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ABSTRACT In the era of the fourth industrial revolution (Industry 4.0) and the Internet of Things (IoT),
real-time data is enormously collected and analyzed from mechanical equipment. By classifying and char-
acterizing the measured signals, the fault condition of mechanical components could be identified. However,
most current health monitoring techniques utilize time-consuming and labor-intensive feature engineering,
i.e., feature extraction and selection, that are carried out by experts. This paper, on the contrary, deals with an
automatic diagnosis method of machine monitoring using a convolutional neural network (CNN) with class
activation maps (CAM). A class activation map enables us to discriminate the fault region in the images, thus
allowing us to localize the fault precisely. The goal of the paper is to demonstrate how CNN and CAM could
be employed to real-world vibration video to characterize the machine’s status, representing normal or fault
conditions. The performance of the proposed model is validated with a base-excited cantilever beam dataset
and a water pump dataset. This paper presents a novel industrial application by developing a promising
method for automatic machine condition-based monitoring.

INDEX TERMS Convolutional neural network, class activation maps, discriminative region, fault detection,
mechanical component, explainable AI.

I. INTRODUCTION
Fault detection in mechanical equipment has been a serious
concern in many industries. Most of the faults are likely
to occur during operating conditions, hence making them a
significant impact in increasing operational cost. Moreover,
unpredicted faults would make machine failure or even put
a person in safety jeopardy. Once a mechanical component
possesses a fault, the fault would shortly trigger a chain
reaction and cause the damage of other components [1].
Understanding the condition of amachine and its components
is indispensable. It would keep us away from termination and
unexpected costs, gain the machine’s lifespan, and enhance
safety by identifying irregular behavior of a machine and its
components.
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Both normal and abnormal operations of mechanical sys-
tems that are made up of rotating components could be exam-
ined using vibration signal analysis. Hence a vibration analy-
sis plays a significant function in monitoring the condition of
the machine and diagnosing its failure. The analysis is able
to be conducted to examine various sorts of systems com-
prised of multiple mechanical components, e.g., gears and
bearings, by measuring vibration levels from sensors such as
accelerometers. In addition, analyzing vibration signals may
refer to acquiring raw data from the device and characterizing
substantial properties that are highly dependent on defects.
It could be done in the time, frequency, and time-frequency
domain depending on occasion and purpose. For instance,
Hong and Dhupia [2] proposed a time domain approach to
diagnose gearbox fault based on measured vibration signals.
At the same time, Gonçalves et al. [3] provided a comparative
analysis of vibration signals to diagnose bearing faults.
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However, there exist several limitations in prior researches
on fault diagnosis of vibration signals for mechanical sys-
tems. First of all, issues on the acquisition of raw data from
sensors have been arisen for applying vibration analysis to
today’s highly complicated systems. Such a complex sys-
tem that requires more precise and accurate analysis needs
a number of sensors. Therefore, there are excessive costs
to investigate all amounts of data. Placing sensors to every
region of the system is notmerely unrealistic, but also imprac-
tical. Besides, with the signals obtained by sensors deployed
anywhere in the system, appropriate analysis is not possible to
be put into practice. In addition, considering the fact that most
of the mechanical equipment includes signals that are not
essential for diagnosis, i.e., internal interference and external
disturbance, it is not straightforward for engineers to interpret
the results. While some researchers, for this reason, provide
methodologies for optimizing location and amount of the
sensors in various mechanical systems [4], [5], there are
still uncertainties of additional efforts and costs for practical
applications as diverse types of mechanical equipment are
continuously emerging.

Secondly, issues on features from raw signals and those
diagnosis techniques have emerged for outstanding perfor-
mance of fault diagnosis. In traditional fault diagnosis tech-
niques, lots of attempts are performed based on the manual
design of fault features. The main drawback of the manual
design of features is that it highly depends upon an expert
with specific knowledge about mechanical engineering or
their domains, which is able to define the features clearly
for appropriate classification tasks. Consequently, the tech-
niques are less automatic, going through a series of proce-
dures stated as followed. A feature set is typically extracted
through processed measurements, whether collected from
hand-operated devices or built-in sensors. This feature set is
then pre-processed by some experts that need to be elabo-
rated to represent the machine’s behavior. Next, the extracted
feature set is given to a machine learning algorithm, along
with the labels [6], [7]. The machine learning algorithm will
learn a model that is able to classify machine conditions.
Hence, as the features are extracted manually with specific
kinds of expertise in engineering background, then fed up
to the classification algorithm, well-designed features could
dominate the performance of the classifier, and it leads the
most challenging task for fault diagnosis techniques.

In order to overcome the aforesaid issues, this paper pro-
poses an image-based technique for enhancing discriminative
efficiency between two types of fault conditions (normal and
fault) using a convolutional neural network (CNN). Feature
learning, as well as its localization ability via class activa-
tion maps (CAMs) algorithm, is also proposed to detect the
most significant part for diagnosing mechanical equipment.
We utilize the interpretability of a CAM-embedded deep
learning structure to indirectly localize the most vibrating
regime without any vibration sensors. Furthermore, we val-
idate the performance of the proposed model by comparing
it with several machine learning algorithms, i.e., artificial

neural network (ANN), random forest (RF) [8], and support
vector machine (SVM) [9]. Lastly, a vision-based significant
region detection that is able to be emphasized by the CAM
algorithm is also verified.

The rest of the paper is broken down into the follow-
ing parts. Section II-A briefly explains feature engineering
approaches in image recognition, while Section II-B presents
a brief review of current existing fault diagnosis techniques.
Section III conveys the data set collection and preparation,
as well as classification techniques and validation measures
used in our experiment of vision-based fault diagnostics.
Section IV is dedicated to the experimental results, followed
by discussions and remarks. Lastly, Section V concludes the
paper.

II. RELATED WORK
Before introducing the image-based fault diagnosis tech-
nique, we briefly review feature engineering of image recog-
nition and deep learning for machine fault diagnosis in this
section.

A. AN OVERVIEW OF FEATURE ENGINEERING FOR IMAGE
RECOGNITION
With the rapid development of high-speed detection tech-
niques, automatic detectors have enabled efficient and accu-
rate image detection, taking from tens up to thousands of
images per second. The development of detection tool for
machine health diagnosis could lower processing time to
almost zero, offer precise, accurate, and unbiased detection.
It provides reliable results, thus making it more reproducible,
scalable, and robust using available state-of-the-art comput-
ing resources.

Early machine learning algorithms for image recognition
and visual object detection mostly drew upon a boosted
cascade of simple features [10], [11], and a feature descrip-
tor called Histograms of Oriented Gradients (HOG) [12]
to extract the image features, prior to being used as inputs
of a classification algorithm. The two above-mentioned
approaches had been the most remarkable demonstration of
computer vision at that time. Their techniques significantly
outperformed existing algorithms for pedestrian detection.
Nevertheless, most approaches are considered in collabora-
tion with manually extracted features by experts [13], [14].
Hitherto, deep learning algorithms have become the main-
stream of computer vision, though they had been everywhere
for a long time. In particular, convolution neural networks
(CNNs) [15] have metamorphosed into today’s promising
approach of image recognition tasks [16]–[18].

A CNN is a type of artificial neural network that carries
out convolution directly on a data that has a grid pattern,
e.g., images, and it is aimed to be able to automatically and
adaptively learn spatial information of image features, from
low to high-level patterns [15]. It is typically made up of
multiple duplicating layers, i.e., convolution, pooling, and
followed by fully connected layers [19]. CNN is an actively
growing field, and new CNN architectures are continually

129170 VOLUME 8, 2020



K. H. Sun et al.: Vision-Based Fault Diagnostics Using Explainable Deep Learning With CAMs

being developed and applied in many applications, i.e., smart
manufacturing [20], radiology [21], system health manage-
ment [22], and to name a few.

Imbued by the aforementioned results, herein, a CNN
model with class activation maps (CAMs) is developed to
determine which parts of the image the model is focusing
on. A traditional CNN commonly behaves like an image
detector, yet the localizability of the discriminative region is
not possible to be provided [23]. On the other hands, CAMs
are the techniques to obtain the discriminative image regions
used by CNN to recognize a specific class in the image.
Roughly speaking, CAMs help us to see which regions in
the images are relevant to particular classes. It is capable
of interpreting the results of the classification. A detailed
discussion about CAMs is presented in Section III. To the
best of our knowledge, this is the first attempt to apply CAMs
in fault detection research, which is currently lacking in the
existing literature.

B. DEEP LEARNING FOR MACHINE FAULT DIAGNOSIS
USING VIBRATION DATA
Formany decades, researchers have been fascinated by neural
networks (NNs). However, conventional NNs have been used
by blending with manual pre-defined feature extraction. For
instance, Rafiee et al. [24] used a multi-layer perceptron NN
to predict gears and bearings faults in a gearbox system. How-
ever, the high performance of NN enormously relied upon
a wavelet-based feature extraction that adopts the standard
deviation of the wavelet packet coefficient [25]. A feature
representation of multiple frequency resolutions for faulty
modes was obtained using wavelet packet decomposition.
In order to avoid very large-scale NNs and to decrease the
training time, instead of directly using raw input data, feature
vectors were specified in fixed dimensions prior to being used
as input sets for the NNs.

Bin et al. [26] proposed wavelet packet decomposition to
extract fault features and NNs for rotating machinery early
fault diagnosis. Extracted features were taken as the target
input on NN, whilst the 10 types of representative rotor fail-
ures label were taken as the output of NN. Lastly, a compar-
ative study between NN and support vector machine (SVM)
for fault diagnosis of the rotor-bearing systemwas carried out
by Kankar et al. [27]. A statistical method was used to extract
features and the dimensionality of original vibration features.
From the experiment, it was evidenced that the classification
accuracy of NN slightly outperforms SVM.

From the above-listed review, it can be observed that NNs
are one of the most frequently employed classification algo-
rithms in the purview of fault diagnosis. The NNs-based
techniques presented in current literature typically possess
two-fold strides, i.e., a less automatic feature extraction that
comprises transforming of measured signals using signal pro-
cessing techniques and then fault classification using NNs.
Besides having manual design features, the NNs architecture
commonly used has a shallow model, thus restricting the

capability of NNs to learn more complex problems in fault
diagnosis.

Deep learning, unlike classical NNs, uses an unrefined rep-
resentation of the input and allows the algorithm to construct
and learn the corresponding representation of the data, e.g.,
features. Such a technique hereinafter referred to as feature
learning (FL). Following this, the work of Amar et al. [28]
used an automatic feature extraction from vibration spectrum
images for bearing fault classification based on NN. A new
infrared thermal image-based machine health monitoring
using deep learning model was also provided in [29]. In the
paper, deep learning was applied to infrared thermal video
to detect the condition of the machine. By employing the
method, a rotating machine condition was able to be detected
accurately.

In the past few years, there has been increasing research
interest in fault detection techniques using vibration signals
and deep learning [30]–[36]. For instance, Li et al. [37]
proposed augmented deep sparse autoencoder to diagnose the
gear pitting condition using raw signal of vibration. Classi-
fication of bearing faults using CNN and vibration spectrum
imagingwas studied in [38], where temporal vibration signals
were extracted using a time-moving segmentation window.
In addition, a review of condition monitoring and fault diag-
nosis of wind turbine planetary gearbox is presented in [39].
The paper reported a pertinent state-of-the-art review, pointed
out valuable open research problems, and suggested potential
research directions. Wang et al. [40] considered a new fault
detection technique for rotating machinery based on fusion
of multi-vibration-signals and layer optimized CNN. The
proposed model was validated on two practical examples, i.e.
wind power and centrifugal pump test rigs. A condition mon-
itoring of cantilever vibrating beams was introduced in [41].
The study employed deep learning classifier to recognize a
damaged and undamaged beam via time-frequency extended
signatures.

However, most current existing methods are ’black box’
models which do not reveal their internal mechanism. Conse-
quently, it is harder for human to comprehend why particular
predictions have been made. In order to make a distinction
with existing approaches, this paper extends a new applica-
tion of fault diagnosis using deep learning model with CAMs.
The proposed method is able to localize the fault instantly,
enabling fast and robust fault detection in a real-world indus-
trial setting. More specifically, this study emphasizes a ’white
box’ model [42] for fault diagnosis that make the predictions
understandable to human. The prediction model is explain-
able and understandable since it helps human deal with the
opacity of deep learning models.

III. MATERIAL AND METHODS
In this section, we briefly explain the data set, experimental
equipment, and model structure used in this paper. The expla-
nation of validating our proposed method with two different
kinds of a mechanical system is generally described in this
section.
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FIGURE 1. Acquired image data of a base-excited cantilever beam and a
spring.

FIGURE 2. Water pump used in the experiment: a) velocity sensor, b) nut
and bolt.

A. DATA COLLECTION AND VALIDATION TECHNIQUE
An image data set is extracted from the video, representing
normal and fault behavior of a vibrating mechanical system,
as shown in Figure 1. As a video is typically made up of
multiple frames (e.g., images), we are able to treat it as a
collection of images used as inputs of a deep learning model.
For this experiment, two videos were recorded for 10 seconds
by the high-speed camera (e.g., PhantomMiro C110) that has
a resolution of 1280× 800, a frame rate of 500 fps each, and
in grayscale mode. We have collected two recordings about
the machine’s condition containing 5000 images at each nor-
mal and faulty operations, respectively. The distribution of
each class in the samples is equally balanced, in which the
ratio between normal and fault is 1:1. Besides, the experiment
circumstances such as flow rate in pump, lighting, camera
location, etc. were fixed, except the nut for excitation and
base-excited cantilever acceleration.

Furthermore, the scores are specified during k-fold cross
validation (k-fcv). This implies that the original samples are
randomly split into k equal sized subsamples, in which the
individual 1 subsample is used for testing, and the rest k − 1
is used to train the CNN model. This is done k times so that
every individual subsample is used as a test set once. In the
experiment, we choose k=10, which is also known as 10-fold
cross validation (10-fcv). The performance result reported in
this paper is the average value of over 10 elements.

FIGURE 3. Measured signals.

FIGURE 4. Water pump and camera setting.

B. BASE-EXCITED CANTILEVER BEAM
In the first case of the experiment, a base-excited cantilever
beam is used to be validated by our proposed method as a
way of imitating the actual mechanical system. Also, a spring
next to the cantilever beam which has a little dependency on
vibration, is placed on purpose, and it is indirectly affected by
excitation. Image data set is acquired with two classes; one is
excited by 0.3g of gravitational acceleration while the other
is gravitationally accelerated with 0.03g. Figure 1 shows the
cantilever beam and the exciter used in this experiment.

C. WATER PUMP
The experiment in the case of a water pump is also conducted
to verify the feasibility of our proposed method for real
mechanical equipment that is comprised of a large number
of its components. The image data set is collected during the
operation in a real industrial environment. Figure 2 shows the
pump vibrated by rotating machinery. Data of the operating
water pump are separated into two classes, i.e., normal and
fault, under the looseness by manipulating the nut of the
region marked in red, as shown in Figure 2. The veloci-
ties are measured both at normal and faulty conditions, and
plotted in Figure 3. It clearly shows that looseness causes
the misalignment of the rotating shaft, resulting in a large
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FIGURE 5. An example architecture of conventional CNN.

amplitude in time and an increased peak at the 2X frequency
component [43]. Figure 4 shows the pump and camera setting.

D. CLASS ACTIVATION MAPS
The conventional CNNs can be conceptually divided into two
sections. One section is feature extraction, and the other is
classification. In the feature extraction process, a convolution
layer is used to extract the features from the rough input data,
prior to being used for classification tasks [15]. The classifi-
cation task classifies which class each input data belongs to
by taking into consideration the extracted features from the
raw input data. When we visually identify the images, we do
not look at the whole image; instead, we intuitively focus on
the essential parts of the image. CNN’s learning is almost
identical to the way a human does. When its weights are
optimized, the more critical parts are given higher weights.
However, generally, we are not able to recognize this because
the CNN goes through a fully connected layer and makes
the features extracted by the convolution layer more abstract
(see Figure 5). As CNNs are specified to deal with images,
several properties have been attached to give not only a faster
training, but also less training parameters. These properties
are briefly discussed as follows.

• Local connectivity. When dealing with an image as
input, each pixel value is not connected to every neuron
in the first layer. Instead, each neuron obtains input from
a small local group of the pixels in the input image.

• Weight sharing. It is also known as filter or kernel.
Weights are a grid structure and serve on a particular
small section of the image. Weights in CNN extract
features from the input and form a feature map. Through
weight sharing, the same features from the input are
extracted in different locations of the input. Further-
more, weight sharing improves learning efficiency by
dramatically lowering the number of the parameter
being learned.

• Pooling. After implementing a convolutional layer, pool-
ing is done. The goal is to reduce the spatial size of the
feature maps, thus reducing the number of parameters,
as well as controlling the over-fitting.

A class activation map (CAM) is a method employed
to identify the most noticeable regions that help CNN to
predict a particular class [23]. In CAM, a global average
pooling (GAP) layer is placed in the network right after
the final convolutional layer [44]. It possesses two main
characteristics: (i) shed light on how it explicitly enables the
convolutional neural network to have remarkable localization
ability, and (ii) the heat-map is the class activation map, high-
lighting the importance of the image region for the prediction.

The deep learning model is a black-boxmodel.When input
data is received, a classification result of 1 or 0 is simply
returned for the binary classification problem, without know-
ing how the classification results are derived. It is also pos-
sible for CAM to perform multi-class classification problem.
As opposed to conventional deep learning models, a CAM
is able to interpret the classification results. It is possible
to estimate the localization of the object within an image.
Through an analysis of which part of the image the model is
focusing on, we are able to interpret which part of the image
is considerably important. In addition, a CAM is a modified
convolution layer. It directly highlights the salient parts of the
spatial grid of an image. Therefore, it offers information about
where the emphasized regions of the model [23]. Figure 6
illustrates the procedure of how class activation mappings are
generated.

The feature maps of the last convolution layer can be
interpreted as a collection of spatial locations focused on by
the model. The CAM can be obtained by taking a linear sum
of the features. They all have different weights and thus can
obtain spatial locations according to various input images
through a linear combination. More formally, let a given
image, fk (x, y) denotes the feature map of unit k in the last
convolution layer at a spatial location (x, y). For a given class
c, the class score Sc is expressed as the following equation.

Sc =
∑
k

ωc
k

∑
x,y

fk (x, y) =
∑
x,y

∑
k

ωc
k fk (x, y) (1)

where ωc
k is the weight corresponding to class c for unit k .

The class activation map for class c is depicted asMc.

Mc(x, y) =
∑
k

ωc
k fk (x, y) (2)
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FIGURE 6. An example of CNN architecture with CAM.

FIGURE 7. Architecture of CAM for machine health diagnosis.

TheMc directly indicates the importance of the feature map
at a spatial grid (x, y) of class c. Finally, the output of the
softmax for class c is defined as follows.

Pc =
exp(Sc)∑
c exp(Sc)

(3)

In the case of CNN, the size of the feature map is reduced
by the pooling layer. By simple up-sampling, it is possible to
identify the region of interests (ROIs) that most relevant for
the particular class.

E. NETWORK ARCHITECTURE
The details of CAM architecture used in this work are visu-
alized in Figure 7 and summarized in Table 1. The network
is made up of 10 convolutional layers, followed by rectified

linear (ReLU) as a nonlinear function at each layer. In addi-
tion, a pooling layer is appended between consecutive layers
in order to improve the detection performance. The output
layer consists of 2 neurons, representing the two different
condition classes, i.e., normal and fault. Zero-padding is uti-
lized in order to maintain the spatial dimensions of the feature
maps unaltered throughout the model. The training is initial-
ized with a learning rate of 0.0001, whilst an optimization
function, e.g., AdamOptimizer in TensorFlow is also applied
to optimize the objective functions. The model is trained for
5000 epochs and 25 mini-batches.

F. PERFORMANCE METRICS
Some performance measures, i.e., accuracy, precision, and
recall, are used for machine health detection performance.
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TABLE 1. Proposed architecture of CNN with CAMs.

TABLE 2. Contingency table.

Accuracy denotes the ratio between the number of image
samples that are correctly classified and all the image samples
in total. The precision metric indicates the ratio between
normal image samples that are correctly classified and all
the normal image samples in total. It is also known as the
percentage of correct classification predictions in all the
machine-label conditions. Furthermore, we also calculate the
performance of classifier algorithms in terms of recall met-
ric, which represents the percentage of correct classification
predictions in all the human-label conditions. By referring to
a contingency matrix in Table 2, the aforementioned metrics
can be calculated as follows.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(4)

Precision =
TP

TP+ FP
(5)

Recall =
TP

TP+ FN
(6)

IV. RESULT AND DISCUSSION
This paper proposes that CNN, an image-based deep learning
algorithm, can be used for fault diagnosis as well as image
recognition. The feasibility of CNN & CAM algorithm for
image-based fault diagnosis is described in the experiment of
cantilever beam case. Also, we demonstrate the possibility
of applying the proposed method technique with a more
complicated mechanical system, herein water pump case,
for fault diagnosis in the actual industrial field. Dataset is
divided into training and test set at a ratio of 7:3 in both
experiments. The model is trained within the deep learn-
ing model package from TensorFlow on a single TITAN X
Pascal GPU. The architecture of the network is carefully
tuned by modifying the number of layers, channels, sizes
of kernels and strides in each layer in order to obtain the
best classification model for fault diagnosis tasks, as listed
in Table 1.

TABLE 3. Training parameters of the three machine learning algorithms.

FIGURE 8. The CAM visualizes the most vibrating regime without any
vibration sensors.

A. BASE-EXCITED CANTILEVER BEAM
Table 4 conveys the effectiveness of our proposed deep
learning model, compared to other shallow machine learning
algorithms, i.e., multilayer perceptron (MLP), random for-
est (RF) and linear support vector machine (SVM). As most
of machine learning algorithms require pre-designed feature
representation, the features are firstly extracted and then fed
into the algorithms. Particularly, the extraction techniques for
image processing could be used with global feature extrac-
tor (FE) approaches, i.e., Hu moments [45], Haralick tex-
ture [46], and color histogram [47] which have been proved
to be successful in a wide variety of computer vision tasks
such as object detection and image classification. 788 features
are totally gathered and concatenated by considering the
combination of 7 features for Hu moments, 13 features for
Haralick textures, and 768 features for a color histogram that
are able to quantify and emphasize shape, texture, and color
of the images, respectively.

After extracting, concatenating, and saving the features and
labels from the training data set, the above-mentioned shallow
machine learning algorithms are taken to create the classi-
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TABLE 4. Performance of classifiers for base-excited cantilever beam experiment.

FIGURE 9. CAM of cantilever beam during the training process.

TABLE 5. Performance of classifiers for water pump experiment.

fication models. The learning parameters of the algorithms
are listed in Table 3. It can be seen from Table 4 that feature
learning (FL) offers better and outstanding performance for
this task. It is notable that the CNN approach yields an excep-
tional result at the highest performance, 95.85% accuracy,
100% precision, and 92.33% recall, without experts’ prior
knowledge and manual design of the features.

CAM algorithm was also applied to demonstrate the atten-
tion where the CNN model distinguishing between two
classes at a high accuracy notice, as visualized in Figure 8.
The figure exhibits that the marked region of an image is
highly important for the model to discriminate one class
from the other, overlapping the class activation map with an
original image. Likewise, the region activated in red depicts
themost significant part, herein a cantilever beam, for the pro-
posed algorithm to classify two different types of conditions.
This explainable deep learning enables us to identify the most
vibrating regime from images, not any vibration sensors.

Figure 9 shows CAM results of a base-excited cantilever
beam during the model training process, representing three
dominantly activated regions in these images; a cantilever
beam, an exciter, and a spring on the table. It is clear to say
that there actually exists vibration to those activated parts in

the experiment. The most vibrating part is from the cantilever
beam, which is amplified by the exciter, while the exciter has
the second-highest vibration as a source of the acceleration.
There is also a little movement in the spring on the table since
it is not completely able to be isolated from the excitation.
At the early stage of the training, it is observed that the CAM
algorithm focuses not only on the beam and the exciter but
the spring on the table that is the relativelymeaningless region
for classifying two different classes. The focusing part moves
from the spring on the table to the beam and the exciter as
the training goes halfway and finally converges towards the
cantilever beam in the end. Hence, the highlighted region of
the CAM algorithm is gradually meeting at a point of the
beam as training of the model progresses.

B. WATER PUMP
Table 5 shows the comparative performance of CNN with
CAM and shallow machine learning algorithms for the water
pump experiment. Configurations of the models and features
are identically used as in the cantilever beam case when
classifying with those machine learning algorithms in this
experiment, whereas the structure of CNN with CAM is
slightly different from one. Additional layers are stacked
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TABLE 6. Architecture of CNN with CAMs for water pump experiment.

FIGURE 10. CAM result of water pump dataset.

for CNN with the CAM model to earn better performance
and activate more extensive areas owing to the fact that
the pump occupies more space than the cantilever beam in
the image data set. The description of the architecture is
detailed in Table 6. As expected, the deep learning method
shows the best performance of all classifiers compared in this
experiment, 100% accuracy, precision, and recall. The CAM
result for the water pump case is visualized in Figure 10,
as the same result as anticipated because of the looseness on
the bottom side nut of the system. The experimental result
can be explained that the most vibrating region is the most
significant one in fault diagnosis. From this case study, we can
conclude that explainable deep learning can assist to point out
the faulty components to repair from images.

To sum up, based on two above-mentioned experiments,
distinguishing normal and fault images are not that easy by
using naked-eye. We have also performed an experiment to
see such differences by comparing the sharpness of the vibrat-
ing area. However, the sharpness of the two images were
not significantly different. Rather than simply classifying the
images into fault or normal class, our study proposes new
approach of fault detection using CAM, where the important
feature near the vibrating part could be understandable to
human or engineers.

V. CONCLUSION
This paper presented image-based fault detection and diag-
nosis method of vibrating mechanical system using a

convolutional neural network (CNN) and class activationmap
(CAM), giving some examples of base-excited cantilever
beam and water pump system. It is evidenced that the pre-
sented approach, an feature learning (FL)-based technique,
is not only able to detect the machine’s condition but also
it is able to localize the fault instantly, enabling a real-
time and accurate fault detection. Unlike traditional shallow
machine learning algorithms that require feature extraction,
the advantage of FL is that there is no expert knowledge is
required to extract the features representation of the problem.
The FL-approach gave at least 2% accuracy improvement
over the FE-approaches, as indicated in our aforementioned
experimental result. Furthermore, since it is not straightfor-
ward to understand where in the image to observe in to
localize the fault condition, we have shown that by employing
CAM, a significant understanding of the faulty regions of the
image could be discovered. Concerning future research direc-
tions, it is interesting to perform an experiment using different
equipment settings (e.g., frame per seconds and resolution) in
order to understand the minimum settings that should be met.
Moreover, as this study only considered mechanical loose-
ness as a fault, other faults such as bearing defect, impeller
defect, misalignment, and cavitation are valuable to be further
investigated.
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