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ABSTRACT This paper presents a method to address the multi-class eye segmentation problem which is
an essential step for gaze tracking or applying a biometric system in the virtual reality environment. Our
system can run on the resource-constrained environments, such as mobile, embedded devices for real-time
inference, while still ensuring the accuracy. To achieve those ends, we deployed the system with three major
stages: obtain a grayscale image from the input, divide the image into three distinct eye regions with a
deep network, and refine the results with image processing techniques. The deep network is built upon
an encoder-decoder scheme with depthwise separation convolution for the low-resource systems. Image
processing is accomplished based on the geometric properties of the eye to remove incorrect regions as well
as to correct the shape of the eye. The experiments were conducted using OpenEDS, a large dataset of eye
images captured with a head-mounted display with two synchronized eye-facing cameras. We achieved a
mean intersection over union (mIoU) of 94.91% with a model of size 0.4 megabytes and 16.56 seconds to
iterate over the test set of 1,440 images.

INDEX TERMS Eye segmentation, image processing, virtual and augmented reality, human computer
interaction.

I. INTRODUCTION
Understanding the motion and appearance of the human eye
is an active area of research with applications in many fields,
such as psychology, biometrics, and human-computer inter-
actions. In the digital world, virtual reality (VR) involves
placing a screen in front of the eyes to create a virtual
environment which simulates the user’s physical presence.
Accurate and precise eye tracking can assist in rendering only
on those parts of a virtual scene that the user is focusing at
full resolution, which significantly reduces the computational
burden of VR [1]. Eye detection, which localizes eye regions
in the image, is an essential component of any eye tracking
system [2], [3].

Iris segmentation has been drawing significant attention
from the research community due to the popularity of iris
recognition technology. In [4], the authors presented an
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algorithm that segmented the iris in RGB eye images taken
under visible and near-infrared light. Their approach involves
five sequential steps: reflection localization, filling in of
reflections, localization of iris boundaries, and determination
of the lower and upper eyelid boundaries. In each step, the
system does image processing and analyzes RGB values to
achieve its goals. Tan and Kumar [5] extracted the features of
Zernike moments [6] at different radii to classify each pixel
into iris or non-iris with support vector machines. The authors
in [7] used a randomwalker algorithm [8] in which images are
modeled with graph theory, such that each pixel corresponds
to the vertex (node) and the linkage between any two pixels
corresponds to the edge of a graph. The weight in the graph
is calculated by exploiting gradient information. Liu et al. [9]
deployed multi-scale fully convolutional networks (MFCNs)
allowing for arbitrary input image size. The approach in [10]
exploited feature learningwithATTentionU-Net (ATT-UNet)
which used the attention mechanism to guide the model to
learn more discriminative features for separating iris from
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non-iris pixels. ATT-UNet deployed bounding box regression
to generate an attention mask for the iris, which was used as
a weighted function to make the model pay more attention
to the iris region in the enhanced eye image. These methods
based on deep representation significantly outperform those
methods with handcrafted features such as [5], [7].

Sclera segmentation is typically considered as a
sub-problem of a broader task such as iris recognition or
gaze estimation [11]. Most recent approaches focused on
features from deep architecture. The authors in [12] proposed
a method with two steps: periocular region localization and
sclera segmentation in the detected region based on a fully
convolutional network. In [13], the author presented Sclera-
Net, a residual encoder-decoder network based on SegNet,
to segment the sclera into various sensor images. Skip con-
nection was employed to reduce the loss of information dur-
ing down-sampling as well as up-sampling. Wang et al. [14]
inserted an attention module into the contracting path and
expansive path of U-Net [15]. They achieved the best per-
formance with channel-wise attention, which is similar to a
squeeze-and-excitation block [16].

In multi-class eye segmentation, [17] trained a convolu-
tional encoder-decoder network based on SegNet [18] with
4-fold cross-validation on a small dataset of 120 images
from 30 participants. The system classifies pixels in an image
into six classes based on region: pupil, iris, sclera, eyelashes,
medial canthus, and periocular. A study based on atrous con-
volution with a conditional random field for post-processing
is presented in [19]. Luo et al. [20] proposed a shape con-
strained network which employed VAE-GAN [21] to learn
the shape first, and SegNet [18] was used to incorporate
this information into model. The authors in [22] leveraged
separable convolution [23] to reduce the computational cost
of SegNet when applied to the multi-class eye segmenta-
tion problem. They also utilized boundary refinement [24]
to improve performance. In [25], the authors designed a
multi-scale segmentation solution (Eye-MS) which consists
of inter-connected refinement modules. They created the
miniature multi-scale segmentation network (Eye-NMS),
a light version of Eye-MS, by reducing the feature map size
with a concomitant drop in performance of 2.5%. Perry and
Fernandez [26] leveraged dilated and asymmetric convolu-
tion, while Kansal and Devanathan [27] utilized squeeze-and-
excitation [16] block as well as spatial attention on channel
attetion [28]. Chaudhary et al. [29] presented an architecture
based on DenseNet [30] and UNet [15]. They performed a lot
of augmentation operations during training, such as Gaussian
blur, image translation, and corruption.

Although many studies have segmented the components of
the eye in an image, it remains a challenge because of the
difficulties such as blurred or defocused images, eye makeup,
or eyeglasses. In order to apply these methods in real-world
situations, a systemmust be able to run on embedded devices,
mobile devices, or other resource-constrained environments.
In this work, we propose an integrated system composed of
traditional image processing and lightweight deep network

architecture which has high performance where the influ-
ences of above mentioned effects are minimized, and that can
be used in real-world applications. This study extends the
work in [31] with additional analysis and a new method to
make further improvement of the system. We investigate on
the incorrect shape produced by the deep network because
of heavy makeup, the loss of focus, or eyeglasses. These
procedures are detected and calibrated with our proposed
image processing.

II. PROPOSED APPROACH
Our work utilizes convolutional encoder-decoder architecture
to segment a 2D grayscale eye image into three distinct
classes: the sclera, pupil, and iris. We build a simple decoder
and leverage the effect of depthwise separable convolution in
an encoder module to achieve a small but accurate model.
Firstly, we resize the input by a factor of 0.5 with bilin-
ear sampling to reduce the computation cost of the system.
Encoder module performs the down-sampling process on
resized input with stride parameters in convolution oper-
ations. Depthwise separable convolutions are deployed to
form bottleneck blocks in the middle of encoder module.
Post-processing step including our image processing opera-
tion, is applied to correct the failure part of the deep network
model in all input image. A detail of our approach is illus-
trated in Figure 1.

A. DEPTHWISE SEPARABLE CONVOLUTIONS
Depthwise separable convolutions are a core component of
most efficient deep neural networks that work in mobile
and other resource-constrained environments [23], [32]–[35].
In standard convolution, a new representation is obtained in a
single step with a huge number of parameters to allow for
feature filtering and computation. Assuming that the input
tensorF has a size h×w×dF and the output tensorG has a size
h×w×dG, where h andw are spatial height and width, dF and
dG are the number of input and output channels, respectively.
With the base convolution kernels of size dK × dK , standard
convolution uses kernelK of size dK×dK×dF×dG to obtain
G from F as

Gk,`,n =
∑
i,j,m

Ki,j,m,n · Fk+i,`+j,m (1)

where m = 1, dF and n = 1, dG. Consequently, standard
convolution has a computational cost of

Ctrad_conv = h · w · dF · dG · d2K (2)

Depthwise separable convolution breaks standard convolu-
tion down into two separate layers: depthwise convolution
and pointwise convolution. The first layer performs filtering
with kernel K̂ which included dF kernel of size dK × dK ,
where themth filter is applied to themth channel ofF to obtain
the mth channel in the output tensor Ĝ. This operation can be
written as

Ĝk,`,m =
∑
i,j

K̂i,j,m · Fk+i,`+j,m (3)
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FIGURE 1. Overall system architecture.

which leads to a computational cost of

Cdwise_conv = h · w · dF · d2K (4)

For the purpose of generating new features by computing
linear combinations of input channels, pointwise convolution
performs traditional convolution based on dG kernels of size
1× 1. As in Equation 2 with dK = 1, the pointwise convolu-
tion has a computational cost of

Cpwise_conv = h · w · dF · dG. (5)

Thus, the computational cost of depthwise separable con-
volution can be expressed as the summation of Equation 4
and Equation 5

Cdsepa_conv = Cdwise_conv + Cpwise_conv
= h · w · dF · d2K + h · w · dF · dG

= h · w · dF ·
(
d2K + dG

)
. (6)

Empirically, by factorizing convolution into two steps, depth-
wise separable convolution works almost the same as regular
convolution [23], while the computational cost is reduced by

Creduced =
Cdsepa_conv
Ctrad_conv

=
h · w · dF ·

(
d2K + dG

)
h · w · dF · dG · d2K

=
1
dG
+

1

d2K
(7)

which is almost a factor of d2K .

B. BOTTLENECK BLOCKS
The idea of the bottleneck residual block was originally intro-
duced in [33]. It is like a residual block [36], but it is more
memory efficient as well as slightly better. It takes an input

with d channels of spatial height h and width w. The ratio
between the depth of the inner feature map and the input is
referred to as the expansion ratio t . When t 6= 1, a linear
transform with 1 × 1 convolution is used to project the d
channels input onto a new t ·d channel space.When t < 1, it is
a classical residual convolution block [36]. Down-sampling is
handled by stride s in the first step of depthwise separable
convolution. The detailed structure of this block is shown
in Figure 2.

A squeeze-and-excitation (SE) block [16] produces signif-
icant improvements in performance with slightly additional
computational costs for state-of-the-art deep architectures by
performing feature re-calibration through two major opera-
tions: squeeze to produce a channel descriptor, and excitation
to obtain per-channel modulation weights, which are used
to scale the input. In the squeeze operation, an SE block
exploits channel dependencies with channel-wise statistics by
using global average poolingwhich aims to allow information
from the global receptive field to be used by all layers in the
network. Then, a simple gatingmechanismwith sigmoid acti-
vation is applied to aggregate information from the squeeze
operation and produce a non-mutually exclusive relationship
between channels. The structure of an SE block is shown
in Figure 3.

C. ENCODER-DECODER ARCHITECTURE
The architecture of our encoder includes a full convolution
with 32 and 64 filters for the initial and the last layer, respec-
tively; 9 residual bottleneck layers, as shown in Figure 2,
are inserted between the two convolution layers. These bot-
tleneck residual blocks are organized into 3 groups with
16, 24, and 32 output channels, respectively. The expansion
ratio is 1 for the first group and 6 for the next two groups.
Down-sampling is done by setting the stride to 2 in the initial
convolution layer of the network and the first block of the
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FIGURE 2. A visualization of bottleneck residual block [33] transformation from d to d ′ channel with expansion ratio t and
stride s. (a) Depthwise convolution with s = 1. (b) Depthwise convolution with s = 2.

FIGURE 3. The schema of the SE block [16]. FC indicates a fully connected layer. 0 < r ≤ 1 denotes the reduction factor of
depth size in the excitation operation.

last two groups. We always use the kernel size of 3× 3, as is
standard for modern networks. The details of our encoder
architecture are described in Table 1.

TABLE 1. The encoder architecture of our method. Each line describes a
group which included n blocks of the operator. The first block of each
group has stride s and all others use a stride of 1.

In the decoder module, we build an architecture with a
structure similar to squeeze and excitation (SE) block in [16],
as described briefly above. The goal of an SE block is
to acquire the global information necessary to selectively
emphasize informative features and suppress less useful ones
by explicitly modeling the interdependencies between chan-
nels [16]. Our decoder begins with a regular component in the
segmentation network: a convolution with 64 filters of kernel
size 3× 3 followed by bilinear up-sampling, which increases
the input size four times. At this point, we create two different
streams in order to learn from and make an ensemble of them
at the end of the decoder module. In the first stream, we use
three convolutions with kernel size 3×3 followed by bilinear
up-sampling to get the same size as the original input. In the
other stream, we use only a 1×1 convolution and up-sampling
of the output. In order to learn vital information and elim-
inate trivial information, we set the reduction ratio of r to
4 in the SE block. After each convolution operation, we use
batch normalization and ReLU as the non-linearity function.
Finally, we applied softmax activation on the summation of

two streams in order to obtain the probabilities that each pixel
belong to 4 classes of background, sclera, iris, and pupil.

D. IMAGE PROCESSING
To reduce incorrect region classification in the predictions of
the deep network, we analyze the properties of the connected
components with 8-connectivity. Each mask contains at most
four values 0, 1, 2, and 3, corresponding to the background,
sclera, iris, and pupil. In each class except the background,
we keep only the biggest region, which is considered the
correct region. The sclera covers the iris, and the iris wraps
the pupil. Consequently, we filled black holes and removed
the small connected components for the sclera, iris, and pupil
sequentially, as in algorithm 1. Figure 4 shows a visualization
of the steps in forloop in algorithm 1.

Algorithm 1 Filtering With Connected Components
Input: Predicted mask Mp of size 640× 400
Output: Filtered mask Mf of size 640× 400
1: Initialize Mf with zeros
2: for i← 0, 2 do
3: Bw← Binary image from Mp with threshold i
4: Bw← Fill all black holes in Bw
5: Lc← Largest connected component with 8-

connectivity in Bw
6: Lr← Bw\Lc
7: Fill the region in Mf corresponding with Lc with the

value of i+ 1
8: Fill the region in Mp corresponding with Lr with 0

values
9: end for

We apply a horizontal projection on a binary image,
in which pixels belonging to the eye region are marked as
foreground. We observe that there is only one peak in the
image projection with the correct eye shape; incorrect shape
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FIGURE 4. Example of filtering with connected components. From top to
bottom, i = 0, 1, 2. From left to right: input, binary image Bw (step 2),
Lc (step 5), and Mf (step 7).

FIGURE 5. Horizontal projection profiles of a binary image with the eye
region as the foreground. (a) Correct shape. (b) Incorrect shape.
(c) Horizontal projection profiles of (a) and (b). Marks in (c) indicate
peaks.

contains more than two peaks, as in Figure 5. These dif-
ferences can be explained by the shape of the human eye,
which approximates an ellipse with the longest diameter on
the major axis and the shortest diameter on the minor axis.
Apparently, in the set of lines which connect two points on the
boundary of the ellipse and parallel with the major (minor)
axis, the length of a line will increase if it come closer
to the major (minor) axis. This property is also true when
we use horizontal (vertical) axis instead of major (minor)
axis, meaning that for each axis, we have only one line
with maximum length and the length decreases gradually
when we move further away from that line. Consequently,
projection of a binary image of the eye region will increase
or decrease gradually. Thus, we keep the largest peak and
remove the others by setting zero values to pixels of those
peaks. An example of this operation is shown in Figure 6.
In addition, deep networks miss pixels in the upper part of

the eye due to loss of focus or heavy makeup (Figure 7b).

FIGURE 6. An example of peaks removal from the horizontal projection.
(a) Region to remove. (b) After removal of peaks. (c) Horizontal
projection profiles of (a) and (b). The region inside the red line of
(a) corresponds to removed peaks.

FIGURE 7. Approximation of the upper part of the eye with a convex hull.
(a) Input image. (b) Output of deep network. (c) Visualization of upper
part in red line. (d) After correction. (e) Illustration of region to extend
where the peak is marked with green circle.

We observe that they create a defect region in the results
with different sizes depending on the influence. To deal with
this problem, we first collect pixels in the upper boundary,
as shown by the red line in Figure 7c and Figure 7e. Then,
we determine whether a peak on that line exists or not, and
if it does, the correction process continues. At this point,
we find their convex hull, which is the smallest convex line
that contains all of them and approximate a curve for that
convex (blue line in Figure 7e). The reason for this approach
is that, in real-world, the shape of the upper part of the
eye is always a convex polygon. We extend the eye region
with pixels belonging to the region between the red and blue
lines. We also extend the visible area of the pupil (iris) by
approximating a circle.

III. EXPERIMENTAL EVALUATION
The experiment and evaluation of our approach have been
done with Open Eye Dataset (OpenEDS) [22]. The data
were collected from 152 individual participants using a
head-mounted display (HMD) with two synchronized cam-
eras. The semantic segmentation data contained 12,759
images annotated at a resolution of 640 × 400 with three
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TABLE 2. Results of applying our model to the test set with model size is computed by Equation 12.

components of an eye: the sclera, iris, and pupil. The data was
divided into three sections for training, validation, and testing,
which had 8,916, 2,403, and 1,440 samples, respectively.
Our deep architecture is optimized with the training set. The
validation data was only used to evaluate and select the model
for testing on the unknown test set.

A. IMPLEMENTATION
We implemented our networks in PyTorch [37] and trained
for 200 epochs with a combination of the Adam optimizer and
Stochastic Weight Averaging (SWA) technique [38], which
has been proposed to substantially improve generalization in
computer vision tasks by performing an equal average of the
weights traversed by an optimizer. We applied SWA from the
51st epoch. Our network is trained from scratch with weights
from He initialization [39]. We used a batch size of 32 and
weight decay of 1e−4. The network started with a learning
rate of 1e− 3. After the 27th epoch, we decreased it to 5e− 4
in 28 epochs, and retained that value in the rest of the training.

We observed that the eye region accounts for from 10 to 30
percent of an input image in most cases. Furthermore, each
eye contains 3 parts, of which the sclera and pupil are
the largest and the smallest region, with a difference of
about 15 times or more in area. This led to a large imbalance
between the 4 classes (background, sclera, iris, and pupil).
To handle this complication, we applied generalized dice loss
(GDL) [40] as an objective function for training our networks.
For each image, it takes the form

GDL = 1− 2

∑
c wc

∑
i,j
(
pi,j,c · p̂i,j,c

)∑
c wc

∑
i,j
(
pi,j,c + p̂i,j,c

) (8)

where pi,j,c and p̂i,j,c are probabilities that the pixel located
at (i, j) in the image belongs to class c in ground truth and
output of the network, respectively. The weight attribute wc
for class c considers the contribution of each label and is used
to formulate the following equation

wc =

∑
c Nc

C · Nc
(9)

where C and Nc are the number of classes and pixels belong-
ing to class c. We changed the brightness of each image used
for the training by a factor which was chosen uniformly from

[0.5, 2.0] to tackle the difference in brightness due to light
reflection. During the training, we kept only the model which
had the least validation loss.

B. EVALUATION
In our evaluation, the efficiency of a method is evaluated by
balancing two aspects: performance and model complexity.
To accommodate these requirements, the following equa-
tion [41] is used as the metric to measure efficiency

M = 50
[
mIOU +min

{
1,

1
S

}]
(10)

where mIOU takes account of model accuracy and is defined
by

mIOU =
1
C

C∑
c=1

|Pc ∩ Gc|
|Pc ∪ Gc|

(11)

where Pc and Gc are the region of class c from the ground
truth and predicted mask, respectively. Model complexity
is quantified by the size of the model with the value of S
in Equation 10 which takes the form

S =
T × 4

1024× 1024
(12)

where T is the number of trainable parameters in the deep
network. Stated differently, the metric M is the combination
of the mean intersection over union (mIOU) and model size
in megabytes S.

Generally, our approach achieves a competitive result, with
less than half of the number of trainable parameters com-
pared to the best result on the OpenEDS dataset as shown
in Table 2. In terms of speed, our system took only 16.56
seconds while RITnet [29] took 22.75 seconds to iterate over
a set of 1, 440 test images on an NVIDIA 1080Ti GPU. A
comparison between our predictions and those of RITnet [29]
is shown in Figure 8. Our network is sensitive to reflection
from eyeglasses resulted in an additional prediction below the
eye, but it is eliminated by the post-processing step with hori-
zontal prediction. In images with blur on the eye region, most
networks produce the missing region. The missing region can
be fixed in our system by using the convex hull of the eye as
well as extending a region based on its properties.
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FIGURE 8. Example results on OpenEDS dataset. (a) Input image.
(b) Result from our deep network. (c) Results of our system after the
image processing on (b). (d) Results from RITnet [29].

We also evaluate our method with some reduction [31].
In A1,A2, and A3, we exclude the shape correction with
horizontal projection and convex hull. A3 is created from the
whole architecture, as in Figure 1, whereas A1 exclude D2
and A2 exclude the SE block. In terms of architecture, the
network A3 withD2 as well as the SE block produces slightly
better results, compared to A1 or A2. With an additional step
to correct the shape with geometrical properties, our model
proposed in this paper produces the best result among the
variations of our system with less computational cost.

IV. CONCLUSION
We present a lightweight deep architecture to localize 3 sep-
arate regions of the eye (sclera, iris, and pupil), along with
a background. Using the geometrical properties of the eye,
we employed a convex hull and horizontal projection to
obtain the best result, with 0.4% lower accuracy but 1.4 times
faster than RITnet [29]. More research is needed to apply the
results from eye localization to the next step in gaze tracking
or biometric systems, and to produce a fast and accurate
system in real-world applications.
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