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ABSTRACT It has been claimed that human mobility is highly predictable and an upper bound of 93%
predictability is achievable. However, there is a significant gap between the upper bound of predictability
and the actual prediction accuracy in many data sets. This paper points out that this gap is caused by the
difference between the user’s actual distribution and the hypothesis in the derivation through the analysis
on the upper bound of predictability. Then two statistics of the target user’s mobility traces are proposed
to measure this gap, whose effectiveness is validated by simulated traces and real-world data sets using
five prevailing prediction models. The proposed MLP statistics can help with assessing the data quality and
designing prediction algorithms. Our work makes the predictability upper bound become a more effective
measure and extends the understanding of predictability research in human mobility prediction.

INDEX TERMS Human mobility predictability, real entropy, Call Detail Records.

I. INTRODUCTION
Understanding human mobility plays a critical role in various
areas, such as urban planning [1], emergency management
[2], public health [3], location-based services [4], personal-
ized point of interest (POI) recommendations [5], economic
forecasting [6], and transportation engineering [7]. Mobility
research helps improve the user comfort and mobility pre-
diction can benefit the network design and personal service
optimization [8].

In the existing literature, various methods have been pro-
posed to forecast human mobility, such as Markov chain
models [9], neural networks [10], Bayesian networks [11],
[12], data mining with different knowledge [13], [14] and
effective time series prediction methods [15], [16]. Based
on these models, there have been plenty of research works
on mobility prediction, but the results and practical feasi-
bility of the proposed predictive algorithms are somehow
difficult to be generalized to the universal problem solving.
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In addition, people are not quite sure how well these algo-
rithms will perform versus the best possible algorithm that
could theoretically be constructed. So even for certain given
data set, the best possible accuracy achievable and how well
do the predictive algorithms perform is the very important
topic.

The above question is answered partially, if not all,
by Song et al. [17], who proposed mobility entropy to char-
acterize the predictability of human mobility and pointed out
that the probability of correctly predicting an individual’s
next location had an upper bound of 93% in their data set
in 2010. Following this work, several papers have used this
entropymetric to explore the limits of predictability in human
dynamics [14], [18]–[25]. All these works have verified that
the existing maximum predictability measures can reflect
the potential prediction ability of different predicted objects.
Specifically, the higher the maximum predictability of pre-
dicted objects, the higher the prediction accuracy.

Although Song et al. have proposed a pioneer model to
calculate the maximum predictability of human mobility,
knowing the upper bound has significant practical application
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significance only when it is relatively tight, i.e. it is close to
the extent which the actual optimal algorithm can reach. In
fact, some literature reported that the existing maximum pre-
dictability measure may not provide accurate quantification
of the real prediction ability for many data sets. Thus, this
paper attempts to find when the maximum predictability is
an accurate and valid measure, i.e. a tight bound.

The contributions of this paper are summarized as follows:

• We are among the firsts to study the gap between actual
prediction accuracy and the theoretical bound of max-
imum predictability of human mobility. By using the
CDR records with 192,805 users in a large Chinese city,
we reveal the existence of the gap in real world traces
considering a series of next-place prediction algorithms.
We propose a theoretical formulation of this gap exis-
tence which is validated to be caused not by certain data
set or the improper selection of prediction models.

• We propose two statistics, the probability of the most
likely next position (MLP) and the standard deviation
of location transition probability (SD), to measure the
potential gap of users’ maximum predictability. We
quantitatively analyze the impact of the key statistics of
the user’s movement process on the gap. The MLP is
validated to be an effective measure and beneficial to
obtain the accurate boundary of the optimal predictor by
the results of both simulated traces and real-world traces.

II. NOTATIONS AND DEFINITIONS
In this section, the concepts of mobility entropy and pre-
dictability in human mobility and how to calculate them are
introduced.

A. NOTATIONS
For each target user, one location record is considered as a
location access. After sampling and data cleaning, the loca-
tion access records are sorted into time series of location
access, i.e. trajectory. This sequence is modeled as a random
process, and each location access is treated as a random
state. The definitions and notations used in this paper are
introduced below.

• N : The size of state space, i.e. the number of distinct
locations accessed by one user.

• L = {x1, x2, . . . , xN }: The state pace, i.e. the location
set with N distinct locations. xi represents a possible
location that the target user may access in L.

• Xi: The ith state in random process, i.e. the ith location
access of the target user.

• hn = {X1,X2, . . . ,Xn}: Historical trajectory arranged in
chronological order with n location accesses.

• T : A set of all mobility patterns that occur in one user’s
historical trajectory. Ti ⊂ hn represents a mobility
pattern in T , i.e. a substring of historical trajectory.

• T j : The set of rank j mobility pattern, where j is the
length of the pattern. T ji = {Xi+1, . . . ,Xi+j} represents
a member of T j, i.e. a pattern with j location accesses.

• MLP: A general concept that represents the probability
that the user’s next state is the most likely next position
xML .MLP(Ti) is the probability of xML corresponding to
a specificmobility pattern Ti.MLP is a weighted average
of MLP(Ti) for all mobility patterns.

• MR: Random matrix whose transition probability is
generated randomly and normalized to satisfy the con-
straints of the state transition matrix.

• ME: Equal probability matrix whose each transition
probability equals 1

N .
• Mp: State transition matrixes with a set MLP of each
transition state,MLP ∈ [ 1N , 1).

• Mu: State transition matrixes of real users whose each
transition probability is extracted from users’ trajectory
records.

B. DEFINITIONS OF MOBILITY PREDICTABILITY
In this section we explicitly introduce mobility predictions
and predictability used in this work.

1) MOBILITY PREDICTION
Mobility prediction can be divided into individual mobil-
ity prediction and group mobility prediction. The individual
mobility prediction studied in this paper refers to the predic-
tion of the user’s next position by extracting the movement
characteristics from the individual’s historical trajectory.

Based on the mobility prediction above, the definitions
specified in [17] for predictability and its maximum theoret-
ical value is introduced here.

2) PREDICTABILITY (5)
The mean probability that an appropriate prediction algo-
rithm can correctly predict a person’s future whereabouts,
given knowledge of all of the possible trajectories that could
have led them to that point.

3) MAXIMUM PREDICTABILITY (5max)
The highest potential predictability by assuming one pos-
sesses the best prediction algorithm that is theoretically pos-
sible, which is usually used to quantify the degree to which
human activity is predictable.

III. RELATED WORKS
As to the research topics on prediction predictability inmobil-
ity prediction, there are mainly three questions: Is the current
upper bound for one mobility prediction task achievable?
What is the relationship between the upper bound of pre-
dictability and accuracy in actual prediction, and what are the
factors affecting the two? Is the limit of predictability good
enough for guiding the prediction accuracy?

A. RELATED WORKS ON PREDICTABILITY
Some works tried to design advanced prediction algorithms
to approach the maximum predictability, but failed to obtain
unified conclusion. Lu et al. [19] measure the maximum
predictability of people inWest Africa and find the theoretical
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limits are an approachable target. In [26], a modified Markov
model is proposed for users who visit new locations in the test
set, resulting in an improvement of 12.93% accuracy. In [13],
the Diffusion kernel model based on propagation network
obtained better performance than current models. But the
prediction performance in [26] and [13] can not approach the
upper bound of predictability of used data sets.

Besides, an important topic is to explore the relationship
between the limits of predictability and prediction accuracy.
Reference [27] models the relationship between accuracy and
predictability for specific algorithms using students mobility
data by composite Gaussian function, but this conclusion
needs to be confirmed by more data sets. Reference [13]
reported that users with the same predictability correspond
to different prediction accuracies, which might be caused by
the limits of predictability being not a tight bound. Another
interesting topic is to find out the critical factors affecting the
maximum predictability and prediction accuracies, such as
the temporal and spatial resolution of data [28], [29], the pref-
erence of exploration [25] and the data quality. The differ-
ences of mobility predictability of college students between
gender, age and grade groups using campus consumption
records is analysed in [28]. The upper limit of predictability
increases as the temporal resolution becomes finer-grained in
the sensor records of 14 participants [29]. The extensive pre-
diction performance span is attributed to human exploration
of new locations [25].

Some other researchers have tried different methods or
modified predictability measures to quantify the predictabil-
ity of human mobility, such as mutual information [30],
instantaneous entropy [31], and so on. Smith et al. [32]
achieve a tighter upper bound using the Geolife data by con-
sidering real-world topological constraints. But this method
required more detailed spatiotemporal data, continuous GPS
information, and real world geographical location. So the
redefined upper bound is more difficult to popularize than
the definition in [17]. In addition, [23] pointed out that the
approximation algorithm (Lempel-Ziv estimator) of the orig-
inal predictability in [17] may lead to the overestimation of
predictability, and gave the inherent deviation of four differ-
ent sequences.

B. BASELINE PREDICTION MODELS
Four baseline prediction models are introduced here which
are chosen for the performance comparison in this work.
These four models have been tested in existing works [13],
[16] and they have different characteristics. For example,
DK model is similar to the neural network prediction model
and gradient descent operations are involved in the calcu-
lation without requiring large amounts of training data. ST
model takes into account the factors of moving time intervals,
and performs better than models that do not consider time
characteristics.

The prediction accuracy to assess the performance for
one specific algorithm is defined as the number of correct

predictions ncorrect over the total number of predictions ntotal:

Accalg =
ncorrect
ntotal

(1)

And the gap between the accuracy of a specific algorithm
and the maximum predictability can be calculated by (2).

Gapalg = 5max
− Accalg (2)

1) MOST FREQUENT VISIT MODEL (MFV)
In MFV model [14], the probability of next check-in at loca-
tion x of MFV is defined as (3).

PMFV (Xi+1 = x|Xi = xi, hi = h) =
|{Xr |Xr ∈ L,Xr = x}|
|{Xr |Xr ∈ L}|

(3)

2) FALLBACK MARKOV CHAINS (FMC)
The n-order Markov chain means that an individual’s next
place is related to the previous n visited locations. The ‘‘fall-
back’’ Markov chain uses the results of the n-order Markov
model when it makes a prediction, or results of the MFV pre-
dictor if the Markov predictor has no prediction. It is reported
that the n-order Markov models have higher complexity and
lower accuracy when n > 2 [9], [19], so 1-order and 2-order
FMC are chosen to implement next place prediction in this
work.

3) DIFFUSION KERNEL MODEL (DK)
Diffusion kernel model was originally used to describe the
internal thermal diffusion of manifold nuclei [33] and was
later applied to the prediction field [13]. The mobility behav-
ior is mapped to the heat diffusion process in the hidden
space, and the prediction is based on the magnitude relation-
ship of the Euclidean distance between the nodes.

4) SPATIAL TEMPORAL MODEL (ST)
The Spatial Temporal model is a slot-based continuous next-
place prediction model [16]. The model first determines
whether the next time slot is a resident state or a moving state
based on the residence time of various spatial and temporal
characteristics, and then makes a position prediction.

IV. METHODOLOGY
In this section, the concepts of mobility entropy and pre-
dictability in human mobility and how to calculate them are
introduced.

A. DERIVATION OF PREDICTABILITY
Before analysing the gap between the bound of predictability
5max and actual prediction accuracy, the derivation of pre-
dictability5 done in [17] should be reviewed first, as below.
P (Xn|hn−1) denotes the conditional probability distribu-

tion for the target user’s nth location state given hn−1. The
best prediction from any predictor is to return the most likely
next state xML from the distribution. In (4), π (hn−1) denotes
the probability of xML and P(Xn = x|hn−1) = P(x|hn−1) is
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the probability that the user will select x as the next state Xn
given the history hn−1.

π (hn−1) = sup
x
P(Xn = x|hn−1) = P(xML |hn−1) (4)

Let Pa
(
X̂n|hn−1

)
be the distribution generated by an arbi-

trary prediction algorithm α over the next possible state X̂n.
So the probability of correctly predicting the user’s next state
is

Pra
(
Xn = X̂n|hn−1

)
=

∑
x

P (x|hn−1)Pa (x|hn−1) . (5)

There is π (hn−1) ≥ P (x|hn−1) for any x, so

Pra
{
Xn = X̂n|hn−1

}
=

∑
x

P (x|hn−1)Pa (x|hn−1)

≤

∑
x

π (hn−1)Pa (x|hn−1) = π (hn−1) . (6)

Since5(n), defined in (7), is the highest prediction success
rate of user at nth location state, the overall predictability 5
can be regarded as the average predictability of time series.

5(n) =
∑
hn−1

P (hn−1) π (hn−1) . (7)

5 ≡ lim
n→∞

1
n

n∑
i

5(i). (8)

B. MEASUREMENTS OF MAXIMUM PREDICTABILITY
To compute the upper bound of predictability 5max, [17]
relate user’s entropy to Fano’s inequality. The entropy of the
time series can be expressed as (9).

S = lim
n→∞

1
n

n∑
i=1

[
∑
hi−1

P(hi−1)S(Xi|hi−1)] (9)

The conditional entropy S(Xn|hn−1) of target user over nth
state given hn−1 is written as (10), where p = π (hn−1).

S(Xn|hn−1) = −
∑
x

P(x|hn−1)log2P(x|hn−1)

= −plog2(p)−
∑
x 6=xML

P(x|hn−1)log2P(x|hn−1)

(10)

Since the actual next state distributionP(Xn|hn−1) is unknown
in practice, they define S(X ′n|hn−1), an upper bound for
S(Xn|hn−1), with a new distribution P(X ′n|hn−1).

P(X ′n|hn−1) = (p,
1− p
N − 1

,
1− p
N − 1

, . . . ,
1− p
N − 1

). (11)

S(X ′n|hn−1) = −plog2(p)− (1− p)log2(
1− p
N − 1

)

= −plog2(p)− (1− p)log2(1− p)

+ (1− p)log2(N − 1)

≡ SF (p) = SF (π (hn−1)). (12)

S(Xn|hn−1) ≤ S(X ′n|hn−1) = SF (π (hn−1)) represents an
appropriate rewriting of Fano’s inequality [34]. And then
assuming 5 = 5max is the condition of S(Xn|hn−1) =
SF (π (hn−1)), one can find the maximum predictability5max

satisfies (13).

S = SF
(
5max) (13)

Finally, the calculation of5max can be obtained by entropy S
as (14) and (15). 5max gives the upper limit of the accuracy
of any prediction algorithm.

S = H (5max)+ (1−5max)log2(N − 1). (14)

H (5max) = −5maxlog2(5max)−(1−5max)log2(1−5
max).

(15)

C. THREE ENTROPY
From the spatiotemporal correlation inside the mobility tra-
jectory, three entropy measures are proposed in [17].
Random Entropy: Srand ≡ log2N .
Temporal-Uncorrelated Entropy: Sunc ≡ −

∑N
i=1 p(xi)

log2 p(xi), where p(xi) is the probability that xi occurs in the
history trajectory.
Real Entropy: the real entropy Sreal is defined by−

∑
Ti′⊂hi

p(Ti′ )log2p(Ti′ ), where p(Ti′ ) is the probability of finding a
particular mobility pattern Ti′ in the trajectory hi.
The real entropy not only depends on the access frequency,

but also considers the order of location access and the dura-
tion at each location. Since among the three entropy, the real
entropy is closest to the uncertainty of the user’s mobility,
5real is coined as 5max. The Lempel-Ziv data compression
[35] is used to calculate the Sreal. For a time series with n
states, the entropy is estimated by (16), where3i is the length
of the shortest substring at state i which does not previously
appear from state 1 to i− 1.

Sest =

(
1
n

∑
i

3i

)−1
ln n (16)

V. TWO KEY STATISTICS TO ANALYSIS GAP
In this section, the derivation of themaximumpredictability is
discussed to reveal the inherent reason for the gap existence.
Then two key statistics of mobility process are proposed to
explore the factors that affect this gap.

Although [17] obtained the relationship between the upper
bound of predictability and the entropy 5 ≤ 5max(S,N )
through Fano’s inequality and Jensen’s inequality, however,
it is obvious that not all of the actual distributions of users to
select the next state is the same as (11). Thus when applied to
practical predictions, this upper bound of predictability may
not be a perfect indicator for the optimal prediction accuracy.

As shown in Fig. 1, the assumed distribution in [17] results
in an entropy greater than or equal to that of distribution
of the real world traces, which results in an overestimated
upper bound on predictability. Reference [32] eliminated the
unreachable locations using the real-world constraints, and
applied uniform distribution to fewer possible locations. This
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FIGURE 1. (a) The actual distribution (unknown in practice) over next
state. (b) Distribution used in [17]. (c) Refined distribution in [32].

approximation has an entropy lower than [17] but higher than
the actual entropy. However, this method requires a large
amount of external information except trajectory.

Then, according to the original derived assumptions, two
statistics of the user’s historical location access distribution
are presented to measure the actual impact of the overes-
timation. Given a particular history movement pattern Ti,
the transition probability of xML in (8) is coined here as
MLP(Ti), and the Standard Deviation of transition probability
on the remaining N − 1 positions in (17) is coined as SD(Ti).

SD(Ti) =

√∑
j(Pr(xj|Ti)−Mean2[Pr(x̂ 6= xML |Ti)]

|{x̂ 6= xML}|
(17)

Mean[Pr(x̂|Ti, x̂ 6= xML)] =

∑
j Pr(xj|Ti)

|{x̂ 6= xML}|
(18)

Since the user’s movement process contains a lot of pat-
terns, the weighted average of MLP(Ti) and SD(Ti) of all
history movement patterns coined here as MLP, SD respec-
tively. MLP can measure the user’s overall prediction deci-
sion, as shown in (19).

MLP =
∑

Ti⊂hn−1

P(Ti)π (hi) =
∑

Ti⊂hn−1

P(Ti)MLP(Ti) (19)

Similarly, SD can be calculated by (20).

SD =
∑

Ti⊂hn−1

Pr(Ti)SD(Ti) (20)

According to the rank ofmobility patterns, (19) can bewritten
as (21).

MLP =
n−1∑
j=1

Pr(T j)[
∑

T ji⊂hn−1

Pr(T ji )MLP(T
j
i )] (21)

According to the definition above, two understandings are
pointed here. First, the bigger the MLP(Ti), the smaller the
probability of the remaining N − 1 positions. When the
MLP(Ti) is large enough, the difference between the assumed
distribution and the original distribution is indistinguishable,
and the degree of overestimation is significantly reduced.
Second, when SD(Ti) approaches 0, the probability of over-
estimation is negligible. Therefore, these two statistics are
expected to show that what kind of data set has an attainable
predictability upper bound, that is, under what circumstances,
the gap generated by overestimation of the predictability is
slightly negligible.

FIGURE 2. The distributions of the upper bound of predictability
calculated by three entropies.

VI. EXPERIMENTS OF MOBILITY TRACES
This section describes the two types of data sets used in this
paper, based on which the gap phenomenon is presented.
Wireless technologies allow us to sense and collect massive
repositories of spatio-temporal data [36] and most of the
existing works are based on the data collected from wireless
communication systems, such as Call Detail Records (CDR),
WiFi (Wireless Fidelity) logs, GPS (Global Positioning Sys-
tem) traces, social media data [37] etc. The CDRs are chosen
in this paper for the following reasons. First, as a by-product
of routine billing by telecommunication service operators,
CDR data can provide users’ location information at a rather
lower cost on a larger scale, which is appropriate to represent
human mobility. Second, the original predictability theory of
human mobility is performed using the CDRs in [17].

A. REAL WORLD TRACES
The CDR data set is provided by one telecom operator in
China, which is collected for 6 months, 184 days, from
July 1, 2014, to December 31, 2014. 194,336 anonymous
mobile phone subscribers registered in one city are included
in this data set. The user’s location is provided as the loca-
tion area code (LAC). There are 270,932,374 records from
453,752 locations in the data set. Each record has 12 features,
and four of which, SERVICE NBR, START TIME, ROAM
CITY ID, LAC ID, are extracted for predictability calculation
and next place prediction.

The number of location updates of most users is distributed
between 500 and 2,000. Users with fewer than 500 updates
are filtered out because their records are not enough to reflect
the behavior characteristics of the observation period. The
number of unique locations visited, N , represents the visiting
patterns of users. 80% of users’ visiting limits in 100 loca-
tions, and minority of users visit more than 150 locations.

In this paper, track points are resampled to eliminate the
ping-pong effect. Specifically, the trajectory point (xi, ti) is
said valid if xi 6= xi−1 and ti − ti−1 ≥

a
t,

a
t = 30 min,

to eliminate invalid records generated by users frequently
switching between adjacent base stations.
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B. SIMULATED TRACES
Human mobility has been claimed to follow Levy walk char-
acteristics [38], which tells that the movement of target user is
of a short distance around a location at most of the time, but in
a few cases there is also a long distance movement. In prac-
tical cases, Markov related models are often used to model
the movement process, such as Semi-Markov model, Finite
Markov chains [39], Gaussian Markov model [40] etc. In this
paper, the Markov state transition matrix defined in the state
space is adopted to represent the visiting behavior or visiting
preference of users and generated random visiting sequences
are used for verification. Without loss of generality, only the
1-order state transition matrix is taken into consideration.

Among the four kinds of state transition matrixes used in
this paper,MR,ME andMp are generated randomly according
to the set rules, while Mu is calculated from the historical
trajectory of each real user. Each state transition matrix rep-
resents an access distribution for a target user. When generat-
ing random access sequences, the target user’s movement in
space is regarded as the random movement between possible
locations according to the state transition matrixes. MR and
ME are designed to observe the generation of gap at the
boundary condition of theoretical derivation (MLP = 1

N ).
Mp is used to observe the change trend of gap of sequences
with different MLP eigenvalues. Mu is used to compare the
performance of real users’ simulation models to real world
trajectories.

The parameter settings of the state transition matrixes are
shown in Table 1, which helps to understand the generation of
visiting sequences with different characteristics of MLP and
SD. The generation algorithm ofMp is shown in Algorithm 1.
Mp1, Mp2 and Mp3 are simulation matrixes of Mp with dif-
ferent parameters N = 50, Len = 50,000; N = 10, Len =
50,000 and N = 50, Len = 2,000. In particular, Mu denotes
the real state transition matrixes of all users from CDR data
set, where theN ,MLP and SD of eachMu are calculated from
real world CDR traces.

Note that the validation on the simulated traces confirms
that the N of the generated trajectory under the parameter
setting of Table 1 is consistent with the state space size set.
In addtion, for the traces generated by Mu, the distribution
of predictability and prediction accuracy are consistent with
the distribution of the real trajectory of the user set. These
validation is not demonstrated in this paper due to page
limitations.

C. EXPERIMENT VERIFICATION OF GAP
The gap between actual prediction accuracy and theoretical
limit of predictability of two kinds of mobility traces is dis-
cussed in this subsection.

1) EMPIRICAL GAP IN REAL WORLD TRACES
The analysis of the upper bound of predictability reveals
that the theoretical upper bound of average prediction accu-
racy of the user set in CDRs can be as high as 80%.

Algorithm 1Mp Generation Algorithm
Input:

N : Matrix dimension

p: MLP of each transition state

Output:Mp

1: Initializes an N × N dimensional matrixM

2: for i = 0 to N − 1 do

3: Select a random integer s from the range [1,N )

4: for j = 0 to N − 1 do

5: if j == s then

6: M (i)(j)← p

7: else

8: M (i)(j)← 1−p
N−1

9: end if

10: end for

11: end for

12: return Mp← M

Five mainstream forecasting models, 1-order FMC, 2-order
FMC, DK, MFV and ST, are used to predict the next place
of real world users. The track set of each user is divided
into training set and test set at a ratio of 5:1, which are
used to perform model training and next position prediction
separately for each target user.

The prediction results of all models and the distribution of
users’ predictability are shown in Fig. 3(a), which tells the
following findings. Firstly, the predictive performance of all
models varies no more than 10% while FMC(1) achieves the
highest prediction accuracy at 0.62. Secondly, in this user
set, the span of users’ prediction accuracies is large, unlike
5max, which is concentrated distributed around a high value.
so there is a big gap between actual prediction result and
maximum predictability in the user set. The gap between
the accuracy and predictability can be calculated by (2) and
shown in Fig. 3 (b) that the FMC(1) has the smallest gap,
while the MFV model has the largest gap.

From the empirical results above, it is proved that the
existence of gap in real world data set is a non-accidental phe-
nomenon and is not caused by the poor choice of prediction
algorithms.

2) GAP IN SIMULATED TRACES
It has been described in Section IV that 5max is the average
probability that the theoretical best predictor makes correct
predictions while the best prediction from any predictor is
to return the location with the highest probability from the
real distribution of next location. The real distribution of
location access of simulation objects is 1-orderMarkov chain,
so the 1-order Markov Model is used to predict the generated
location visiting sequence.
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TABLE 1. Parameters and statistics of transition matrixes MR , ME , Mp, Mu.

FIGURE 3. (a) Probability distribution of the maximum predictability and
the prediction accuracy of the user set. Mean values are 0.6262, 0.6120,
0.6054, 0.5514, 0.6232, 0.8241. (b) Probability distribution of the gap of
all models.

According to (11), the boundary condition MLP = 1
N is

considered a special case to explore firstly. The result ofMR is
similar toME , which turns out that the probability distribution
ofMR is approximately uniform. The following analysis only
takes ME as an example. The average prediction accuracy of
ME as shown in Fig. 4 is only 0.0254, which is approximately
the probability of random selection of N = 50 states. Calcu-
lated by (14) and (15), the maximum predictability5max is in
[0.5015, 0.5590] while5rand is 0.0212. The prediction result
is far from 5max, so there is a gap between the maximum
predictability and prediction accuracy ofME .

FIGURE 4. The gap between the maximum predictability and prediction
accuracy of ME .

VII. MEASURING THE GAP BY KEY STATISTICS
In this section, we verify that there is a linear relationship
between theMLP and the gap of mobility traces.

A. RELATIONSHIP BETWEEN STATISTICS AND GAP
1) KEY STATISTICS OF REAL WORLD TRACES
For each user in CDRs, MLP can be calculated from the
historical trajectories by (19). Aftermapping each user’sMLP
to its predictability upper bound and prediction accuracy, We
can analyze the relationship between gap andMLP, as shown
in Fig. 6 (b). The larger the MLP of a user’s location visit-
ing distribution, the smaller the gap between the maximum
predictability and prediction accuracy. And the relationship
between the two is almost a linear decreasing relationship.

Similarly, the results of SD calculated by (20) are shown
in Fig. 5. Firstly, Fig. 5 (a) shows that when SD is close
to 0, the gap is also close to 0, i.e. the overestimation of
predictability upper bound is almost nonexistent, which is
consistent with theoretical analysis. With the increase of SD,
the gap shows an overall increasing trend, but the gaps with
the same level of SD are not the same when the span is large.
Secondly, Fig. 5 (b) shows that whenMLP is close to 1, the SD
is close to 0. WhenMLP decrease from 1, the corresponding
SD values and the range of which keep increasing.

Both MLP and SD are calculated from the probability
distribution of the next location access. However, it can be
seen from the above results that MLP is more suitable as an
indicator of gap, and it has a greater impact on gap. Because
the distribution of the same SD may be different, while MLP
is the key factor affecting user’s location access and the
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FIGURE 5. The impact of SD on the gap between the average accuracy and
theoretical maximum predictability of real world traces of 190K users.

prediction decision. Since SD is not suitable for measuring
and distinguishing the gaps of users, subsequent discussions
will no longer be conducted around SD.

2) KEY STATISTICS OF SIMULATED TRACES
The sequences with different MLP can be generated by Mp,
and the corresponding gaps calculated by (2) are shown
in Fig. 6 (a). We conclude that forMLP ∈ [ 1N , 1), the smaller
the MLP is, the bigger the gap between actual prediction
accuracy and the limit of predictability is. And whenMLP =
1
N = 0.02, the gap ofMp1 is largest at 0.48, which is basically
consistent with the results ofME .
Since the generated simulation model is difficult to fully

simulate the user’s actual location access, this paper also sim-
ulates random visitation sequence according to the estimated
location access distribution of real users, Mu. The results of
Mu will be analyzed and compared with the results of users’
real trajectories in subsection VII-B.

In summary, by analyzing the relationship between key
statistics and gap, the key issues without consensus, whether
the upper bound of predictability is reachable, can be

FIGURE 6. (a) The relationship between MLP and the gap of Mp1.
(b) Relationship between MLP and the gap between 5max and accuracy
achieved by FMC(1) of 190K users.

answered. That is, the data set with MLP → 1 and SD → 1
has an attainable predictability upper bound and as MLP
approaches the boundary of 1

N from 1, predictability upper
bound appears increasingly unreachable.

B. IMPACT OF MLP ON GAP
In this part, we quantitatively analyze the impact of MLP on
the gap by comparing the linear relationship between MLP
and gap in the results of simulated traces and real world
traces.

The MLP of the real user set ∈ [0.2332, 1] are divided
into 16 intervals with the interval length= 0.05. The average
of the gaps in the same MLP interval is seen as the gap
corresponding to the interval’s upper boundary. For example,
the average of all gap values in (0.20 0.25] is recorded as the
gap at MLP = 0.25.
Fig. 7 presents the linear relationships between MLP and

the gaps in two kinds of data sets, which tells the following
conclusions. First and most importantly, MLP is verified to
be a good indicator for calculating or estimating the gap in
an approximately linear relationship. Second, when dealing
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FIGURE 7. The linear relationship between MLP and the gaps achieved by
different data sets and prediction models. Mp1, Mp2 and Mp3 are
simulation matrixes with different parameters N = 50, Len = 50,000;
N = 10, Len = 50,000 and N = 50, Len = 2,000.

with real data set, the gaps of these five prediction models
follow a similar distribution. In addition, when using the
parameters calculated from the data of actual users, the results
of simulation model Mu are extremely consistent with that
of other prediction models. Finally, the results of real data
set achieved by all prediction models have obvious larger
gap compared with the theoretical simulation model Mp,
which is probably because the sequences generated by fixed
parameters are difficult to simulate the visiting sequences of
the whole user set.

The random visitation sequence generated by simulation
is affected by three factors: distribution characteristics pre-
sented byMLP, state space size N , and sequence length Len.
From the results ofMp1,Mp2 andMp3, we can find that N has
less influence on the linear relationship while Len has more
significant influence. When L ofMp is close to the trajectroy
length of the real world user set, the result of simulated Mp3
is closer to the result of Mu. The slight deviation between
the two can be explained by two factors. On the one hand,
the number of visiting locations and the trajectory length of
each user in the user set are different. On the other hand,
the location visitation in the test set may be different from
the training set.

In conclusion, the indicator MLP can quantify the gap
between the performance of theoretical optimal predictor of
the dataset and the upper limit of predictability.

C. INFLUENCE OF RANK OF KEY STATICS
The definition of MLP is further discussed in this section.
The currently calculated MLP only mines the predictive
power of the target user’s rank 1 mobility patterns. Further,
the influence of the mobility patterns of different ranks on
the calculation of the MLP and the relationship between the
MLP and the gap can be explored.

MLP =
k∑
j=1

Pr(T j)[
∑

T ji⊂hn−1

Pr(T ji )MLP(T
j
i )] (22)

FIGURE 8. Probability distribution of MLP in the user set corresponding
to different ranks k .

Corresponding to (22), the higher the rank k , the larger
the range of j, j ∈ (1, k) and k ≤ n − 1. The larger j is,
the smaller Pr(T j) is and more high-order movement patterns
are mined. But Pr(T j) decreases only at a constant rate, and
the corresponding MLP(T ji ) will rise rapidly to approach 1,
so the value of MLP increases as the rank k increases. When
most MLP(T ji ) are close to 1, theMLP will also approach 1.

The cases of k = {1, 2, 5, 10, 15} are explored as Fig. 8.
Same as the previous analysis, the larger the k , the larger the
MLP. In experiment, when k ≥ 20, the MLP of most users
are close to 1.

It should be noted that although a higher rank leads to a
larger MLP, it does not mean that the MLP is more effective
in measuring the gap. As the rank increases, the relationship
between MLP and gap no longer satisfies the linear relation-
ship. Although with a higher rank, more mobility patterns and
correlations are mined, the distribution difference between
the training set and the test set becomes larger which results
in lower robustness. In practical applications, the appropriate
rank should be chosen to calculate theMLP.

VIII. CONCLUSIONS
This paper starts from the observation that there is a very
significant gap between the upper bound of predictability and
the actual prediction accuracy. This motivates us to study
and models the prediction accuracy, and the maximum pre-
dictability of human mobility, then to derive the gap between
such prediction accuracy and suchmaximum predictability of
human mobility. We revisit the theory behind the maximum
predictability and derive two statistics to measure such gap.
The gap and the validity of the metricMLP are verified by the
results of simulated traces and real world trajectories. Simu-
lated traces can verify the impact of MLP on the theoretical
gap. Because both the prediction model and the trajectory
generationmodel areMarkovModels, the prediction decision
is almost returning results from the actual distribution of
location visits, which achieves the performance of theoreti-
cally optimal predictor. Besides, the real world trajectories
are extracted from a large CDR dataset of 6 months in
a city of China, with about 200,000 users and more than
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450,000 locations, which can reflect the gap in the mobility
prediction of the actual situation.

In particular, section III details that there is currently no
consensus on whether the upper bound of predictability is
reachable. Firstly, this paper answers this key question from
the perspective of data set characteristics. That is, the data set
with MLP→ 1 has an attainable predictability upper bound.
Then, in view of the case that the predictability upper bound
of the data set is not reachable, i.e. the overestimation, this
paper illustrates the possible range of gap. Finally, the impact
ofMLP, a general and interpretable indicator, is discussed to
quantify the gap between the theoretical optimal predictor of
the data and the upper bound of predictability.

Compared with the current work, the method proposed in
this paper proposes key statistics to quantify the gap between
the existing theoretical upper bound and the achievable limit
to obtain a more accurate and effective theoretical limit. We
point out the problem of traditional research that there is
still no unified understanding of whether the upper bound
of predictability proposed by Song et al [17] is attainable.
Literature [32] proposed a tighter upper limit, but requires
precise, continuous spatio-temporal latitude and longitude
information which is often difficult to obtain. In addition,
the accuracy of the modified upper bound depends on the
granularity of the spatiotemporal information. While the pro-
posed method in this paper only requires the location records
of the target object (whether it is area label or latitude and
longitude information), our work is more conducive to popu-
larity and application.

This work enables the prediction design to have a credible
target5max

−gap, which can be applied to assess data quality
during data collection and data set selection and establish
the prediction objective. It can also help to select and design
proper prediction algorithms. For example, if the perfor-
mance of the one prediction algorithm is far from5max

−gap,
another more suitable model should be considered because
the possible bound is not yet reached. Otherwise, such poor
prediction accuracy can be caused by the data set itself,
so trying more prediction algorithms may not help. In this
case, the data set should be re-collected or replaced at this
time, or external variables should be integrated to assist
prediction.

We also notice that there are some points for future work.
The CDR data set is chosen because it represents the mobility
of massive people which is also utilized in the original pre-
dictability theory of human mobility [17]. But the location
information is coarse-grained and is not precise enough in
some scenarios. In addition, the predictability theory studied
in this paper is based on the prediction of the target with
a finite number of position states, without considering the
influence of information beyond the historical trajectory.
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