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ABSTRACT The semantic segmentation of remote sensing (RS) image is a hot research field. With the
development of deep learning, the semantic segmentation based on a full convolution neural network greatly
improves the segmentation accuracy. The amount of information on the RS image is very large, but the
sample size is extremely uneven. Therefore, even the common network can segment RS images to a certain
extent, but the segmentation accuracy can still be greatly improved. The common neural network deepens the
network to improve the classification accuracy, but it has a lot of loss to the target spatial features and scale
features, and the existing common feature fusion methods can only solve some problems. A segmentation
network is built to solve the above problems very well. The network employs the InceptionV-4 network as
the backbone and improves it. We modify the network structure and introduce the changed Atrous Spatial
Pyramid Pooling module to extract the multi-scale features of the target from different training stages.
Without losing the depth of the network, using Inception blocks to strengthen the width of the network
can obtain more abstract features. At the same time, the backbone network is used for semantic fusion of the
context, it can retain more spatial features, then an effective decoder network is designed. Finally, evaluate
our model on the ISPRS 2D Semantic Labeling Contest Potsdam and Inria Aerial Image Labeling Dataset.
The results show that the network has very superior performance, reaching 89.62% IOU score and 94.49%

F1 score on the Potsdam dataset, and the IOU score on the Inria dataset has been greatly improved.

INDEX TERMS Semantic segmentation, neural network, remote sensing, feature fusion.

I. INTRODUCTION

With the development of RS technology, the amount of
RS image data is becoming larger and the resolution is higher.
RS image contains a lot of information, so there are many
aspects in the application of RS image, including target
detection, scene classification, semantic segmentation, and
so on. The application of RS image tends to be diversified,
such as urban planning [1], building extraction [2], road
extraction [3], vehicle detection [4], and illegal building
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extraction [5]. In these fields, high segmentation quality is
needed. Although there are many RS image segmentation
methods, the segmentation effect still needs to be improved.

Semantic segmentation is the pixel-level classification
method, which marks each pixel of an image as a certain kind
of object label. There are many challenges in the semantic
segmentation task of RS images. First, the RS image contains
a large amount of information, but the amount of data in
each sample is extremely uneven, and the samples in different
scenes are diverse, which puts forward high requirements
for segmentation methods. Second, because the RS images
are taken vertically from high altitude, some samples will
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overlap or occlude, such as the occlusion of trees on vehicles,
resulting in feature differences in vehicle extraction. Third,
the same kind of samples also have different characteristic
information, such as the different color trees in the forest,
and the top color of buildings will be greatly different, which
will bring great challenges to segmentation. Fourth, because
of the different angles of the sun, there will be a lot of
shadows in the image, which is the noise of the image.
Therefore, numerous researchers pay attention to the segmen-
tation of RS images and put forward a lot of segmentation
methods.

In recent years, artificial intelligence has made rapid devel-
opment and shown strong productivity. Deep learning is also
increasingly applied to the processing of RS images, espe-
cially RS image classification. At the same time, the rapid
development of high-performance computing equipment and
computer software technology provides a guarantee for the
application of deep learning in RS image classification. The
application of deep learning in RS images can reduce the
dependence of RS image classification on expert knowl-
edge, improve classification accuracy and recognition effi-
ciency. Consequently, the combination of deep learning and
RS images is of great significance.

The main purpose of the current study is to estab-
lish a deep learning network for semantic segmentation of
high-resolution RS images. So, a multi-channel segmen-
tation network (DAPN) is established with dual Atrous
Spatial Pyramid Pooling (ASPP) [6] to segment wholesale
RS images.

Il. RELATED WORK

Over the past few decades, most research in RS has empha-
sized the employ of machine learning. Firstly, texture [7] and
geometry features of ground objects are extracted. Then, for
vegetation and water body, it is necessary to further study the
reflectivity of ground objects, Normalized Difference Water
Index (NDWI) [8], [9].

The features of RS images mainly include spectral, spatial
and texture features. Shao et al. [10] proposed two improved
texture descriptors for RS image classification, which are
color Gabor wavelet texture (CGWT) and color Gabor oppo-
nent texture (CGOT), and the experimental results show
that the performance is better than other texture features.
Huaiying [11] adopted a shadow detection method based on a
statistical hybrid model to solve the problems of a high reflec-
tion area and false positives in the presence of water. These
methods are based on machine learning algorithms, but there
are still some defects, over-reliance on expert knowledge,
recognition efficiency is not high, so it is necessary to study
a more efficient and stronger generalization classification
algorithm.

In recent years, many researches on deep learning
and computer vision have been published, and various
high-performance deep learning algorithms have emerged.
Image processing based on deep learning has gradually
become a trend in the whole field of computer vision.
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Deep learning was firstly proposed by Hinton and
Salakhutdinov [12] in 2006. They built the multi-level struc-
ture model of automatic coding, and then extended the depth
confidence network based on Restricted Boltzmann Machine
(RBM) [13]. Razavian et al. [14] applied the convolution
neural network algorithm to train pixel feature classifiers, but
the accuracy is low because of the shortcomings of traditional
segmentation methods. In 2014, GoogleNet [15] won the
championship in the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) competition, and VGGNet [16]
won the second place in the competition, while made remark-
able achievements in image transfer. In 2015, Long et al. [17]
achieved pixel-level image classification based on a full con-
volution neural network (FCN), and then many researchers
improved it based on FCN. Later, He er al. [18] detected
objects in the image and generated a segmentation mask
for each object, which is called Mask R-CNN. In 2016,
Szegedy et al. [19] improved the Inception-V3 network to
make the network deeper and wider to build the Inception-V4
network. Besides, due to the extension of the codec struc-
ture, many FCN-based codec semantic segmentation net-
works have been built, such as U-Net [20], SegNet [21],
Deeplab [22] and so on. These are recently published seman-
tic segmentation networks, and the segmentation effect is
much better than the former methods. The application of
atrous convolution [23] to FCN enlarges the sampling of
the feature image, thus the receptive field is expanded, and
the segmentation effect is improved obviously. Lafferty and
Mccallum [24] applied conditional random fields to optimize
the results of FCN output [25], which became a commonly
used method for segmentation post-processing.

Numerous deep learning methods are applied to the
semantic segmentation of RS image. Reference [26] used
the DCNN framework for semantic segmentation of multi-
spectral imagery (MSI) images, which overcomes the label
scarcity of MSI data and achieves a good segmentation
effect. Reference [27] combining the RGB feature infor-
mation obtained in the deep learning framework with the
optical detection and ranging (LiDAR) features, formed a
multi-sensor decision fusion technique, which is applied to
mark the LiDAR data and RGB data semantically. Finally,
introduce the high-order conditional random field frame-
work to improve the semantic tagging. Reference [28] com-
bined DCNN with decision-making forest, and introduced a
super-pixel enhancement region module to further enhance
the edge information of the target. Reference [29] proposed a
spatial residual module (SRI) to continuously fuse multi-level
feature extraction multi-scale information, which shows sig-
nificant segmentation improvement compared with several
latest FCN models. Reference [30] designed the Web-Net
which is a layered and densely connected nested network
structure. A super-layered sampling block (UHS) is inlaid to
integrate the feature map of each layer, and finally identify
the building area more accurately.

Although the above segmentation methods are recently
published and introduced some methods to improve the
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performance of segmentation, it cannot extract enough fea-
tures to classify, so the segmentation effect still needs to
be improved. Given this situation, the DAPN is established,
which takes into account the depth training of the network and
the preservation of shallow features, on the basis of which
more multi-scale features are extracted. As a result, they
obtain higher segmentation accuracy.

lll. PROPOSED MODEL

The DAPN is a codec structure, in which the encoder module
downsampling and extracts the abstract features of the image
through the multi-layer convolution module. Then the upsam-
pling is gradually restored to the original size of the image by
the decoder module. It will be covered in detail in this section.

A. MODULE OF THE ENCODER

1) BACKONE

The DAPN takes the InceptionV-4 network as the back-
bone and adds dual ASPP modules as the encoder of
the network. The InceptionV-4 is a popular deep learn-
ing network recently, which comes from the improved
InceptionV-3 network [32]. Over the past few years, there
have been many popular full convolution neural networks,
such as VGG, ResNet and YOLO. Compared with these
mainstream networks, the InceptionV-4 has higher classi-
fication accuracy and less model memory. In the test set
of the ImageNet Classification Challenge, the Top-5 error
rate is 3.08%, and the network is deeper. Our RS images
have more information, it is necessary to extract more
abstract features for learning and classification. Therefore,
the InceptionV-4 network is used as the network backbone.
Compared with the InceptionV-3 network, the conspicu-
ous difference of InceptionV-4 is the Stem module and the
Reduction-B module, which adopts more skills to reduce the
calculation of the model. In order to obtain feature maps,
it modifies the Stem module to make the structure more
complex and the network level deeper. The Reduction module
changes the width and depth of the network, and improves the
bottleneck problem without adding too much network depth.
Because using the parallelism of convolution and pooling
to prevent bottleneck problems has been mentioned in the
InceptionV-3, convolution and pooling parallelism is used
again in the InceptionV-4.

Figure 1 is the model structure of the InceptionV-4 net-
work. Firstly, input the image with 299 x 299 sizes into the
Stem module, and in this module, through parallel groups
of convolution layers and pooling layers, the feature map of
35 x 35x384 is passed into the Inception module, that is,
to achieve the purpose of preprocessing. The Inception-A,
Inception-B, Inception-C module have the same structure
as in the InceptionV-3. The Reduction-A and Reduction-B
modules reduce the size of the feature graph. In Reduction-B,
asymmetric convolution and pooling parallel strategies are
applied to reduce the calculated amount. The structure of the
Reduction module is shown in Figure 2.
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FIGURE 1. The InceptionV-4 architecture diagram.

2) ATROUS SPATIAL PYRAMID POOLING

In addition to apply the Inception network to extract features,
the ASPP module is applied to further extract multi-scale fea-
tures of images [31]. To put it simply, the ASPP is composed
of multiple parallel atrous convolutions [23], and fuses the
convolution blocks of the feature maps, that is, a spatial pyra-
mid structure with atrous convolution. The ASPP proposed
firstly in the deeplabv2 that the mapping at the top of the
feature uses four kinds of atrous convolution with different
dilated rates. The verification results show that convolution
with different dilated rates is effective. Compared with ordi-
nary convolution, atrous convolution enlarges the area of the
receptive field due to the difference of dilated rate, and a
larger range of information can be obtained in each con-
volution, while parallel convolution with dilated rates of 6,
12 and 18 are used in the ASPP, so more scale features can
be obtained. As shown in Figure 3, the upper feature maps
are inputted into a module containing parallel operations
of four convolutions and a pooling and extract the multi-
scale features through the characteristics of four convolutions
(where the dilated rates of the four parallel convolutions are 1,
6, 12, 18 respectively). At the same time, the global average
pooling operation is performed on the feature maps, and then
combine the outputs of the five parallel operations, and finally
through a 1 x 1 convolution. This is the overall flow of
the ASPP module. By introducing this module, our network
can extract sufficient multi-scale features, and strengthen the
whole network training. In our work, a dual ASPP module is
built, which will be described in detail in Section 3.3.

B. DECODER
In order to restore the feature size without losing the
local information of the image, a simple decoder mod-
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FIGURE 2. Reduction module structure diagram, (a) is Reduction-A
structure diagram, (b) is Reduction-B structure diagram.

ule is designed, which receives the feature maps from the
encoder, and then through four sets of convolution modules.
Finally, the image is restored to its original size by a bilin-
ear upsampling. Each set of convolution modules contains
three complete convolution operations, and the last decoding
block includes an upsampling, a convolution, and a bilinear
upsampling.

C. MODEL STRUCTURE

The above two sections describe the basic modules, and this
section will describe the architecture of the overall model in
detail. The DAPN architecture is shown in Figure 4, which
takes the Inception V-4 network as the backbone, abandons its
final Average Pooling, Dropout and Softmax, while introduc-
ing the dual-ASPP module, and then combine the features to
form the encoder module. After the Stem module, establish
the first ASPP module to form a parallel training network.
In the first ASPP module, introduce 35 x 35 x 384 feature
maps, and fully extract the multi-scale features of the first
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FIGURE 3. The ASPP structure diagram.

stage through the atrous convolutions with the dilated rate
of 1, 6, 12 and 18 respectively. Then combine the feature
maps of the five branches of the first ASPP module to form
the 35 x 35 x 256 feature maps, and the combined feature
maps are convoluted through a 1 x 1 convolution. In order to
match the size of the feature maps to be fused, add the max
pool operation of 4 x 4 after the 1 x 1 convolution, and the size
of the feature maps is reduced to 32 x 32. The second ASPP
module is established after the Reduction-A module of the
InceptionV-4 network, and it receives 17 x 17 x 1024 feature
maps. To match the size of the feature maps, the dilated rate
of convolution in the second ASPP module is respectively set
to 1, 6, 8, 12, and then combine the four branches of the ASPP
module. Through a 1 x 1 convolution layer, the feature maps
of 17x17x 512 is outputted, and to match the size of the fused
feature map. The max pool layer of 2 x 2 is added after the
convolution layer, obtain the feature maps of 16 x 16 x 512.
After completing the training of the dual ASPP module, fuse
the feature images of the corresponding size in the decoder.
In addition, another branch of the network is constructed.
Considering that the degree of fusion training and the learned
features in the earlier stage may not be enough, combine the
feature graph of Inception-A module with the output feature
graph of Inception-C to form an encoder with multi-channel
training branch, which can fully extract the context infor-
mation of the network. The decoder module is divided into
four convolution modules, each convolution block has an
upsampling operation, and finally, the image size is restored
by bilinear upsampling. The parameter configuration of the
overall network is shown in Table 1,2,3,4.

Compared with the traditional InceptionV-4 network,
the DAPN uses this network as the backbone and modi-
fies it to make the network more complex, while improving
the training quality. On the basic of the InceptionV-4 net-
work, remove the last two layers, combine the contextual
semantic information of the network, embed the dual ASPP
module into the backbone, and finally establish the decoder
module.
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FIGURE 4. The architecture of DAPN.

TABLE 1. The configuration parameters of backbone.

TABLE 2. The configuration parameters of the first ASPP.

Layer

Type

Output Shape

Connect to

Kernel

Output

L T
Block 1 Stem 35x35384  Dlock 2, o ™ Size Stape 00
X
- > ASPP1, Branch_1 Conv 1x1 35%35,256 Conv_1
Inception- Block 3, Branch 2 A 33, 1
Block 2 P . 17x17.1024 ASPP2, ranch trous_Conv rate=6 35x35,256 Conv_
- Ax4+Reduction-A
Decoder_1 3x3
: Branch 3 Atrous_Conv ? 35%35,256 Conv_1
Inception- _ A _ ; -
Block 3 neeption 8x8,1536 Block 4 rate=12
- Bx7+Reduction-B - 3x3
Block 4 Inception-Cx3 8x8,1536  Decoder 1 Branch 4 Atrous Conv  ~ ~ . 35x35256  Conv_l
Branch_5 Pooling 1x1 35%35,256 Conv_1
Conv_1 Conv 1x1 35%35,256  Pooling 1
The common ASPP module at the end of the encoder, Pooling_1 Pooling 4x4 32x32,256  Decoder 3

which only expands the receptive field to extract multi-scale
features, but in RS images with a lot of information, this
operation is not enough to extract more features. Due to
the deepening of the network, the shallow features of the
target are seriously lost. That is, the location information of
the target is seriously lost, so the prediction effect of the
model still needs to be improved. By adding a dual ASPP
module, a new semantic segmentation network is constructed.
The DAPN adds dual ASPP in the first two stages of the
network so that the location information of the data will
not be lost, and multi-scale features can be extracted from
feature maps of different sizes through different receptive
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fields. Then combine with the corresponding modules of the
decoder. So, on the one hand, the context information of the
network is fused together to ensure that the shallow features
of the network will not lose too much. On the other hand,
more multi-scale features can be obtained through the dual
ASPP module. Finally, to strengthen the learning ability of
the network, fuse the backbone network. In order to verify
the good segmentation performance of the DAPN, we have
carried out experiments on ISPRS 2D Semantic Labeling
Contest Potsdam and Inria Aerial Image Labeling Dataset.
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TABLE 3. The configuration parameters the second ASPP.

Kernel Output
L T t t
ayer ype Size Shape Connect to
Branch_5 Conv 1x1 17x17,512 Conv_2
Branch_6 Atrous_Conv 313, 17x17,512 Conv_2
rate=6
Branch_7 Atrous_Conv 33, 17x17,512 Conv_2
rate=12
Branch 8 Pooling 1x1 17x17,512 Conv_2
Conv_2 Conv 1x1 17x17,512  Pooling_2
Pooling_2 Pooling 2x2 16x16,512  Decoder 2
TABLE 4. The configuration parameters of the decoder.
Kemel Output
Layer Type Size Shape Connect to
Upsampling A\ 16x16,2560 \
3x3,
Conv padding=1 16x16,1280 \
Decoder 1
cooder_ Conv 33, 6416,1280 \
padding=1
Conv 33, 16416,1024  Decoder 2
padding=1
Upsampling \ 32x32,1536 \
3x3,
Conv padding=1 32x32,768 \
Decoder 2 Conv 33, 32x32,768 \
padding=1
3x3,
Conv . 32x32,512 Decoder 3
padding=1 -
Upsampling \ 64x64,768 \
3x3,
Conv padding=1 64x64,384 \
Decoder 3 ony 3x3, 64x64,384 \
padding=1
3x3,
Conv N 64x64,384 Decoder 4
padding=1
Upsampling \ 128x128,384 \
Conv 33, 08x128,64 \
Decoder_4 padding=1
- 3x3, 128x128,
Conv . \
padding=1 num
up_bilinear \ 299x299 softmax

IV. EXPERIMENTS

A. DATASET AND PREPROCESSING

1) ISPRS 2D SEMANTIC LABELING CONTEST POTSDAM
DATASET

ISPRS 2D Semantic Labeling Contest Potsdam dataset [32] is
a high-resolution aerial image dataset with complete semantic
markings in the International Society for Photogrammetry
and RS, including high-resolution true orthophoto (TOP)
and digital surface model (DSM). Image files are composed
of different channels, there are IRRG (IR-R-G,3 channels),
RGB (R-G-B, 3 channels) and RGBIR (R-G-B-IR, 4 chan-
nels) three kinds of image format respectively. In this section,
only use TOP RGB images for training. The dataset contains
38 RS patches (6000 x 6000), and each patch is extracted
from orthophoto images, of which 24 images have the cor-
responding semantic label. Dataset labels are divided into
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six categories, including Impervious Surfaces, Building, Low
Vegetation, Tree, Car, and background.

Cut 24 images into 299 x 299 size images, due to the
depth of the network is deep, the data volume is too small to
get enough features. Therefore, data augmentation is carried
out to reduce the impact on training. After cropping, flip the
image horizontally and then vertically, obtain 76800 images
of 299 x 299 sizes by rotation, which ensures sufficient
training data. Select randomly 75% of the total samples as
a training set, 20% as the test set, and the rest is used as a
validation set. The effect prediction is made on the validation
set after deriving the model.

2) INRIA AERIAL IMAGE LABELLING DATASET

The Inria Aerial Image Labeling Dataset [33] contains
high-resolution RS data of five areas. There are Austin,
Chicago, Kitsap County, Western Tyrol, Vienna, and each
with 36 orthophoto images of 5000 x 5000 sizes, the image
band combination is RGB. The semantic labels of the dataset
can be divided into architectural and non-architectural (back-
ground) categories.

Cut each image into 400 images size of 250 x 250, and then
use bilinear interpolation to resize the image into 299 x 299.
All the images are flipped horizontally and vertically, and
then rotated to get the final training set, each area contains
115200 RS images. Selected randomly 75% of the total sam-
ples as trainset, 20% as a test set, and the rest is used as the
validation set. The effect prediction is made on the validation
set after deriving the model.

B. EVALUATION FUNCTION

In order to comprehensively evaluate the performance of the
proposed model, use Intersection over Union (IOU), Overall
Accuracy (OA), F1, Precision and Recall to evaluate the
experimental results. The above evaluation indicators are fre-
quently used in previous papers, and they are compared with
the recognized semantic segmentation evaluation indicators.
The calculation formulas of each evaluation index are as
follows:

TP
oV = ——— (D
TP + FP + FN
TP + TN
OA = ——— 2)
P+ N
o TP
Precision = —— 3)
TP + FP
TP
Recall = ——— @
TP + FN
Precision x Recall
Fl1=2x ®))

Precision + Recall

where P is the number of positive samples, N is the number
of negative samples, TP is the number of positive samples
that predict correctly, FP is the number of positive samples
that predict falsely, TN is the number of negative samples that
predict correctly, FN is the number of negative samples that
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predict falsely, and the number of samples is the number of
pixels in each picture.

C. TRAINING OPTIMIZATION

In the present study, training samples have multiple clas-
sifications and binary classifications, so use the Negative
Log-Likelihood Loss function (NLLLoss). It is applicable
to both multi-class and second class.NLLLoss is similar
to the Cross-Entropy Loss function, but the Cross-Entropy
Loss function is more widely used. In the classification task,
predicted label y is discrete categories, and the output tar-
get f(x,8) of the model is the conditional probability for
each category. Suppose ye {0, 1, ... ,N—1}, the conditional
probability of the ith class predicted by the model is the
formula (6):

P (y = ilx) = fi(x, 8) (6)
then f(x, §) meet the formula (7):

N—-1
8 elo 1], Y fitx=1 (7)
i=1

So fy(x,8) can be seen as a likelihood function of
category y, and take the negative logarithm to get the negative
log-likelihood loss function:

L(y.f (x,8)) = —logfy(x, ) ®)
that is
N—-1
L(y.f(x 8) ==Y yilogfix,s) ©)

i=1
Due to the large training data and the limited computing
power of the computer, use the Adam (Adam optimization
algorithm) algorithm for training optimization. It combines
the optimal performance of the two optimization algorithms
AdaGrad and RMSProp, and it is easier to adjust the parame-
ters, while it has high computational efficiency and can adapt
to large datasets. The training acceleration effect on a large

amount of training data is obvious.

D. EXPERIMENTAL RESULTS

1) IMPLEMENTATION SETTINGS

The DAPN is implemented using the Pytorch framework.
Train our models using the adaptive learning rate algorithm
Adam with a learning rate of 0.0005 to converge the model
quickly, while with a momentum of 0.9. In addition, use
L2 regularization with a weight decay of 0.0001 to avoid
over-fitting. The model is deployed on NVIDIA Tesla V100
(32GBRAM) server with CUDA10.0, and train 200 epochs
with a batch size of 32. After training, the model with the
best evaluation index is selected for testing.

2) COMPARISON OF COMMON MODELS
Compare the performance of four common models on two
datasets. These models are common codec structures and
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fusion network for segmentation. Because the number of
samples of each category is not balanced, the IOU score and
the F1 score are selected to compare. Table 5 and 6 show the
IOU, F1 scores of all kinds of samples on the Potsdam dataset.
The results show that the segmentation accuracy of the DAPN
is much better than that of other models, with an overall IOU
score of 89.62% and a total F1 score of 94.49%. The Inria
dataset has only two categories, in which the segmentation
target is the building. Experiments are carried out on the
dataset of five regions, and only the IOU score is calculated.
The table shows that the performance of our model is the best
in each regional test set. Then predict on the validation set and
compare it with the prediction results of several mainstream
models. Figure 5 and Figure 6 show the comparison of the
marked effects of various common segmentation models on
the two datasets. The marked effect of the DAPN is better
than that of other models.

EEveR
Eiey Li lt.
~m & 24
”“_-‘h n 24
9N 7
NN

FIGURE 5. Comparison of marked effects with common models on
Potsdam dataset.

As shown in Table 8, we also calculate the FLOPs of the
DAPN compared to common classification networks with
the same inputs. The FLOPs is the floating point operations
which can be comprehended the calculated amount. Net-
works with a similar FLOPs do not necessarily perform at the
same speed, so it is not an absolute measure, but because it
measures the complexity of the network, it is also a reference.
The DAPN have the highest params and FLOPs, among them,
params of the VGG and the DAPN are similar. In addition,
the processing time of each image is calculated in the test set
and validation set. On the test set, many evaluation indicators
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FIGURE 6. Comparison of marked effects with common models on Inria
dataset.
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TABLE 5. The 10U scores compared with common models on Potsdam
test set.

Imp.S. Build. Low.V. Tree Car Overall
FCN32  89.62 92.14 73.96 6436 68.63 78.53
SegNet  87.07 91.33 69.10 60.25 60.79 7371
PspNet  64.09 68.57 46.86 38.03 3941 50.60
U-Net 89.79 91.07 72.95 61.62 6297 75.12
Our 97.23 97.26 84.42 84.71 8447 89.62

TABLE 6. The F1 scores compared with common models on Potsdam test
set.

Imp.S. Build. Low.V. Tree Car Overall
FCN32  85.15 94.42 79.26 76.51  80.16  84.25
SegNet  82.65 89.76 76.04 73.74  71.63  82.69
PspNet  71.39 75.58 65.71 4532  40.61 63.36
U-Net 83.49 90.14 78.36 7541  73.10  83.20
Our 96.97 97.25 89.97 86.32 9374  94.49

need to be calculated, while on the validation set, only classi-
fication prediction is needed, so the runtime of test is slightly
longer than that of prediction. In general, the predicted time
is very short, and the predicted efficiency of remote sensing
images is appreciable.
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TABLE 7. The 10U scores compared with common models on Inria test
set.

Austin Chicago Kitsap Tyrol Vienna
FCN32 83.10 89.15 73.90 87.07 90.55
SegNet 80.83 86.79 72.31 83.74 88.43
PspNet 79.03 84.92 70.96 82.03 86.43
U-Net 85.94 91.06 78.24 87.36 92.64
Our 91.83 92.38 83.06 87.94 94.96

TABLE 8. The comparison of params and FLOPs for networks.

Params FLOPs(G)
AlexNet 61100840 1.20
Vegl6 138357544 26.99
ResNet101 44549160 14.54
InceptionV-3 27161264 5.73
DenseNet161 28681000 13.49
Our 133883558 70.57

3) EXPERIMENTAL COMPARISON OF THE LATEST
SEGMENTATION METHODS

With the rapid development of deep learning, there are more
and more methods to combine RS image classification with
artificial intelligence, and the segmentation effect is greatly
improved. Compare it with some RS image semantic segmen-
tation methods. Some of the methods are as follows:

Audebert et al. [34] proposed a three-stage segment-
before-detect method. Firstly, the full winder neural network
is used to infer the semantic segmentation of the pixel-level
classification mask, then the boundary box of the connec-
tion part is used for vehicle detection, and finally, the tra-
ditional convolution neural network is used for target-level
classification.

Wang et al. [35] used the deep residual network as
the encoder and combines two proportional high-level
features and the corresponding low-level features into a
decoder to further develop the multi-scale loss function and
enhance the learning process. finally, the final segmentation
post-processing technique of conditional random field based
on superpixel is added to improve the segmentation effect.

Zhang et al. [36] studied the role of each feature layer
in FCN, proposes an effective fusion strategy, quantifies the
sensitivity of multimodal data through recall rate and recall
decline rate in the multi-resolution model, analyzes the influ-
ence of different modes on pixel prediction, and explains
the reasons for poor performance caused by common fusion.
Finally, propose an optimization scheme of fusion elevation
information.

Yu et al. [37] proposed an incremental learning method,
which makes the network suitable for learning the previously
learned features on the new training data, retains the previous
features, and minimizes the loss function of the network.

Guo et al. [38] designed a gated convolution (L-GCNN).
Firstly, design a parameterized gate module (PGM) to gen-
erate pixel-level weights. Then, embed a single PGM and its
connected extension units into different levels of encoders in
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FIGURE 7. The first fusion convergence solution network diagram.
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FIGURE 8. The second fusion solution network diagram.

TABLE 9. Processing time of each image for the DAPN.

Test time(s) Predicted time(s)
Potsdam 0.4736 0.2934
Inria 0.5253 0.2605

the L-GCNN, resulting in a fine segmentation framework that
aggregates context information.

Some of the methods mentioned above are the recently
published RS image segmentation methods. The experiment
is carried out on two datasets and compared with the above
methods.

a: Comparison of experiments on Potsdam datasets

Apply the IOU, F1 and OA scores to evaluate our model
on the Potsdam test set. Table 10 and Table 11 show the
experimental results on the Potsdam dataset. The method
proposed achieved the highest IOU, F1 and OA average
scores. Table 11 provides the comparative results of per class,
the DAPN can obtain the best performance by and large. The
F1 score of the class Imp.Surf achieves the highest 96.97%,
which is higher than the [28] about 3%. The F1 score of
the [27] for class Car can reach a maximum of 96.40%, while
the score of our model is near. Expect the class Tree, other
classes of F1 scores also achieved the highest results by and
large.

b: Comparison of experiments on Inria datasets
Table 12 is the experimental results on the Inria dataset.
Through experiments on the Inria five regional datasets,
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TABLE 10. Comparison of different methods on Potsdam test set.

10U Fl OA
[27] \ 92.90 91.50
[28] 84.60 92.60 \
[35] \ 88.80 88.30
[36] \ 81.80 80.00
[37] \ \ 89.42
[38] 84.12 91.24 \
[39] \ 90.60 \
[40] \ \ 90.10
[41] \ 84.25 \
Our 89.62 94.49 96.13

TABLE 11. Comparison of F1 scores on Potsdam test set.

Imp.Surf. Building Low.Veg. Tree Car
[27] 93.50 97.20 88.20 89.20 96.40
[28] 94.10 97.80 89.40 90.30 95.10
[35] 90.20 95.90 83.90 84.30 89.60
[36] 83.00 90.00 77.00 72.00 74.00
[37] 91.77 95.71 84.40 79.56 88.25
[38] 92.84 96.17 87.78 85.74 93.65
[39] 92.70 96.30 87.30 88.50 95.40
[40] 92.30 97.00 86.80 86.90 94.50
[41] 92.10 96.86 85.28 92.10 94.43
Our 96.97 97.25 89.97 86.32 93.74

obtain better segmentation results than the other two methods,
in which the IOU score has been greatly improved. Combined
with the results on the two datasets, our model performs
excellently in the segmentation of the building.

In addition, verify the segmentation effect of three
cases which fusing context information without adding a
dual ASPP module on two datasets. In the first case,
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the InpectionV-4 network is used as the encoder and then
directly connected to the decoder used in this paper without
any other processing. In the second case, the InpectionV-4
network is used as the encoder, in which the characteristic
image of the Reduction-A module is fused to the end of the
encoder and then connected to the same decoder. In the third
case, the trunk of the encoder is the same as above, and then
the feature image output by the Reduction-B module is fused
to the end of the encoder, and finally connected to the same
decoder module. Among them, two kinds of fusion features
use common fusion techniques to extract features from dif-
ferent layers, and then fuse the feature with the feature map
of the deeper network, so that the context information of
the neural network is simply fused. To achieve the purpose
of improving the accuracy and effect of segmentation. The
two merged network architectures are shown in Figure 7 and
Figure 8.

Experiment on two datasets with the methods of three
cases. On the Potsdam dataset, calculated five evaluation
indicators of various situations, and more comprehensively
showed the segmentation effect of different fusion methods.
On the Inria dataset, use only one fusion strategy, and then
obtain the IOU scores after training in five areas respectively.
As can be seen from Table 13 and Table 14, the evaluation
indicators obtained from the training on the two datasets are
significantly higher than those obtained by other strategies,
because the feature map of the moderate training stage is
fused to the end of the encoder. The loss of target location
information can be greatly reduced, and enough abstract fea-
tures can be obtained. After merging the feature map of the
Reduction-B output with the feature map output at the end of
the encoder, the evaluation indicator is significantly reduced.
The result shows that the performance of segmentation can be
improved by using the fusion strategy. After adding the dual
ASPP module, the evaluation indicators have been signifi-
cantly improved. Without losing too many shallow features
of the network, the dual ASPP module has a wider receptive
field through atrous convolution with different dilated rates.
Features are extracted from different depths of the convolu-
tion network to obtain more location information, the final
segmentation accuracy is also higher. Figure 9 and 10 shows
the comparison of the prediction results of different strategies
on the validation set, and the prediction effect of the DAPN
proposed in the present study is better.

V. DISCUSSION

After completing the basic experimental comparison, have
a more in-depth discussion of the generalization ability of
the DAPN, so a transfer learning experiment is carried out
with Potsdam dataset and Vaihingen dataset [32]. The orig-
inal image of the Vaihingen dataset is composed of IR-R-G
three channels. Although the categories of the two datasets
are the same, the different channel combinations can result
in significant color differences in the image. Therefore, the
prediction results are very bad by using the model trained
on Potsdam R-G-B dataset and Vaihingen IR-R-G dataset to
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FIGURE 9. Comparison of marked effects with different fusion schemes
on Potsdam datasets.

FIGURE 10. Comparison of marked effects with different fusion schemes
on Inria datasets.

carry out transfer learning experiment. To avoid this problem,
the training data of Potsdam is also used IR-R-G images in
this section.

The preprocessing of the Potsdam IR-R-G dataset is the
same as the Potsdam R-G-B dataset, which obtain 60800
Potsdam IR-R-G images to train. Since each patch size of the
Vaihingen IR-R-G dataset is different, the Vaihingen IR-R-G
dataset is cut according to the corresponding size and the data

131823



IEEE Access

W. Liu et al.: New Multi-Channel Deep Convolutional Neural Network

TABLE 12. Experimental comparison of various methods on Inria test set.

Austin Chicago Kitsap Tyrol Vienna
10U OA 10U OA 10U OA 10U OA 10U OA
[30] 82.49 97.47 73.90 93.90 72.45 99.35 70.71 98.73 83.72 95.35
[42] 73.09 96.43 70.38 92.92 72.45 99.43 76.40 98.12 78.88 93.98
Ours 91.83 97.03 92.38 94.48 83.06 98.36 87.94 97.05 94.96 96.44

TABLE 13. Comparison of different fusion schemes on Potsdam test set.

None Fusion Fusionl Fusion2 ours

10U 86.42 87.38 83.68 89.62
F1 88.65 92.70 90.12 94.49
Precision 89.14 90.93 82.20 95.06
Recall 89.77 95.14 87.14 94.29
OA 93.89 95.58 91.06 96.13

TABLE 14. Comparison of 10U scores with different Fusion schemes on
Inria test set.

None Fusion Fusionl ours

Austin 85.80 87.24 91.83
Chicago 91.10 91.65 92.38
Kitsap 77.66 80.40 83.06
Tyrol 88.06 86.62 87.94
Vienna 93.41 94.76 94.96

TABLE 15. Comparison of 10U scores with other models on Vaihingen
IR-R-G dataset.

Networks 10U
FCN32 63.74
SegNet 58.19
U-Net 60.30

Our 71.85

is expanded by mirroring. Finally, 5559 images with the size
of 299 x 299 are obtained. The training parameters are the
same as the previous section, and the Vaihingen dataset is
tested using the model obtained after training with Potsdam
IR-R-G datasets.

In addition, use several common segmentation networks
for comparison experiments, and the IOU scores are shown
in Table 15. As can be seen from the table, the DAPN has
a stronger generalization ability than other models. However,
compared with the performance on the Potsdam dataset, there
is a significant decrease in the IOU scores on the Vaihin-
gen IR-R-G dataset due to the differences between the two
datasets. Althoug h the categories of the two datasets are the
same, there is a lot of variability in ground targets because
of the images collected in different regions, resulting in the
decline of the prediction ability of the model.

VI. CONCLUSION

In the current study, a network with the multi-channel con-
volutions and dual ASPP modules is proposed, which fully
extract the multi-scale features of the image and retain the
spatial features of the object at the same time, while taking
into account the loss of network features in many aspects.
The network is a segmentation network with codec structure,
which extracts features by downsampling and restores the
original resolution by upsampling, and it is a well-recognized
structure in the task of semantic segmentation. Through
the method of data augmentation, the problem of sample
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imbalance is solved to a certain extent. In addition, experi-
ments are carried out on Potsdam data sets and Inria datasets,
and the results are compared with a variety of mainstream
segmentation models and the newly proposed segmentation
algorithms. The calculation of a variety of evaluation indi-
cators shows that the network has a significant improve-
ment effect compared with other methods. Finally, explore
further the generalization ability of the DAPN and predict
on Vaihingen IR-R-G datasets. The code of the DAPN is in
https://github.com/Udellliu/InceptionV4-ASPP-semantic.

REFERENCES
[1]

Q. Weng, “Modeling urban growth effects on surface runoff with the
integration of remote sensing and GIS,” Environ. Manage., vol. 28, no. 6,
pp. 737-748, Dec. 2001.

W. Zhai, H. Shen, C. Huang, and W. Pei, “Fusion of polarimetric and
texture information for urban building extraction from fully polarimetric
SAR imagery,” Remote Sens. Lett., vol. 7, no. 1, pp. 31-40, Jan. 2016.
M. Herold and D. Roberts, “Spectral characteristics of asphalt road aging
and deterioration: Implications for remote-sensing applications,” Appl.
Opt., vol. 44, no. 20, pp. 43274334, Jul. 2005.

X. Yu and Z. Shi, “Vehicle detection in remote sensing imagery based
on salient information and local shape feature,” Optik, vol. 126, no. 20,
pp. 2485-2490, Oct. 2015.

S. Pang, X. Hu, Z. Wang, and Y. Lu, “Object-based analysis of airborne
LiDAR data for building change detection,” Remote Sens., vol. 6, no. 11,
pp. 10733-10749, Nov. 2014.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834-848, Apr. 2018.

R. M. Haralick, “Textural features for image classification,” IEEE
Trans. Syst., Man, Cybern., vol. SMC-3, no. 6, pp. 610-621, Nov. 1973,
doi: 10.1109/TSMC.1973.4309314.

F. T. Ulaby, M. C. Dobson, and G. A. Bradley, ‘‘Radar reflectivity of bare
and vegetation-covered soil,” Adv. Space Res., vol. 1, no. 10, pp. 91-104,
Jan. 1981.

B.-C. Gao, “NDWI—A normalized difference water index for remote
sensing of vegetation liquid water from space,” Remote Sens. Environ.,
vol. 58, no. 3, pp. 257-266, Dec. 1996.

Z. Shao, W. Zhou, L. Zhang, and J. Hou, “Improved color texture descrip-
tors for remote sensing image retrieval,” J. Appl. Remote Sens., vol. 8,
no. 1, Jan. 2014, Art. no. 083584.

X. Huaiying, “A shadow detection of remote sensing images based on
statistical texture features,” J. remote Sens., vol. 15, no. 4, pp. 778-791,
2011.

G. E. Hinton, “Reducing the dimensionality of data with neural networks,”
Science, vol. 313, no. 5786, pp. 504-507, Jul. 2006.

C. L. P. Chen, C.-Y. Zhang, L. Chen, and M. Gan, “Fuzzy restricted
Boltzmann machine for the enhancement of deep learning,” /IEEE Trans.
Fuzzy Syst., vol. 23, no. 6, pp. 2163-2173, Dec. 2015.

A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features
Off-the-shelf: An astounding baseline for recognition,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2014, pp. 512-519.
K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556. [Online]. Avail-
able: http://arxiv.org/abs/1409.1556

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” 2014, arXiv:1409.4842. [Online]. Available:
http://arxiv.org/abs/1409.4842

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

VOLUME 8, 2020


http://dx.doi.org/10.1109/TSMC.1973.4309314

W. Liu et al.: New Multi-Channel Deep Convolutional Neural Network

IEEE Access

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 4, pp. 640-651, Apr. 2017.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” 2017,
arXiv:1703.06870. [Online]. Available: http://arxiv.org/abs/1703.06870
C. Szegedy, S. Ioffe, and V. Vanhoucke, ‘“‘Inception-v4, Inception-ResNet
and the Impact of Residual Connections on Learning,” Comput. Sci., vol. 3,
no. 6, pp. 105-112, 2016.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” 2015, arXiv:1505.04597. [Online].
Available: http://arxiv.org/abs/1505.04597

V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep con-
volutional encoder-decoder architecture for image segmentation,” 2015,
arXiv:1511.00561. [Online]. Available: http://arxiv.org/abs/1511.00561
L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” 2017, arXiv:1706.05587.
[Online]. Available: http://arxiv.org/abs/1706.05587

F. Yu and V. Koltun, “Multi-scale context aggregation by dilated con-
volutions,” 2015, arXiv:1511.07122. [Online]. Available: http://arxiv.
org/abs/1511.07122

J. Lafferty and A. Mccallum, “‘Pereira FCN Conditional random fields:
Probabilistic models for segmenting and labeling swquence data,” in Prec.
ICML, 2001, vol. 3, no. 2, pp. 282-289.

S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su,
D. Du, C. Huang, and P. H. S. Torr, “Conditional random fields as
recurrent neural networks,” 2015, arXiv:1502.03240. [Online]. Available:
http://arxiv.org/abs/1502.03240

C. Michaelis, I. Ustyuzhaninov, M. Bethge, and A. S. Ecker, “One-shot
instance segmentation,” 2018, arXiv:1811.11507. [Online]. Available:
http://arxiv.org/abs/1811.11507

Diakogiannis F I, Waldner, Frandois, Caccetta P, “ResUNet-a: A deep
learning framework for semantic segmentation of remotely sensed data,”
ISPRS J. Photogramm. Remote Sens., vol. 162, pp. 94—114, Apr. 2020.

L. Mi and Z. Chen, “Superpixel-enhanced deep neural forest for remote
sensing image semantic segmentation,” ISPRS J. Photogramm. Remote
Sens., vol. 159, pp. 140-152, Jan. 2020.

P. Liu, X. Liu, M. Liu, Q. Shi, J. Yang, X. Xu, and Y. Zhang, “Building
footprint extraction from high-resolution images via spatial residual incep-
tion convolutional neural network,” Remote Sens., vol. 11, no. 7, p. 830,
Apr. 2019.

Y. Zhang, W. Gong, J. Sun, and W. Li, “Web-net: A novel nest net-
works with ultra-hierarchical sampling for building extraction from aerial
imageries,” Remote Sens., vol. 11, no. 16, p. 1897, Aug. 2019.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” 2015, arXiv:1502.03167.
[Online]. Available: http://arxiv.org/abs/1502.03167

International Society for Photogrammetry and Remote Sensing. 2D
semantic labeling contest. Accessed: Mar. 20, 2020. [Online]. Available:
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Can semantic
labeling methods generalize to any city? The Inria aerial image labeling
benchmark,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
Jul. 2017, pp. 3226-3229.

N. Audebert, B. Le Saux, and S. Lefdvre, “Segment-before-detect: Vehi-
cle detection and classification through semantic segmentation of aerial
images,” Remote Sens., vol. 9, no. 4, p. 368, Apr. 2017.

Y. Wang, B. Liang, M. Ding, and J. Li, “Dense semantic labeling with
atrous spatial pyramid pooling and decoder for high-resolution remote
sensing imagery,” Remote Sens., vol. 11, no. 1, p. 20, Dec. 2018.

W. Zhang, H. Huang, M. Schmitz, X. Sun, H. Wang, and H. Mayer,
“Effective fusion of multi-modal remote sensing data in a fully convolu-
tional network for semantic labeling,” Remote Sens., vol. 10, no. 2, p. 52,
Dec. 2017.

Y. Liu, D. Minh Nguyen, N. Deligiannis, W. Ding, and A. Munteanu,
“Hourglass-ShapeNetwork based semantic segmentation for high resolu-
tion aerial imagery,” Remote Sens., vol. 9, no. 6, p. 522, May 2017.

S. Guo, Q. Jin, H. Wang, X. Wang, Y. Wang, and S. Xiang, “Learnable
gated convolutional neural network for semantic segmentation in remote-
sensing images,” Remote Sens., vol. 11, no. 16, p. 1922, Aug. 2019.

N. Audebert, B. Le Saux, and S. Lefdvre, “Beyond RGB: Very high
resolution urban remote sensing with multimodal deep networks,” ISPRS
J. Photogramm. Remote Sens., vol. 140, pp. 20-32, Jun. 2018.

VOLUME 8, 2020

(40]

(41]

[42]

D. Chai, S. Newsam, and J. Huang, “Aerial image semantic segmentation
using DCNN predicted distance maps,” ISPRS J. Photogramm. Remote
Sens., vol. 161, pp. 309-322, Mar. 2020.

O. Tasar, Y. Tarabalka, and P. Alliez, “Incremental learning for semantic
segmentation of large-scale remote sensing data,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 12, no. 9, pp. 3524-3537, Sep. 2019.

X. Li, Y. Jiang, H. Peng, and S. Yin, “An aerial image segmentation
approach based on enhanced multi-scale convolutional neural network,” in
Proc. IEEE Int. Conf. Ind. Cyber Phys. Syst. (ICPS), May 2019, pp. 47-52.

WENJIE LIU received the B.S. degree in informa-
tion and computing science, in 2018. He is cur-
rently pursuing the degree in software engineering
with the School of Computer Science and Tech-
nology, Guizhou University. His research interests
include machine learning, computer vision, and
remote sensing image processing-based on deep
learning.

YONGJUN ZHANG received the master’s and
Ph.D. degrees in software engineering from
Guizhou University, Guiyang, China, in 2010 and
2015, respectively. From 2012 to 2015, he was
a Joint Training Ph.D. Student with Peking Uni-
versity and Guizhou University. He was also
with the Key Laboratory of Integrated Microsys-
tems, Shenzhen Graduate School, Peking Univer-
sity. He is currently an Associate Professor with
Guizhou University. His research interests include

intelligence image algorithms of computer vision, such as scene target
detection, extraction, tracking, recognition, and behavior analysis.

HAISHENG FAN is currently pursuing the Ph.D.
degree. He is also a President with the Divi-
sion of Satellite Big Data Solutions. Expert of
GIS & RS Software Design and Development.
He is also a Researcher on image processing meth-
ods and manager of remote sensing application
projects. He is one of the major pioneers of first
domestic commercial RS service platform based
on cloud-computing system. He is also a Designer
and an Executor of Orbita Satellite Big Data
Service Platform which is under construction.

YONGIJIE ZOU was born in Qianjiang, Hubei,
China, in 1993. He received the B.S. degree in
computer science and technology from Guizhou
Education University, in 2018. His research inter-
ests include machine learning, computer vision,
and remote sensing image processing-based on
deep learning.

ZHONGWEI CUI received the master’s degree
in computer application technology from Guizhou
University, Guiyang, China, in 2008, where he
is currently pursuing the Ph.D. degree. Since
December 2013, he has been an Associate Profes-
sor with the School of Mathematics and Big Data,
Guizhou Education University, Guiyang. He has
11 years of teaching experience. His research inter-
ests include machine vision and wireless networks.

131825



