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ABSTRACT This paper presents a terrain-related method to simultaneously correct the global error trends
and local linear/nonlinear terrain-related errors of the Shuttle Radar Topography Mission (SRTM) digital
elevation model (DEM), which have not been focused in most of the previous methods. To meet this goal,
an adaptive strategy for modelling the SRTM DEM errors is first proposed, especially over mountainous
areas, based on the Bayesian information criterion. Then, the M-estimator, instead of the ordinary least
squares solver, is utilized to estimate the model parameters of the constructed model to improve the
estimation robustness. The proposedmethodwas tested over the Zhangjiajie areas of China, where the ground
surface terrain varies from plains to steep mountains. The results show that the errors of the SRTM DEM
over the region of interest decrease from 10.1 m to approximately 8.1 m after correction with the proposed
method, indicating an improvement of approximately 20%. In addition, compared with two existing and
commonmethods that can respectively correct the global error trends and local linear terrain-related errors of
the SRTMDEM, the accuracy of the corrected SRTMDEM improves by approximately 29% and 27.9% over
mountainous areas with slopes larger than 20◦ when the proposed method is used. Moreover, the proposed
method will be beneficial to the correction of other airborne or spaceborne DEM products, especially over
mountainous areas.

INDEX TERMS SRTM DEM, global error trends, local nonlinear terrain-related errors, adaptive model,
robust estimation.

I. INTRODUCTION
Digital elevation model (DEM) products play an essential
role in many studies and practical applications, such as in
geophysics, geology, hydrology, geodesy, and urban engi-
neering. Traditionally, DEM products are usually generated
by point-based geodetic surveys (e.g., GPS and precise level-
ling) that are characterized by small working areas, coarse
spatial resolution, and large time consumption. In recent
decades, advances in remote sensing have dramatically pro-
moted the progress of DEMgeneration such as using airborne
light detection and ranging (LiDAR), spaceborne optical pho-
togrammetry [1], [2] and airborne/spaceborne interferometric
synthetic aperture radar (InSAR) [3], [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

Among these methods, InSAR can generate DEMs with
some advantages, such as all-day, all-weather, and high
spatial resolution observations. Notably, the Shuttle Radar
Topography Mission (SRTM) generated a near-global DEM
(80% of the Earth’s land area between 56◦S and 60◦N)
with a spatial resolution of approximately 30 m from
11 to 22 February 2000 using airborne C- and X-band SAR
sensors [3]. The SRTMDEM is the first near-global homoge-
nous, high spatial resolution DEM product. Owing to this
advantage, the SRTM DEM product has been widely applied
in numerous fields until now, such as geology, geomorphol-
ogy, glaciology, natural hazard evaluation, and vegetation
survey studies (e.g., [5]–[11]), although the product was gen-
erated 20 years ago.

To guide the applications of this type of product, the accu-
racy of the SRTM DEM has been extensively assessed using
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elevation measurements acquired by global position system
(GPS) receivers, corner reflector arrays, ocean data, and other
DEM products such as optical-based DEMs and heliborne
DEMs [12]–[14]. The results suggest that the absolute ver-
tical error is generally smaller than 16 m, and the absolute
error of circular geolocation is less than 20 m [3]. It is noted,
however, that such an accuracy performance usually occurs in
plain and low vegetated areas. In regard to mountainous areas
and/or densely vegetated areas, the accuracy of the SRTM
DEM is significantly degraded (e.g., dozens of or even hun-
dreds of metres in elevation) [15], [16]. Previous studies have
suggested that there are three main components of SRTM
DEM errors over mountainous areas, in addition to random
errors (can be reduced by filtering): i) vegetation biases due
to the weak penetration of the X- or C-band microwave
sensors into forests [17], ii) global (or long-wavelength) error
trends [18], and iii) terrain-related (e.g., height, slope and
aspect) errors [12], [14], [19].

In recent decades, great efforts have been made to improve
the accuracy of the SRTM DEM (hereafter referred to as
SRTM DEM correction) over vegetation areas by mitigat-
ing vegetation biases using multi-source raster/surface data
(e.g., spaceborne and/or airborne LiDAR and remote sensing
images) (e.g., [17], [20], [21]). Generally, the vegetation
biases and the remaining two error sources of the SRTM
DEM can be effectively mitigated (e.g., on the order of a
few metres) if dense elevation measurements of the ‘‘bare’’
ground surface are available (e.g., obtained by LiDAR).
Therefore, the removal of the vegetation biases would not
be discussed in this paper. As for the two remaining main
error sources, a widely-used strategy for reducing them is
fusing point-wise height observations with higher accuracy
(e.g., obtained by GPS and/or ICEsat) than the SRTM
DEM [14], [22].

The core idea behind the widely-used strategy is that
firstly generating the differences between the point-wise
height observations and the corresponding SRTM DEM.
Artificial intelligence techniques (e.g., artificial neural net-
work) [23], [24] or mathematical models [14], [22] are
then used to forward correct the errors of the SRTM DEM.
In which, the mathematical model-based correction is com-
mon to use in practice, owing to the explicit relationship
between the SRTM DEM errors and the affected factors.
There are two common mathematical models used for SRTM
DEM correction: i) a spherical harmonics model (SHM) for
correcting global error trends and ii) multiple linear regres-
sion (MLR) models that relate the local terrain-dependent
errors to surface terrain factors (e.g., heights, slopes and
aspects). However, these two models have some disadvan-
tages. For instance, the SHM cannot consider the local
terrain-dependent errors; thus, it is usually used over rel-
atively flat areas. The MLR model considers the linearly
local terrain-dependent errors but does not consider the global
error trends, degrading the accuracy of the corrected SRTM
DEM. Moreover, the non-linear components of the local
terrain-dependent errors do not be taken into account in

the MLR method. These two limitations would degrade the
performance of the MLR method, especially over moun-
tainous areas where nonlinear terrain-dependent errors exist
in the SRTM DEM. To the best of our knowledge, models
that simultaneously consider global trends and local
terrain-dependent linear/nonlinear errors of SRTMDEMs are
currently lacking.

In this paper, we proposed an adaptive method for
SRTM DEM correction over mountainous areas by simul-
taneously considering the global error trends and local
terrain-dependent errors. This method can adaptively model
the linear/nonlinear terrain-related errors of the SRTM DEM
over mountainous areas based on the Bayesian information
criterion (BIC). In doing so, the MLR model is taken as a
specific case of the proposed model. In addition, the pro-
posed method estimates the model parameters using a robust
estimation solver (i.e., M-estimator) instead of the ordinary
least squares (LS) solver used in the SHM and MLRmethods
to improve the estimation robustness. Finally, the proposed
method was tested over the Zhangjiajie area of China.

II. METHODOLOGY
A. OVERVIEW OF THE SHM AND MLR MODEL
1) OVERVIEW OF THE SHM
According to Wendleder et al. [18], the global error trends
are dependent on the geological longitudes (namely E) and
latitudes (namely N) of the SRTM DEM; thus, a spherical
harmonics model (SHM) is selected to model the error trend
ftrend , i.e.,

ftrend (E,N) =
∞∑
n=0

n∑
m=0

AnmRnm (E,N)+ BnmSnm (E,N)

(1)

where Anm and Bnm are the dimensionless weighting coeffi-
cients; Rnm and Snm are the surface spherical harmonics; and
m and n are the degree and order of the SHM.

2) OVERVIEW OF THE MLR MODEL
The MLR method corrects the local terrain-related errors of
the SRTM DEM by constructing a multiple linear regression
analysis as

1H = a0 + a1S+ a2A+ a3H (2)

where 1H is the elevation differences between the SRTM
DEM elevations and the in situ measurements obtained by
levelling, GPS, or even ICEsat measurements at the field
points; S, A andH are the corresponding slopes, aspects, and
SRTM DEM elevations of the in situ locations; and P =
[a0, a1, · · · , a3]T represents the model parameters for the
MLR model. Then, the unknown P values are determined
with effective in situ elevation measurements using a LS
solver. Finally, the SRTM DEM elevation can be corrected
pixel-by-pixel based on Equation (2). The global trend errors
and high-order terrain-related errors cannot be taken into
account by the MLR model. As a consequence, the accuracy
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of the corrected SRTM DEM would be degraded, especially
over mountainous areas where nonlinear terrain-related
errors exist.

B. DEVELOPMENT OF THE ADAPTIVE
TERRAIN-DEPENDENT METHOD
As stated previously, the SRTM DEM contains three major
error sources (i.e., vegetation biases, global trend errors,
and local terrain-related errors). Hence, the difference vector
between the SRTM DEM elevation and in situ elevation
measurements, namely, 1H , can be expressed as

1H = ftrend (E,N)+ fterrain (S,A, H)+1h+ δ (3)

where E, N, H, S, and A are the vectors of the longitudes,
latitudes, elevations, slopes, and aspects of the SRTM DEM
at the collected field points; 1h denotes the corresponding
vegetation biases, and δ is the residual error term. ftrend and
fterrain denote the mapping functions of geolocation-related
(or global trend) errors and terrain-dependent errors.
As previously stated, the correction of vegetation biases of
the SRTM DEM generally requires in situ ‘‘bare’’ Earth
measurements that are usually unavailable in most cases.
Consequently, we allow the error component of vegetation
biases alone and only correct the first two error components
in this study. At this stage, the key of the proposed method
is to construct explicit models of the mapping functions of
ftrend and fterrain.

1) MODEL CONSTRUCTION FOR GLOBAL TREND ERROR
CORRECTION
A geolocation-related linear model was constructed to model
the global trend errors in this study according to [15], i.e.,

ftrend (E,N) = a0 + a1sinE+ a2cos
(
90◦ − N

)
(4)

with a0, a1, a2 being the model parameters. Unlike the SHM
presented byWendleder et al. [18] (see Equation (1)), the pre-
sented new model (i.e., Equation (4)) is consists of two
parts, i.e., a constant term (i.e., a0) and a special harmonics
model term with the maximum degree of one (i.e., a1sinE+
a2cos (90◦ − N)). In doing so, global trend errors in SRTM
DEM over a small area (extremely trended to a constant)
can be modelled. However, it should be pointed out that,
as suggested by Wendleder et al., a SHM with high degrees
(i.e., Equation (1)), rather than Equation (4), is preferred to
be used to correct the global trend errors in SRTMDEM over
a large area (regional or continental scale).

2) BIC-BASED MODEL CONSTRUCTION FOR LOCAL
TERRAIN-RELATED ERROR CORRECTION
Previous studies have suggested that the terrain-dependent
errors of the SRTM DEM products are mainly depen-
dent on the heights, slopes, and aspects of surface terrain
[12], [14], [19]. A linear relationship between the errors with
respect to the heights was revealed. Consequently, to better
correct the terrain-dependent errors, the new terrain-related

errors in Equation (3), namely, fterrain, are constructed as

fterrain (S,A, Z) = a3H + fTF (S,A) (5)

where a3 is the coefficient of height-related errors of
the SRTM DEM, and fTF (S,A) represents the slope- and
aspect-related errors. The correction function of fTF (S,A)
was designated by a linear model with respect to the
slopes and aspects in the MLR method. However, a lin-
ear (one-order) model is unsuitable for mountainous areas
where a high-order (nonlinear) model can only describe the
terrain-related errors of the SRTM DEM.

To circumvent this shortcoming, an adaptive strategy is
proposed to determine the order of fTF (S,A) in this study.
More specifically, we first generate a finite set of polynomials
with varying orders (usually one to five) with respect to slopes
and aspects. Note that it is possible to increase the likelihood
of improving data fitting by adding parameters when fitting
the models, but doing so may result in overfitting. The BIC
resolves this problem by introducing a penalty term for the
number of parameters in the model. The BIC is mathemati-
cally defined as

BIC = ln (n) k − 2L (6)

where n denotes the observation sample size, k is the number
of independent parameters, and L is the log-likelihood of
the model. Then, the model achieving the lowest BIC value
is chosen as the best model for describing the slope- and
aspect-related errors of the SRTM DEM. Due to the use of
BIC, the proposed method can construct an adaptive model
for SRTM DEM error correction. We take the polynomial
involving two-order slope and four-order aspect as an exam-
ple. The complete terrain-dependent model constructed by
the proposed method can be expressed as

1H=
[
1 sinE cos

(
90◦−N

)
H S A S2 SA

A2 A3 SA2 S2A A4 SA3 S2A2
]

a0
a1
...

a14

 (7)

To simplify the following statement, we rewrite
Equation (7) with a matrix formation as

1H = B · X (8)

where X denotes the model parameters, and B denotes
the model factor vectors. Note that the MLR method
(Equation (2)) is a special case of Equation (8) where the
remaining parameters are all zeros, except for a0 and a3 ∼ a5.
It should be pointed out that the vegetation biases in SRTM
DEM are dependent on the terrain-related errors. Therefore,
Equation (8) is likely to correct the hybrid errors in SRTM
DEM associated with vegetation and surface terrain, instead
of the terrain-related errors only, especially over those moun-
tainous areas covered by vegetation.
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C. ROBUST ESTIMATION OF PARAMETERS OF THE
TERRAIN-DEPENDENT MODEL
In addition to model errors, the accuracy of the corrected
SRTM DEM primarily depends on the uncertainties of the
parameter estimates. Differentiating from the previous SHM
and MLR methods where the LS solver is used, the pro-
posed method estimates the parameters of the constructed
terrain-dependent model using robust estimation due to the
following factors. The parameters are estimated using in situ
elevation measurements that may contain gross errors (i.e.,
very large errors), thereby dramatically reducing the accuracy
or even causing an incorrect result for the corrected SRTM
DEM. Consequently, it is essential to mitigate the influence
of gross errors. In addition, when in situ elevation measure-
ments are observed by different techniques, such as GPS,
precise levelling, and ICEsat, it is crucial to designate suitable
weights for in situ elevation measurements to improve the
accuracy of the model parameter estimates.

The robust estimation methods are capable of retrieving
robust solutions by adaptively designating weights for the
observations. Hence, we select the M-estimator [25], [26],
a widely used robust estimation method, to estimate the
model parameters of the constructed model. The robust solu-
tions of the model parameter vector X̂ can be obtained
from Equation (8) by iteratively reweighting the following
equation:

X̂
k+1
=

[
BTPkB

]−1
BTPk1H (9)

until
∥∥∥X̂k+1

− X̂
k
∥∥∥ is smaller than a designated thresh-

old (e.g., 10−4). Let the number of in situ elevation
measurements be n. Thus, the weighting matrix Pk =
diag

[
Pk1, P

k
2, · · · , P

k
n
]
in the kth iteration can be deter-

mined by [27]

P(i)k =


1,

∣∣∣µ(i)k ∣∣∣ ≤ b
b
/∣∣∣µ(i)k ∣∣∣ , b <

∣∣∣µ(i)k ∣∣∣ ≤ c
0,

∣∣∣µ(i)k ∣∣∣ > c

(10)

where P(i)k denotes the i main diagonal entry of Pk , µ(i)k =
e(i)k /δk is the standardized residual with e

(i)
k being the residual

of the ith observation equation and δk being the standard devi-
ation of the kth iteration, and b and c are constants (usually
designated as 1.5 and 2.5, respectively).

Equation (10) indicates that, for an observationwith a gross
error (i.e.,

∣∣∣µ(i)k ∣∣∣ > c), the M-estimator can designate a zero
weight to remove its contribution to the model parameter
estimation, avoiding the influence of gross errors on the
model parameter estimates. In addition, the M-estimator can
adaptively designate weights to other observations without
prior weight information that the previous LS solver can-
not achieve, thereby improving the accuracy of the model
parameter estimates. It should be pointed out that the inde-
pendent variables in Equation (8) (i.e.,B) have different units,

such as degrees for longitude and latitude and metres for
height. Therefore, prior to model estimation, the normaliza-
tion of these independent variables must be conducted.

B′ = 2 ∗
B−min (B)

max (B)−min (B)
− 1 (11)

where B′ is the normalized value of the variable B.

D. SRTM DEM CORRECTION WITH THE
TERRAIN-DEPENDENT MODEL
With the robust estimates of the model parameters X̂ , the
pixelwise correction of the SRTM DEM Ĥ can be achieved
by

Ĥ = H1 + B1 · X̂ (12)

where H1 is the elevation vector of the SRTM DEM at each
pixel and B1 is the coefficient matrix involving the new
independent variables (e.g., longitudes, latitudes, elevation
slopes, and aspects) of the SRTM DEM at each pixel. The
flowchart of the proposed method is shown in Figure 1.

FIGURE 1. Flowchart of the proposed method for SRTM DEM correction.

III. EXPERIMENTS AND RESULTS
A. STUDY AREA AND DATA PROCESSING
The Zhangjiajie area in Hunan Province of China was
selected to test the proposed method. Figure 2 shows the
SRTM DEM over the selected region of interest (ROI). The
terrain in the northern part of the ROI is relatively flat, with
elevations varying from approximately 118 to 630 m and
slopes ranging from 0◦ to 13◦. The terrain in the southern part
is mountainous with elevations ranging from approximately
130 to 1452 m and slopes varying from 0◦ to 72◦. The land
cover of the ROI dominates by forestry (about 80%), in addi-
tion to residential and agricultural areas. The various types of
ground surface terrain in the ROI provide a comprehensive
performance evaluation of the proposed method. In addition,
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FIGURE 2. Elevations (a), slopes (b), and aspects (c) of the SRTM DEM over the Zhangjiajie area, Hunan Province, China. The magenta triangles and black
stars in (a) denote the locations of in situ GPS elevation measurements used for parameter estimation and accuracy validation.

1051 in situ elevation measurements (see the black asterisks
and magenta triangles) were collected using either the Con-
tinuously Operating Reference Stations of Hunan Province or
other GPS surveys. The locations of the 1051 GPS points are
marked by black asterisks and magenta triangles in Figure 2.
The in situ elevations at these points range from 139 to 939m.
These in situ measurements can provide estimates of model
parameters and can be used to evaluate the accuracy of the
corrected SRTM DEM.

The GPS elevation measurements refer to the World
Geodetic System 84 (WGS 84) geoid (i.e., ellipsoidal height),
whereas the SRTM DEM elevations refer to the Earth Gravi-
tational Model 96 (EGM 96) geoid (i.e., orthometric height).
Hence, prior to correcting the SRTM DEM, all GPS height
measurements in the WGS 84 geoid, namely, HWGS84, were
transferred to the EGM 96 geoid (namely, HEGM96) with

HEGM96 = HWGS84 − N (13)

where N is the geoid undulation.

B. MODEL CONSTRUCTION OF SRTM DEM ERROR
CORRECTION
Figures 3(a) and 3(b) show the errors of the SRTM DEM
elevations at the 1051 in situ GPS observation points with
respect to the corresponding aspects and slopes. As seen,
there are no obvious linear relationships between the SRTM
DEM errors and slopes and aspects. The results show that
the SRTM DEM errors exhibit a nonlinear relationship with
respect to the slopes and aspects. To model the SRTM DEM
errors as accurately as possible, Equation (4) is first uti-
lized to model and further remove the global error trends
from the SRTM DEM. Then, the BIC-based adaptive strat-
egy described in section II.A is used to model the local
terrain-related errors of the SRTM DEM with respect to the
heights, slopes and aspects from the residual errors after
global error trend removal. The results show that a polyno-
mial with one-order height, two-order slopes, and four-order
aspects is the optimized model among all other polynomials.
Finally, the BIC-based adaptive model was integrated with

FIGURE 3. The absolute error of the SRTM DEM at the 1001 in situ GPS
measurements with respect to aspect (a) and slope (b).

the model for global trend error correction to build the final
model (see Equation (7)).

C. PARAMETER ESTIMATION AND ERROR CORRECTION
OF SRTM DEM
Prior to SRTM DEM correction, the parameters of the con-
structed model (i.e., Equation (7)) should be determined.
Equation (7) involves 15 model parameters (a0 to a14); thus,
at least 15 effective observations are theoretically required
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FIGURE 4. (a): Corrected SRTM DEM over the ROI using the proposed method; (b): difference between the corrected and the original SRTM DEM; (c) cross
validation between the corrected SRTM DEM and in situ elevations at the 50 GPS heights (their locations are marked by black stars in (a)).

to estimate all of the unknown parameters. In this study,
1051 GPS-measured observations were collected over the
ROI, and all of the observations can be theoretically used
to model the parameter estimations. However, for the sake
of accuracy validation, 50 in situ points (their geolocations
are shown by the black stars in Figure 2) with nearly uni-
form distributions of slopes and aspects were selected. Then,
the remaining 1001 in situ measurements were utilized to
model the parameter estimations of the constructed model
using the M-estimator. Finally, the SRTM DEM correction
was conducted pixel-by-pixel based on the constructed model
and its parameter estimates.

Figure 4(a) shows the SRTM DEM after correction, and
Figure 4(b) shows the difference between the original (see
Figure 3(a)) and the corrected SRTM DEM over the ROI.
The results show that the maximum difference is approxi-
mately−50m, and the differences are mainly attributed to the
local terrain-related errors and global trend errors [28], [29].
To quantitatively evaluate the accuracy of the SRTM DEM
error correction, we compared the corrected SRTM DEM
elevations with those of the 50 selected in situ points (see
red triangles in Figure 4(c)). The result shows a good agree-
ment between both, with an RMSE of approximately 8.1 m,
indicating an accuracy improvement of approximately 20%
with respect to the RMSE of the SRTM DEM without error
correction (i.e., 10.1 m). The results suggest that the proposed
method can effectively improve the elevation accuracy of the
SRTM DEM.

IV. DISCUSSIONS
A. COMPARISON WITH THE PREVIOUS SHM AND MLR
METHODS
We compared the proposed method with the two common
mathematical model-based methods, namely, the SHM and
MLR methods, in this section. The SRTM DEM was cor-
rected using both the SHM and MLR model based on the

same 1001 in situ GPS measurements. The cross validation
of the corrected results with 50 in situ GPS measurements
is shown in Figure 4(c) (marked by black rectangles and
green circles). In addition, the RMSEs of the SHM- and
MLR-corrected SRTM DEM are listed in Table 1. For the
sake of comparison, the RMSE of the proposed method is
added to this table.

As shown in Table 1, the SHM and MLR methods
improved the accuracy of the SRTM DEM with aver-
age accuracy improvements of approximately 2% and 4%,
respectively. However, the RMSEs of the SHM- and MLR-
corrected results were 9.9 and 9.7 m, respectively, greater
than that of the SRTM DEM corrected by the proposed
method (i.e., 8.1 m). In other words, the accuracy of the
method proposed in this study is improved by approximately
18.2% and 16.5% with respect to the accuracies of the SHM
and MLR methods.

TABLE 1. Accuracy comparison of the corrected SRTM DEM using the
SHM, MLR, and proposed methods.

To further analyse the results, we calculated the RMSEs of
the corrected SRTM DEM with these three methods at slope
intervals of 0◦∼10◦, 10◦∼20◦, and >20◦, and the results are
also provided in Table 1. For the slope range of 0◦∼10◦,
the accuracies of the corrected SRTM DEM using the SHM,
MLR and the proposed methods are close (i.e., 7.2, 7.2 and
7.1 m, respectively). In regard to the slope range from 10◦

to 20◦, the RMSEs of the SRTM DEM corrected by the
SHM and MLR method are 8.2 and 7.5 m, respectively,
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while that of the proposed method is approximately 6.5 m,
indicating accuracy improvements of approximately 20.7%
and 13.3%, respectively. This result is expected because the
SHMmethod does not take terrain-related errors into account.
When the slopes of the SRTM DEM are larger than 20◦,
the RMSEs of the SHM- and MLR-corrected SRTM DEM
rapidly increase to 18.6 and 18.3m, respectively, whereas that
of the proposedmethod slowly increases to 13.2m, indicating
accuracy improvements of approximately 29% and 27.8%,
respectively, with respect to the SHM and MLR methods in
this study. This result suggests that the proposedmethod has a
better accuracy performance on SRTM DEM correction over
mountainous areas (especially for slopes>20◦).

B. COMPARISON WITH THE MERIT DEM
To further show the advantage of the proposed method,
we compared the corrected SRTM DEM using the proposed
method with the Multi-Error Removed Improved-Terrain
DEM (MERIT DEM) achieved by Yamazaki et al. [28]. The
comparison with the GPS heights at the selected 50 points
shows a RMSE of the MERIT DEM of about 18.3 m, which
is higher than the RMSE of 8.1 m obtained in this paper.
In addition, the RMSEs of theMERITDEM for the areas with
slope≤ 10◦, 10◦ < slope≤ 20◦, and slope>20◦ are 6.7, 15.9,
and 26.4m, respectively. The results suggest that the accuracy
of the MERIT DEM is slightly higher than the corrected one
in this paper (i.e., 7.1 m) in the case of slope≤ 10◦. However,
for those areas with slopes larger than 10◦, the accuracy of the
MERIT DEM is lower than the corrected ones (i.e., 6.5 m for
10◦ < slope ≤ 20◦ and 13.2 m for slope > 20◦). This fact,
in turn, shows the advantage of the proposed method; that
is, it could effectively improve the accuracy of SRTM DEM
products, especially over mountainous areas.

The possible reasons for the lower accuracy of the MERIT
DEMwith slope>10◦ are analyzed below. Firstly, theMERIT
DEM has a spatial 3′′ resolution (about 90 m), which is lower
than 30 m SRTM DEM used in this paper. For mountain-
ous areas (e.g., slope>10◦), spatially averaging 30 m SRTM
DEM (the commonmethod for generating 90mSRTMDEM)
to 90 m MERIT DEM would cause errors, even though error
correction has been made by Yamazaki et al. [28]. Secondly,
the lower accuracy may be caused by the extra errors in the
data (i.e., tree height bias) used to MERIT DEM correction.

C. INFLUENCE OF TERRAIN-RELATED MODELS ON SRTM
DEM CORRECTION
The proposed method develops a BIC-based strategy to
adaptively determine the optimized polynomial among a set
of polynomials with different orders of slopes and aspects
to describe the terrain-related errors of the SRTM DEM.
To intuitively show the influence of terrain-related errors on
the accuracy of the SRTMDEM correction, we compared the
RMSEs of the corrected SRTM DEM by varying only the
orders of slopes and aspects in Equation (8), and the results
are plotted in Figure 5. The model parameters were deter-
mined using the M-estimator based on the 1001 selected in

situ GPS measurements described in Section III.C. As shown
in Figure 5, terrain models have a great impact on the accu-
racy of the SRTM DEM correction. For example, the RMSE
is approximately 9.8 m when the linear polynomial with
respect to aspect and slope (i.e., the order combination
of (1, 1)) was selected. However, the RMSEs gradually
decreased when high-order aspects were considered (e.g.,
8.2 m for the combination of (1, 5)). When the polynomial
with a second-order slope and a fourth-order aspect was
selected, the accuracy of the corrected SRTM DEM reached
the highest (i.e., approximately 8.1 m) among all other
defined order combinations in Figure 5. This result suggests
that the developed BIC-based strategy for adaptive model
selection is feasible and reliable.

FIGURE 5. Accuracy comparison between the used terrain models that
combine different orders of slopes (1 or 2) and aspects (1 to 5).

D. INFLUENCE OF IN SITU MEASUREMENTS ON SRTM
DEM CORRECTION
1) INFLUENCE OF GROSS ERRORS OF IN SITU
MEASUREMENTS
As stated previously, in situ elevation measurements
inevitably contain errors or even possibly gross errors. Tomit-
igate the influence of gross errors, a robust estimator named
theM-estimator, instead of the LS solver used in the SHMand
MLR methods, is utilized to estimate the model parameters.
To intuitively present the influence of gross errors on the
SRTM DEM correction using the M-estimator and the LS
method, we first randomly selected 1% to 10% (referred
to as the percent ratio of gross errors) of the in situ GPS
elevations and then randomly added gross errors ranging from
30 to 50 m to the selected GPS points. Then, the M-estimator
and LS methods were used to estimate the model parameters
for Equation (7). Finally, the SRTM DEM was corrected
based on the parameter estimates using the M-estimator and
LS solvers. The RMSEs of the corrected SRTM DEM with
different percent ratios of gross errors (i.e., from 1% to 10%)
using different estimators are plotted in Figure 6.

130884 VOLUME 8, 2020



C. Zhou et al.: Adaptive Terrain-Dependent Method for SRTM DEM Correction Over Mountainous Areas

FIGURE 6. Influence of in situ measurements with different errors on
SRTM DEM correction.

Figure 6 shows that the RMSEs of the corrected
SRTM DEM increase exponentially from approximately
8.1 to 23.4 m as the percent ratios of gross errors increase
from 0% (no or a few gross errors) to 10% when the LS
method is used. In contrast, the RMSEs gradually increase
from 8.1 to 11.2 m when the M-estimator is utilized, indicat-
ing an accuracy improvement from 0% to 52.1%. In addi-
tion, the RMSEs of the SRTM DEM corrected using the
M-estimator remain nearly constant when the percent ratios
of gross errors increase from 0% to 6%. This result suggests
that the M-estimator can effectively reduce the influence of
gross errors when the percent ratios are smaller than 6% in
this study.

2) INFLUENCE OF THE NUMBER OF IN SITU
MEASUREMENTS
As stated above, the parameters of the constructed model
can be theoretically estimated, provided that the number of
‘‘effective’’ in situ measurements is equal to the number of
model parameters. The term ‘‘effective’’ means that the fea-
tures of the selected in situ measurements (e.g., number and

spatial distribution) could mathematically constrain the error
trends described by the constructed model if the model error
is negligible. In this section, we first discuss the influence
of the number of selected in situ GPS measurements on
the SRTM DEM correction. More specifically, we formed
25 groups of in situ GPS measurements with varied numbers
from 30 to 1000 by considering a normal distribution with
respect to both the slopes and aspects. Then, we estimated
the model parameters based on these 25 groups of in situ
measurements using the M-estimator and forward corrected
the SRTMDEM. To reduce randomness, the above steps were
repeated 100 times, and the averaged RMSEs of the corrected
SRTMDEMswith respect to different numbers of in situ GPS
measurements are plotted in Figure 7(a).

As shown, the RMSE of the corrected SRTM DEM was
15.8 m when 30 in situ GPS measurements were selected for
model parameter estimation. With an increase in the number
to approximately 100, the RMSE exponentially decreases to
approximately 9.3 m, showing an accuracy improvement of
approximately 8%.With the continual increase in the number
to 200, the RMSE decreases to approximately 8.8 m but with
a much smaller rate of decrease with respect to that when the
number increases from 30 to 100. Following that, the RMSE
remains stable at approximately 8.1 m, even though the num-
ber increases up to 1000. This result suggests that the number
of in situ measurements has a great influence on the SRTM
DEM correction. Consequently, it is beneficial to select more
available in situ measurements to improve the accuracy of the
corrected SRTM DEM using the proposed method.

3) INFLUENCE OF THE SPATIAL DISTRIBUTION OF IN SITU
MEASUREMENTS
In this section, the influence of the spatial distribution of in
situ measurements on SRTM DEM correction is discussed.
To this end, we first divided the 1001 in situ measurements
into several groups in accordance with the slope (i.e., <5◦,
<10◦, <15◦, <20◦, <25◦, <30◦, <35◦, <40◦, and <45◦)
and aspect thresholds (i.e., <60◦, <120◦, <180◦, <240◦,
<300◦, and <360◦). To reduce the influence of the number
of in situ measurements, we chose 200 GPS measurements
(if sufficient) from each group using the following criteria.

FIGURE 7. Influence of the number (a), slope distribution (b), and aspect distribution (c) of in situ elevation measurements on the accuracy of SRTM DEM
correction. Note that a logarithmic scale is used for the RMSEs (y-axis) for demonstration purposes in (c).
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When the influence of slopes was discussed, the aspect dis-
tribution of the 200 chosen GPS measurements should be as
uniform as possible, and vice versa. Finally, the SRTM DEM
was corrected based on these chosen in situ measurements
using the proposed method.

Figures 7(b) and 7(c) show the RMSEs of the corrected
SRTM DEM using in situ GPS measurements with different
slope and aspect distributions. As shown in Figure 7(b),
the RMSE is approximately 198.2 m when in situ mea-
surements with a slope threshold smaller than 5◦ (nearly
flat) were used. When the slope threshold increased to 35◦,
the RMSE exponentially decreased to approximately 9.4 m.
Then, the RMSE slightly decreased until it remained stable at
approximately 8.1 m. In addition, Figure 7(c) shows that the
RMSE was approximately 5031.3 m when the aspect thresh-
old was designated as 60◦. Such a large RMSE indicates
that the SRTM DEM correction failed in this case. In fact,
this result is expected because the in situ measurements with
aspects smaller than 60◦ have difficulty constraining the
highly nonlinear errors with respect to the aspects (four orders
in this study, see Figure 3(b)), resulting in significant errors
in model parameter estimates relating to the aspects. Due to
the aspect-related high-order nature in the constructed model
(see Equation (7)), the error in the model parameter estimates
would be dramatically magnified and forward propagated
to the corrected SRTM DEM (causing an incorrect result).
However, if the aspect threshold was set to 360◦ (i.e., cover-
ing all aspect ranges), the RMSE dramatically decreased to
approximately 8.1 m. This result suggests that it is important
to select uniformly distributed in situ measurements along the
slope and aspect ranges of the ROI, especially for those areas
with high-order errors relating to aspects and/or slopes.

V. CONCLUSIONS
This paper presents an adaptive method for simultaneously
correcting the global error trends and the local linear/
nonlinear terrain-related errors of the SRTM DEM. The test
over the Zhangjiajie area of China shows that the RMSE of
the corrected SRTMDEM is approximately 8.1 m, indicating
an improvement of approximately 20% with respect to the
original result. In addition, we compared the corrected results
with two common methods, namely, the SHM and MLE
methods, that separately correct the global error trends and
local linear terrain-related errors of the SRTM DEM. The
results show average improvements of approximately 18.2%
and 16.5%. In regard to mountainous areas with slopes larger
than 20◦, the accuracy improvements reach approximately
29% and 27.9%. This finding suggests that the proposed
method is feasible and exhibits better accuracy performance
compared with the previous SHM andMLEmethods. Finally,
we analysed the influence of gross errors, the number, and
spatial distribution of in situ measurements. The results
suggest that, owing to the utilization of robust estimation,
the gross errors can be effectively mitigated if the percent
ratio of gross errors ranges from 0% to 6%. Furthermore,
a large number of situ measurements with uniform slope

and aspect distributions is beneficial to improve the accuracy
of the corrected SRTM DEM. Consequently, more possible
measurements should be collectedwhen the proposedmethod
is used for SRTM DEM correction in practice.

However, we should stress that only the SRTM DEM in a
small area (about 1200 km2) was selected to test the proposed
method. Therefore, testing the proposed method in a large
area (e.g., regional or even continental scale) will be our
future topics. In addition, we will focus on the capability
and performance analysis of the proposed method for SRTM
DEM error correction under different land uses and terrain
characteristics, in order to better guide the practical applica-
tion scopes.
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