
Received June 30, 2020, accepted July 11, 2020, date of publication July 17, 2020, date of current version July 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3010172

Software Analytics to Support Students in
Object-Oriented Programming Tasks:
An Empirical Study
PASQUALE ARDIMENTO 1, MARIO LUCA BERNARDI 2, (Member, IEEE),
AND MARTA CIMITILE 3, (Member, IEEE)
1Computer Science Department, University of Bari Aldo Moro, 70125 Bari, Italy
2Department of Engineering, University of Sannio, 82100 Benevento, Italy
3Department of Law and Economics, Unitelma Sapienza University, 00161 Rome, Italy

Corresponding author: Pasquale Ardimento (pasquale.ardimento@uniba.it)

ABSTRACT The computing education community has shown a long-time interest in how to analyze
the Object-Oriented (OO) source code developed by students to provide them with useful formative tips.
Instructors need to understand the student’s difficulties to provide precise feedback onmost frequentmistakes
and to shape, design and effectively drive the course. This paper proposes and evaluates an approach allowing
to analyze student’s source code and to automatically generate feedback about the more common violations
of the produced code. The approach is implemented through a cloud-based tool allowing to monitor how
students use language constructs based on the analysis of the most common violations of the Object-Oriented
paradigm in the student source code. Moreover, the tool supports the generation of reports about student’s
mistakes and misconceptions that can be used to improve the students’ education. The paper reports the
results of a quasi-experiment performed in a class of a CS1 course to investigate the effects of the provided
reports in terms of coding ability (concerning the correctness and the quality of the produced source code).
Results show that after the course the treatment group obtained higher scores and produced better source
code than the control group following the feedback provided by the teachers.

INDEX TERMS Automated feedback, computing education, empirical experiment, object-oriented
programming.

I. INTRODUCTION
Most of today’s widely used programming languages (e.g.
C++, Java, Python) follow an Object-Oriented Program-
ming (OOP) paradigm that takes a primary role with respect
to the traditional procedural languages. Consequently, since
the beginning of the 2000s, a huge number of educa-
tional institutes recognize the importance to teach OOP in
Computer Science courses [1], [2].

This allows the teacher to face several hurdles [3]–[5] due
to the many factors ranging from difficulties within the sub-
ject (e.g. student’s aptitude, multiple skills requirements) and
methods (teaching strategies are quite new). This encourages
continuous research of novel teaching strategies [6], [7] based
on the investigation of students’ hurdles to address student
questions as soon as possible providing timely feedback [8],
and improving retention [9].

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco J. Garcia-Penalvo .

According to this, several studies are focused on the com-
prehension of student mistakes [10] and misconceptions [11]
to drive teachers. These code violations can be extracted and
analyzed from samples of student source code and can be
classified on the base of their relevant language constructs
and some quality issues. This data, if adequately represented
and analyzed, can be useful to understand how students head
the development tasks, and to provide timely and useful
feedbacks or batch reports.

Basing on the above considerations, this study proposes
the Student Profiling Approach (SPA) aiming to analyze and
report the most common violations of the OOP in the student
source code. The approach is based on a violation model
useful to verify the presence of a set of predefined violations
in the students’ source code giving useful feedback to the
students during their coding activity. This model, differently
from other existing approaches can be easily customized
by the teacher on the base of specific educational goals.
According to the above considerations, we have developed

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 132171

https://orcid.org/0000-0001-6134-2993
https://orcid.org/0000-0002-3223-7032
https://orcid.org/0000-0003-2403-8313
https://orcid.org/0000-0001-9987-5584

P. Ardimento et al.: Software Analytics to Support Students in OO Programming Tasks: An Empirical Study

the so-called Student Profiling Tool (SPT) as an extension
of the Eclipse Che cloud IDE, to analyze student’s code
and assess the quality of produced artifacts on the base of
the proposed violation model. The environment implements
a wide set of analyses of a different kind (depending on
artifacts and the part of the software life-cycle understudy).
In particular, it can detect the set of possible violations in
student source code and produce individual reports of mis-
takes and related misconceptions. These reports convey use-
ful feedbacks and formative tips to students about their coding
activities, to improve the quality and the correctness of their
work. This work presents an empirical study to investigate
if continuous code analysis and reporting performed using
SPA in a real course improve student’s coding ability. Specif-
ically, the study spans through six coding sessions involving
students from a CS1 course [1] in the Computer Science
Engineering degree held at the University of Bari. The results
of the quasi-experiment highlight that the proposed approach
significantly improves student’s coding ability. Moreover,
the produced reports also support instructors in designing and
developing novel teaching strategies improving the effective-
ness of Object-Oriented programming courses. In the next
section, we summarize related work. Section III describes
the basic notions for the feedback concept and the feed-
back model. Section IV explains the proposed approach for
the source code analysis and student’s report generation.
Section V presents the experiment design whereas Section VI
reports the obtained results. Section VII proposes an inter-
pretation of the findings while in Section VIII the threats to
validity are discussed. Section IX deals with conclusion.

II. RELATED WORK
Several studies investigated OO source code errors in the last
years. Focusing on syntax [12], [13] some authors enhance
compiler error messages [14]–[17], logic errors [18], [19],
and coding habits [20]–[23]. Some other works are more
focused on the OOP learning process presenting its main
difficulties [11], [24], [25]. For example, authors in [19],
analyze the code generated by the students (15,000 code frag-
ments) and classified the student’s logic errors as algorithmic
errors, misinterpretations of the problem, and fundamental
misconceptions. In [26], a survey about the aspects of the
Java language perceived by the students as difficult is pre-
sented. Another approach [27] consists to examine the quality
of student code with regards to program flow, functions,
clarity of expressions, decomposition, and modularization.
This study highlights that novice programmers usually
use professional static analysis tools (Checkstyle,1 PMD,2

SpotBugs,3 SonarQube.4)
In [28], authors starting from the list of the problems

detected by several professional tools, analyze the code

1http://checkstyle.sourceforge.net
2https://pmd.github.io
3https://spotbugs.github.io/
4http://www.sonarqube.org

of 3,691 students over five semesters. Basing on the above
considerations, in [29], an error detection advisory tool
named Expresso is introduced. It aims to help the teachers
to understand the types of frequent errors the students make
among a list of the typical logic, semantic and syntax errors
usually made by novice programmers. Another approach [4]
is based on the use of two checklists for grading student
programs. These lists are obtained by considering basic OOP
concepts and typical novice misconceptions as identified in
the literature. The approach is used to evaluate objects-first
CS1 course students.

Differently from the described approaches, our approach
is more focusing on the teaching perspective allowing the
instructor to customize the evaluation itself. In particular,
the outcoming evaluation of the source code depends on
the reference solution designed by the teacher (before each
development task, the teacher has to carefully design and
implement the reference solution for each assigned task).
In this way, the tool is set on the base of the total number of
mandatory properties and constraints that the solution must
satisfy. Using this information it is established if a student
committed a violation and, if so, to what extent it has been
committed. Moreover, looking to the teacher’s perspective,
these approaches are not useful for preparing new teaching
strategies since they are not based on an intuitive supporting
environment to compare the results of student’s code analy-
ses [30]. In this paper, we present an approach to the student’s
code analysis able to detect their code violations. We exploit
a supporting tool that can produce a detailed report on the
violations of the source code given as input. These reports
can be used to inform the student about their common Java
language violations.

III. BACKGROUND
The proposed approach is focused on the concept of feed-
back model. In the past, several feedback models, based
on educational theories, were proposed. In our approach,
the feedback model is derived from the work of [31] later
customized by [32] to the context of computing education
and object-oriented programming tasks in particular. In the
remaining of the section, the description of basic notions
about such feedback models that are needed to understand
the proposed approach is reported.

A. FEEDBACK CONCEPT
The importance of feedback for driving the student and han-
dling its learning process and improving the learning outcome
is largely discussed in literature [31], [32]. In particular,
authors in [32] recognize the critical role of feedbacks in
CS1/2 context to help learners improving coding abilities.

Feedback is defined in [31] as the information provided by
an agent (e.g., teacher) about aspects of learner’s performance
or understanding. According to [31], to provide significant
feedback is also necessary to address the following issues:
• Type of feedback — it consists of evaluative and infor-
mational components. The evaluative component relates

132172 VOLUME 8, 2020

P. Ardimento et al.: Software Analytics to Support Students in OO Programming Tasks: An Empirical Study

to the learning outcome and indicates the performance
level achieved. The informational component, instead,
consists of additional information relating to the topic,
the task, errors, or solutions. Combining the evaluation
and information component of feedback might result in
a large variety of feedback contents.

• Technique — it refers to what happens inside a tool to
generate feedback.

• Input type — it refers to an input type that enables
teachers to create exercises and influence the generated
feedback by a tool. The most input type used is: solution
templates presented to students for didactic or practical
purposes as opposed to technical reasons such as easily
running the program; model solutions that are correct
solutions to a programming exercise; test data, by spec-
ifying program output or defining test cases; error data
such as bug libraries, buggy solutions, buggy rules, and
corresponding correction rules.

• Timing of feedback — it refers to the time when feed-
back is provided. This issue is extremely important as
demonstrated in [33].

B. FEEDBACK MODEL
The proposed approach is based on the model of feed-
back as described in [32]. This study introduces contem-
porary models of effective feedback practice offering an
interpretation of those in the CS1 context. Respect to the
inspiring model, proposed by Hattie and Timperley [31],
in [32] authors focus on aspects that have a widely recognized
effect on learning in CS1 context. Specifically, they consider
different levels of feedback corresponding to different learn-
ing aspects:
• Task level — This level includes feedback about ‘‘how
well a task is being accomplished or performed, such as
distinguishing correct from incorrect answers, acquiring
more or different information, and buildingmore surface
knowledge’’ [31]. This type of feedback can be con-
ceived along with several dimensions, such as high to
low complexity, individual or group performance, and
written or numeric notations. At this level, the literature
suggests simplicity: more are simple the tasks more the
task performance benefits from the feedback [34], more
are simple the provided feedback more the feedback
tends to be effective. Moreover, it is preferable to deliver
and receive feedback in an individual situation than in a
group situation. Feedback messages delivered in groups
may be confounded by the perceptions of relevance to
oneself or other groupmembers. Finally, feedback at this
level is more effective when students feel to be commit-
ted and involved in the task perceiving the impact on
their performance.

• Process level — This feedback clarifies the processes
necessary for task completion. At this level two aspects
are important: i) helping students to develop strategies
for error detection and correction, ii) providing students
with cues and hints to guide their search for relevant

information, and to apply effectively useful strategies.
The main usefulness of this feedback is to suggest stu-
dents the more effective and alternative solution strate-
gies as pointed out by [31]. Feedback information about
the processes underlying a task also can act as a cue-
ing mechanism and lead to more effective information
search and use of task strategies. Cues, to bemore useful,
should assist students in rejecting erroneous hypotheses
and provide direction for searching and strategizing.

• Self-regulation level— Feedback at the self-regulation
level is aimed to improve students’ self-monitoring skills
and to address the way students direct and regulate
their learning. It comprises several aspects such as the
capability to create internal feedback and to self-assess,
the willingness to invest effort into seeking and dealing
with feedback information, the degree of confidence or
certainty in the correctness of the response, the attri-
butions about success or failure, and the level of pro-
ficiency at seeking help.

As better specified in the following section, to improve
learning, all these components should be considered when
providing customized reports for students. From the detected
student’s mistakes, our feedback model derives the related
misconceptions about object-oriented concepts and, to mit-
igate them, acts simultaneously at task, process and self-
regulation level providing, respectively, a correct solution,
proper guidance towards one or more correct solutions and
a set of suggested readings strictly related to the detected
misconceptions.

IV. STUDENT PROFILING APPROACH
The proposed approach is based on a cloud IDE able to
analyze student’s source code, identify their source code
violations and providing them feedback with tailored reports.
According to the feedback framework reported in the back-
ground section, the proposed approach carefully defines the
adopted feedback model. Specifically, the considered mis-
takes and their underlying misconceptions are described in
Section IV-A whereas the structure and feedback generation
issues are addressed in the tool description (Section IV-B).
Finally, to answer the input type issue we introduce and
describe our violations model (it represents the model solu-
tion) and the adopted feedback reports (solutions templates)
respectively in Section IV-A and Section IV-C.

A. THE VIOLATIONS MODEL
To verify the presence of mistakes in the student’s source
code our approach is based on a violations model. The
model can be defined by the instructor and consists of a
list of possible violations stored in a violation repository
as source code static and dynamic analysis modules. The
adopted model is obtained identifying for the core topics
(as defined in [1]), the corresponding possible violations
on the base of instructor experience (derived by manual
student’s source code analysis) and literature analysis [3], [5].
In particular, we started from such misconceptions of novice

VOLUME 8, 2020 132173

P. Ardimento et al.: Software Analytics to Support Students in OO Programming Tasks: An Empirical Study

TABLE 1. The violation model for source code correctness and quality assessment.

programmers as described in the literature to find how these
cause violations of language constructs. Successively, sim-
ilarly to Sanders and Thomas [4], we manually inspected
a sample of student programs (namely 162 of 1627 Java
projects extracted from Blackbox [35], [36]) to identify and
define the violations list as reported in Table 1. The table
shows the groups of considered violations, the single viola-
tions description, and its corresponding acronyms. In the fol-
lowing subsections, we explain the listed violations reporting
the related literature.

We categorized all violations from literature with respect
to two main broad categories: the object-oriented language
core topics (i.e., design, abstraction, hierarchy, typing, and
encapsulation) and quality-related metrics (we considered
those known in the literature as bad code smells).

1) STATE DESIGN
Object-oriented design is meant as decomposition into
objects carrying state and having behavior [1] where the
state of an object encompasses all of the properties of the
object plus the current values of each of these properties [37].
According to this, we identified the following state design
violations:
• Class Without Instance Fields (cwif): It is well-known
that students have difficulties in understanding the con-
cepts of object and class [11]. A class without instance
fields (cwif) could be a consequence of such difficulties.
Of course, a class without instance fields containing only
static methods (like the entry point — i.e. the main
method) is not considered a violation.

• Missed Constant (mc): A class field which is only
read should be declared as constant. This is in line
with Chen et al. [38] who discovered misconcep-
tions when students determine which data member
is appropriate for declaring a constant. Moreover,
Ragonis and Ben-Ari [11] list difficulties in understand-
ing the static aspect of the class definition.

• Missing Attribute (ma): An attribute is a named prop-
erty of a class that describes a value held by each object
of the class. Sometimes could happen that a property
of a class is not modeled. In this case, the class does
not accomplish the requirement related to the missing
property.

2) BEHAVIOUR DESIGN
The behavior of an object is how an object acts and reacts,
in terms of its state changes and message passing [37].
We defined the following behavior design violations:
• Class With Implicit Constructor (cwic): Ragonis and
Ben-Ari [39] consider teaching constructors a difficult
multiple choice and they found that the professional
style of declaring a constructor to initialize attributes
from parameters is to be preferred even though it seems
difficult to learn. This means that a class with an implicit
constructor (cwic), listed among simpler styles, should
be avoided.

• Public Field Changed by private methods (pfc): The
difficulties to understand the influence of method exe-
cution on the object state is another problem related to
the concepts of object and class [11].

132174 VOLUME 8, 2020

P. Ardimento et al.: Software Analytics to Support Students in OO Programming Tasks: An Empirical Study

• Missing Operation (mo): An operation denotes a ser-
vice that a class offers to its clients [37] corresponding
to a single specific functional requirement. Sometimes
the service of a class might be not modeled. In this case,
the class does not accomplish the requirement related to
the missing service.

• Unused association (ua): Writing of a program that
includes composed classes is a complex task [40]. Such
difficulty could have led to including associations which
are never used (i.e., the relationship attribute is never
accessed and no message is sent to the linked object).

3) ABSTRACTION VIOLATIONS
Abstraction refers to the essential characteristics of an object
that distinguish it from all other kinds of objects and thus
provide crisply defined conceptual boundaries, relative to
the perspective of the viewer [37]. This group includes the
following violations:

• Empty NOn-ABstract method in root class (enoab):
When a method of a root class in a hierarchy is intended
to be specified by sub-classes it should be marked as
abstract forcing the sub-classes to provide an implemen-
tation for it [41]. In addition, it could be made final
to express that its behavior must not be overridden.
Conversely, if a method is intended to be overridden,
the intent fails to be expressed because sub-classes are
free to not override it. In this case, it should be declared
as abstract (leaving its definition to sub-classes).

• Missed Abstract Class (mac): An abstract class is a
class that cannot be instantiated because is incomplete.
Its subclass will add to the structure and the behavior,
usually by providing the implementation of incomplete
parts. Often novices miss even the existence of abstract
classes being unable to identify a common structure and
to assign specific responsibilities to sub-classes. This
violation is able, using source code analysis, to identify
such missed factorization opportunity highlighting the
code reduction of its application to developers.

4) HIERARCHY VIOLATIONS
Hierarchy could be defined as a ranking or ordering of
abstractions. [37]. In a complex system, two kinds of hier-
archies interact in several ways: class hierarchies, that are
based on specialization (i.e., ‘‘is a’’ relationships), and the
object structure hierarchies, that are based on aggregation
and composition (i.e., ‘‘part of’’ relationships). The follow-
ing violations reflect known misuses of such constructs that
do not depend on the particular semantics of the modeling
context and can be detected automatically by source code
analysis:

• Inheritance to Extend Values (iev): Inheritance can
be mistakenly used to extend values [25]. For instance,
some students think that inheritance can be used to
change the values of fields, rather than for adding
attributes or operations.

• Misused Constructor Chaining (cc): The study in [25]
also highlights how many students fail to understand
the chain of constructor calls in object creation. Even
though the choice of using the default constructor was
deliberate, it is always worth giving feedback to students
to avoid the proliferation of (bad) long-term habits—as
suggested by Ala-Mutka [42].

• MissedGeneralization (mg): Generalization and inher-
itance are useful concepts that help to reduce the com-
plexity of models and the redundancy in specifications.
Moreover, they increase the reuse of specifications and
code [43]. This could also imply the presence of dupli-
cate code.

• Missed Aggregation (ma):
Aggregation is used to model whole-part relationships
in which multiple classes are combined to generate a
class with a more complex internal structure. Often,
inexperience leads to the use of static relationships such
as inheritance instead of aggregation and this produces
less flexible systems with more classes. The use of
aggregation and inheritance should always be linked to
the existence of whole-part relations and specialization
(i.e., ‘‘is-a’’) avoiding misuse.

5) ENCAPSULATION
Encapsulation consists of compartmentalizing the elements
of an abstraction that constitute its structure and behavior.
It serves to separate the contractual interface of an abstraction
and its implementation [37].

Considered encapsulation violations are:
• Poor interface use and def (pi): Among the good
coding practices for Java, some studies [44] advise to
prefer the use of interface types (over class types) for
all declared types. In other words, a declared site (e.g.
a local declaration) should use an interface (when such
an interface is available).

• Unused PrivateMethod (upm): Private methods which
are never called introduce dead code into the system.
This is also linked with difficulties with scope, namely
with the ‘‘private’’ keyword.

• Wrong Visibility of Class Member (wvcm): Because
public fields tend to limit flexibility in changing source
code use, a good principle is to avoid public fields except
for constants.

• Misused Default Package (dp): Default or unnamed
packages are provided by the Java platform princi-
pally for convenience when developing small or tempo-
rary applications or when just beginning development.
However, it is very important to learn since the beginning
to use packages otherwise any other class in the default
package has access to class fields and methods that are
not set to private.

6) TYPING
Typing is the enforcement of the class of an object, such
that objects of different types may not be interchanged [37].

VOLUME 8, 2020 132175

P. Ardimento et al.: Software Analytics to Support Students in OO Programming Tasks: An Empirical Study

Polymorphism represents a concept in type theory in which
a single name (such as a variable declaration) may denote
objects of many different classes that are related by some
common superclass. Any object denoted by this name is,
therefore, able to respond to some common set of operations.
Some typing violations are:

• Missed Inclusion Polymorphism (MIP): In inclusion
polymorphism, an object can be viewed as belonging to
many different classes which need not be disjoint, i.e.
there may be the inclusion of classes.

• Missed Parametric Polymorphism (mpp): Parametric
polymorphism is obtained when a function works uni-
formly on a range of types: these types normally exhibit
some common structure.

• Wrong Use of Bounded Type Parameter (wubtp):
The Bounded type parameter allows restricting the types
that can be used as type arguments in a parameter-
ized type. Students have issues in understanding how
to bound the parameterized type leading to subtle bugs
at run-time. SPT reports highlight these situations clar-
ifying the consequences of dangerous type parameter
management.

7) BAD CODE SMELLS
Bad code smell is a surface indication that usually corre-
sponds to a deeper problem in the system [45].

The considered code smells violations are:

• Field Used as Local Variable (fulv): Students
have issues in understanding the difference between
class fields and local variables inside methods
Tempero [46].

• Local variable shadowing a field (lvsf): The shadow-
ing of a field by the definition of a local variable with
the same name is related to the same motivations of fulv.

• Static Invocation Through Instance (siti): Static meth-
ods should be accessed in ‘‘a static way’’. When a static
method is accessed by an instance, this probably rep-
resents a warning sign of an incorrect comprehension
of the meaning of static methods. It is important to
understand the current object and its usage [47].

• Unnecessary Object casting (oc): Another issue with
polymorphism is using typecasting explicitly (especially
when is not needed at all) [48].
Typechecking bad code smells are also a bad practice
and usually programmers who have not fully under-
stood the object-oriented paradigm uses conditional
statements to simulate dynamic dispatch and late bind-
ing [49].

• Unused Private Field (upf): It refers to a situation with
a private field not assigned and not used at all. Private
fields that are not used at all are a form of dead code and
should be removed. One exception to this violation is the
Java serialization where a serializable class can declare
its own serialVersionUID explicitly by declaring a field
named serialVersionUID.

• Cloned Code (clc): It means that identical or very simi-
lar code exists in more than one location making source
code more difficult to maintain.

• Long Parameter List (lpl): A long parameter list can
indicate that a new structure should be created to wrap
the numerous parameters or that the method is doing too
many things. Typically a method suffers from lpl when
has four or more parameters.

• God Class (gc): The God class is a kind of class that
knows too much or does too much. That means a huge
class in terms of the number of lines of code, creat-
ing tight coupling and increasing the challenges in the
source code maintainability.

B. STUDENT PROFILING TOOL
The proposed approach uses a cloud-based reengineering
version of our previous Student Profiling Tool (SPT) [50] that
was standalone. It is based on the Eclipse Che platform to add
both real-time learning analytics features and the support to
handle monitoring of labs and development session recording
the performances of students and developers (in terms of
correctness). The overall architecture of SPT with its main
components is represented in Figure 1. The main components
are the Violation Model Manager and Assignments Manager.
The ViolationModelManager allows the instructor to specify
the violation model that is enforced when analyzing student’s
projects. Its presence distinguishes our tool from the 96%
of existing tools providing feedback on ‘‘knowledge about
mistakes’’ [51]. SPT, instead, provides feedback based on
‘‘knowledge about concepts’’, i.e. the Object-Oriented con-
cepts. It is based on a Basic static analysis (BSA) technique.
BSA, in general, analyses a program (source code or byte-
code) without running it, and can be used to detect misun-
derstood concepts, the absence or presence of certain code
structures, and to give hints on fixing these mistakes. In our
case, instead, this technique is used to analyse source code
developed by the student with the model solution provided by
the instructor (model solution template). If in the source code
the tool detects any violation, defined in the violation model,
gives hint on how to fix this violation. The Assignments
Manager allows the instructor to define assignments linking
them to the solutions produced by students (collected in a
Project Data Store). These projects are subsequently analyzed
to recover the errors and mistakes following a predefined
violation model (Violations Repository).

The results of static analysis are managed by the Assign-
ment Manager component and will be summarized on the
client-side by the report builder for both instructors and stu-
dents basing on their role. The Report Builder performs data
aggregation and integration with existing software thanks
to a custom Visualization Engine which supports different
types of output (raw text, HTML, Latex, PDF or ad-hoc
visualizations).

In addition to these standard components, SPT architecture
includes a real-time reporting tool used to provide feedback
and formative tips during development activities.

132176 VOLUME 8, 2020

P. Ardimento et al.: Software Analytics to Support Students in OO Programming Tasks: An Empirical Study

FIGURE 1. Student profiling tool architecture (extending Eclipse Che).

Figure 2 shows an example of the typical SPT session
from the instructor perspective (student identity and other
information are pseudonymized using generated UUIDs in
the reports). The instructor has access to each lab in which a
class has been involved SPT allows the generation of aggre-
gate reports like the one shown in the central portion of the
figure in which global statistics concerning the violations
for the entire class are generated. This allows the instructor
to track and follow the progress of the entire class. The
aggregate report is navigable and can be inspected to see,
for each category of violations, what are the most frequent
ones, the top violations, and other useful aggregate measure-
ments. Instructors can focus on particular project execution
(i.e. student executing an assignment) by clicking on the ID
in the report. SPT, in this case, provides detailed information
on the violation committed. Moreover, the number of vio-
lations per student and its breakdown details (bottom right,
i.e. ‘‘Category|Violation Type|#violations’’) are described as
interactive tables.

Figure 3 shows, instead, an example of the typical SPT
session from the student perspective (also in this case stu-
dent identity and other information are pseudonymized using
generatedUUIDs in the reports).When a student, logs into his

SPT account, he is recognized by the environment, traced and
the produced project is stored and shown in the explorer view
on the left side. On the right side, instead, the aggregate report
concerning the violations he committed is reported (detaile-
dreport.html in Figure 3). For instance, a student whose id
is ‘‘168777’’, can access to details about the mistakes he
performed in the session by clicking on a particular violation
type in the right table, (pi for example). The student can
visualize the description along with specific information for
each violation (‘‘Class|Related interface|Line’’ in case ofpi),
shown in Figure 3. This view is the typical student dashboard
that allows students to trace errors and mistakes directly to
their code by clicking on them. Specifically, by choosing a
row like ‘‘A’’, Java code (with line numbers, syntax highlight-
ing and injected comment) is presented with a marker on the
line when violations occur. To know the committed violation
and how to address it, the student has the possibility, to access
a report (one per each violation committed).

C. THE FEEDBACK REPORTS
The approach requires a cooperation between the tool and the
instructor. The instructor, for a given assignment, needs to
write a model solution allowing the tool to compare students’

VOLUME 8, 2020 132177

P. Ardimento et al.: Software Analytics to Support Students in OO Programming Tasks: An Empirical Study

FIGURE 2. SPT instructor dashboard: it provides navigable reports with aggregate statistics evaluated for all the projects of
a lab and allows the management of individual reports for students.

FIGURE 3. SPT student dashboard: it provides both real-time and batch navigable reports (depending on instructor
settings) for specific projects owned by the student.

solution against it (enabling also semantic violations detec-
tion). SPT checks the suite of violations against students’
source code and suggests, using the model solution as a gold
standard, a report based on detected problems. Since the pres-
ence of semantic violations does not necessarily imply a bad
solution (i.e., the student’s solution could be still correct but
different from the instructor’s one) SPT allows the instructor
to confirm or to delete issues to be included in the final
report. This also means that if the model solution is poorly
defined the approach performs badly since is followingwrong
directives. In our experiment, to avoid bias of any kind,

model solutions were prepared by a small team of expert
instructors and double-checked by another instructor that did
not participate in solution definition. Moreover, to overcome
the problem of timeliness, the feedback was provided at the
end of each assignment task. Because each task distances
one week from the next one, each student had sufficient
time to understand feedback and try to improve his/her
solution.

The feedback report is achieved from the considered vio-
lations model and provides students with support at various
levels as described in Section III-B.

132178 VOLUME 8, 2020

P. Ardimento et al.: Software Analytics to Support Students in OO Programming Tasks: An Empirical Study

FIGURE 4. Sample report regarding pi violations.

Concerning to the task level, the proposed violations model
allows identifying the student’s errors affecting the proposed
solution. Concerning the process level, our feedback shows
the right strategy to reach a correct solution. Finally, accord-
ing to the self-regulation level, the feedback shows the list of
suggested reading to help students to mitigate misconception
and to reason critically about their own weakness and mis-
understanding. An example of a report is shown in Figure 4,
it refers to a pi violation. Each report consists of five fields:
• student’s name, surname and id;
• the name of violation (‘‘Poor Interfaces Usage and Def-
inition’’ in the example);

• an excerpt of class code where the violation has been
made (class Test in the example) and, whenever possible,
the classes conceptually linked to the violation (IRivista
and Rivista);

• the in-line code comment, highlighted in brown color,
explaining how to address the violation (‘‘variable
declaration: using IRivista instead of Rivista’’ in the
example);

• the explanation of why the source code should be written
in a different way. In the example, it is explained why the
use of an interface, instead of a concrete class, makes
more flexible the source code produced;

• a list of suggested readings to understandwhy a violation
has been committed. Usually, it includes lecture notes,
open-source books, specific books with chapters, pages,
and samples (e.g. Google books links). In the example,
two chapters of a book and a specific page of another
book are suggested.

In the figure, we highlight with colored labels the corre-
spondence between the report field and the feedback level.

Figure 5 shows excerpts of several reports grouped by
broad categories; a label placed above each excerpt indicates
both the category and the violation which the explanation
refers to. The excerpts report only the explanation section.

V. EMPIRICAL EVALUATION
The current empirical research was carried out as a quasi-
experiment, since it was not possible to assign the treat-
ments to the subjects randomly [52]. The quasi experiment
presented in this work was conducted with two groups of
second-year computer science engineering students enrolled
at the University of Bari during the first semester of the
academic year 2018-2019. This section reports the experi-
ment definition, design and settings in a structured fashion,
following the well-known templates and guidelines provided
in [52]–[54].

A. GOAL
The purpose is evaluating if the proposed approach supports
source code development effectively and allows students to
improve the correctness of the source code produced in per-
forming development activity. To this aim, we investigate the
differences between the performances of students supported
by SPT tool (hereinafter referred to as students supported by
SPT) and students that do not use the SPT tool and were
supported, as usual, by teachers via email or in live meetings
during office hours (hereinafter referred to as students not
supported by SPT).

VOLUME 8, 2020 132179

P. Ardimento et al.: Software Analytics to Support Students in OO Programming Tasks: An Empirical Study

FIGURE 5. Examples of several process-level reports grouped by broad categories.

The quality focus regards how feedback provided by SPT
affects the capability of developers to correctly apply the
Object-Oriented constructs in the source code. We used the
Goal-Question-Metric template [55], to define experimental
goals (the object of study, purpose, focus, and the viewpoint
of the measurement). Following this template, the goal is
defined as follows:
‘‘Analyze the source code produced by students supported

by SPT and the one produced by students not supported by
SPT to evaluate its correctness about the performance of the
students in a development task in the context of a Program-
ming II course held in the Computer Science Engineering
first-level degree at University of Bari.’’

B. CONTEXT
The Programming II course is mandatory for all second-year
Computer Science Engineering students of the University
of Bari enrolled in Computer Science first-level degree.
It is important to mention that the students are required to
pass Programming I, Computer Architecture and Operating
Systems courses to be enrolled in this course. Those require-
ments ensure that all the students have a similar academic
background. Furthermore, firstly we asked students to answer
a profiling questionnaire to exclude students that had previous
experience in the Object-Oriented paradigm, and secondly,
since students could have different programming skills and
abilities, they were asked to participate in a preliminary train-
ing session to assess their entry-level in the course. During
this training, session subjects were asked to complete a devel-
opment task similar to those assigned during the empirical
investigation. Since we are interested in studying the effect on

development in terms of correctness and source code quality
after training subjects with the proposed environment, using
both results of profiling questionnaire and training session
we selected only students that had no previous experience in
Object-Oriented paradigm and able to understand the assign-
ment, use the IDE and complete at least a 20% of the devel-
opment task. Indeed, we assumed that students that already
know the Object-Oriented paradigm could represent a too
wide source of variability for a controlled in-lab experiment,
as different starting levels could be influenced differently.
Instead, we wanted all the subjects to start from the same
level and work under the same initial conditions. Specifically,
87 students were enrolled in the Programming II course held
during the first semester of 2018. According to the answers
given to the profiling questionnaire and the results of the
initial training session we selected all the students included
two categories:

• High ability subjects (HAS): those who had an aca-
demic score of at least 25/30 and completed correctly
at least 50% of the development task;

• Lowability subjects (LAS): the subjects that completed
correctly at least the compulsory portion of the assign-
ment (25% of the development task).

The rest of the subjects were excluded.
After all the tasks were completed, we selected 20 students

having the following characteristics:

• all of them participated to the profile questionnaire;
• 10 of them are classified as HAS basing on the results of
the profile questionnaire;

• 10 of them are classified as LAS basing on the results of
the profile questionnaire.

132180 VOLUME 8, 2020

P. Ardimento et al.: Software Analytics to Support Students in OO Programming Tasks: An Empirical Study

The 20 students are then assigned to two equal groups
of 10 persons, identified as ’Group A’ and ’Group B’. Each
group is composed of 5 students classified as LAS and other
5 students classified as HAS in profile questionnaire. This
randomization process allows to make well-balanced groups:
each group contains 10 students that are always made up of
five ‘‘high ability’’ students and five ‘‘low ability’’ students.

All the students included in ‘‘Group A’’ received a cus-
tomized feedback report produced by SPT on their outcomes,
after each task. Differently, all the students of ‘‘Group B’’,
never received feedback by SPT but only the feedback pro-
vided by teachers.

The experimental objects were the assignments that the
students have to take when enrolled in the programming
course. The assignments were designed by the teaching staff
of the programming course and each student had to take six
assignments: each assignment consisted of a development
task to be performed from scratch in 120 minutes.

C. HYPOTHESES FORMULATION
By the study definition reported above, we formulated the
following research hypotheses:

• H0: there is no significant difference between the cor-
rectness of developed source code by students of Group
A and the correctness of developed source code by stu-
dents of Group B;

• H1: ¬H0

D. VARIABLE SELECTION
In this study, there is a single dependent variable: the source
code correctness. The experiment prescribes, in each of sev-
eral tasks, to develop from scratch a little software system
written in Java using object-oriented constructs. To mea-
sure source code correctness we defined a metric model,
as explained in the next section.

E. MEASUREMENT MODEL
In Table 1 we used a checkmark both to indicate the
metrics whose measures were normalized (column titled
normalized) and the metrics collected during our empirical
investigation (column titled experimentation). The values
of measures ma, mo, mac, mgr, mar, mip, wubtp, wvcm
and wubtp have been normalized to be compared. For
this reason, we calculated the aforementioned metrics as a
complementary percentage, a particular percentage useful
for finding out a missing percentage. Generally speaking,
a percentage of occurrences of an element requires, to be
calculated, to know the maximum numbers of occurrences of
that element. For this reason, instructors, before the exper-
iment sessions, carefully designed and implemented their
‘‘reference solution’’ for each assigned task to know the
total number of mandatory properties and constraints that
the solution must satisfy (in terms of relationships, attributes,
operations, kind of elements, and so on). The metrics in the
set {oc,mc,pi,dp,cwif,upf}, instead, are not normalized due to

their intrinsic meaning. For instance, let us consider the oc
metric: in a correct solution, there should be zero unnecessary
object casting.

F. EXPERIMENTAL DESIGN
The proposed quasi-experiment is a between-subjects design:
this choice is to minimize the learning and transfer across
conditions (keeping control and treatment groups sepa-
rate). The choice of between-subject design also implies
that we consider two different groups of subjects, each
of which performs similar tasks using only one technique
(i.e., supported by SPT or not supported by SPT). This also
forces to make sure that participants are allotted randomly to
conditions, to ensure that subjects assignment does not affect
study results (as already specified in this section, random
selection was performed basing on ability). The structure of
the quasi-experiment is depicted in Table 2. The experiment
is made up of a sequence of six development sessions (pre-
test, Lab 1-4, post-test). In the training test session, also called
pre-test session, all the students used Eclipse and no one
received feedback report at the end of the session. In the other
sessions, the students ofGroupAwere supported by feedback
provided by SPT at the end of the session while the students
of GroupB never received any feedback by SPT. Different
software systems specifications (S1,. . . , S6) are assigned dur-
ing the sessions ensuring that each group performs develop-
ing one time on each system (the mapping among groups,
systems, and sessions is reported in the Table rows).

TABLE 2. Experimental design of the quasi-experiment.

Figure 6 reports the overall structure of this investigation.
When the pre-test session starts, students never received feed-
back from SPT.

G. EXPERIMENTAL PROCEDURE AND MATERIAL
Before the experiment, we asked the subjects to fill a pro-
filing questionnaire in which we collect information about
their ability and experience in programming, knowledge, and
experience in object-oriented programming. Subjects have
also participated in a training laboratory where they were
asked to cope with a small development task very similar
to the experiment’s tasks. This made us confident that sub-
jects were quite familiar with the development environment.
The correctness in the training task has been recorded and
used to assess the subjects’ level of ability. To perform
the experiment, subjects used a personal computer with a
proxied connection and a browser capable to access the

VOLUME 8, 2020 132181

P. Ardimento et al.: Software Analytics to Support Students in OO Programming Tasks: An Empirical Study

FIGURE 6. The overall structure of the between-subjects design.

SPT workspace front-end. Subjects were provided with the
following material:
• a set of slides describing the experimental procedure;
• a document with the software requirements specification
to be implemented.

Before the experiment, we gave subjects a clear description of
the process to follow, but no reference was made to the study
hypothesis. The experiment has been carried out according to
the following procedure (executed by each student involved
in the labs):

1) Read the document containing the software require-
ments to be implemented;

2) Mark the start time;
3) Develop the small system;
4) Mark the stop time;
5) Use SPT to create signed archives, in the projects data

store, containing the produced source code and the
development logs.

During the experiment, teaching assistants were present in
the laboratory to prevent collaboration among subjects and
to verify that the experimental procedure was fully respected.

H. ANALYSIS METHOD
We used a non-parametric statistical test to reject the null
hypothesisH0 related to the correctness of source code devel-
oped by subjects in performing development tasks. The use
of a non-parametric test does not require that the population
is normally distributed. Since the population is not paired
(different subjects attended different labs) and distribution
is not normally distributed, we used the Mann-Whitney U
two-tailed test to check the hypotheses. Such a test allows
checking whether differences exhibited by the two groups
of subjects with different treatments (with SPT and without
SPT) over the six sessions are significant. We assume signif-
icance at a 95% confidence level (=0.05), so we reject the
null-hypothesis when p-value < 0.05.

To measure the magnitude of the treatment effect we
measured the effect size. Statistics of effect size for the
Mann-Whitney U-test report the degree to which one group
has data with higher ranks than the other group. They are
related to the probability that a value from one group will be

greater than a value from the other group. To measure effect
size we used Cliff’s delta, whose values range from −1 to 1,
with 0 indicating stochastic equality of the two groups. The
extreme values (i.e., −1 and 1) indicates that one group
shows complete stochastic domination over the other group.
Finally, because multiple tests were performed, we adjusted
the p-value with Holm-Bonferroni’s correction [56].

VI. RESULTS
This section presents the experimental results.

The descriptive statistics related to Mark 2 reveal that cor-
rectness of source code developed byGroupA was higher than
for the GroupB. This can be seen in Figure 7. The box-plots
show the students’ performance in terms of every single
metric defined to evaluate the correctness of the development
tasks. In all cases, concerning Mark 1, there is an improve-
ment in the learning performance (better scores). However,
as can be observed, the improvement is much more consistent
for the GroupA. Further considerations on the box-plots can
be made:

• mac, mgr and mar violations. Concerning the funda-
mental relationships between these classes, the behavior
of the two groups evolves in asymmetrically opposite
way: the students of group A (those supported by the
tool), understand the violations committed and, along
with the experimentations, learn to apply them; the other
students, those of group B, instead, do not show any
improvement. This is confirmed by the violation dis-
tribution ranges that are, at Mark 2, consistently lower
for group A (i.e., the group under treatment) than the
group B.

• cwif, mc, dp, wvcm. Basic declarations such as instance
fields declaration (cwif), constants declaration (mc),
packages declaration (dp) and visibility of class mem-
bers declaration (wvcm) show two different distribu-
tions: all students of Group A learned to well apply them
(as shown by their lower distribution of violation count
at Mark 2). Conversely, students of Group B, while still
improving their skills, exhibit worse performances than
the treatment group.

132182 VOLUME 8, 2020

P. Ardimento et al.: Software Analytics to Support Students in OO Programming Tasks: An Empirical Study

FIGURE 7. The box-plots of the results obtained in Mark 1 and in Mark 2 for language foundation metrics.

TABLE 3. T-test for correctness: GroupA vs GroupB (first part) - green dots indicate a statistically significant difference.

• oc, upf. The object casting and the use of private fields,
the only ones bad smell-code violations measured in
the experimentation, result to be the easiest concepts
to apply for novice programmers. The two box-plots at
Mark 1 are the lowest ones with the lower maxim values.
At Mark 2, these violations completely disappear for
group A while persist in a lower measure for group B.

The results of the t-test are shown in Tables 3 - 6 where
the tests with a statistically significant difference between
the two groups are highlighted with a green dot. The rows of
these tables show the results of the t-test executed at Mark 1
and Mark 2 (comparing all metrics) for groups GroupA and

GroupB. We compared the two groups across different marks
to:
• reject the null hypothesis that states that the course
did not affect the correctness performances (second and
third rows in the Tables).

We also compared the two groups on the same marks (first
and fourth rows in the aforementioned Tables) to:
• ensure that the subjects were correctly balanced and did
not start with a significant difference in performances
(Mark 1);

• investigate if SPT treatment was more effective than
classical training.

VOLUME 8, 2020 132183

P. Ardimento et al.: Software Analytics to Support Students in OO Programming Tasks: An Empirical Study

TABLE 4. T-test for correctness: GroupA vs GroupB (second part) - green dots indicate a statistically significant difference.

TABLE 5. T-test for correctness: GroupA vs GroupB (third part) - green dots indicate a statistically significant difference.

TABLE 6. T-test for quality: GroupA vs GroupB - green dots indicate a
statistically significant difference.

For Tables 3 - 6, we used P to indicate the p-value adjusted
with Holm-Bonferroni’s correction [56] and D to indicate the
effect size evaluated using Cliff’s Delta.
Observing the Tables the following considerations can be

made:

• the null hypothesis H0 can be rejected in all cases; in
particular with a level of significance below the alpha
threshold set at 0.05 for the metrics cwif, mc, upf, mac,
mgr, mip, wvcm, dp and oc and with a level of signif-
icance below the alpha threshold set at 0.01 for all the
remaining metrics;

• before the course there was no statistically signifi-
cant difference between the two groups’ performances
because the level of significance is below 95% for
GroupA at Mark 1 and GroupB at Mark 1;

• the course only in two cases (mgr and oc) does not have a
significant effect on source code correctness and only for
students of GroupB. In all remaining cases at all marks,
the level of significance of the test is over 95%.

VII. DISCUSSION OF THE RESULTS AND
INTERPRETATION OF FINDINGS
In this section, the results are discussed and the interpretations
of findings are provided.

Concerning the hypothesis H0 and H1 the data show that
the student’s outcomes always improve in terms of correct-
ness and quality, except for mgr and oc violations related to
GroupB. Indeed, for all the violations measured in the empiri-
cal investigation, there is a statistically significant difference,

as shown in tables 3-6, between students who received feed-
back by SPT and those who did not. Figure 7 shows how
source code developed by students supported by SPT always
improves in terms of correctness more than students that were
trained not using SPT. The results show that the SPT is useful
for highlighting the violations committed by students in their
OO programs instructing them about what they didwrong and
how to improve. The results confirm that students who have
been exposed only to procedural programming have consid-
erable difficulty in understanding the basic concepts of OO.
These difficulties range from class design to more advanced
object-oriented concepts such as hierarchy and typing. The
results obtained in Mark 2 show that violations related to
misused foundation constructs of the language are completely
absent for students of the GroupA, unlike those of GroupB.
These violations are mc, upf, wvcm, pi, dp, cwif and oc.

For all the remaining violations, student’s improvements
are still statistically significant, but being more related to
high-level constructs requiring more experience, they con-
tinue to occur. This may be since understanding and not
committing these violations require more effort (in terms of
both comprehension of the concepts and ability to apply them
effectively).

The analysis of results drives some further considerations,
grouped by broad categories of violations:
• State and Behaviour Design: results highlight that state
management issues are addressed much more effec-
tively than behavioral ones by a report-driven approach
like the one implemented in SPT. Reports provided by
SPT suggest, for instance, students to rethink how they
declare a variable in Java and solicit them to avoid
the usage of ordinary fields that hide a ‘‘constant’’
semantics. An example is shown in Figure 5 where the
report excerpt for State and Behaviour Design - Missed
Constant violation highlights that ‘‘the attribute num-
MaxCopie is never read or accessed by any method’’
and suggests the use of the static modifier.

• Abstraction andHierarchy: students and novice devel-
opers, often misuses generalization. Our results, on this

132184 VOLUME 8, 2020

P. Ardimento et al.: Software Analytics to Support Students in OO Programming Tasks: An Empirical Study

point, confirm the findings in [57]. The reports high-
light the advantages of using generalization, as shown
in Figure 5 for Missed Generalization Relationship,
in terms of encapsulation, reusability and efficiency.
This probably has motivated students to think about
using Abstraction and Hierarchy. The effect of reporting
such issues helps students, like Figure 7 shows, to dras-
tically reduce the number of errors.

• Typing: novices often use explicit type inference that
could be avoided. This is a sign that the students have
failed to apply polymorphic behavior effectively. It is
interesting to note that this violation category, even if
improved in a significant way using SPT reports, it is
still present in the produced source code even at Mark 2.
This suggests improving reports automatically generat-
ing counter-examples to students on their source-code
also highlighting the negative consequences of their
solutions. The feedback provided highlights how using
polymorphism in the presence of inheritance helps to
reduce code produced and to make it more readable as
suggested in the example of Figure 5 for Typing - Missed
Inclusion Polymorphism.

• Encapsulation: the source code developed by the stu-
dents shows that the students in many cases do not
explicitly use access level modifiers for class members,
probably because they do not have previous experience
related to the access levels of an element especially
for large software systems. Reports include information
about coupling and highlight scalability problems to
make them aware of this kind of mistakes as shown
in Figure 5 for Encapsulation - Wrong Visibility Class
Member violation.

• Bad Code Smells: Reports suggest to avoid writing
unnecessary code as stated in the example shown in
Figure 5 for Bad Code Smells - Unnecessary Object
Casting.

VIII. THREATS TO VALIDITY
To judge the quality of our work it is necessary to consider
the following threats to the validity of the study:
• External validity. In our case, global generalization is
not possible, particularly as human beings have taken
part in the experimentation. The results could, therefore,
be valid in similar contexts, such as Java programming
courses during first-year of computer science degrees.
Concerning the representativeness of the materials used,
all the experimental materials were academic exams.
The experience and professionalism of the teaching staff
involved have, in our opinion, alleviated any possible
lack of quality or objectivity when creating these materi-
als. We are aware that different assignments might have
different complexity but, as previously stated, the lec-
turer in charge of the final review of the exams is one
of the authors of this work and particular attention was,
therefore, paid to creating exams with a similar level
of complexity. The generalization to other populations

of students (e.g., cohorts with different levels of moti-
vation, or different educational backgrounds, different
programming languages, etc.), is worthy of future exper-
imentation. Finally, if the reference solution is poorly
defined the approach performs badly since is following
wrong directives.

• Internal validity. One possible threat is that the subjects
were assigned to one group or another depending on
the academic year in which they took the programming
course. Our experience as lecturers indicates that there
is normally no significant difference between the back-
grounds of two consecutive academic years. Another
possible threat is that the subjects could have attended
programming classes at secondary school, signifying
that the results could have been threatened by these sub-
jects. However, this threat appears to be just as probable
for all groups of subjects and we, therefore, assume that
there should be no difference in the results obtained
in the reported experiment. Moreover, subjects were
not aware of the experimental hypotheses and were not
rewarded for the participation in the experiment. Finally,
the small sample size we used (ten subjects for each
group) represents a threat because it could reduce the
power of the study and increase the margin of error,
which can render the study meaningless.

• Construct validity. The dependent variable (i.e., the
correctness of source code developed), might have been
affected by the teaching staff on the programming
courses and the pedagogical methods used by these
professors. To avoid this possible threat, the teaching
staff were the same people throughout the data col-
lection period, signifying that the pedagogical methods
used by each professor will probably have affected the
learning effectiveness in both cases (supported and not
supported by SPT). Nevertheless, to mitigate this threat,
all the exams were created by a researcher who has
coordinated all the programming teaching staff for more
than 10 years; this individual is also one of the authors
of the present work. We are also aware that support
provided by SPT can be more motivating for students,
which might lead to more time spent practicing, doing
exercises, and so on, and thus a better grade in exams.
To mitigate this issue, we decided to limit the support of
SPT only to planned sessions in which all the students
were involved. Finally, it is important to highlight that
the metric model used does not cover all defined viola-
tions since many other violations could be defined and
measured.

• Conclusion validity. The data were collected by two
researchers, co-authors of this work, which supervised
all the development sessions performed by the stu-
dents. Statistical tests were used to reject the null
hypotheses, fulfilling all the requirements needed to do
so, signifying that the validity of the results obtained
is acceptable. About the statistical power required
to accept these results, the number of experimental

VOLUME 8, 2020 132185

P. Ardimento et al.: Software Analytics to Support Students in OO Programming Tasks: An Empirical Study

subjects was sufficiently large for us to achieve an
acceptable statistical power in these tests. Specifically,
we used non-parametric statistical tests (Mann-Whitney
and Wilcoxon) that do not require normal distribu-
tion of the experimental data and we also applied the
Holm-Bonferroni [56] correction to counteract the prob-
lem of multiple comparisons.

IX. CONCLUSION
Wehave proposed an approach to analyze the student’s source
code, identify the student’s mistakes and misconceptions,
support students by feedback explaining why they committed
mistakes and how to address them.

The contribution of this article is also to present an experi-
ment that was undertaken to gather empirical evidence on the
beneficial effects of the proposed approach on the learning
process on an OOP course in the second-year of the computer
science engineering degrees at the University of Bari. The
results show that the SPT can support the learning process
increasing its effectiveness. In particular, SPT gives encour-
aging results as regards the correctness of the code produced
by the students since the students using the tool obtained
higher grades than those using traditional teaching. Despite
the significant results obtained in this experiment, we are
aware that replication is useful to corroborate and strengthen
our findings.

REFERENCES
[1] Joint Task Force on Computing Curricula ACM IEEE Computer Soci-

ety, Computer Science Curricula 2013: Curriculum Guidelines for
Undergraduate Degree Programs in Computer Science. New York, NY,
USA: Association for Computing Machinery, 2013. [Online]. Available:
https://dl.acm.org/doi/book/10.1145/2534860

[2] H. Roumani, ‘‘Practice what you preach: Full separation of concerns
in CS1/CS2,’’ in Proc. 37th Tech. Symp. Comput. Sci. Edu. (SIGCSE),
New York, NY, USA, 2006, pp. 491–494, doi: 10.1145/1121341.1121495.

[3] D. J. Armstrong, ‘‘The quarks of object-oriented development,’’ Commun.
ACM, vol. 49, no. 2, pp. 123–128, Feb. 2006.

[4] K. Sanders and L. Thomas, ‘‘Checklists for grading object-oriented CS1
programs: Concepts and misconceptions,’’ in Proc. 12th Annu. SIGCSE
Conf. Innov. Technol. Comput. Sci. Edu. (ITiCSE), New York, NY, USA,
2007, pp. 166–170, doi: 10.1145/1268784.1268834.

[5] P. Ardimento, M. L. Bernardi, and M. Cimitile, ‘‘On the students’ mis-
conceptions in object-oriented language constructs,’’ in Proc. Higher Edu.
Learn. Methodologies Technol. Online 1st Int. Workshop (HELMeTO),
Novedrate, CO, Italy, vol. 1091. Cham, Switzerland: Springer, Jun. 2019,
2019, pp. 97–112, doi: 10.1007/978-3-030-31284-8_8.

[6] T. Clear, ‘‘Diagnosing your teaching style: How interactive are you?’’ACM
Inroads, vol. 1, no. 2, pp. 34–41, Jun. 2010.

[7] S. Beecham, J. Noll, and T. Clear, ‘‘Do we teach the right thing? A
comparison of GSE education and practice,’’ in Proc. IEEE 12th Int. Conf.
Global Softw. Eng. (ICGSE), May 2017, pp. 11–20.

[8] G.Wiggins, ‘‘Seven keys to effective feedback,’’Educ. Leadership, vol. 70,
no. 1, pp. 11–16, 2012.

[9] A. Settle and J. Glatz, ‘‘Rethinking advising: Developing a proactive
culture to improve retention,’’ in Proc. Conf. Inf. Technol. Edu. (SIGITE),
2011, pp. 9–14.

[10] N. C. C. Brown and A. Altadmri, ‘‘Novice java programming mistakes:
large-scale data vs. Educator beliefs,’’ ACM Trans. Comput. Edu., vol. 17,
no. 2, pp. 1–21, Jun. 2017.

[11] N. Ragonis and M. Ben-Ari, ‘‘A long-term investigation of the compre-
hension of OOP concepts by novices,’’ Comput. Sci. Edu., vol. 15, no. 3,
pp. 203–221, Sep. 2005, doi: 10.1080/08993400500224310.

[12] P. Denny, A. Luxton-Reilly, and E. Tempero, ‘‘All syntax errors are not
equal,’’ in Proc. 17th ACM Annu. Conf. Innov. Technol. Comput. Sci. Edu.
(ITiCSE), 2012, pp. 75–80.

[13] A. Stefik and S. Siebert, ‘‘An empirical investigation into programming
language syntax,’’ ACM Trans. Comput. Edu. (TOCE), vol. 13, no. 4, p. 19,
2013.

[14] P. Denny, A. Luxton-Reilly, and D. Carpenter, ‘‘Enhancing syntax error
messages appears ineffectual,’’ in Proc. Conf. Innov. Technol. Comput. Sci.
Edu. (ITiCSE), 2014, pp. 273–278.

[15] B. A. Becker, G. Glanville, R. Iwashima, C. McDonnell, K. Goslin, and
C. Mooney, ‘‘Effective compiler error message enhancement for novice
programming students,’’Comput. Sci. Edu., vol. 26, nos. 2–3, pp. 148–175,
Jul. 2016.

[16] B. A. Becker, C. Murray, T. Tao, C. Song, R. McCartney, and K. Sanders,
‘‘Fix the first, ignore the rest: Dealing with multiple compiler error mes-
sages,’’ in Proc. 49th ACM Tech. Symp. Comput. Sci. Edu., Feb. 2018,
pp. 634–639.

[17] R. S. Pettit, J. Homer, and R. Gee, ‘‘Do enhanced compiler error messages
help students?: Results Inconclusive.,’’ in Proc. ACM SIGCSE Tech. Symp.
Comput. Sci. Edu., Mar. 2017, pp. 465–470.

[18] D. McCall and M. Kölling, ‘‘Meaningful categorisation of novice pro-
grammer errors,’’ in Proc. IEEE Frontiers Edu. Conf. (FIE), Oct. 2014,
pp. 1–8.

[19] A. Ettles, A. Luxton-Reilly, and P. Denny, ‘‘Common logic errors made by
novice programmers,’’ in Proc. 20th Australas. Comput. Edu. Conf. (ACE),
New York, NY, USA, 2018, pp. 83–89, doi: 10.1145/3160489.3160493.

[20] J. Spacco, P. Denny, B. Richards, D. Babcock, D. Hovemeyer, J. Moscola,
and R. Duvall, ‘‘Analyzing student work patterns using programming exer-
cise data,’’ in Proc. 46th ACM Tech. Symp. Comput. Sci. Edu. (SIGCSE),
2015, pp. 18–23.

[21] J. Bulmer, A. Pinchbeck, and B. Hui, ‘‘Visualizing code patterns in novice
programmers,’’ in Proc. 23rdWestern Can. Conf. Comput. Edu. (WCCCE),
New York, NY, USA, 2018, pp. 1–6, doi: 10.1145/3209635.3209652.

[22] P. Ardimento, M. L. Bernardi, M. Cimitile, and F. M. Maggi, ‘‘Evaluating
coding behavior in software development processes: A process mining
approach,’’ in Proc. IEEE/ACM Int. Conf. Softw. Syst. Processes (ICSSP),
May 2019, pp. 84–93, doi: 10.1109/ICSSP.2019.00020.

[23] P. Ardimento, M. L. Bernardi, M. Cimitile, and G. De Ruvo, ‘‘Mining
developer’s behavior from Web-based IDE logs,’’ in Proc. IEEE 28th Int.
Conf. Enabling Technol. Infrastruct. Collaborative Enterprises (WETICE),
Jun. 2019, pp. 277–282, doi: 10.1109/WETICE.2019.00065.

[24] N. Ragonis and M. Ben-Ari, ‘‘On understanding the statics and dynamics
of object-oriented programs,’’ in Proc. ACM SIGCSE Bull., vol. 37, 2005,
pp. 226–230.

[25] N. Liberman, C. Beeri, and Y. B.-D. Kolikant, ‘‘Difficulties in learning
inheritance and polymorphism,’’ ACM Trans. Comput. Edu., vol. 11, no. 1,
pp. 4:1–4:23, Feb. 2011, doi: 10.1145/1921607.1921611.

[26] M. Madden and D. Chambers, ‘‘Evaluation of student attitudes
to learning the java language,’’ in Proc. Inaugural Conf. Princ.
Pract. Program., 2nd Workshop Intermediate Represent. Eng.
Virtual Mach. (PPPJ), 2002, pp. 125–130. [Online]. Available:
http://dl.acm.org/citation.cfm?id=638476.638501

[27] H. Keuning, B. Heeren, and J. Jeuring, ‘‘Code quality issues in student
programs,’’ in Proc. ACM Conf. Innov. Technol. Comput. Sci. Educ., 2017,
pp. 110–115.

[28] S. H. Edwards, N. Kandru, and M. B. M. Rajagopal, ‘‘Investigating static
analysis errors in student java programs,’’ in Proc. ACMConf. Int. Comput.
Edu. Res. (ICER), New York, NY, USA, Aug. 2017, pp. 65–73, doi:
10.1145/3105726.3106182.

[29] M.Hristova, A.Misra,M. Rutter, and R.Mercuri, ‘‘Identifying and correct-
ing java programming errors for introductory computer science students,’’
SIGCSE Bull., vol. 35, no. 1, pp. 153–156, Jan. 2003. [Online]. Available:
http://doi.acm.org/10.1145/792548.611956

[30] T. Buckers, C. Cao, M. Doesburg, B. Gong, S. Wang, M. Beller, and
A. Zaidman, ‘‘UAV: Warnings from multiple automated static analysis
tools at a glance,’’ in Proc. IEEE 24th Int. Conf. Softw. Anal., Evol.
Reengineering (SANER), Feb. 2017, pp. 472–476.

[31] J. Hattie and H. Timperley, ‘‘The power of feedback,’’ Rev. Educ. Res.,
vol. 77, no. 1, pp. 81–112, Mar. 2007, doi: 10.3102/003465430298487.

[32] C. Ott, A. Robins, and K. Shephard, ‘‘Translating principles of effective
feedback for students into the CS1 context,’’ ACM Trans. Comput. Edu.,
vol. 16, no. 1, pp. 1–27, Feb. 2016, doi: 10.1145/2737596.

[33] D. Carless, D. Salter, M. Yang, and J. Lam, ‘‘Developing sustainable feed-
back practices,’’ Stud. Higher Edu., vol. 36, no. 4, pp. 395–407, Jun. 2011.

132186 VOLUME 8, 2020

http://dx.doi.org/10.1145/1121341.1121495
http://dx.doi.org/10.1145/1268784.1268834
http://dx.doi.org/10.1007/978-3-030-31284-8_8
http://dx.doi.org/10.1080/08993400500224310
http://dx.doi.org/10.1145/3160489.3160493
http://dx.doi.org/10.1145/3209635.3209652
http://dx.doi.org/10.1109/ICSSP.2019.00020
http://dx.doi.org/10.1109/WETICE.2019.00065
http://dx.doi.org/10.1145/1921607.1921611
http://dx.doi.org/10.1145/3105726.3106182
http://dx.doi.org/10.3102/003465430298487
http://dx.doi.org/10.1145/2737596

P. Ardimento et al.: Software Analytics to Support Students in OO Programming Tasks: An Empirical Study

[34] W. K. Balzer and M. E. Doherty, ‘‘Effects of cognitive feedback on
performance,’’ Psychol. Bull., vol. 106, no. 3, p. 410, 1989.

[35] N. C. C. Brown, M. Kölling, D. McCall, and I. Utting, ‘‘Blackbox: A large
scale repository of novice programmers’ activity,’’ in Proc. 45th ACM
Tech. Symp. Comput. Sci. Edu. (SIGCSE), New York, NY, USA, 2014,
pp. 223–228, doi: 10.1145/2538862.2538924.

[36] N. C. C. Brown, A. Altadmri, S. Sentance, and M. Kölling, ‘‘Blackbox,
five years on: An evaluation of a large-scale programming data collection
project,’’ in Proc. ACM Conf. Int. Comput. Edu. Res., Espoo, Finland,
Aug. 2018, pp. 196–204.

[37] G. Booch, R. Maksimchuk, M. Engle, B. Young, J. Conallen, and
K. Houston, Object-Oriented Analysis and Design With Applications,
3rd ed. Reading, MA, USA: Addison-Wesley, 2007.

[38] C.-L. Chen, S.-Y. Cheng, and J. M.-C. Lin, ‘‘A study of misconceptions
and missing conceptions of novice java programmers,’’ in Proc. Int. Conf.
Frontiers Educ. Comput. Sci. Comput. Eng. (FECS), 2012, p. 1.

[39] N. Ragonis and M. Ben-Ari, ‘‘Teaching constructors: A difficult multiple
choice,’’ in Proc. 16th Eur. Conf. Object-Oriented Program., Workshop,
vol. 3, 2002, pp. 152–176.

[40] S. Xinogalos, ‘‘Object-oriented design and programming: An investigation
of novices’ conceptions on objects and classes,’’ ACM Trans. Comput.
Edu., vol. 15, no. 3, p. 13, 2015.

[41] E. Tempero, S. Counsell, and J. Noble, ‘‘An empirical study of overriding
in open source java,’’ in Proc. 33rd Australas. Conf. Comput. Sci., vol. 102,
2010, pp. 3–12.

[42] K. M. Ala-Mutka, ‘‘A survey of automated assessment approaches for
programming assignments,’’ Comput. Sci. Edu., vol. 15, no. 2, pp. 83–102,
Jun. 2005.

[43] M. Snoeck and G. Dedene, ‘‘Generalization/specialization and role in
object oriented conceptual modeling,’’ Data Knowl. Eng., vol. 19, no. 2,
pp. 171–195, 1996, doi: 10.1016/0169-023X(95)00044-S.

[44] P. A. Sivilotti and M. Lang, ‘‘Interfaces first (and foremost) with java,’’ in
Proc. 41st ACM Tech. Symp. Comput. Sci. Edu., 2010, pp. 515–519.

[45] M. Fowler. (2006). Code Smell. Accessed: Jun. 28, 2020. [Online]. Avail-
able: https://martinfowler.com/bliki/CodeSmell.html

[46] R. Biddle and E. Tempero, ‘‘Java pitfalls for beginners,’’ ACM SIGCSE
Bull., vol. 30, no. 2, pp. 48–52, Jun. 1998.

[47] N. Ragonis and R. Shmallo, ‘‘On the (MIS) understanding of the this
reference,’’ in Proc. ACM SIGCSE Tech. Symp. Comput. Sci. Educ., 2017,
pp. 489–494.

[48] J. Bergin, A. Agarwal, and K. Agarwal, ‘‘Some deficiencies of C++ in
teaching CS1 and CS2,’’ ACM SIGPLAN Notices, vol. 38, no. 6, pp. 9–13,
Jun. 2003.

[49] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, ‘‘JDeodorant: Identifi-
cation and removal of type-checking bad smells,’’ in Proc. 12th Eur. Conf.
Softw. Maintenance Reeng., Apr. 2008, pp. 329–331.

[50] CSELAB. 2018. Student Profiling Tool. [Online]. Available:
https://gitlab.com/cselab/spt

[51] H. Keuning, J. Jeuring, and B. Heeren, ‘‘A systematic literature review
of automated feedback generation for programming exercises,’’ ACM
Trans. Comput. Edu., vol. 19, no. 1, pp. 3:1–3:43, Jan. 2019, doi:
10.1145/3231711.

[52] T. D. Cook and D. T. Campbell, ‘‘The causal assumptions of quasi-
experimental practice,’’ Synthese, vol. 68, no. 1, pp. 141–180, Jul. 1986.
[Online]. Available: https://doi.org/10.1007/BF00413970

[53] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, ‘‘Reporting experiments in
software engineering,’’ in Guide to Advanced Empirical Software Engi-
neering. Springer, 2008, pp. 201–228.

[54] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wessln,
Experimentation in Software Engineering. Cham, Switzerland: Springer,
2012.

[55] V. R. Basili, G. Caldiera, and D. H. Rombach, The Goal Question
Metric Approach, vol. 1. Hoboken, NJ, USA: Wiley, 1994, ch. 1,
pp. 234–263.

[56] S. Holm, ‘‘A simple sequentially rejective multiple test procedure,’’
Scandin. J. Statist., vol. 6, no. 2, pp. 65–70, 1979. [Online]. Available:
http://www.jstor.org/stable/4615733

[57] J. Bennedsen and M. E. Caspersen, ‘‘Abstraction ability as an indicator
of success for learning object-oriented programming?’’ SIGCSE Bull.,
vol. 38, no. 2, pp. 39–43, Jun. 2006, doi: 10.1145/1138403.1138430.

PASQUALE ARDIMENTO was born in Bari, Italy.
He received the Ph.D. degree in computer science
from the University of Bari. In 2004, he collab-
orated as a Research Student with the Depart-
ment of Engineering, University of Durham, U.K.
From 2005 to 2007, he was a Contract Researcher
with the University of Bari. Since 2008, he has
been a Researcher with the Computer Science
Department, University of Bari AldoMoro. He has
authored more than 60 articles published in jour-

nals and conference proceedings. His main research interests include soft-
ware engineering (maintenance, testing, data mining on software systems,
software quality assurance, and computational intelligence). He serves both
as amember of the program and organizing committees of conferences and as
a Reviewer for articles submitted to some of the main journals andmagazines
in the field of software engineering and software maintenance. He was
involved in several national research projects and European projects and
served as a Reviewer for many international and national conferences. He is
a member of the Consorzio Interuniversitario Nazionale per l’Informatica
(CINI).

MARIO LUCA BERNARDI (Member, IEEE)
received the Laurea degree in computer science
engineering from the University of Naples
‘‘Federico II,’’ Italy, in 2003, and the Ph.D. degree
in information engineering from the University
of Sannio, in 2007. Since 2003, he has been
a Researcher in software engineering with Uni-
versity of Sannio. He has authored more than
70 articles published in journals and conference
proceedings. His main research interests include

software maintenance and testing, software development, and architectural
design, with a particular interest in data mining, artificial intelligence, and
computational intelligence. He has served and is serving in the program and
organizing committees of conferences and as a Referee for main journals
and magazines and has been involved in several projects on tasks related to
software engineering, software maintenance, quality assurance, and artificial
intelligence applied in different contexts and domains for both the industry
and services sectors.

MARTA CIMITILE (Member, IEEE) received the
Ph.D. degree in computer science from the Depart-
ment of Computer Science, University of Bari,
in 2008. She is currently an Assistant Profes-
sor and an Aggregated Professor with Unitelma
Sapienza University, Rome, Italy. She received
the Italian Scientific Qualification for the asso-
ciate professor position in computer science engi-
neering, in April 2017. In the last year, she was
involved in several industrial and research projects.

She is a Founding Member of the spin-off of the University of Bari named
Software Engineering Research and Practices s.r.l. She published more than
60 articles at international conferences and journals. Her main research
interests include business process management and modeling, knowledge
modeling and discovering, and process and data mining in software engi-
neering environment. She served in the program and organizing committees
of several international conferences. She is a Reviewer for some of the main
journals and magazines in the field of knowledge management and software
engineering, knowledge representation and transfer, and data mining. She
is on the Editorial Board of the Journal of Information and Knowledge
Management and PeerJ Computer Science. She is an Associate Editor of
IEEE ACCESS.

VOLUME 8, 2020 132187

http://dx.doi.org/10.1145/2538862.2538924
http://dx.doi.org/10.1016/0169-023X(95)00044-S
http://dx.doi.org/10.1145/3231711
http://dx.doi.org/10.1145/1138403.1138430

