IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 3, 2020, accepted July 14, 2020, date of publication July 16, 2020, date of current version July 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3009826

Virtual Cluster Deployment Model for
Large-Scale Data Processing Jobs

YUNPENG CAO AND HAIFENG WANG

School of Information Science and Engineering, Linyi University, Linyi 276005, China
LinDa Institute of Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Linyi University, Linyi 276000, China

Corresponding author: Haifeng Wang (gadfly7 @126.com)
This work was supported in part by the Shandong Provincial Natural Science Foundation, China, under Grant ZR2017MF050, and in part

by the Shandong Province Key Research and Development Program of China under Grant 2018GGX101005, Grant 2019GGX101003, and
Grant 2019GNC106027.

ABSTRACT The virtual cluster needs to deploy virtual nodes with different computing modes for
Large-scale data computing jobs including many tasks with different computing modes. There are resource
unbalance among the virtual cluster subsets, which is consisted of virtual nodes with the same computing
mode. So the resource utilization of virtual cluster is poor due to the time-varying and complexity of work-
loads. To solve these issues, a novel dynamic deployment model based on Docker was proposed to optimize
resource configuration of virtual cluster. Hybrid deployment scheme includes coarse-grained deployment
and fine-grained deployment in order to absorb the mutation of resource demand when processing the
jobs encapsulated with complex computing logic. This deployment model can reduce job waiting time
and improve performance by providing more resource for running jobs. The coarse-grained deployment
mechanism has the ability of decreasing deploying overhead and improving stability from global optimal
perspective. And the fine-grained deployment mechanism can increases the deploying accuracy from local
optimal perspective. The experiments show that this model can improve the execution efficiency of job by
2.3 percent compared with static deploying scheme and improve the virtual CPU utilization about 7.9 to

25.9 percent compared with other approaches.

INDEX TERMS Large-scale data process, virtual cluster, dynamic deployment, Docker container.

I. INTRODUCTION
A. MOTIVATION
The large-scale data analytics jobs require a significant
amount of computing power and memory capacity that
can be only obtained via distributed computing. Virtual
cluster deployed on cloud infrastructures have introduced
many benefits compared to physical cluster, avoiding upfront
investments and the ability to adapt execution environment
to applications [1]. Virtual cluster is significant computing
infrastructure for the large-scale data analytics jobs.

The Large-scale data analytics jobs process encapsulates
a complex computing logic into independent or dependent
stages that belong to different computing modes [2]. So the
large-scale data analytics job covering different comput-
ing modes includes batch processing task, stream comput-
ing task, memory computing task, graphic computing task,
etc. Batch computing is a typical mode from MapReduce

The associate editor coordinating the review of this manuscript and

approving it for publication was Feiqi Deng

131870

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

including map phase and reduce phase. It is suitable to deal
with tasks, which are offline data process task and sensitive to
throughput. Memory computing needs to iteratively process
the same big dataset, which has to be kept in memory to
reduce I/O latency. Stream computing divides continuous
data streams into bounded streams, which is very sensi-
tive to latency. Graphic computing may be transmitted a
sequence tasks with dependency relations based on directed
acyclic graph. Each computing mode has its unique resource
request characteristics. In short, the Large-scale data analytics
jobs need virtual nodes with different computing modes.
Therefore the virtual cluster configuration and virtual node
deploying are important not only to improve performance of
jobs but also to reduce resource waste.

Container is experiencing a rapid development with sup-
port from industry and being widely applied in Large-scale
virtual resource management [3]. Recently due to the increas-
ing popularity of Docker, there is a trend to run Hadoop,
Spark and Flink applications on Docker containers to build
virtual cluster [4]. However, little attention has been paid to

VOLUME 8, 2020

https://orcid.org/0000-0001-5381-1657
https://orcid.org/0000-0002-0257-5647

Y. Cao, H. Wang: Virtual Cluster Deployment Model for Large-Scale Data Processing Jobs

IEEE Access

the resource deploying of virtual cluster based on Docker for
large-scale data analytics jobs. However, the virtual cluster
also exposed some drawbacks for large-scale data analytics
applications. There are two issues need to be solved:

o The diversity of computing modes hindered the massive
adoption of virtual cluster for large-scale data analytics
applications. The virtual resource utilization rate is poor
in computing process of Large-scale data analytics jobs.
The researches find that the virtual resource utilization
is below 17% due to the fact that virtual cluster man-
agements for large-scale data process focus on MapRe-
duce model rather than considering various computing
modes.

o The virtual resource utilization is poor in the computing
process of large-scale data analytics jobs. there exist var-
ious tasks with different computing modes. This requires
that the virtual cluster needs to be divided into differ-
ent subset to handle the tasks with different computing
modes. These subsets of virtual cluster are responsible
for different computing modes. However the workloads
among different subsets of virtual cluster in real time
are unbalance. This leads to the low utilization of virtual
resource.

To overcome above the issues, the deployment model of
virtual cluster based on Docker was proposed to scale in
or out virtual nodes. This model can dynamically adjust the
size of subsets in virtual cluster to balance the workload in
real time and improve the performance of Large-scale jobs.
It may be used by cloud service provider or cluster manager
to optimize virtual resource configuration. It focuses on the
resource configuration and management of virtual clusters to
adapt to the workloads of large-scale data analytics process
with different computing modes.

B. RELATED RESEARCH

Container is emerging as a promising virtual solution for
users and has gained great popularity in industry. Docker
with lightweight design and near-native performance turned
containers into a mainstream technology.

Performance evaluation and analysis is the foundation for
container application and optimization. There has been much
research related to virtualization performance. Zhanibek et al.
compared a range of existing container-based technologies
for cloud computing system and evaluated virtualization
overhead. The experimental results may provide some opti-
mization direction of how to design Docker [4]. Truyen et al.
evaluated the performance overhead of Docker Swarm and
Kubernetes for deploying and managing NoSQL database
clusters. They find a number of disadvantages of containers
for NoSQL database workloads and propose some sugges-
tions of network design to reduce virtualization overhead [5].
Andrew et al. investigated the use of containers in super-
computing and cloud system. They analyzed the performance
overhead and highlighted a path for container technology in
supercomputer system [6]. PyMon was designed to evalu-
ate performance of Docker Swarm and Kubernetes in fog

VOLUME 8, 2020

computing system [7]. Ahmed analyzed the performance of
container in fog computing environments, which are often
made of very small computers. They proposed three opti-
mizations to reduce container deployment time [8]. Mavridis
conducted experiments to investigate how the container per-
formance is affected by the additional virtualization layer
of virtual machine. Docker is applied to deploy and run
containers on KVM hypervisor [9].

Container is increasingly applied into the large-scale data
process field. The application of container in Large-scale
data process is discussed as follows: Zeng et al. proposed
an elastic big data processing system based on Spark and
Docker to analyze large-scale data from networks perspec-
tive [10]. DCSpark is a framework that leverages Docker
containers that allows users to run Spark applications. The
results shows performance of DCSpark is very close to
native Spark cluster [11]. Jin et al. evaluated performance
of distributed data processing systems, Hadoop and Spark,
on different container platforms. They revealed that the per-
formance advantage of LXC and Docker are different with
different workloads [12]. Ye et al. focused on performance
tuning and modeling of Spark on Docker container driven
cloud platform. They identified the key parameters affecting
performance of Spark on Docker and detected the inter-
ference of performance between various big data applica-
tions [13]. Naik proposed Docker container-based technology
for Hadoop and Pachyderm. He provided the detailed design
scheme and performance comparison [14].

Container deployment optimization and virtual resource
scheduling optimization are significant to virtualization tech-
nology. EC4Docker was designed and integrated with Docker
Swarm to create auto-scaled virtual clusters of containers
dedicated to tackle scientific workloads [2]. Octopus is a new
cloud orchestrator that enables cloud independent infrastruc-
ture deployment at user level. It can help Docker Swarm
deploy containers on hybrid clouds in order to balance
workloads among different cloud systems [15]. Zhang et al.
modeled container scheduling as an integer linear program-
ming and proposed an effective and adaptive scheduler eas-
ily integrated into container orchestration frameworks [16].
Chang et al. aimed at developing a generic platform to facil-
itate dynamic resource-provisioning based on Kubernetes.
This platform can dynamically monitor resource require-
ments and usage of running workloads. Then it adjusts
the resource provision to prevent from resource overprovi-
sioning and underprovisioning [17]. Lin et al. proposed a
multi-objective container scheduling algorithm Multiopt that
considers key factors of performance. They combined these
factors into a composite function to solve the multi-objective
optimization problem. And it was implemented based on
Docker Swarm [18].

The current researches indicate it is a trend to apply con-
tainer technology to build and manage large-scale data pro-
cess infrastructure. However, on the one hand, the researchers
rarely consider the difference of resource requirement among
different computing modes. On the other hand, there lacks

131871

IEEE Access

Y. Cao, H. Wang: Virtual Cluster Deployment Model for Large-Scale Data Processing Jobs

container deployment model for large-scale data analytics
jobs to improve virtual resource utilization.

C. OUR CONTRIBUTION

The purpose of this work is to present a solution to dynami-
cally adjust virtual nodes with low deployment overhead and
thus obtain the efficient deploying performance and improve
virtual resource utilization on two sides. The main contribu-
tions of this paper are as follows:

o Propose hybrid deployment model for virtual cluster
with containers, which is in contrast to the static deploy-
ment strategies in applications. The benefits are many
fold: to reduce unnecessary deploying complexity and
to increase deployment efficiency. And to increase accu-
racy of virtual node deployment and resource utilization
from the global perspective.

o Integer coarse-grained and fine-grained strategies to
effectively reduce deployment overhead. What is crucial
is that the hybrid deployment model has advantages of
both coarse-grained strategy and fine-grained strategy.
Additionally, introduce the prediction model to estimate
resource demands before users submit jobs.

« Define the subcluster for the subset of virtual cluster and
solve the resource unbalance among different subclus-
ters in large-scale data analytics process. This can absorb
the abrupt resource demand in specific subcluster and
achieve the tradeoff of virtual resource among subclus-
ters. On the other hand, it can optimize the performance
through increasing virtual resource for specific jobs.

The rest of this paper is organized as follows. Section 2

gives the problem description and relevant terminology.
Section 3 presents the detailed deployment approach includ-
ing system design, model analysis and algorithms. Section 4
presents the experimental results and analysis. Section 5 con-
cludes this paper.

Il. PROBLEM DESCRIPTION

A. PROPOSED PROBLEM

In cloud data centers, the system will handle large number
job requests of large-scale data analytics. However the Large-
scale data analytics jobs comprise a set of dependent tasks,
which belong to different computing modes. Here we called
such job as complex job. For example, Fig. 1 provides a
complex job, which has many tasks represented by different
circles. This complex job has three computing stages. In the
first stage, there are three stream computing tasks that need

Stream computing task

.., Q@

&) o ﬂ Stream Computing | q
! 1 | |

L SubCluster __ BB Memory computing task
cCe_______________ bt I
| Memory Computing I |

[J ® i SubCluster | NP
CD 7777777777777 Batch Computing
SubCluster
Complex Job

First Phase Second Phase Third Phase

FIGURE 1. Complex job execution process.

131872

to be submitted to virtual cluster with stream computing
mode. Meanwhile two tasks need to be processed by memory
computing virtual cluster. Note that the first stage and the
second stage are concurrent execution relationship. Finally,
the last two tasks complete in batch computing cluster.

Definition 1 (Complex Job): It can be defined as J = (Tg,
T2, T3, Th, T3, .. .,T]g‘), T denotes the task in complex
job, the symbols of subscript s, m, b, g represent stream
computing task, memory computing task, batch computing
task and graphic computing task, respectively. Such as, Ty is
a task, which should be sent to virtual cluster running with
stream computing mode. The superscript represents the task
sequence. For example, Ti must be executed before Tg.

The cloud system will assign and configure virtual
resource when users submit complex job requests. As shown
in Fig. 2, the upper part presents the requirement of com-
plex jobs in different computing stages. The lower part of
Figure 2 denotes the utilization of virtual resource. Black
indicates virtual node is used and white is free. To handle
different tasks with different computing modes, the virtual
cluster is to be divided into different subsets. The virtual
nodes subset is called subcluster, which is used to process
tasks with specific computing mode. Such as batch comput-
ing subcluster, stream computing subcluster, memory com-
puting subcluster and graph computing subcluster. Note that
subcluster is the subset of virtual cluster in order to describe
our work conveniently.

Wb As O®n @
JOb]
JObz

| EEEEOEEA —> AA® |

| @O OO0 O @000 O
| | JOZOXGIOXONN 1 XOXel0Z,

Job,

EEESEEe—> AO®
----------- Stage; -------Stagej; --
SubCluster
I NN, T 1
. \1\‘------ mOOO00 !
I Virtual "y
| Cluste s ALAAA L AAAAAN i

|
|

FIGURE 2. Virtual SubCluster for different computing modes.

Definition 2: SubCluster is a virtual node set, which is
deployed to support the specific computing mode and enables
appropriate tasks to execute on it. The virtual cluster consists
of different subclusters with different computing modes. The
virtual cluster denoted as VC is built based on physical
cluster. Here the virtual cluster includes four subclusters,
VC = {B, S, M, G}. B, S, M and G represent batch com-
puting, stream computing, memory computing and graphic
computing subcluster, respectively. B = (b1, by, ..., by),

VOLUME 8, 2020

Y. Cao, H. Wang: Virtual Cluster Deployment Model for Large-Scale Data Processing Jobs

IEEE Access

S = (s1,8,....,5m), M = (m,my,...,mg), G =
(g1, 8 -- -, &), where b;, s;, mj, gi denotes virtual node in
subcluster.

Cloud service providers maintain virtual cluster to deal
with the complex job request in real time. Resource scheduler
generally deploys virtual nodes according to the highest load
demands [19]. Therefore, many virtual nodes in subcluster
remain relatively idle in most of time. This incurs the vir-
tual resource utilization degradation. On the other hand,
the request of jobs in real time is unbalance. Some subclusters
may be idle, but others may have a heavy workload. As shown
in Fig. 2, the batch computing nodes are occupied in stage i.
The rest of subclusters are idle. When the next stage arrives,
the stream computing subcluster is overload. The others are
idle. So there is unbalance among these subclusters. There is
no doubt that the optimal virtual cluster deployment strategy
should have abilities to make the whole system have bet-
ter load balancing effect and reduce resource waste. There-
fore, it is necessary to design and implement an efficient
and load-balancing virtual cluster deployment strategy for
Large-scale data analytics jobs.

Our goal is to dynamically adjust virtual nodes of subclus-
ters and to balance resource utilization. The central issue is
virtual resource scheduling that is redeploy the configuration
of subclusters according to the variation of workloads.

B. PROBLEM FORMULATION

To improve resource utilization of virtual cluster and
overcome the limitation of existing deployment strategy,
a dynamic virtual node scheduling is described as Equation 1.

£ Job(t) — Ve(B, S, M, G)(t) 1

This is a function between complex jobs and virtual
resource. The significant parameter is time ¢, which indicates
virtual cluster configuration should be changed in response
to variation of workloads. Figure 3 shows the scheduling
process: in time i, there are n job requests accumulated
in time window to be assigned into different subclusters.

Stream computing /
' /
: /
Mﬁrﬂpﬂ
/ T W n_n
N
: 1 r ! 1 //
+ _ P O |
DU DI RS LI S /
P BAESES L Kraii_n :__N LFEg /
/! e = | | H | i'1_r1r__3 I
L 1
RN S ! Lo
4 7

Virtual Cluster(in time #,)

FIGURE 3. Dynamic deployment model of virtual cluster.

VOLUME 8, 2020

The scheduling system adds or removes virtual nodes to build
new subclusters in real time according to job requests. When
the subcluster has a heavy workload, it will increase the
capacity of this subcluster (scale-out). When the workload of
subcluster is below a specific threshold, it may decrease the
subcluster size (scale-in) [20]. As Shown in the lower part,
in time i 4 1, after the deployment, the subclusters complete
the change of resource configuration. The better workloads
balance among subclusters is achieved.

The virtual resource scheduling is to deploy virtual
nodes including add, remove and update virtual nodes.
Our deploying model uses a hybrid approach that employs
prediction-driven and state-driven deploying strategies to
achieve high accuracy and low overhead. So The Hybrid
Dynamic Deployment Model (HDDM) of is defined as
follows:

HDDM = <J,I,VM,E,R, >, 2)

where J denotes the job set of Large-scale data analytics.
Each job can be described as a task sequence, such as
Ji = (T}, T2, T3, T4,,). The subscript symbols b, s,
m, g denote batch computing, memory computing, stream
computing, graphic computing, respectively. The sequence of
tasks reflects the dependency relation in computing process.
Such as (T}J, Tf, Ti, Tﬁ,‘q, ...,) means that the appropriate
computing phases is as follows: T}) is a batch computing
task, that needs to deal with firstly; Secondly, T% is a stream
computing task; Thirdly, TZ is still a batch computing task,
that needs to be processed in batch computing subcluster.
Then Tﬁ1 is memory computing task and etc. I represents
feature information of submitted jobs, such as the input data
size and job type. VM is the virtual node set to deal with
the submitted jobs. E is the triggering event set. R is the
deployment rule and f is the function to map the triggering
event E to deployment rule R.

The key problem is to maintain optimal VM according
to resource requirements of complex job J. The main idea
is that employs prediction-driven and state-driven deploying
strategies. According to the feature information /, HDDM
periodically obtains the rough virtual resource usage of sub-
mitted jobs by a prediction model. During the computing
process, HDDM allows subcluster dynamically adjust virtual
nodes based on the states of virtual resource. When the
triggering event E is activated, the corresponding deploying
rule R that is obtained by function f is executed to adjust the
configuration of VM.

lll. METHODOLOGY

Our dynamic deploying model is a hybrid deploying model,
which is integrated with coarse-grained and fine-grained
deployment mechanism.

A. MAIN IDEA

This section provides the detailed idea of hybrid deploying
model that is to determine when and how to deploy virtual
nodes for subclusters.

131873

IEEE Access

Y. Cao, H. Wang: Virtual Cluster Deployment Model for Large-Scale Data Processing Jobs

We provide two levels deploying mechanisms. The upper
level is a coarse-grained deploying mechanism with time-
triggering mode. The lower level is a fine-grained deploy-
ment mechanism with event-triggering mode. As shown
in Fig. 4 the time sequence (t1, 12, 13, 4, . . ., ty) 1S time sig-
nals for the upper deploying. When # comes, the ith upper
deploying may be initiated. On the other hand, the lower
deploying mechanism is applied in time interval [f, f+1],
which is called a scheduling window. The event signals are
used to trigger deployment in scheduling window.

k= —-—-- Random Event Triggering — — . —. —. — -
AN -
~ -
N -
S g -
! 12 ? I | o)
LI 2N /B A Tt 7T
\\\‘4\4*,4_1314’
Time Triggeing |

FIGURE 4. Deployment time.

The job sequence (Jo, J1, ..., Jm) in #; time is called job
scheduling queue. The resource requirement of job is denoted
as VM™4 and the number of current available virtual nodes
is denoted as VM. Assume that the job scheduling queue
has 20 complex jobs and VM is 120 in time #;. The
coarse-grained deploying is prediction-driven method. It will
obtain the resource requirements of this job scheduling queue
VM™ by a resource usage prediction model. Assume that
VM™4 is 150. Then the coarse-grained resource scheduling
will be initiated due to the fact that VM™ is greater than
current available virtual resource. The dynamic deployment
model will add 30 virtual nodes into virtual cluster to satisfy
resource requirement. So the fine-grained deploying starts
to work in the first job scheduling window [¢#1, f2]. The
fine-grained deploying is state-driven method. The change
of resource state can generate triggering events. As shown
in Fig. 4 the event sequence (e, ez, ...¢j) can initiate the
adjustment of virtual nodes in each subcluster in order to
adapt to workload variation. When the first job schedul-
ing window ends, the next coarse-grained deploying will be
launched in time f,. Assume this time VM™4 is 130 and the
virtual cluster has 145 available virtual nodes. So the dynamic
deployment model will close 25 virtual nodes. In the second
job scheduling window [#2, 3], the fine-grained deploying
continue to work by the event-triggering mode. This process
goes on until all jobs complete.

B. DESIGN OF SYSTEM ARCHITECTURE
Fig. 5 describes architecture of the hybrid dynamic deploy-
ment system in cloud data center. It shows interaction
between dynamic deployment model and other modules. The
system includes job preprocess, resource usage prediction
model, event generator, rules set and deployment controller.
The deployment controller is key module, which is to manage
and coordinate the coarse-grained and fine-grained deploying
modules.

In the coarse-grained deploying process, the job prepro-
cess module acquires information of resource requestment

131874

> Job Queue ’—' Job Preprocess | =
¢ Rules
| Resource Usage Predictionl | :
|
— v v
Deployment
Events | _| Event Generator > C(?ntl)'loller
A
I]
Colletor | | Colletor | | Colletor | | Colletor |

Virtual Cluster

FIGURE 5. Dynamic deployment model of virtual cluster.

provided by users. It offers input data for the resource
usage prediction model. Then this prediction model gener-
ates information to deployment controller for coarse-grained
deployment. On the other hand, in the fine-grained deploying
process, the collectors acquire state information of virtual
nodes. By using the information monitored from collectors
and event database, the event generator produces triggering
events, which is transmitted to deployment controller to find
the corresponding rules. Finally, the deployment controller
will generate the dynamic deployment plan, which is trans-
mitted to virtual cluster is to guide dynamically add, remove,
migrate and update virtual nodes to update a new virtual
cluster configuration.

C. COARSE- GRAINED DEPLOYMENT
1) RESOURCE USAGE PREDICTION
The coarse-grained deployment of HDDM is a prediction-
driven virtual resource scaling method for multi-tenant cloud
computing. The feature of submitted jobs is fed into an online
resource usage prediction model to estimate the short-term
resource demand profile.

Elman neural network is applied to build resource usage
prediction model defined as Equation 3 [21].

E(X) = vm, 3)

where X is the features of complex job provided by users. The
output vm is number of virtual nodes for this job. The input
vector X = <xi, X2, X3, X4, x5> of prediction model is the
resource requirement information as shown in table 1.

To reduce complexity of training data and improve capacity
of dealing with uncertainty, the requirements of resource are
converted by fuzzy logic as shown in table 1 [22]. The first
feature is job complexity. The greater of this value includes
more types of computing tasks. For example, job j; has
batch computing, stream computing and graph computing
tasks. And job j, just includes stream computing and memory
computing tasks. So the job complexity of j; is greater than j,.
The second feature is CPU intensive degree, which reflects
the CPU occupancy of job. The third feature is memory

VOLUME 8, 2020

Y. Cao, H. Wang: Virtual Cluster Deployment Model for Large-Scale Data Processing Jobs

IEEE Access

TABLE 1. Resource requirement features of jobs.

Feature Value Comment Symbol
Job Complexity High High,Medium,Low X1
CPU Intensive Medium High,Medium,Low X
Memory Intensive Medium High,Medium,Low X3
1/O Intensive High High,Medium,Low X4
Input_Data Size 200GB Input Data Size Xs

intensive degree, which reflects memory occupancy of job.
The fourth feature is I/O intensive degree, which reflects I/O
occupancy of job. When users submit jobs, they just need to
distinguish the CPU-intensive job, memory-intensive job or
I/O-intensive job. The users provide rough values for each
feature. The last feature is input data size xs. This significant
feature reflects workload size of submitted jobs.

The Elman neural network is a partial recurrent network
based on basic structure of BP network [23]. The input layer,
hidden layer and output layer are the feed-forward loop.
However Elman neural network has back-forward loop mech-
anism, which employs context layer as shown in Fig. 6. Note
that the prediction model is to obtain the approximation of
virtual resource demand rather than to pursue accuracy. There
are two reasons to select Elman neural network for resource
usage prediction: @ the virtual resource usage is typical time
series data. Then the resource demand of job request is a
typical time-varying data. The partial recurrent structure of
Elman network and dynamic characteristics provided only by
internal connection make Elman neural network prior to static
feed-forward network or other artificial neural networks [24].
It is better to deal with time-varying data and enhance the
global stability of network. @ the context layer is sensitive to
the history of input data while the connections between con-
text layer and hidden layer. This enhances learning capacity
for dynamic time-varying data.

(6]
Input Context Hidden Output
Layer Layer Layer Layer

FIGURE 6. Elman neural network structure.

The topology of Elman neural network is designed as
follows: the number of neurons in output layer r is the amount
of virtual nodes, so the output layer node is 1(r = 1).

VOLUME 8, 2020

The number of input layer n is the number of features
extracted from jobs, so the input layer nodes is S(n = 1).
The number of hidden layer node m is obtained by the
Equation 4.

Min(n,r) <m <2n+1, 4

Here 1 < m < 11 and we select m = 10. Then the number
of context layer node is set 10. The output of hidden layer is
calculated by equation 5.

h(t) = £ wihe(t)+ Y wh(ut — 1)),)

where h(t) denotes the output of hidden layer, c(¢) represents
the output of context layer and c(t) = h(t — 1). u(t — 1)
is the input in ¢ — 1 time. w¢, is the weight between con-
text layer and hidden layer. wyy, is the weight between input
layer and hidden layer. £(x) is activation function defined as
equation 6 [25].

§(x) = (6)

14+e=

The output of Elman neural networks is obtained by
equation 7.

N
o) = (Y wi,h(t)), @)
n=1

¢(x) = kx + b, ®)

¢(x) is a linear function that is the weight between hidden
layer and output layer. The output of Elman neural networks
is floating number in [0,1]. Note that this value needs to
be multiplied by the maximum of virtual node. Such as,
the prediction value of resource requirements is 0.34 and the
virtual node maximum is set 100. Then the final resource
requirement is 34 virtual nodes.

Training data set is collected as follows: we selected many
different Large-scale data process jobs with various data size.
We choose the tradeoff between performance and virtual
resource utilization as training objective. The desired number
of virtual nodes assigned to each job is obtained according
to the optimization objective by experiments. So one train-
ing data is obtained, for example, E(<x1, x2, x3, x4, X5> =
<0.3,0.6, 0.6, 0.3,0.27>) = 8. Then we have a training data
set after many experiments.

2) DEPLOYING STRATEGY

The scheduling time of jobs is to determine when to initiate
the coarse-grained deployment. When the last scheduling
cycle ends, the time signal will trigger the next coarse-grained
deployment. So the scheduling cycle is significant parame-
ter that is determined by expert’s experience and statistics
method. When the scheduling signal appears, the deploy-
ment model will compare the resource requirement and cur-
rent available virtual nodes. When the resource usage value
exceeds specific thresholds, the virtual cluster will launch
coarse-grained deployment of virtual nodes.

131875

IEEE Access

Y. Cao, H. Wang: Virtual Cluster Deployment Model for Large-Scale Data Processing Jobs

The following issue is to deploy the virtual nodes to differ-
ent subclusters. Firstly, we introduce the resource utilization
ratio R.

Ry = MUcpu + 22Upem + A3Ujo 9

Ucpu, UMem and Upo are the average utilization of CPU,
Memory and I/O. Each subcluster has different weight.
To memory computing and graph computing modes, these
kinds of jobs consume massive memory resource. So the
weight of memory should be set higher value. However,
the subcluster of batch computing needs to be given higher
weight for I/O resource utilization due to high data through-
put. The subcluster of stream computing ought to be set high
weights for CPU and I/O resource utilization. The weights
of subclusters are as follows: {b(0.3,0.2,0.5), s(0.4,0.2,0.2),
m(0.2,0.5,0.3), q(0.1,0.5,0.4)}. For example, the average
CPU, memory and I/O utilization of subcluster running for
stream computing tasks are 0.45,0.23,0.68. Then the final
resource utilization is calculated as follows.

R, =04x%x04540.2x0.2340.2 x0.68 =0.362 (10)

The second step is to determine how to deploy for dif-
ferent subclusters according to resource utilization. Assume
that the number of adjustment virtual nodes is AVM. And
AVM,; is the number of adjustment virtual nodes for different
subclusters.

AVM = |VM™= — VM| (11)
Ri
AVM; = =% (i=b,s,m,q), AVM >0 (12
1
AVM, IR, (i=b), AVM <0 (13)
— - L=0,85,m,q), <
YR,

When the resource requirement is larger than current avail-
able resources, the new virtual nodes may be deployed to the
different subclusters based on Equation 12. On the other hand,
the virtual nodes may be removed from subclusters as shown
in Equation 13 if the resource requirement is less than the
number of available virtual nodes.

We should solve an important issue in the deployment pro-
cess. The resource requirement of jobs is roughly equivalent
to the available resource of whole virtual cluster. However,
there exists unbalance among different subclusters. Such as
VM™ = 38 and VM = 41, the resource require-
ments and available resource of subclusters is as following:
vm™ = (15, 8, 6,9), vm™" = (8, 16, 7, 10). So this strategy
is to adjust the number of different subclusters to obtain
resource balance. Note that the resource request sequence is
vm; " = (15,8,6,9), vm;| = (8,15,6, 10) and vm;}, =
(16,9, 6, 10). Then the subcluster ¢; and ¢, may frequently
exchange resource status. We called this phenomenon as
deployment oscillation, which incurs extra deployment cost.
To solve deployment oscillation, lazy factor was introduced
to this strategy in order to delay deployment time.

131876

D. FINE-GRAINED DEPLOYMENT

The fine-grained deployment mechanism is designed to
adjust virtual node configuration in job scheduling window
based on triggering events.

Definition 3: Triggering events are consisting of signals
and appropriate thresholds. The signals include resource
monitoring signals and resource requirement signals.
Resource monitoring signals are generated by monitoring the
utilization of CPU, memory, disk and networks. Resource
requirement prediction model generates resource require-
ment signals when the resource requirement exceeds specific
thresholds. These signals are able to capture resource status of
jobs in computing process. The triggering event is to trigger
redeployment of virtual cluster only when signals are above
or below specific thresholds.

In the job scheduling window, triggering event is to deter-
mine when to launch deployment. The deployment rules
are responsible for how to deploy virtual nodes. So the
fine-grained deployment can be defined as a function between
triggering set and deploying rule set.

f:{E — R}, (14)

where E = {ej,e,...,e;} is triggering event set includ-
ing performance events and execution environment events.
R = {r1,r, ..., m} is deployment rule set generated by
experts. Then the virtual subclusters deployment is described
as follows: the virtual cluster in i time is VC; = {C",
cn G C?}, which includes different subclusters. After the
deployment, the virtual cluster in i + 1 time is changed into
VCii.

Ri(r13r2""7rm)
Ei(e1, ez, ..., 1)

So the event-triggered model is kernel of the fine-grained
deploying mechanism and can be defined as follows.

f . VC,' — VC,'_H (15)

Sk = {50, 51, ..., Su}

e =f(Sk R, ¢) (16)

Sk is signal sequence in time k. f(S*,R, &) is the
event-triggering function. R = {ry, r2, ..., ri} is deployment
rulesetand e = {e1, &2, ..., &} is parameter set of event rule.
The parameter set is listed in Table 2. The triggered rule in R
is described as follows:

ri:if zg < 81 then vy; ro: if z; > &> then vy.

Finally, the event is activated by Equation 17.

k
o 1, f(S*,R,e)>$ a7
0, otherelse

8 = (81, 82, 83, 84) is triggering threshold set, which affects
sensitive of deploying model. As shown in Equation 17 and
Table 2, the event will be produced when some signals are
above or below certain thresholds. To improve robustness of
model, the event triggering thresholds are in the form of inter-
val. For example, §; and §,. When the resource requirement
signals are not in the interval [§1, §>], the triggering events

VOLUME 8, 2020

Y. Cao, H. Wang: Virtual Cluster Deployment Model for Large-Scale Data Processing Jobs

IEEE Access

TABLE 2. Triggering event.

Symbol Event Comment
Add nodes When
€ Resource req> & requirement exceeds upper
limit;
Delete nodes When
€ Resource_req < &, requirement is below lower

limit;

Update Configuration When
the number of virtual CPU
in the four subclusters is
equal to the number of
requirement virtual CPU;

e iCPU‘:iCPU_Req'

i=1 i=1

Suspend nodes When

e Resource utilization rate < &, resource utilization rate is
below lower limit;

o Wake up nodes When

es Resource utilization rate > J, resource utilization tate

exceeds upper limit.

will be generate and virtual cluster may adjust resource con-
figuration. So the size of interval is significant for the deploy-
ing model. When the interval is too small, virtual cluster may
frequently adjust virtual nodes. This will improve deploying
overhead. When the interval is too large, the deploying model
is insensitive to the variation of workloads. This may reduce
accuracy of deploying model. Here we obtained the opti-
mal triggering thresholds by experiments, whose goal is to
achieve tradeoff between deploying overhead and accuracy.

The deployment rules are divided into three groups: the
status management to adjust virtual node status, node man-
agement to decide the configuration and size of virtual cluster
and subcluster management used to determine the status or
configuration of subclusters.

TABLE 3. Deployment rules.

Type Rule Case
Start Node Start(VM,,...VM,)
Close Node Close(VM;,...VM,)
Status Suspend Node Suspend(VM,,...VM,)
management

Restore Node Restore(VM;,...VM,)

Migrate Node Migrate(VM,;,...VM,,)
Add Node Add(VM,,...VM,)
Configuration | 1y 10t Node Del(VM,,..VM,)
management
Update Node Update(VM,,...VM,)
Add Subcluster AddGroup(VM,;,...VM,, VC)
Subcluster
management Remove subcluster RemoveGroup(VM,,...VM,, VC)

E. DEPLOYMENT ALGORITHM

In this section, we describe the detailed process of dynamic
deployment for virtual cluster. The pseudocode of deploy-
ment algorithm has been given as follows.

VOLUME 8, 2020

Algorithm 1 Dynamic Deployment Algorithm

1. Initialize job scheduling queue J, ¢ and Lazy_factor;

2.Foreacht = (i=1,2,...,n) Do

3. If (J = full) Do

If > v #£ Y vm™" Then
Adjust_Globalcluster();

EndIf

If > v ~ Y ym®" Then
Adjust_Subclusters();

EndIf

10. EndIf

11. Scheduling all jobs in J and clear job queue;

12. While (4 < tand ¢ < ti11) Do

13. Execution computing

o ® N A

14. Call Fine-grained Deployment()

15. EndWhile

16. Repeat Receive new job and AddQueue J
17. i=i+1

18. EndFor

In algorithm 1, the outer loop is the coarse-grained deploy-
ing. It is time for deploying, namely the current time ¢ =
(Line2). The coarse-grained deployment launches. The first
step is to roughly predict current resource requirement
by resource prediction model. When the resource require-
ment is far greater than current available resource, (Line3),
we use Adjust_Globalcluster() to redeploy the configuration
of virtual nodes (Line5). When the number of requirement
virtual nodes equals the available virtual nodes, but the
gap among different subclusters is large (Line7). We use
Adjust_Subclusters to deal with the unbalance of resource
in subclusters (Line8). After the coarse-grained deploying,
the jobs in queue are scheduled (Linell). The virtual clus-
ter starts to enter the computing process. The fine-grained
deployment algorithm begins to work in the interval [#;, #i11]
(Linel2-15).

Adjust_Globalcluster is described as follows.

In algorithm 2, virtual cluster adjusts the virtual nodes
of subclusters according to the proportion of resource uti-
lization. When the virtual cluster needs to scale-out, this
algorithm increases the number of virtual nodes for each
subcluster by Equation 12 (Linel-5). When the virtual cluster
needs to scale in, each subcluster removes the virtual nodes
by Equation 13 (Line 6-10).

In Adjust_Subclusters algorithm, lazy factor is an impor-
tant parameter, which can effectively eliminate deployment
oscillation. This is because that the unbalance of virtual
resource among different subclusters appears, this algorithm
will delay resource optimization rather than immediately
launch deployment. When the unbalance lasts for a period

131877

IEEE Access

Y. Cao, H. Wang: Virtual Cluster Deployment Model for Large-Scale Data Processing Jobs

Algorithm 2 Adjust_Globalcluster Algorithm

L. If vin™9 > ym®Y Then

2. For each subcluster ¢; Do
3. ci+ = (vm™9 — ymT) x R;/Z Ri;
i
4. EndFor
5. EnfIf
6. If vm™4 < ym Then
7. For each subcluster ¢; Do
8. ci— = (vm™ — vm™9) x (1 — R;)/Z RL;
i

9. EndFor
10. EndIf

Algorithm 3 Adjust_Subclusters Algorithm
If lazy_factor < threshold n Then

1

2 For each c; in subclusters Do

3 If vin®“(c;) < vm™4(c;) Then

4. AddNode(vm™d(c;) — v (c;))
5. EndIf

6 lazy_factor = lazy_factor + 1

7. EndIf

8. Else

9. Call BalanceVC()

10. EndElse

time, BalanceVC is called to optimize the resource unbalance
of subclusters.

Algorithm 4 BalanceVC Algorithm
1. Initialize Balance Queue BQ

2. For each ¢ in subclusters Do

3 If vin®(c;) > vm™4(c;) Then

4 EnBQ(vm ™ (¢i) — vin™4(c;))
5. EndIf

6. EndFor

7. While Queue BQ is not Empty Do
8 For each c¢; in subclusters Do

9 If vin™®(c;) > vm(c;) Then
10. Do

11. vi = DeBQ()

12. Addsubcluster(ci, v;)

13. Until(vin™9(c;) = vm®(¢;) or BQ = empty)
14. EndFor

15. EndWhile

BalanceVC is to obtain the tradeoff of resource among sub-
clusters. The first step is to find the redundant virtual nodes
in subclusters (Line 2-6). Then the redundant virtual nodes

131878

are added to the subclusters, which lacks virtual resource
(Line 8-14).

Algorithm 5 Fine-Grained Deployment Algorithm
1. Initialize Virtual subclusters { VCI™, VCI", VC}, VC{!};

2. Initialize Event queue E;

3. For each signal period Do
4. Collect signals from {VC™, VCI, VC?, VC};

5. Generate event <ej, €i+1, ..., ¢€+k>, and E+ =

(€is €415 - - - » €itk)

6. While E is not Empty Do
7. e; = deQuery(E);

8. ri = Query(R, ¢;)

9. Execute deploying by 7;
10. EndWhile

11. Endfor

In Fine-grained Deployment algorithm, the first step is to
generate events based on the collected signals (Line 3-5). The
second step is to extract the events from event queue and
query the deploying rules by events (Line 6-8). The last step
is to execute the accordingly deploying events.

The virtual nodes with different computing modes are
generated and saved as image files of docker on the harddisk.
In practice, deploying a virtual node is to load a image file
from the local storage device. So the harddisk of physical
machine stores many image files in advance. This method
can save the deploying time compared with load from remote
image sever.

F. MODEL ANALYSIS

This section discuss deployment overhead of proposed
model. Figure 7 provides static deployment scheme, which
only needs to be deployed once. So the static deployment
model is consisted of T and T.. Ty is the time of virtual
cluster deployment and T, is the computing time of jobs.
Compared with static deployment scheme, the advantage of
proposed scheme is that it has more opportunities to adjust
resource configuration of virtual cluster in order to improve
resource utilization. However this scheme increases deploy-
ment overhead, which may degrade performance of virtual
cluster. As shown in Fig. 7, this computing process is divided
into many cycles. Each cycle is consisted of Tg4c, Tgf and
Tc. Tqc is the time of coarse-grained deployment before the

[| | | |
ITs ko —re———2 Te e 1 Tc

Static Deployment

ITM { Tc Te Tc T i Te ! I

Tar Ty T Ty Tar Ty

Dynamic Deployment

FIGURE 7. Comparison of two deployment schemes.

VOLUME 8, 2020

Y. Cao, H. Wang: Virtual Cluster Deployment Model for Large-Scale Data Processing Jobs

IEEE Access

computing of jobs. Tgyy is the time of fine-grained deployment,
which occurs in the computing of jobs.

Assume that a job queue running with two different deploy-
ment schemes, the total computing time is calculated by the
equation 18.

Tl =T+ T

total —

T =Tac+ T +k x Ty

total

(k=0,T5 £T9), (18)

where k is the number of triggering events. Note that the
computing time of jobs with different deployment schemes
are different. This is because that the dynamic deployment
scheme may reduce job waiting time and improve perfor-
mance by resource optimization.

In practice, the deploying overhead is mainly from the load
of Docker image file in the coarse-grained deploying phase.
Here the cycle length in coarse-grained deployment is set to
10 minutes. And the setting of this parameter is from expert
experience. The deploying overhead has been measured in
each coarse-grained deployment period. Each deploying with
192 virtual nodes takes 1.92s. Note that the dynamic deploy-
ing system has good expansibility. The deploying time will
not increase with the virtual cluster size increment due to the
fact that the dynamic deploying model is running in parallel
mode.

The finer-grained deployment mechanism may improve
accuracy of virtual resource utilization. However it may incur
extra performance loss and oscillation of resource status,
which is to frequently exchange resource status. On the
other hand, the coarser-grained deployment mechanism with
poor accuracy of deployment may reduce the oscillation
of resource status and control the performance loss within
acceptable range. So our hybrid dynamic deployment model
achieves the advantages of coarse-grained and fine-grained
deployment mechanism. It not only improves deployment
accuracy but also reduce deployment overhead.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. EXPERIMENT SETUP

We built a virtual cluster in our university physical cluster,
which includes 70 physical machines. Each physical machine
with Intel i7 8700 6 cores CPU and 32G memory ran Ubuntu
Xenial 16.04. Docker1.7.1 was used for server virtualization.
To simplify resource scheduling, each virtual node has the
same resource configuration, namely each node has equal
CPU and memory. Each physical machine can create three
Docker containers, which is assigned two CPU cores by CPU-
Share proportion parameter in docker [26]. So the maximum
size of virtual cluster is 210 virtual nodes. Docker Swarm was
used to manage docker containers by executing management
scripts. CAdvisor monitors the performance of virtual cluster
and save the monitored data to influxDB, which is sequential
database and support the interface of CAdvisor [27]. On the
other hand, Hadoop running on virtual nodes deals with
jobs of batch computing. Spark is responsible for memory
computing jobs and Spark Streaming is to complete stream

VOLUME 8, 2020

computing jobs. Spark GraphX is to handle graphic com-
puting jobs [28]. We prepared these different mirror files
of Docker, which include Hadoop system, Spark system.
Each physical machine keeps various type mirror files in
order to create different types of virtual nodes. The artificial
workloads are used in experiments due to the fact that we can
accurately verify the model.

We selected three benchmark models to compare our
hybrid dynamic deployment model (HDDM). The first
benchmark model originates from CodeCloud system, which
provides a high-level declarative language to express the
requirements of applications [31]. The application developers
give the requirement information to Cloud providers. Then
Cloud provider aggregates the requirement data from many
users and allocates virtual nodes for jobs. So this deploying
method is static deployment model denoted as SDM. The sec-
ond benchmark model is the coarse-grained dynamic deploy-
ment model, which is a prediction-driven elastic resource
scaling system for multi-tenant cloud computing. The typical
prediction-driven virtual resource scaling model is Cloud-
Scale [32]. It is difficult to repeat the experiments of Cloud-
Scale. So we used our coarse-grained dynamic deployment
scheme as the representative of prediction-driven deploying
method. The third benchmark method is the fine-grained
deployment scheme, which is a typical state-driven deploy-
ing model. The coarse-grained dynamic deployment and
fine-grained dynamic deployment schemes are denoted as
CDD and FDD, respectively.

B. EFFECTIVENESS OF HDDM

This subsection aims to validate the effectiveness of hybrid
dynamic deployment model (HDDM). The first work is
to demonstrate that HDDM has the ability of dynami-
cally adjusting configuration of virtual nodes to adapt to
time-varying workloads. The second work is to show the
advantage of HDDM. We made use of artificial workloads in
experiments. The reason is that artificial workloads deliber-
ately constructed can trigger the coarse-grained deployment
mechanisms quickly. However, the real-world workloads may
take a long time to see the results.

The approach of generating workloads is as follows: we
select four types of jobs for artificial workloads. The job
types are batch computing, memory computing, stream com-
puting and graphic computing. Each type of job needs to
be processed by the corresponding subcluster. We gener-
ate two artificial workloads. Each workload includes three
job scheduling windows. One job scheduling window has
48 jobs. The computing process for the 48 jobs is called
a stage. Then each artificial workload has three computing
stages. Table 4 provides the detailed information of artificial
workloads. As shown in Table 4, each stage lists the pro-
portion of job types. Such as, the first stage of workloadl is
16:12:12:8, namely this stage has 16 batch computing jobs,
12 memory computing jobs, 12 stream computing jobs and
8 graphic computing jobs. Figure 8 provides the job distri-
bution of artificial workloads. Such as, the first column of

131879

IEEE Access

Y. Cao, H. Wang: Virtual Cluster Deployment Model for Large-Scale Data Processing Jobs

TABLE 4. Artificial workloads.

ID First Stage Second Stage Third Stage
Workload1 16:12:12:8 12:18:16:2 12:15:12:9
Workload2 8:12:12:16 16:12:12:8 8:12:12:16

20

18 —

16 4 [

14
§ 12 —

k]
5 10
K=}
£ s
Z.

6

4 4

2 4

0 s e L

batch memory stream graphic
Job Type

(a) Job Distribution of Artificial Workload1

16 - -
14 4

12 4 - -

10 4

8

6 4

44

2

0 L L L

batch memory stream graphic

Number of Jobs

Job Type
(b) Job Distribution of Artificial Workload2

FIGURE 8. Comparison with different artificial workloads.

Fig. 8(a) shows the variation of batch computing jobs in the
three stages. The optimal virtual resource allocation of each
job is about 2 to 5 virtual nodes by experiments.

The initial configuration of virtual cluster is set as follows:
The initial configuration of virtual nodes is four times of the
computing jobs. Such as, the jobs in the first stage of work-
loads1 are 16:12:12:8. Then the virtual cluster has 64 batch
computing nodes, 48 memory computing nodes, 48 stream
computing nodes and 32 graphic computing nodes.

Fig. 9 shows the comparison of HDDM with the bench-
mark models. x axis represents the computing process. And
y axis indicates the number of virtual node adjustments.
Fig. 9(a) demonstrates the number of adjusting virtual nodes
in HDDM with workload1. In the begin stage, HDDM doesn’t
launch coarse-grained deployment due to the fact that the

131880

first job sequence in workload1 is 16:12:12:8. The resource
requirement of this job sequence matches with the initial
configuration of HDDM. Note that there exist 5 times deploy-
ments in the first stage. These noise deployments are trig-
gered by fine-grained event deployment scheme in HDDM.
However, HDDM launch two times adjusting activities in the
150th minute and the 310th minute, which are the beginning
of computing for the second and third computing stages.
The two deploying behaviors adjust more virtual nodes. This
shows that the coarse-grained deployment scheme in HDDM
can effectively optimize resource configuration. On the other
hand, the fine-grained deployment scheme in HDDM just
adjusts a small number of virtual nodes in the computing
process. This result shown in Fig. 9(a) illustrates that HDDM
can dynamically adjust resource configuration according to
workloads variation. At the beginning of computing stage,
the coarse-grained deployment scheme starts to work and
complete the mainly allocation of virtual resource. So this
causes more virtual node adjustments. On the contrary,
the fine-grained deployment scheme in HDDM is responsible
for the fine-tuning of virtual nodes in computing process.

Fig. 9(b),(c) shows the comparison of HDDM and CDD
with workload?2 to verify the advantage of HDDM, which is
the ability of solving deployment oscillation. The resource
requirement of first job sequence in workload?2 is 8:12:12:16.
In the first stage, there are 8 batch computing jobs and
16 graphic computing jobs. However, the initial configura-
tion of virtual cluster is 64:48:48:32. The current available
resources have 64 batch computing nodes and 32 graphic
computing nodes. So it is obviously unbalance between batch
computing subcluster and graphic computing subcluster.
Note that the number of batch computing jobs in workload?2 is
changed from 8 to 16 in the second stage and is changed
from 16 to 8 in the third stage. And the number of graphic
computing jobs has contrary trends. Fig. 9(b) demonstrates
that HDDM doesn’t launch coarse-grained deploying due to
lazy deployment mechanism to avoid deployment oscillation
in the first two stages. It just depends on the fine-grained
deployment scheme. When the third stage arrives in the
300th minute, HDDM begins to adjust virtual nodes by
coarse-grained deployment scheme. But Fig. 9(c) shows that
CDD initiates three virtual nodes adjustments in beginning
of three computing stages. This results illustrate it is difficult
for CDD without lazy mechanism to deal with deploying
oscillation of virtual node.

Fig. 9(d) shows the comparison of HDDM and FDD with
workload2. To make the results clearer, we monitored the
adjustments of virtual nodes in graphic computing subcluster.
To FDD scheme, the number of virtual nodes rises to 16 in the
50th minute. Then it drops to 9 in the 150th minute. Finally it
reaches 16 again in the 300th minute. Due to the gap between
the resource requirement and available resource, FDD trig-
gers a number of virtual node adjustments at the beginning
of each computing stage. Compared with HDDM, it appears
two distinct resource scaling oscillations, which causes more
performance loss. Therefore HDDM can effectively avoid the

VOLUME 8, 2020

Y. Cao, H.

Wang: Virtual Cluster Deployment Model for Large-Scale Data Processing Jobs

IEEE Access

50

50

g ar 12 aof 1
2 z
< <
< <
g 30r | 18 sof 1
z] z !
! 3
> 20} i ' 15 20F | g
3 " 2 “ f
5 L il 5 4
‘é [\ i\ °© Il
LN 10 g [t
=] g
z 10».\ / AT . 12 10f M }n\ A
/ oA ~ " LN S N
N\ / VAR AT A /BN /\/1 AVARAYANINA
! - v oad \ FARN J b v v e -—-
; -/ 5 _ N Fadil —as s Fer mme—e e
0 T T T T T T T T T 0 T : : T T T T T S
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Computing Process (Min) Computing Process (Min)
(a) Workload1l in HDDM (b) Workload2 in HDDM
50 100 . . . : : : : : T
w0 —e— HDDM
£ 40 18 809 o--- FDD]
Z 2
=3 -~ . El
2 ' \ g
Q ! /‘ | <o§
= || // N =
g oM ; AN E
R 1 e B
z 29 7 \\ 1z
: \ 5
2 N\ 2
£ ! N E
Z 104 \ iz
AN
' \
i \
0 J A

0 50 100 150 200 250 300 350 400 450

Computing Process (Min)
(c) Workload2 in CDD

FIGURE 9. Comparison of two artificial workloads for HDDM.

resource allocation oscillation. This is a advantage compared
with CDD and FDD.

C. PERFORMANCE ANALYSIS

This subsection compares and analyzes performance of SDM,
CDD, FDD and HDDM. We used the workloadl to com-
pare performance rather than workload2. This is because that
workload? is constructed deliberately in order to validate the
advantage of HDDM in resource allocation oscillation. The
average completion time of jobs is chosen as performance
metric since it can represent the comprehensive evaluation
of cloud systems or Large-scale virtual clusters, such as, the
ability of responding task requests to users, the transmitting
ability of data and virtual node deployment overhead. The
experimental results are shown as Table 5. It can be seen that
the performance of virtual cluster is different by using four
different deployment models. Each model has been run ten
times to eliminate performance deviation. The mathematical
expectation ¢ and standard deviation o of job completion time
are collected and listed as follows.

VOLUME 8, 2020

500

100 150 200 250 300 350 400 450 500

Computing Process (Min)
(d) Variation of Graphic Computing Virtual Nodes

TABLE 5. Performance comparison of different deployment scheme.

SDM CDD FDD HDDM
& o & o & o & o
Average
Time(s) 1593 127.4 1557 77.8 1553 48.1 1468 14.9

The average completion time of HDDM is smallest
among these approaches. Additionally, the smallest standard
deviation value represents that HDDM has best stability.
According to the results of experiments, HDDM has a better
effect of virtual node deploying and thus to improve the
resource utilization of virtual cluster effectively. This is
because HDDM can dynamically build a more optimized
execution environment for jobs in real time and reduce the
waiting time of jobs. Furthermore, HDDM can provide more
virtual nodes for the running jobs from the global and local
optimal perspective to ensure performance and stability.
CDD and FDD are better than SDM since the dynamical

131881

IEEE Access

Y. Cao, H. Wang: Virtual Cluster Deployment Model for Large-Scale Data Processing Jobs

deployment mechanism has the ability of optimization for
job performance. The standard deviation value of FDD is
smaller than that of CDD. This illustrates that the fine-grained
deployment from the local optimal perspective is more
stability than CDD from the global perspective. However,
the deployment overhead of FDD is slightly greater than
CDD. CDD saves the deployment time and start time of
virtual node since it deploys more virtual nodes than FDD
in a short period. To sum up, the conclusion that HDDM has
better efficiency and stability.

D. RESOURCE UTILIZATION ANALYSIS

This subsection compares the resource utilization. The
approach of collecting resource utilization is follows: the
resource utilization is monitored by software CAdvisor,
which is able to capture performance data based on Docker
API. CAdpvisor can collect CPU, memory, disk and Network
I/O utilization for two minutes. Then influxDB is used to save
the monitored data of all virtual nodes and count the average
for different subclusters. First, CPU utilization of virtual node
is an important indicator of resource utilization. Note that the
original CPU utilization needs to be dealt with since this value
may exceed 100% when multi-processes are running. The
CPU utilization rate is defined as the time rate of occupied
by processes. Assume that the sampling period is 1000ms.
When only one process is running on a CPU core, this process
takes up 250ms of CPU. So the CPU utilization rate in this
sampling period is 25%. When four processes are running on
two CPU cores, each process runs for 250ms. The original
CPU utilization rate captured by CAdvisor is 100%. However
the final value is 50% since these processes are running on
two cores.

Figure 10 provides the four different deployment
approaches comparison with workloadsl. Compare with
other approaches, HDDM achieves the best CPU utilization
rate in subclusters. Additionally, FDD is relatively better
than CDD and SDM. This means that FDD has the ability
of accurate deploying to improve resource utilization. The
CPU utilization rate of batch computing, memory computing
and stream computing subclusters are similar. The CPU

100
90 I sDM
[/ cbb
80 - I FDD
- [——1 HDDM
<70
2
2 60
£ o
i
5 40
o]
6 30 o
20 +
10 +
0
Batch Memory Stream Grahpic

SubCluster

FIGURE 10. Comparison of CPU utilization for four approaches.

131882

utilization rate of graphic computing subcluster is smaller
than the others due to the less assigned jobs.

As shown in Fig. 11 and Fig. 12, HDDM still achieves
the best memory and network utilization rate in subclus-
ters. In Fig. 11, the memory utilization rates of memory
computing subcluster reach the highest value. And the Net-
work utilization of stream computing subcluster is maximum
value in Fig. 12. This is due to the fact that the subcluster
needs more specific resources for specific computing mode.
These results illustrates that HDDM can improve the resource
utilization for different jobs including CPU-intensive jobs,
memory-intensive jobs and Network-intensive jobs.

100
90 EEN SDM
= CDD
80 I FDD
IS [HDDM
E 70 + M
60 M M
£
8 s0-
% 40 1
§ 30
20
10 o
0 L
Batch Memory Stream Grahpic

SubCluster

FIGURE 11. Comparison of memory utilization for four approaches.

100
90 N SsDM
[cbb

= 80 N FDD
é [HDDM
e 70
= 60
£
=z
8 50+
E
S 404
>
5

30
5
Z 204

10 A

0
Batch Memory Stream Grahpic

SubCluster

FIGURE 12. Comparison of network utilization for four approaches.

E. REAL-WORLD WORKLOADS ANALYSIS

In this subsection the real-world dataset was used to evaluate
performance of HDDM. This real-world workload is from
real-time computing by taxi trajectories datasets generated by
33000 taxis over a period of six months [29], [30]. The taxi
trajectory is a sequence of GPS points pertaining to a trip.
Each point consists of a longitude, latitude and timestamp.
Here the complex jobs are trajectory matching and congestion
road identification. Trajectory matching is a typical data-
intensive computing job that includes batch computing tasks
and memory computing tasks. Congestion road identification
that belongs to traffic flow analysis is an important applica-
tion for navigation system and autonomous driver. This com-
puting job is to identify the congestion road section in map by

VOLUME 8, 2020

Y. Cao, H. Wang: Virtual Cluster Deployment Model for Large-Scale Data Processing Jobs

IEEE Access

analyzing trajectory data. And it includes stream computing
tasks, memory computing tasks and graphic computing tasks.

The experiments stimulate a large number of users to
submit jobs with different data size. For example, jobl is
trajectory matching job with S00MB trajectory data and job
2 is trajectory matching with 20GB trajectory data. Jobl and
job2 are regarded as different complex jobs. So the workloads
generated from the real-world large-scale data set are used to
evaluate HDDM. There are about 2000 submitted jobs and
the computing process lasts for about five hours.

As shown in Fig. 13(a),(b),(c), the resource utilization is
also optimized by HDDM to the real-world workload. On the

100
90
80
S 70+
T
g 60
8
£ 50
N
5 40
2
S 30
20
10 A
o0 -
Batch Memory Stream Grahpic
SubCluster
(a) Comparison of CPU Utilization
100
90 I SDM
[/ cbD
80 I FDD
S 1 HDDM
§ 70 + —
& - -
,5 60 -
8 504
E
40
3
30 +
Q
=
20 +
10 A
0 L
Batch Memory Stream Grahpic
SubCluster
(b) Comparison of Memory Utilization
100
90 + I sSDM
[/ CbD
o 801 BN FDD
S] HDDM
g 70
g 60 -
-1
J 504
=
3 40 4
=l
s
30 +
5
20 +
10
0
Batch Memory Stream Grahpic
SubCluster

(c) Comparison of Network Utilization

FIGURE 13. Comparison of resource utilization with real-world workloads
for four approaches.

VOLUME 8, 2020

other hand, the computing time of SDM is 3017.1 minutes.
And the computing time of HDDM is just 2947.7 minutes.
To the same workloads, HDDM improve the performance by
2.3 percent compared with SDM. This means that HDDM
can schedule better resource for jobs to improve performance.
And the performance improvement is greater than the deploy-
ment overhead.

V. CONCLUSION AND FUTURE WORK

Although a unified large-scale data process platform is con-
venient and easy to use for large-scale data computing jobs,
it ignores the differentiated resource requirements of various
tasks with different computing modes. In this paper, we tackle
a practical yet challenging issue of automatic deploying con-
tainers in virtual cluster. We have proposed and developed
a self-adaptive cluster-level dynamic deploying approach,
which automatically find the optimal settings of container
configuration for different subclusters running with different
computing modes. The proposed model has combined the
global and the local optimization idea to pick out the optimal
virtual node set in order to achieve the resource provision
balance from the long-term perspective. Utilizing the coarse-
grained deploying strategy with prediction-driven is to reduce
deployment overhead and adapt to large resource demand
adjusting. On the contrary, the fine-grained deploying strat-
egy with event-triggering enable that this model has the capa-
bility of non-periodic and random deployment to improve the
accuracy of virtual resource adjustment. Experimental results
show that the proposed hybrid deployment model improves
the average job completion time by 7.84, 5.71 and 5.47 per-
cent and improve the virtual CPU utilization by 25.9, 18.6 and
7.9 percent compared to static deployment, coarse-grained
deployment and fine-grained deployment, respectively.

Our method can be integrated into Swarm with some
additional effort. Besides, the proposed model ignores the
performance loss of container image files from local disks
and the type of virtual networks in virtual cluster. A large
scale of simulation experiments and prototype experiments
are one of our next research works. We will attempt to imple-
ment this hybrid deploying model in a real cloud computing
environment and evaluate its performance and efficiency.

ACKNOWLEDGMENT

This article was presented in part at the INFOCOM 2020
Workshops - ICCN. The authors would like to thank the
comments of the reviewers.

REFERENCES
[1] C.de Alfonso, A. Calatrava, and G. Molt6, “Container-based virtual elastic
clusters,” J. Syst. Softw., vol. 127, pp. 1-11, May 2017.

[2] D.Cheng,J.Rao,Y. Guo, C.Jiang, and X. Zhou, “Improving performance
of heterogeneous MapReduce clusters with adaptive task tuning,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 3, pp. 774-785, Mar. 2017.

[3] Q. Liu, W. Zheng, M. Zhang, Y. Wang, and K. Yu, “Docker-based auto-

matic deployment for nuclear fusion experimental data archive cluster,”

IEEE Trans. Plasma Sci., vol. 46, no. 5, pp. 1281-1284, May 2018.

Z. Kozhirbayev and R. O. Sinnott, “A performance comparison of

container-based technologies for the cloud,” Future Gener. Comput. Syst.,

vol. 68, pp. 175-182, Mar. 2017.

[4

=

131883

IEEE Access

Y. Cao, H. Wang: Virtual Cluster Deployment Model for Large-Scale Data Processing Jobs

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

E. Truyen, M. Bruzek, D. Van Landuyt, B. Lagaisse, and W. Joosen, “Eval-
uation of container orchestration systems for deploying and managing
NoSQL database clusters,” in Proc. IEEE 11th Int. Conf. Cloud Comput.
(CLOUD), Jul. 2018, pp. 468—475.

A. J. Younge, K. Pedretti, R. E. Grant, and R. Brightwell, “A tale of two
systems: Using containers to deploy HPC applications on supercomputers
and clouds,” in Proc. IEEE Int. Conf. Cloud Comput. Technol. Sci. (Cloud-
Com), Dec. 2017, pp. 74-81.

M. GroBmann and C. Klug, “Monitoring container services at the network
edge,” in Proc. 29th Int. Teletraffic Congr. (ITC), Sep. 2017, pp. 130-133.
A. Ahmed and G. Pierre, “Docker container deployment in fog com-
puting infrastructures,” in Proc. IEEE Int. Conf. Edge Comput. (EDGE),
Jul. 2018, pp. 2-8.

I. Mavridis and H. Karatza, “‘Performance and overhead study of contain-
ers running on top of virtual machines,” in Proc. IEEE 19th Conf. Bus.
Informat. (CBI), Jul. 2017, pp. 32-38.

H. Zeng, B. Wang, W. Deng, and J. Tang, “A prototype for analyzing the
Internet routing system based on spark and docker,” in Proc. IEEE 7th Int.
Symp. Cloud Service Comput. (SC2), Nov. 2017, pp. 267-270.

Z.Lei, H. Du, S. Chen, C. Zhu, and X. Liu, “DCSPARK: Virtualizing spark
using docker containers,” in Proc. Int. Conf. Audio, Lang. Image Process.
(ICALIP), Jul. 2016, pp. 13-18.

B. Ruan, H. Huang, S. Wu, and H. Jin, “A performance study of containers
in cloud environment,” in Proc. Asia—Pacific Services Comput. Conf.,
2016, pp. 343-356.

K. Ye and Y. Ji, “Performance tuning and modeling for big data appli-
cations in docker containers,” in Proc. Int. Conf. Netw., Archit., Storage
(NAS), Aug. 2017, pp. 1-6.

N. Naik, “Docker container-based big data processing system in multi-
ple clouds for everyone,” in Proc. IEEE Int. Syst. Eng. Symp. (ISSE),
Oct. 2017, pp. 1-7.

J. Kovécs, P. Kacsuk, and M. Emddi, “Deploying docker swarm cluster
on hybrid clouds using occopus,” Adv. Eng. Softw., vol. 125, pp. 136-145,
Nov. 2018, doi: 10.1016/j.advengsoft.2018.08.001.

D. Zhang, B.-H. Yan, Z. Feng, C. Zhang, and Y.-X. Wang, “‘Container
oriented job scheduling using linear programming model,” in Proc. 3rd
Int. Conf. Inf. Manage. (ICIM), Apr. 2017, pp. 174-180.

C.-C. Chang, S.-R. Yang, E.-H. Yeh, P. Lin, and J.-Y. Jeng, ““A kubernetes-
based monitoring platform for dynamic cloud resource provisioning,” in
Proc. IEEE Global Commun. Conf., Dec. 2017, pp. 1-6.

B. Liu, P. Li, W. Lin, N. Shu, Y. Li, and V. Chang, “A new container
scheduling algorithm based on multi-objective optimization,” Soft Com-
put., vol. 22, no. 23, pp. 7741-7752, Dec. 2018.

J. Zhao, K. Yang, X. Wei, Y. Ding, L. Hu, and G. Xu, “A heuris-
tic clustering-based task deployment approach for load balancing using
Bayes theorem in cloud environment,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 2, pp. 305-316, Feb. 2016.

O. Adam, Y. C. Lee, and A. Y. Zomaya, ‘“Stochastic resource provisioning
for containerized multi-tier Web services in clouds,” IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 7, pp. 2060-2073, Jul. 2017.

Q. Song, “On the weight convergence of elman networks,” IEEE Trans.
Neural Netw., vol. 21, no. 3, pp. 463—480, Mar. 2010.

J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “Autonomic
resource management in virtualized data centers using fuzzy logic-based
approaches,” Cluster Comput., vol. 11, no. 3, pp. 213-227, Sep. 2008.

R. Chandra, “Competition and collaboration in cooperative coevolution of
elman recurrent neural networks for time-series prediction,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 26, no. 12, pp. 3123-3135, Mar. 2015.

131884

(24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

C.-M. Lin and E.-A. Boldbaatar, *‘Fault accommodation control for a biped
robot using a recurrent wavelet elman neural network,” IEEE Syst. J.,
vol. 11, no. 4, pp. 2882-2893, Dec. 2017.

W. Z. Sun and J. S. Wang, “Elman neural network soft-sensor model of
conversion velocity in polymerization process optimized by chaos whale
optimization algorithm,” IEEE Access, vol. 5, pp. 13062-13076, 2017.

J. Bhimani, Z. Yang, N. Mi, J. Yang, Q. Xu, M. Awasthi, R. Pandurangan,
and V. Balakrishnan, “Docker container scheduler for I/O intensive appli-
cations running on NVMe SSDs,” IEEE Trans. Multi-Scale Comput. Syst.,
vol. 4, no. 3, pp. 313-325, Feb. 2018.

D. Gedia and L. Perigo, “Performance evaluation of SDN-VNF in virtual
machine and container,” in Proc. IEEE Conf. Netw. Function Virtualization
Softw. Defined Netw. (NFV-SDN), Nov. 2018, pp. 1-7.

J. Liu, Y. Liang, and N. Ansari, ‘“Spark-based large-scale matrix inversion
for big data processing,” IEEE Access, vol. 4, pp. 2166-2176, 2016.
Y.-L. Hsueh and H.-C. Chen, “Map matching for low-sampling-rate
GPS trajectories by exploring real-time moving directions,” Inf. Sci.,
vols. 433-434, pp. 55-69, Apr. 2018.

H. Wang and Y. Cao, “An energy efficiency optimization and control model
for Hadoop clusters,” IEEE Access, vol. 7, pp. 40534-40549, 2019.

M. Caballer, C. de Alfonso, G. Molté, E. Romero, I. Blanquer, and
A. Garcia, “CodeCloud: A platform to enable execution of programming
models on the clouds,” J. Syst. Softw., vol. 93, pp. 187-198, Jul. 2014.

Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, ““CloudScale: Elastic resource
scaling for multi-tenant cloud systems,” in Proc. 2nd ACM Symp. Cloud
Comput. (SOCC), 2011, pp. 1-14.

YUNPENG CAO was born in Yinan, Shandong,
China, in 1967. He received the bachelor’s degree
from Nankai University, in 1989, and the master’s
degree from the Shandong University of Science
and Technology, in 2005. He is currently a Vice
Professor with Linyi University. His research inter-
ests include network security, network computing,
GPGPU, parallel computing, and intelligence con-
trol simulation.

HAIFENG WANG was born in Linyi, Shandong,
China, in 1976. He received the bachelor’s and
master’s degrees from the China University of
Petroleum, in 1998 and 2005, respectively, and the
Ph.D. degree in computer science from the Uni-
versity of Shanghai for Science and Technology,
in 2012. He is currently a Professor with Linyi
University. His research interests include net-
work security, GPU computing, network comput-
- ing, GPGPU, high-performance computing, and
intelligence control systems.

VOLUME 8, 2020

http://dx.doi.org/10.1016/j.advengsoft.2018.08.001

	INTRODUCTION
	MOTIVATION
	RELATED RESEARCH
	OUR CONTRIBUTION

	PROBLEM DESCRIPTION
	PROPOSED PROBLEM
	PROBLEM FORMULATION

	METHODOLOGY
	MAIN IDEA
	DESIGN OF SYSTEM ARCHITECTURE
	COARSE- GRAINED DEPLOYMENT
	RESOURCE USAGE PREDICTION
	DEPLOYING STRATEGY

	FINE-GRAINED DEPLOYMENT
	DEPLOYMENT ALGORITHM
	MODEL ANALYSIS

	EXPERIMENTAL RESULTS AND DISCUSSION
	EXPERIMENT SETUP
	EFFECTIVENESS OF HDDM
	PERFORMANCE ANALYSIS
	RESOURCE UTILIZATION ANALYSIS
	REAL-WORLD WORKLOADS ANALYSIS

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	YUNPENG CAO
	HAIFENG WANG

