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ABSTRACT System identification plays an important role in improving the structure and parameters of a
system, but there are many problems encountered in actual operation. The identification of dynamic systems
is not as simple as it is for static systems; thus, choosing effective model structures and parameters is the key
to solving this problem. This paper proposes a novel algorithm based on a combination of a broad learning
system (BLS) and particle swarm optimization (PSO) to identify nonlinear dynamical systems. The proposed
method first uses the dimension expansion of the data set as the input of the BLS and then optimizes the
model weight by the PSO algorithm. To verify the effectiveness of our proposal, we use four second-order
systems for simulation experiments. The simulation results clearly show the efficiency and anti-interference
ability of the proposed method.

INDEX TERMS Identification of dynamical system, broad learning system, particle swarm optimization.

I. INTRODUCTION
In the past several years, dynamic systems have been
used in areas such as communication, control, and pattern
recognition. The system identification method is used to
establish the model of the controlled system, which can be
used to analyze the performance and dynamic and static
response characteristics of the system to improve the structure
and parameters of the system; therefore, system identification
has been widely considered by engineers, but they have also
faced a number of problems in each of these application
areas. Numerous engineering applications require an exact
description of the dynamic behavior of the system under
test. Dynamic models depicting the system of interest can
be built utilizing the first principles of chemistry, physics,
biology, and so forth. However, models developed in this
way are difficult to derive, because they require detailed
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specialist knowledge, which may be lacking. In the area
of control, the most common problem being encountered
is dynamic system identification and control. Researchers
from different fields have developed several methods to
construct mathematical models for system identification.
In system identification, observed input and output data
is utilized to estimate dynamic models directly. Nonlinear
dynamic behavior is presented by most of the real life
systems, a linear model can not explain the dynamics of such
systems for a large range of input and output values. So
the first step in the process is to choose an efficient model.
To address nonlinearity and various intelligent mathematical
tools, such as those based on fuzzy logic or neural networks
are quite popular. In [1], a mathematical tool based on fuzzy
implications and reasoning is used to build a fuzzy model
of a system. References [2]–[4] covers the most common
and important approaches for the identification of nonlinear
static and dynamic systems. Additionally, it provides the
reader with the necessary background on optimization
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techniques making the book self-contained. The emphasis
is put on modern methods based on neural networks and
fuzzy systems without neglecting the classical approaches.
The basic knowledge about the working principle of fuzzy
systems is very well explained in [2], [3]. The second-
order volterra model is used in [5], and it can effectively
capture dynamic changes in the input-output data but does
not perform well when identifying nonlinear systems. In [6],
a neural network is used as an effective tool for the
identification and control of nonlinear dynamical systems.
Since most networks are affected by time-consuming training
processes and complex structures, many studies require high
performance and expensive equipment [7]–[10]. Recently,
Chen and Liu developed a very fast and effective broad
learning system (BLS) [11]. In the absence of a stacked-layer
structure, the designed neural network broadly extends the
neural nodes and incrementally updates the weight of the
neural network when additional nodes are needed and as
input data continuously enter the neural network [12]–[16].
Therefore, the BLS structure is well suited for modeling and
learning in time-varying big-data environments [17], [18].

After determining the model of the system, the next
step is to choose parameters. Although one can choose the
least-squares method to estimate the parameters, if more
accurate model parameters are needed, it is obvious that
this method is not desirable. It is common to adjust the
parameters through a dynamic back-propagation algorithm,
but this method is slow to converge and possibly cannot
converge. Reference [19] used a deep learning-based time-
varying parameter identification model for composite load
modeling with a ZIP load (It mainly consists of three parts.
The first part is the constant impedance (Z) component.
The second part is the constant current (I) component. The
third part is the constant power (P) component and an
induction motor. Reference [20] used diffusion systems with
mode isolation parameters. This approach is shown to work
for nonlinear reaction kinetics and on a variety of domains
and surfaces. However, these twomethods are not suitable for
nonlinear systemmodels. In [21], the force-displacement data
are used to perform identification of the model parameters
via a genetic algorithm (GA). The parameter identification
method of the nonlinear dynamic system proposed in this
paper is based on the PSO algorithm. The PSO algorithm is
a powerful and widely used swarm intelligence technique,
and it is easy to implement. Although the original PSO is
very simple, with only a few parameters to adjust, it provides
better performance in computing speed, computing accuracy,
and memory size compared with other methods such as
machine learning, neural network learning, and genetic
computation. Hence, it has received much more attention
in solving optimization problems [22]–[24]. As in [25], the
PSO algorithm is used as an effective tool for parameter
selection. In [26]–[28], the PSO algorithm was rapidly
developed in various fields. In this paper, the model is built
by using the BLS, and the PSO algorithm is used to obtain
the parameters of the model. The purpose is to solve the

problem that the nonlinear dynamic system is difficult to
identify.

The main contributions of the proposed method can be
summarized as follows. Firstly, we explore the application
of new neural networks in the identification of nonlinear
systems. this new neural network with simple structure, small
number of parameters and fast update speed is undoubtedly
better. Secondly, by introducing the PSO algorithm into the
BLS, not only can the model update speed be accelerated, but
also the model parameter accuracy can be improved.

The remainder of this paper is organized as follows.
Section II provides the algorithm structure and imple-
mentation steps based on a PSO-BLS. Section III shows
the simulation results. The final conclusions are drawn in
Section IV.

II. PSO-BLS NONLINEAR DYNAMIC SYSTEM
IDENTIFICATION MODEL
A. BROAD LEARNING SYSTEM
We present the input data X and project the data using
8j(XWei + βei) to represent the ith mapped feature Zi,
where Wei is the random weight with the proper dimensions.
Similarly, the jth group of enhancement nodes, 8k (ZiWhj +

βhj), is denoted as Hi. 8j and 8k can be different functions.
The structure is illustrated in Figure. 1

In the BLS, Wei can be adjusted by a sparse autoencoder
(SAE). Thus, the ith mappings can be denoted as:

Zi = φj(XWei + βei), i = 1, 2 . . . n (1)

The feature nodes are denoted as Zn
= [Z1, . . . , Zn],

where Whj and βhj are random weights. The enhanced nodes
are denoted as:

Hi = φk (ZiWhi + βhi), i = 1, 2 . . . n (2)

Therefore, the output of the BLS can be denoted as:

Y = [Z1, . . .Zn | H1, . . . ,Hn ]Wn

=
[
Zn
∣∣ Hn ]Wn (3)

Wn represents the output layer weight. For a single input
system, the input X(k) (k = 1, 2. . .n) can refer to (4), and
the enhanced node can refer to (5). The BLS output is shown
by (6).

X(k) = [x1, x2 · · · xa]= [1, x(k) · · · 2x(k)xa−1 − xa−2] (4)

where a(a > 2) represents the dimension of the required
extension. This is an artificially set constant. According to
experimental experience, we generally set it to 4.

H = φ (W1X+ b1) (5)

W1 and b1 are random input weights. φ is activation
function. C is enhanced node.

Y =W2 · [X | H ] (6)

W2 is the output weight. The BLS Input consists of
enhanced nodes C and input X. S is the output of the model.
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FIGURE 1. Structure of the BLS.

The principle is shown in Figure 2. As can be seen, if the
input is a low-dimensional signal, we do not need to extract
the feature vector of the signal as the BLS input.

The broad learning construction model and learning
procedure are listed inAlgorithm 1. To solve the problems of
overfitting during network training and the slow convergence
speed. In this paper, we used PSO to optimize the output
weight W2 to improve the accuracy of the whole model for
nonlinear system identification.

Algorithm 1 Broad Learning Model: Addition and
Enhancement Nodes
Input : X
Output: Y

1 For i = 1; i < a+ 1 do
2 RandomW1, b1;
3 Calculate Hi = φ(W1Xi + b1) with Eq. (5);
4 end
5 Set the enhancement mapping group Hk;
Hk
= [H1, . . . , Ha]k

6 Set Zk = [Xk, Hk] as Broad Learning model input
7 For k = 1; k < n+ 1 do
8 RandomW2;
9 CalculateY(k) =W2Zk with Eq. (6);
10 CalculateW2 by Algorithm 2
11 end

B. DESIGNING STEPS FOR PSO-BLS
PSO is a biology-inspired evolutionary computation algo-
rithm that was first introduced by Kenndy and Eberhart [31].
It is a population-based stochastic optimization technique
inspired by the boid model. The boid model was introduced
by Reynolds in 1987 and was inspired by the aggregate
motion of a flock of birds [25]. The algorithm has the
converges quickly, has an uncomplicated update mechanism,
and is easy to program. The algorithm begins by randomly
generating an initial population. This population is made
up of many particles that are candidate solutions to the
optimization problem. Some scholars have analyzed the
convergence of the PSO [32]–[34], The latest research
analyzed the convergence of the PSO by using the martingale
theory (The martingale theory is one of the pillars of modern

probability theory and a basic tool in applications) [32], and
their results show that PSO can reach the global convergence
with probability one. In our question, the task is to find the
output weight matrix W2 required by the model. According
to the size of the defined cost function, each particle optimal
solution (gbest) and population optimal solution (zbest) is
recorded for the particle velocity update.

Algorithm 2 Particle Swarm Optimization (PSO): Using
PSO to Find the BLS Weight Coefficient
Input : Speed; Iteration; Size
Output: W2

1 While the training error threshold is not satisfied do
2 Find the best individual value (gbest) and the best group
value

3 for i = 1: maxgen
4 for j = 1: sizepop;
5 Randomly generate a group (pop)
6 Update speed and particle
7 V = c1 ∗ rand(gbest-pop) + c2 ∗ rand(zbest-pop)
8 Calculate the new particle fitness values
9 if fitness(j) < fitnessgbest(j)

10 gbest(j,:) = pop(j,:);
11 fitnessgbest(j) = fitness(j);
12 end
13 if fitness(j) < fitnesszbest(j)
14 zbest(j,:) = pop(j,:);
15 fitnesszbest(j) = fitness(j);
16 end
17 end
18 end
19 Set zbest =W2;

The overall structure of the PSO-BLS nonlinear system
identification method is shown in Figure 3. According to
the characteristics of the BLS model, this paper improves
the traditional PSO algorithm. As shown in Algorithm 2,
the problem of slow convergence due to fixed parameters
is compensated for by randomly generating parameters c1
and c2. E(k) in the figure indicates that the profit and loss
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FIGURE 2. Structure of PSO-BLS.

FIGURE 3. Overall structure of PSO-BLS modeling with a second-order system.

function of the model is shown by (7).

E =
1
n

n∑
k=1

m∑
j=1

∥∥Sk,j − yk,j∥∥2 (7)

where m represents the output dimension. n represents the
number of test samples, and y represents the expected output
of the model. S represents the real output of the model.
The function module is shown in Algorithm 3. The input
expansionmethod is inspired by [35], we use x(k) to represent
the value of the kth data point in the manuscript which is
known by the system. For example, we extend the first data
point to a vector. Assuming a = 4, the first data point (k = 1)
can be expanded to X(1) = [x1, x2, x3, x4], where x1 = 1,
x2 = x(1), x3 = 2x(1)x2-x1, x4 = 2x(1)x3-x2.
The design steps for PSO-BLS modeling are outlined as

follows:
Step 1: Determine the output type of the system

(single-input single-output, single-input multiple-output,
multiple-input multiple-output). Determine the dimension
of the input extension and process input data through
Algorithm 3.

Step 2: Extend the input by the BLS (Algorithm 1) and
calculate the model fitness function E . The relationship

between the fitness function and the output weight W2 is
determined.

Step 3: Use the PSO algorithm to optimize the output
weight W2 to find the global optimal solution, as shown in
Algorithm 2.

Step 4: After determining the model parameters of the
PSO-BLS system, we will convert the test data through the
function module as system’s input and predict the output of
the system.

III. VERIFICATION TESTS
A. RESULTS OF THE PROPOSED METHOD
In the following, the parameter settings for the simulation
experiments are shown in Table 1. The maximum number of
iterations (maxgen) of PSO and differential evolution (DE)
is set to 500, the initialization parameters (c1, c2) are set to
random numbers between 0 and 1, and the population size
of the particle swarm is 100. The GA cross probability (CP)
is set to 0.4, the variation probability (VP) is set to 0.2,
and the selection stage coefficient (S) is set to 10. To prove
that the PSO-BLS model has better test accuracy and less
convergence error. We choice four types of second-order
systems which have obvious nonlinear characteristics. We set
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Algorithm 3 Function
Input : training data X(k), k = 1, 2, 3 . . . n;
Output: xi

1 Set the group Xk
= [x1, x2,...xa]k

2 for i = 1: a
3 if i == 1;
4 x1 = 1;
5 end
6 if i == 2
7 x2 = x(k);
8 end
9 if i > 2
10 xi = 2x(k) xi−1- xi−2
11 end
12 end
13 Set X = xi; X as the PSO-BLS model input

TABLE 1. Experimental parameters.

the input of the model in Examples 1-3 as:

x(k) =

{
sin 2πk/250 for k ≤ 250
0.8 sin 2πk/250+ 0.2 sin 2πk/25 for k > 250

(8)

Example 1: The second-order system is described by a
difference equation as:

y(k + 1) = 0.3y(k)+ 0.6y(k − 1)+ g[x(k)]
g(·) = 0.6 sin(πx(k))+ 0.3 sin(3πx(k))

+ 0.1 sin(5πx(k))

(9)

Example 2: The second-order system is described by a
difference equation as:{

y(k + 1) = f [y(k), y(k − 1)]+ x(k)
f (a, b) = ab(a+ 0.5)(b− 1)/(1+ a2 + b2)

(10)

Example 3: The second-order system is described by a
difference equation as:

y(k + 1) = f (y(k))+ g(x(k))
f (y(k)) = y(k)[y(k)+ 0.3]/[1+ y(k)2]
g(x(k)) = x(k)[x(k)+ 0.8][x(k)− 0.5]

(11)

Example 4: The second-order system is described as:

x(k) =



sin(2πk/25) k ≤ 250
1 k ≤ 500
−1 k ≤ 750
0.3 sin(kπ/25)+ 0.1 sin(kπ/32)
+0.6 sin(kπ/10) k ≤ 1000

(12)


y(k + 1) = f (y(k), y(k − 1), y(k − 2),
x(k), x(k − 1))
f (a, b, c, d, e) = abce([(c− 1)+ 0.5]
+x(k + 1))/(1+ b2 + c2)

(13)

For example, we can obtain the input and output of
the second-order system form example 1-4. In example1,
we select the first 400 data points as training samples. Firstly,
we expand the original data points into a vector X (a = 4,
X(k) = [ x1, x2, x3, x4]). Secondly, we obtain the enhanced
node H through equation (5), using [X, H] as the input of
the PSO-BLS model (the input dimension is 2a), and the
model output is the output of the known second-order system.
Then the BLS weights are optimized by the PSO algorithm.
Finally, we use PSO-BLS networkmodel to predict the output
of 200 training samples. We give the visual comparison on
four cases in Fig. 4-26, the simulation results clearly show
that in terms of prediction accuracy. The PSO-BLS model
used in this paper has smaller convergence errors and faster
convergence speed. The detailed experimental data are shown
in Table 2. As we can see, the number of test samples is
200 or 300, we predict the output of these test samples at the
same time. PSO-X: Neural network weights are optimized
by PSO. DE-BLS: BLS model weights are optimized by
DE. GA-BLS: BLS model weights are optimized by the GA.
DE-X: Neural network weights are optimized by DE. GA-X:
Neural network weights are optimized by GA. Based on the
above four groups of experiments, this article adopts the
PSO-BLS method as the object of the key test. During the
recognition process, by expanding the original input signal,
it is found that the input dimension is not high, so there are
fewer network weight parameters to be trained. Therefore,
the use of optimization algorithms to optimize the weight
parameters may better accord with our requirements, and the
results of simulation experiments also verify this. In terms of
prediction accuracy, the PSO-BLS model used in this paper
has smaller convergence errors and faster convergence speed.

The performance of DE-BLS and GA-BLS is poor. The
main reason is that DE and GA have instability in dealing
with nonlinear problems. The DE algorithm is essentially a
multiobjective (continuous-variable) optimization algorithm
used to solve the overall optimal solution in a multidi-
mensional space. During the variation process, individuals
are randomly selected from the population, resulting in the
partial loss of information, and the BLS structure leads
to an increase in input information; then, the instability
is more obvious. GA and DE face the same situation.
The results of the PSO-BLS experiment are better because
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TABLE 2. Comparison results obtained from the proposed method and the other methods.

FIGURE 4. Modeling result of Example 1 based on PSO-BLS.

FIGURE 5. Modeling result of Example 1 based on PSO-X.

PSO is essentially a group search optimization algorithm,
which is more suitable for dealing with continuous or
discrete space optimization problems. The BLS structure
increases the amount of input information, highlighting the
advantages of the PSO algorithm in dealing with nonlinear
problems.

FIGURE 6. Modeling result of Example 1 based on DE-X.

FIGURE 7. Modeling result of Example 1 based on DE-BLS.

B. COMPARISON WITH OTHER METHODS
To verify the anti-interference ability of the model, predictive
experiments were carried out by adding white gaussian noise
to the input samples with signal-to-noise ratios of 35 dB,
30 dB, 25 dB, 20 dB, and 15 dB. The error calculation
method is the same as the previous section, the specific
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FIGURE 8. Modeling result of Example 1 based on the BLS.

FIGURE 9. Modeling result of Example 1 based on GA-BLS and GA-X.

FIGURE 10. Modeling result of Example 2 based on PSO-BLS and PSO-X.

detail can refer to (7). As shown in Figure 26, two different
optimization methods are used in [29] and [30]: differential
evolution and PSO. To ensure the accuracy of the experiment,
the training model and parameter setting method used
in the paper are adopted in the comparison experiment.
The biggest differences from [30] are the extension func-
tion for the input in the paper and the model structure.

FIGURE 11. Modeling result of Example 2 based on PSO-BLS and DE-BLS.

FIGURE 12. Modeling result of Example 2 based on PSO-BLS and DE-X.

FIGURE 13. Modeling result of Example 2 based on PSO-BLS and BLS.

Reference [30] uses the most common three-layer net-
work model, but the choice of hidden layer dimensions
is different from that of the traditional network model.
In [21], the force-displacement data are used to perform the
identification of the model parameters via GA. Comparing
the proposed method with the other three methods, the same
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FIGURE 14. Modeling result of Example 2 based on GA-BLS and GA-X.

FIGURE 15. Modeling result of Example 3 based on PSO-BLS.

FIGURE 16. Modeling result of Example 3 based on PSO-X.

four second-order systems mentioned in the previous section
are used. To ensure the validity of the results, each task was
repeated 5 times, and the corresponding results are shown
in Figure 26. We add noise to the input to simulate the

FIGURE 17. Modeling result of Example 3 based on PSO-BLS and DE-BLS.

FIGURE 18. Modeling result of Example 3 based on PSO-BLS and DE-X.

FIGURE 19. Modeling result of Example 3 based on PSO-BLS and BLS.

interference of the external environment on the signal. When
we extract the sample signal, there may be an error with the
actual signal. In the training process of the model, we use the
actual signal without noise. In the prediction process, we will
add noise to the signal to observe whether the output of the
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FIGURE 20. Modeling result of Example 3 based on GA-BLS and GA-X.

FIGURE 21. Modeling result of Example 4 based on PSO-BLS and PSO-X.

FIGURE 22. Modeling result of Example 4 based on PSO-BLS and DE-BLS.

model will be affected. Simulation experiments show that the
PSO-BLS model is less affected by interference.

The traditional network structure does not adapt to current
needs, mainly because of changes in input information.
The input information of a nonlinear system is artificially
extended. If the input information dimension is not large,
the traditional mapping layer will compress the input infor-
mation, which is not conducive to building a system model.

FIGURE 23. Modeling result of Example 4 based on PSO-BLS and DE-X.

FIGURE 24. Modeling result of Example 4 based on PSO-BLS and BLS.

FIGURE 25. Modeling result of Example 4 based on GA-BLS and GA-X.

The BLS structure used in this article further strengthens the
artificially expanded input information and directly maps to
the output layer, avoiding the compression of information
by the hidden layer, and uses a more effective expansion
method for the input information, highlighting the advantages
of BLS structures in identifying nonlinear systems. With the
decrease in the signal-to-noise ratio, the convergence error
of the proposed method is kept below 0.1, which leads to an
advantage in anti-interference ability comparedwith the other
three methods.
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FIGURE 26. Comparison results obtained from the proposed method and
the methods in [21], [29], [30]: (a) prediction results of example 1,
(b) prediction results of example 2, (c) prediction results of example 3,
(d) prediction results of example 4.

IV. CONCLUSION
In this paper, an algorithm combining a BLS and PSO
is proposed to identify nonlinear dynamic systems. First,
the output type of the system and the dimension of the input
extension are determined and the model fitness function E
is calculated by a BLS. Second, the relationship between
the fitness function and the output weight is determined.
Finally, PSO is used to optimize the output weight to find
the global optimal solution. The simulation experiment shows
that the proposed method has better prediction accuracy and
anti-interference ability.

REFERENCES
[1] T. Takagi and M. Sugeno, ‘‘Fuzzy identification of systems and its

applications to modeling and control,’’ IEEE Trans. Syst., Man, Cybern.,
vol. SMC-15, no. 1, pp. 116–132, Jan./Feb. 1985.

[2] S.A. Billings, Nonlinear System Identification: NARMAX Methods in
the Time, Frequency, and Spatio-Temporal Domains. West Sussex, U.K.:
Wiley, 2013.

[3] O. Nelles, Nonlinear System Identification: From Classical Approaches to
Neural Networks and Fuzzy Models. Berlin, Germany: Springer-Verlag,
2001.

[4] J. Schoukens and L. Ljung, ‘‘Nonlinear system identification: A user-
oriented road map,’’ IEEE Control Syst. Mag., vol. 39, no. 6, pp. 28–99,
Dec. 2019.

[5] R. K. Pearson, B. A. Ogunnaike, and F. J. Doyle, ‘‘Identification of
structurally constrained second-order volterra models,’’ IEEE Trans.
Signal Process., vol. 44, no. 11, pp. 2837–2846, Nov. 1996.

[6] K. S. Narendra and K. Parthasarathy, ‘‘Identification and control of
dynamical systems using neural networks,’’ IEEE Trans. Neural Netw.,
vol. 1, no. 1, pp. 4–27, Mar. 1990.

[7] S. Formentin, M. Mazzoleni, M. Scandella, and F. Previdi, ‘‘Nonlinear
system identification via data augmentation,’’ Syst. Control Lett., vol. 128,
pp. 56–63, Jun. 2019.

[8] G. Pillonetto, A. Chiuso, and G. De Nicolao, ‘‘Prediction error identifica-
tion of linear systems: A nonparametric Gaussian regression approach,’’
Automatica, vol. 47, no. 2, pp. 291–305, Feb. 2011.

[9] H. Ohlsson, J. Roll, and L. Ljung, ‘‘Manifold-constrained regressors
in system identification,’’ in Proc. 47th IEEE Conf. Decis. Control,
Dec. 2008, pp. 1364–1369.

[10] B. O. Ayinde and J. M. Zurada, ‘‘Deep learning of constrained
autoencoders for enhanced understanding of data,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 9, pp. 3969–3979, Sep. 2018.

[11] C. L. P. Chen and Z. Liu, ‘‘Broad learning system:An effective and efficient
incremental learning system without the need for deep architecture,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 1, pp. 10–24, Jan. 2018.

[12] D. Li, D. V. Vargas, and S. Kouichi, ‘‘Universal rules for fooling deep
neural networks based text classification,’’ in Proc. IEEE Congr. Evol.
Comput. (CEC), Jun. 2019, pp. 2221–2228.

[13] K. Li, J. Kou, and W. Zhang, ‘‘Deep neural network for unsteady
aerodynamic and aeroelastic modeling across multiple mach numbers,’’
Nonlinear Dyn., vol. 96, no. 3, pp. 2157–2177, May 2019.

[14] X. P. Zhu, J.-M. Dai, C.-J. Bian, Y. Chen, S. Chen, and C. Hu, ‘‘Galaxy
morphology classification with deep convolutional neural networks,’’
Astrophys. Space Sci., vol. 364, no. 4, p. 55, Apr. 2019.

[15] N. Van Huynh, D. Thai Hoang, D. N. Nguyen, and E. Dutkiewicz,
‘‘Optimal and fast real-time resource slicing with deep dueling neural
networks,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1455–1470,
Jun. 2019.

[16] J. Wen, P.-F. Han, Z. Zhou, and X.-S. Wang, ‘‘Lake level dynamics
exploration using deep learning, artificial neural network, and multiple
linear regression techniques,’’ Environ. Earth Sci., vol. 78, no. 6, pp. 1–12,
Mar. 2019.

[17] C. Chen and Z. Liu, ‘‘An effective and efficient incremental learning
system without the need for deep architecture,’’ IEEE Trans. Neural Netw.
Learn., vol. 29, no. 1, pp. 1191–1204, Apr. 2018.

[18] L. Zhu, Z. Liu, C. L. P. Chen, and Y. Zhang, ‘‘A wavelet broad
learning adaptive filter for forecasting and cancelling the physiological
tremor in teleoperation,’’ Neurocomputing, vol. 356, no. 3, pp. 170–183,
Sep. 2019.

VOLUME 8, 2020 132601



R. Han et al.: Identification of Dynamical Systems Using a Broad Neural Network and PSO

[19] M. J. Cui, M. Khodayar, C. Chen, X. Wang, Y. Zhang, and M. E.
Khodayar, ‘‘Deep learning-based time-varying parameter identification for
system-wide load modeling,’’ IEEE Trans. Smart Grid, vol. 10, no. 6,
pp. 6102–6114, Nov. 2019.

[20] L. Murphy, C. Venkataraman, and A. Madzvamuse, ‘‘Parameter identifi-
cation through mode isolation for reaction–diffusion systems on arbitrary
geometries,’’ Int. J. Biomath., vol. 11, no. 4, Mar. 2018, Art. no. 1850053.

[21] M. Pelliciari, G. C. Marano, and T. Cuoghi, ‘‘Parameter identification
of degrading and pinched hysteretic systems using a modified Bouc–
Wen model,’’ Comput.-Aided Civil Inf., vol. 14, no. 12, pp. 1573–1585,
May 2018.

[22] K. Yoon, D. Y. Kim, Y. C. Yoon, and M. Jeon, ‘‘Data association for multi-
object tracking via deep neural networks,’’ Sensors, vol. 19, no. 3, p. 559,
Jan. 2019.

[23] J. Vörös, ‘‘Identification of nonlinear dynamic systems with input
saturation and output backlash using three-block cascade models,’’ J.
Franklin Inst., vol. 351, no. 12, pp. 5455–5466, Dec. 2014.

[24] U. Boz and M. Eriten, ‘‘Nonlinear system identification of soft materials
based on Hilbert transform,’’ J. Sound Vib., vol. 447, pp. 205–220,
May 2019.

[25] Y.-X. Zheng and Y. Liao, ‘‘Parameter identification of nonlinear dynamic
systems using an improved particle swarm optimization,’’ Optik, vol. 127,
no. 19, pp. 7865–7874, Oct. 2016.

[26] H. Y. Khaw, F. C. Soon, J. H. Chuah, and C.-O. Chow, ‘‘High-density
impulse noise detection and removal using deep convolutional neural
network with particle swarm optimisation,’’ IET Image Process., vol. 13,
no. 2, pp. 365–374, Feb. 2019.

[27] S.-W. Lin, K.-C. Ying, S.-C. Chen, and Z.-J. Lee, ‘‘Particle swarm
optimization for parameter determination and feature selection of support
vector machines,’’ Expert Syst. Appl., vol. 35, no. 4, pp. 1817–1824,
Nov. 2008.

[28] H. Su, ‘‘Siting and sizing of distributed generators based on improved
simulated annealing particle swarm optimization,’’ Environ. Sci. Pollut.
Res., vol. 26, no. 18, pp. 17927–17938, Jun. 2019.

[29] N. S. Nguyen, V. Ho-Huu, and A. P. H. Ho, ‘‘A neural differential
evolution identification approach to nonlinear systems and modelling of
shape memory alloy actuator,’’ Asian J. Control, vol. 20, no. 1, pp. 57–70,
Jan. 2018.

[30] Y.-S. Yang, W.-D. Chang, and T.-L. Liao, ‘‘Volterra system-based
neural network modeling by particle swarm optimization approach,’’
Neurocomputing, vol. 82, pp. 179–185, Apr. 2012.

[31] J.-H. Seo, C.-H. Im, C.-G. Heo, J.-K. Kim, H.-K. Jung, and C.-G. Lee,
‘‘Multimodal function optimization based on particle swarm optimiza-
tion,’’ IEEE Trans. Magn., vol. 42, no. 4, pp. 1095–1098, Apr. 2006.

[32] G. Xu and G. Yu, ‘‘Reprint of: On convergence analysis of particle swarm
optimization algorithm,’’ J. Comput. Appl. Math., vol. 340, pp. 709–717,
Oct. 2018.

[33] I. C. Trelea, ‘‘The particle swarm optimization algorithm: Convergence
analysis and parameter selection,’’ Inf. Process. Lett., vol. 85, no. 6,
pp. 317–325, Mar. 2003.

[34] M. Jiang, Y. P. Luo, and S. Y. Yang, ‘‘Stochastic convergence analysis
and parameter selection of the standard particle swarm optimization
algorithm,’’ Inf. Process. Lett., vol. 102, no. 1, pp. 8–16, Apr. 2007.

[35] H. Zhao and J. Zhang, ‘‘Nonlinear dynamic system identification using
pipelined functional link artificial recurrent neural network,’’ Neurocom-
puting, vol. 72, nos. 13–15, pp. 3046–3054, Aug. 2009.

RAN HAN received the B.S. degree in electri-
cal engineering and automation from Shanghai
Ocean University, China, in 2018. He is currently
pursuing the M.S. degree in naval and ocean
engineering with Jimei University. His research
interests include fault diagnosis of power electron-
ics circuits and intelligent information processing.

RONGJIE WANG received the Ph.D. degree in
electrical and electronic engineering from Sun
Yat-sen University, China, in 2012. He is currently
a Professor and a vice-supervisor of Ph.D. students
with the Marine Engineering Institute, Jimei
University, China. His research interests include
system identification, fault diagnosis of power
electronics circuits, and blind source separation.

GUANGMIAO ZENG received the B.S. degree
in ship electrical and electronic engineering from
Jimei University, China, in 2018, where he is
currently pursuing the M.S. degree in naval and
ocean engineering. His research interests include
fault diagnosis of power electronics circuits and
intelligent information processing.

132602 VOLUME 8, 2020


