averagely, FSP-
VSTG-MTL performs better than VSTG-MTL with 0.0415,
0.0644, 0.0326 and 0.0267 and FSP-spMMTL performs bet-
ter than spMMTL with 0.0942, 0.1391, 0.1087 and 0.1597.
The results demonstrate the superiority and flexibility of the
FSPMTL framework.

8) VISUALIZATION OF THE SELECTED SAMPLES
In order to make our experiment clearer, we took the first task
as an example to visualize the selected samples with our FSP-
VSTG-MTL model. When the task contains 100 instances,
we first selected 50% of samples (l = 1), and then increased
10%of samples in the next iteration. For the selected samples,
we used the Principal Component Analysis (PCA) to project
original data into a lower-dimensional sub-space, and visu-
alized the first two dimensions. As shown in Figure 4, when
l = 1, there is a clear boundary between positive samples
and negative samples. With the increase the l, the number
of the selected samples increases gradually and the over-
lap area of samples in in two dimensions also increases
gradually, which means the selected samples are difficult to
learn.

C. REAL-WORLD DATASET
London School Data (school): In order to further verify the
feasibility of our method, we conducted experiments by using
the classification dataset which is generated from the dataset
of classic school dataset. The school dataset is a regression
dataset obtained internally by the London Education Author-
ity, including test scores of 15,362 students in 139 secondary
schools in London during three years from 1985 to 1987.
The dataset contains 139 tasks and 15,362 observations corre-
sponding to different schools and their students’ test grades.
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FIGURE 3. Results on four synthetic datasets with 10 different sample noises, two solid lines
represent the extended FSP-VSTG-MTL and FSP-spMMTL models.

FIGURE 4. The 2-D distribution of the selected samples in different difficulty levels with our
FSP-VSTG-MTL model. Here ‘‘o’’ represents positive samples and ‘‘x’’ represents negative
samples in the classification problem. When l = 1, there is a clear boundary between
positive samples (top) and negative samples (bottom). With the increase the l, the number
of the selected samples increases gradually and the overlap area of samples in in two
dimensions also increases gradually, which means the selected samples are difficult to learn.

Each observation is contained by 3 continuous variables and
23 binary variables, representing the professional attributes
of the school and students. In this experiment, the school

dataset is discretized. There are 6984 positive samples whose
score are higher than 20, accounting for 45.46% of the sample
size, and 8,378 negative samples lower than or equal to 20,
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accounting for 54.54%. The ratio of positive and negative
samples is close to 1:1.

Table 2 shows the results of our model on the real dataset.
It can be seen that FSP-VSTG-MTL is superior to all other
models in school dataset, thus confirming the effectiveness of
our proposed FSPMTL framework. Specifically, BSPL-STL
is one of the latest single-task learning models, yet it is weak
in handling school dataset. All the MTL methods proposed
in the past three years have achieved better classification
prediction results than single-task learning model. In addi-
tion, FSP-VSTG-MTL and FSP-spMMTL proposed by this
paper are superior to the latest VSTG-MTL and spMMTL
models, which are 0.0053 and 0.0139 on average respectively.
To sum up, by incorporating the self-paced learning regime
into MTL, our method is effective in these experiments.

TABLE 2. The F1-score of different methods on the real school dataset.
The statistically best models are highlighted in bold.

V. CONCLUSION
In this paper, we propose the Flexible Self-Paced Multi-
Task Learning framework with a loosely coupled approach
to combine the MTL model with the SPL model. In this way,
it can embed different MTL models into SPL models flexi-
bly. Compared with the traditional model, extensive experi-
ments show that our FSPMTL framework not only effectively
improves the performance of the model, but also increases the
flexibility and robustness. For future work, we would like to
introduce the prior knowledge in the framework and apply
this method in real-world applications.
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