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ABSTRACT As one of the most important research fields in the brain–computer interface (BCI) field,
electroencephalogram (EEG) classification has a wide range of application values. However, for the EEG
signal, it is difficult for the traditional neural networks to capture the characteristics of the EEG signal
more comprehensively from the time and space dimensions, which has a certain effect on the accuracy
of EEG classification. To solve this problem, we can improve the accuracy of classification via end-to-end
learning of the time and space dimensions of EEG. In this paper, a new type of EEG classification network,
the separable EEGNet (S-EEGNet), is proposed based on Hilbert–Huang transform (HHT) and a separable
convolutional neural network (CNN) with bilinear interpolation. The EEG signal is transformed into time-
frequency representation by HHT, which allows the EEG signal to be better described in the frequency
domain. Then, the depthwise and pointwise elements of the network are combined to extract the feature
map. The displacement variable is added by the bilinear interpolation method to the convolution layer of the
separable CNN, allowing the free deformation of the sampling grid. The deformation depends on the local,
dense, and adaptive input characteristics of the EEG data. The network can learn from the time and space
dimensions of EEG signals end to end to extract features to improve the accuracy of EEG classification.
To show the effectiveness of S-EEGNet, the team used this method to test two different types of EEG
public datasets (motor imagery classification and emotion classification). The accuracy of motor imagery
classification is 77.9%, and the accuracy of emotion classification is 89.91%, and 88.31%, respectively. The
experimental results showed that the classification accuracy of S-EEGNet improved by 3.6%, 1.15%, and
1.33%, respectively.

INDEX TERMS Hilbert–Huang transform (HHT), electroencephalogram (EEG) classification, convolu-
tional neural network (CNN), bilinear interpolation.

I. INTRODUCTION
With the development of human–computer interaction
(HCI) [1] and the brain–computer interface (BCI) [2],
the application potential of hot technologies in the field of
HCI technology has begun to emerge. It is highly important to
integrate EEG classification technology into HCI to improve
HCI ability. Comparing electrocardiogram (ECG) [3], elec-
tromyogram (EMG) [4], and electroencephalogram (EEG)
signals, the EEG signal is the most intuitive and objective
expression of emotion. EEG is a pattern obtained by ampli-
fying and recording the spontaneous biopotential of the brain
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from the scalp with precise electronic instruments. This rep-
resents the spontaneous and rhythmic electrical activity of
the brain cell group recorded by the electrodes. There are
routine, dynamic, and video EEG types. However, due to
the characteristics of the dynamic time series data of the
EEG signal, each observation value in the EEG sequence
is the comprehensive result of various factors affecting the
change simultaneously. The real change of EEG signal is
the superposition or a combination of several changes, which
leads to the correlation and mutual restriction between EEG
sequences. The prediction of EEG signals should be studied
as a whole to highlight trends and periodic changes. To solve
the problem that the traditional neural network unilaterally
analyzes a single EEG sequence, which leads to difficulty
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in improving the classification accuracy and further improve
the accuracy of EEG classification, our team fully considers
its space and time dimensions when classifying the EEG
signals, aiming to capture the characteristics of the EEG
signals more comprehensively, and a method of EEG signal
classification is proposed based on separate convolution with
bilinear interpolation. Compared with the existing methods,
this method can classify EEG data more accurately and has
stronger robustness.

Before this paper, various preprocessing methods for EEG
have been employed to improve the accuracy of EEG clas-
sification. For example, Samiee et al. [5] used short-time
Fourier transform (STFT) to process EEG signals, while
Alyasseri et al. [6] proposed an EEG denoising method based
on wavelet transform (WT), and Yahya et al. [7] studied an
EEG processing method based on continuous WT (CWT) to
improve classification accuracy. In the above literature, STFT
is suitable for processing linear nonstationary signals, while
WT and CWT can process nonlinear nonstationary signals
in theory, but they can only process linear nonstationary
signals in the actual algorithm implementation. Compared
with the above-mentioned EEG signal processing methods,
the Hilbert–Huang transform (HHT) used in this paper is
suitable for analyzing nonlinear and nonstationary EEG sig-
nals and has complete adaptability. It can transform one-
dimensional (1D) EEG signals into two-dimensional (2D)
signals on the complex plane, which is more conducive to
capturing the dynamic correlation information of EEG sig-
nals. Cho and Kang [8] proposed an image denoising method
based on CNN, which not only improves the denoising per-
formance, but also uses the separable convolution and the
gradient prior in this study to reduce the computational com-
plexity. Compared with the existing CNN denoising methods,
this method has better denoising quality and is suitable for a
variety of image processing works including EEG.

Neural network technology has been widely used in EEG
recognition and classification. Reference [9] proposed a deep
learning method based on long short-term memory (LSTM)
to recognize emotions from primitive EEG signals.
Reference [10] analyzed multichannel EEG using an
artificial neural network while [11] proposed a new network-
based Alzheimer’s disease (AD) recognition machine learn-
ing method that is used in AD-EEG signal recognition, which
improves the classification accuracy by changing the network
type. Reference [12] proposed a method to train radial basis
function neural networks by feature extraction based on the
public space pattern of sub-bands selected by sequential back
floating. Moreover, [13] proposed a nonlinear feature extrac-
tion method based on deep multiset canonical correlation
analysis to train neural networks. The core of this method is
improving the feature extraction method to enhance the clas-
sification accuracy of the neural network. However, [14] used
the STFT algorithm to transform the EEG signal of a moving
image into a two-dimensional image, then used CapsNet to
learn all kinds of characteristics of EEG signals; this solution
improved the EEG preprocessing method to enhance the

detection effect. Reference [15] sought to improve the neural
network and integrate the weight splitting technology into
the algorithm of the Back-Propagation (BP) neural network
for EEG recognition and analysis, with the aim of enhancing
the classification accuracy. In reference [16], the concept of
general model set is introduced, and the model is trained by
weighted linear discriminative analysis, which greatly short-
ens the training time and provides a valuable new strategy for
improving the performance of BCI based on P300. The core
of these methods is to extract the features of EEG signals
effectively to improve the classification accuracy. However,
it is still difficult to select the best features from a large
number of time-domain and frequency-domain analysis.

In recent years, researchers have gradually found that con-
volutional neural networks (CNNs) have high efficiency for
EEG signal feature extraction, with the characteristics of
rapidity and time savings. Therefore, the CNN has become
the main research direction in the field of EEG signal recog-
nition and classification. Reference [17] proposed a deep
CNN-based learning and classification method for EEG emo-
tional features. Moreover, [18] proposed a long-term and
short-term storage network combined with spatial CNN to
simultaneously learn spatial information and temporal cor-
relation from the original motor imagery EEG (MI-EEG)
signals. Reference [19] proposes a model based on deep
convolution network and autoencoders, called AE-CDNN.
All the above studies have been devoted to improving
the network complexity to enhance classification accu-
racy. Waytowich et al. [20] proposed a compressed CNN
(compact-CNN) that only needs the original EEG signal for
automatic feature extraction. The experiment showed that
compact-CNN is superior to the currently used method of
canonical correlation analysis (CCA) and combined-CCA.
Wu et al. [21] proposed a multiscale filter bank CNN (MSF-
BCNN) for MI-EEG classification. A network initialization
and fine-tuning strategy was also proposed to train an indi-
vidual model for topic classification on small datasets. The
team compared the MSFBCNN with the latest methods on
the open dataset, and the results showed that the accuracy
of this method in the topic classification was higher than
the baseline. Kwon et al. [22] studied the super-resolution
(SR) technology of deep CNNs, simulated the EEG data
of white Gaussian noise and real brain noise, and obtained
experimental EEG data in auditory evoked potential tasks.
The SR-EEG simulation data with Gauss white noise or brain
noise showed lower mean square error and higher correla-
tion of sensor information, and they could detect the sig-
nal source more clearly than was possible in low-resolution
(LR) EEG. Nejedly et al. [23] developed a machine learn-
ing method using CNN to detect the artifacts of intracranial
EEG (iEEG) signals under clinical control conditions, and the
performance of this method is compared with that of expert
notes. The results show that this method can be used as a
general model of iEEG. Lawhern et al. [24] introduces a
compact convolutional neural network (EEGNet) for EEG-
based BCIs. Deep convolution and separable convolution are
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used to construct EEG specific model, and through four kinds
of BCI paradigms, the similarities and differences between
EEGNet and the latest research methods in the classification
of subjects and cross subjects are compared. The results show
that EEGNet is robust enough. On the basis of EEGNet,
this study adds the preprocessing steps of EEG data, and
improves the convolution layer by using bilinear interpolation
method, and gets better results in EEG classification. The
final purpose of these studies is improving the accuracy of
EEG recognition or classification by deepening or improving
the network model and preprocessing the EEG signal. Deep
learning models, especially CNNs, have been successfully
used in EEG recognition and classification tasks. In recent
years, the CNN has made great progress in the field of EEG,
and many deep learning models have shown good perfor-
mance in the detection and classification of various types of
EEG signals [25]–[31]. Nowadays, there are many gaps in the
application of deep learning technology in multiple aspects of
EEG classification, and various deep learning models have
great room for improvement. Researchers are still committed
to improving the accuracy of EEG recognition and classifica-
tion.

The above literature shows that, although many studies
have developed EEG by various heuristic methods, scholars
have also carried out extensive research on the classification
of EEG. At the same time, there are still many challenges in
the process of EEG classification. Compared with existing
research, which has involved increasing the number of net-
work layers, complicating the network, or designing various
network structures to improve the accuracy of classification,
we can consider improving the network structure and the con-
volution layer simultaneously to improve the classification
accuracy of the model for EEG signals. Some researchers
proposed using HHT + CNN method to automatically and
accurately identify the type and severity of rolling bearing
fault [32], using HHT to convert the time series of vibration
signals into time-frequency images, and then CNN learned
the fault sensitive features in time-frequency domain from
these images and carried out fault classification. Compared
with the method in [32], the team improved the EEG data
preprocessing, network architecture and convolution layer,
and proposed S-EEGNet for EEG classification. First, HHT
was used to preprocess the EEG, and then, based on the use of
depthwise separable convolution [33], bilinear interpolation
was employed to add displacement variables to the convo-
lution layer so the sampling of the input feature map of the
convolution check was shifted and focused on the target area
of interest. At the same time as improving the accuracy, the
complexity of the S-EEGNet model needed to be avoided
as much as possible. The method developed here has the
following advantages:
(1) The construction of the model is based on HHT and a

separable CNN with bilinear interpolation. HHT is an
adaptive signal processing method suitable for analyz-
ing nonlinear and nonstationary signals, and it is highly
suitable for processing EEG signals. The separable

convolution has strong feature extraction ability, com-
bined with the displacement variable added based on
the bilinear interpolation method. It can effectively
improve the accuracy of EEG classification;

(2) This study uses two different datasets (emotion classi-
fication and motion representation) to test the S-EEG,
and this achieves satisfactory results. Compared with
the existing models, S-EEG has a wider application
range, and it can be applied to MI-EEG classification
and EEG emotional classification; it also has a stronger
application value; and

(3) This study improves the separable CNN, and the
method of adding a displacement variable based on
bilinear interpolation is applied to EEG classification,
while HHT is used to preprocess the EEG data. The
network structure is simple and can achieve higher
classification accuracy, which represents a certain level
of innovation.

II. TECHNICAL DETAILS
The team uses an unsupervised learning method to classify
the EEG, allowing it to automatically obtain the character-
istics that can better describe the identified and classified
EEG signals. The S-EEGNet proposed in this paper involves
not only the spatial dimension but also the depth dimension
(number of channels). Many features can be extracted from
the high-dimensional EEG data by dimension reduction algo-
rithm, which is suitable for EEG classification. In this section,
we introduce HHT and depthwise separable convolution, add
a displacement variable via the bilinear interpolation method,
describe the architecture of the S-EEGNet model proposed
by our team, and provide a detailed formula of the S-EEGNet
model. Figure 1 shows the flow chart of using S-EEGNet to
classify EEG in this paper, which is divided into five parts.
First, the original EEG data are preprocessed by HHT; then,
the S-EEGNet model is trained by the preprocessed EEG
signal in the second, third, and fourth parts, and the EEG
signal–related features are extracted from the time domain,
frequency domain, spatial dimension, and depth dimension.
Finally, the test data are input into the trained S-EEGNet
model for classification in the last part. After this stage,
the team uses the dataset to test a variety of new models to
verify the effectiveness of S-EEGNet in EEG classification
in this study.

A. HHT PREPROCESSING
HHT [34] is an adaptive signal processing method that is
suitable for processing nonlinear and nonstationary signals.
It mainly consists of two parts: The first part is empirical
mode decomposition (EMD); the second is Hilbert transform
(HT). In the first part, EMD adaptively decomposes any com-
plex signal into a series of intrinsic mode functions (IMFs)
according to the signal characteristics. This satisfies the two
following conditions: (1) the average value of the mean value
tends to 0; and (2) the difference between the number of
extreme points of the original signal (including the number
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FIGURE 1. Flow chart of electroencephalogram (EEG) classification using S-EEGNet in this study.

FIGURE 2. Diagram of 200 data points in DEAP dataset S01.

of maximum points + the number of minimum points) and
the number of intersections of the original signal cannot be
greater than 1 (less than or equal to 1). For the original signal
x (t), EMD can be used to decompose it into

x (t) =
∑K

i=1
IMF(i) (t)+ rK (t). (1)

where x (t) is the original signal, and IMF(i) is K intrinsic
mode functions rK is the negligible residue of the signal,
which is the remainder of the subtraction of the original signal
and IMF(i).

HHT can transform the EEG signal into ‘‘linear steady
state’’. In order to better describe the EMD Algorithm in
HHT, our team intercepted the first 200 data points of S01 in
DEAP dataset [38], as shown in Figure 2.

As shown in Figure 2, the decomposition process of EMD
is divided into four steps, the original signal is still x (t), and
the decomposition steps are as follows:
Step 1: the red dot on the red line is the maximum value

of the EEG signal, and the green dot on the green line is the
minimum value of the EEG signal. The team uses cubic spline
to connect the upper and lower envelope lines, which are red
envelope line and green envelope line. Then the mean line is
made for the two lines, and the mean value of the envelope

is m (t). h (t) can be obtained by subtracting the mean value
from the input signal:

h (t) = x (t)− m (t) (2)

Step 2: judge whether the h (t) obtained in step 1 meets the
two conditions of the IMF. If not, take h (t) as the input signal
and go back to step 1. If the conditions are met, get an IMF
and go to step 3.
Step 3: set the kth IMF as hk (t), assign it to ck (t), obtained

as follows:
ck (t) = hk (t) (3)

ck (t) is separated from the original sequence and a new
residual term is obtained:

rk (t) = xk (t)− ck (t) (4)

Step 4: judge whether the new remaining item meets the end
condition of EMD, if not, bring the remaining item back to
step 1; if it meets, end the EMD.

After decomposition, the original signal can be expressed
in the form of (nIMF + 1 residual item):

x (t) =
n∑
i=1

ci + rn (5)

The decomposed EEG signal is shown in Figure 3:
In the second part, HT is used to calculate the instantaneous

frequency of each IMF. Each natural mode function ci (t) can
be expressed as:

ci (t) = ai (t) cosϕi (t) (6)

Then put the sampling point time, instantaneous frequency
and instantaneous amplitude in three-dimensional space to
obtain Hilbert spectrum H (ω, t), as shown in equation (7):

H (ω, t) = Re

{
n∑
i=1

ai(t)ei
∫

ωi(t)dt

}

=

n∑
i=1

ai (t) cos(
∫

ωi (t) dt) (7)
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FIGURE 3. Schematic diagram of processed EEG signal, (a) is the original
signal of EEG, and then (b) ∼ (H) is IMF.

FIGURE 4. Flow chart of HHT processing of the EEG signal.

The team used HHT to transform a 1D EEG signal into a
2D time-frequency representation to characterize the time-
frequency distribution of the instantaneous amplitude of the
EEG signal. To better explain the HHT applied in this study,
Figure 4 shows the flow chart of EEG signal processing with
HHT.

B. S-EEGNET MODEL BUILDING
In this paper, HHT is used to preprocess EEG signals, and
a network model based on separable CNN with bilinear
interpolation is established to classify EEG. The S-EEGNet
model uses the idea of depthwise separable convolution. The
core idea of depthwise separable convolution is to decompose
a complete convolution operation into two steps, namely,
depthwise and pointwise convolution. Depthwise convolution
is completely carried out in a two-dimensional plane, and the
number of filters is the same as the depth of the previous layer.
The number of feature maps after depthwise convolution is
the same as the depth of input layer, but this operation ends
after each channel of input layer is convoluted independently,
and there is no effective use of the information of different
feature maps in the same space. Therefore, we need to add
another step to combine these feature maps to generate a new

feature map, this requires the following pointwise convolu-
tion. The operation of pointwise convolution is very similar
to that of conventional convolution. The difference is that the
size of convolution kernel is 1 × 1 ×M , and M is the depth
of the previous layer. Therefore, the convolution operation
here will combine the previous map with weighting in the
depth direction to generate a new feature map. The number
of filters and feature maps is equal. The advantage of this
is that it can greatly reduce the number of parameters and
calculation while maintaining accuracy. Depthwise separable
convolution is a lightweight, low latency network model, but
its accuracy is not lower than that of a typical CNN [35]. The
other innovation of this study is to improve the convolution
layer of depthwise separable convolutional networks and add
an offset by the bilinear interpolation method so that the
sample of the convolution check input feature map is offset
and focused on the target area of interest. After migration,
each square corresponding to a convolution kernel can stretch
and deform, changing the range of the receptive field and
making it polygonal. The operation of including additional
offset based on bilinear interpolation is divided into the two
following steps:
(1) Sampling from the input featuremap x using the regular

grid R; and
(2) By the sum of w -weighted sampling values, defining

the size and expansion of the receptive field via grid R.
In the depthwise separable convolution, each positioning p,
For each point p0 in the output feature map y, the calculation
process is as shown in equation (8):

y (p0) =
∑
pn∈R

w (pn) · x (p0 + pn) . (8)

where pn is the offset of each point on the convolution output
relative to each point on the receptive field, which needs to
be an integer. Grid R adds an enhanced offset, as shown in
equation (9):

{1pn | n = 1, . . . ,N } , where N = |R| . (9)

Then, in the action region of the convolution operation, a
learnable parameter 1pn is added. The output at this time is
shown in equation (10):

y (p0) =
∑
pn∈R

w (pn) · x (p0 + pn +1pn) . (10)

This operation needs to derive the discontinuous position
variables, so bilinear interpolation is used to convert the
output of any position to the interpolation operation of the
featuremap. The specific operation is shown in equation (11):

x (p) =
∑
q

G (q, p) · x (q) . (11)

where x (q) represents the value of the point on all integer
positions on the feature map. The specific calculation process
of bilinear interpolation is shown in equation (12), where the
value of q is an integer:

G (q, p) = g (qx , px) · g
(
qy, py

)
, (12)

where g(a, b) = max(0, 1− |a− b|).
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FIGURE 5. Model structure of S-EEGNet.

Figure 5 shows the flow of S-EEGNet in this study.We call
the additional offset added in the convolution layer offset-
conv2D.

The arrow in the graph represents the convolution kernel
connectivity between the input and output, which is called a
feature map. First, the original EEG data are preprocessed in
the yellow part, and the filter is used to learn from the blue
part. The sampling points are offset in the green part, and then
the depthwise convolution is carried out to connect to each
feature map. The number of feature maps after the depthwise
convolution is completed is the same as the number of chan-
nels in the input layer, so the feature map cannot be extended.
Moreover, the convolution operation is independent for each
channel in the input layer, which does not effectively utilize
the feature information of different channels in the same
spatial position. Therefore, pointwise convolution is needed
to combine these feature maps to generate a new feature
map. Before this, the sample points are still offset. In the
orange part, a separate convolution is employed to learn the
time summary of each feature map and then use pointwise
convolution to learn how to best combine the feature maps.
Finally, the model classifies the EEG signals in the red part.
Assuming that, in the featuremapF , the size of the input EEG
signal is (DF ,DF ,M ), the standard convolution K adopted
is (DK ,DK ,M ,N ), and the feature map G’s output size is
(DG,DG,N ). The convolution calculation of the standard
convolution is shown in equation (13):

Gk,l,n =
∑
i,j,m

Ki,j,m,nFk+i−1,l+j−1,m. (13)

Assume that the number of input channels is M and the
number of output channels is N . The corresponding amount
of calculations is DK · DK · M · N · DF · DF . The standard

convolution (DK ,DK ,M ,N ) can be divided into depthwise
convolution and pointwise convolution as follows:
(1) The depthwise convolution is responsible for the filter-

ing function; the size is (DK ,DK , 1,M ), and the output
characteristic is (DG,DG,M ); and

(2) The pointwise convolution is responsible for the con-
version of channels; the size is (1, 1,M ,N ), and the
final output is (DG,DG,N ).

The convolution calculation of depthwise separable convolu-
tion is shown in equation (14):

Ĝk,l,n =
∑
i,j

K̂i,j,mFk+i−1,l+j−1,m, (14)

where K̂ is the depthwise separable convolution and the con-
volution kernel is (DK ,DK , 1,M ). Here, the mth convolution
kernel is applied to themth channel in F to generate the output
of the mth channel on Ĝ.
The number ofmatrix operations to be performed by depth-

wise separable solutions isDK ·DK ·M ·DF ·DF+M ·N ·DF ·DF ,
and the convolution kernel parameter is DK · DK · M + N ·
M . Compared with the ordinary convolution, the calculation
amount is reduced:

DK ·DK ·M ·DF ·DF +M · N ·DF ·DF
DK ·DK ·M · N · DF ·DF

=
1
N
+

1

D2
K

. (15)

To describe the changes of network parameters more clearly
in each layer of the S-EEGNet model, this paper gives a
detailed description in Table 1.

The EEG classification network S-EEGNet proposed by
our team is based on separable deformation convolution. The
model has two main stages, which are as follows: (1) the
depthwise convolution stage, which includes a deformable
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TABLE 1. S-EEGNet architecture, where C = number of channels, T =
number of timepoints, F1 = number of temporal filters, D = number of
spatial filters, F2 = number of pointwise filters, N = number of classes.

layer, depthwise layer, BatchNorm layer, and average pooling
layer; and (2) the separable convolution stage, which includes
a deformable layer, separable layer, BatchNorm layer, and
average pooling layer.

In S-EEGNet, with an increase in the depth of the net-
work, the activation amplitude increases exponentially, and
the sensitivity of the divergence information to the input
of the non-normalized network decreases. This limits the
possible expansion and further limits the learning rate of
the control gradient decline speed in the non-normalized
network. Therefore, the team used batch normalization [36]
technology to normalize the input to accelerate the training
speed. We normalize each dimension as equation (16):

BN (Xi) =
(Xi − E (Xi))
√
Var(Xi)

, (16)

where E (Xi) refers to the average value of each batch of
training data neurons Xi and the denominator refers to a
standard deviation of the activation degree of each batch of
data neurons Xi. To avoid affecting the feature distribution
learned by the network in this layer, feature reconstruction is
required:

E (Xi) =
1
m

L∑
i=1

Xi, (17)

Var (Xi) =
1
m

L∑
i=1

[Xi − E (Xi)]2. (18)

In S-EEGNet, the team uses batch normalization technology
to normalize the features learned in the convolution layer,
so that the average value is 0 and the standard deviation is
1. The network is optimized using the Adam optimizer [37].

FIGURE 6. Examples of EEG signals in BCI competition IV dataset 2a.

III. EXPERIMENTS AND RESULTS
A. EEG DATASET
1) DATASET 1 (BCI COMPETITION IV DATASET 2A)
The first dataset used in this study is BCI competition IV
dataset 2a, which consists of EEG data from nine subjects.
This is an MI-EEG dataset with 22 scalp electrode positions.
There are four different MI tasks, which are related to the
movement imagination of the subjects, including the left and
right hands, feet, and tongue. Two sessions were recorded on
different days for each subject. Each session comprised six
runs separated by short breaks. One run consisted of 48 trials
(12 for each of the four possible classes), yielding a total
of 288 trials per session. Figure 6 is an example of an EEG
signal in BCI competition IV dataset 2a, where (a) is imag-
ining left hand movement, (b) is imagining right hand move-
ment, (c) is imagining leg movement, and (d) is imagining
tongue movement.

2) DATASET 2 (A DATABASE FOR EMOTION ANALYSIS
USING PHYSIOLOGICAL SIGNALS)
The second dataset used in this study is a database for
emotion analysis using physiological signals (DEAP) [38],
which is a large open-source dataset used to analyze human
emotional states. The dataset recorded EEG and peripheral
physiological signals of 32 participants (half were male and
half female). Each participant watched 40 music videos,
each of which lasted about 1 minute. Then, the participants
rated each video in terms of the levels of arousal, valence,
like/dislike, dominance, and familiarity. For 22 of the 32 par-
ticipants, frontal face video was also recorded.

The dataset signals included 32 EEG signals (512 Hz), gal-
vanic skin response (GSR) signals, electrooculogram (EOG)
signals, Electromyography (EMG) signals, photoplethys-
mography (PPG) signals, skin temperature, and status signals.
In this study, the team used the preprocessed dataset for the
experiment. The EEG signal of the first 32 channels in the
DEAP dataset was sampled down to 128 Hz, and the band-
pass filter was 4.0–45.0 Hz. The duration of the denoised
EEG signal in each track was 63 seconds, including 60 sec-
onds of test signal plus 3 seconds of baseline. Figure 7 is an
example of the EEG signal visualization of one subject in the
DEAP dataset.
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FIGURE 7. Visualization rendering of the DEAP dataset.

FIGURE 8. Diagram of the experimental dataset selection.

According to the emotional score of each video in arousal
and effectiveness (score range: 1–9), the team used a common
scoring standard [40] and set a threshold to segment the high
and low states of both valence and arousal. A value greater
than 5.5 was considered a high valence or arousal, while
a value of less than 4.5 was considered a low valence or
arousal. Then, S-EEGNet was used to perform an emotion
classification task for valence or arousal and test the accuracy.
Figure 8 shows the DEAP dataset selection diagram.

B. EXPERIMENTAL RESULTS
In the experiment, this paper used the EEG classification
network model based on HHT and a separable convolution
network with bilinear interpolation. To verify the perfor-
mance of S-EEGNet in this study for EEG signal classi-

FIGURE 9. Comparison results between S-EEGNet and the four most
recent MI-EEG classification networks.

fication, our team used S-EEGNet to test the system with
BCI competition IV dataset 2a (motion image classification)
and the DEAP dataset (emotion classification), compared
with the latest technology. The team used accuracy as the
evaluation standard of the EEG classification test to evaluate
the performance of S-EEGNet for EEG signal classification.
The definition of accuracy is given in equation (19):

accuracy =
TP+ TN

TP+ FN + FP+ TN
× 100%, (19)

where TP represents the EEG samples of the specified period
correctly recognized by the model, FN represents the EEG
samples of the specified period wrongly recognized by the
model, TN represents the EEG samples of the nonspecified
period correctly recognized by the model, and FP represents
the EEG samples of the nonspecified period wrongly recog-
nized by the model.

1) EXPERIMENT ON THE CLASSIFICATION OF S-EEGNET’S
MOTION IMAGE
On the classification of EEG motion imagery, our team com-
pared S-EEGNet with the other most recent MI-EEG clas-
sification methods, including CNN-LSTM [18], MSFBCNN
[21], CNN based on feature fusion (FFCNN) [39], and EEG-
Net [24]. Since two different types of datasets were used in
this study, the neural networks employed by our team for
comparison in the two datasets were different. Figure 9 shows
the comparison results between the S-EEGNet in this study
and the four most recent MI-EEG classification networks.

In Figure 7, we compare S-EEGNet with the other latest
EEG classification networks on BCI competition IV dataset
2a. Lawhern et al. [24] proposed a compact-CNN based
model of EEG, which can be used in many types of EEG
datasets. The accuracy of the model is 69.5% in BCI competi-
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FIGURE 10. Accuracy results of S-EEGNet fourfold cross-validation.

tion IV dataset 2a used in this study. Yang et al. [18] proposed
a CNN-LSTM neural network combining space CNN and
LSTM to extract features from the original MI-EEG and
tested the MI-EEG dataset in the study, reporting an accuracy
of 72.4%. Wu et al. [21] proposed a parallel multiscale filter
bank CNN for MI-EEG classification and achieved 75.9%
classification accuracy. Amin et al. [39] proposed a method
of extracting and fusing EEG features from different CNN
layers to improve classification accuracy. Using the dataset in
this study, 74.5% of the classification accuracy was achieved.
The methods proposed by our team have improved the pre-
processing and neural network. Compared with the existing
methods to extract features from the original EEG data, this
study has done HHT preprocessing for the EEG signal and
input the processed data based on the separable CNN with
bilinear interpolation after training in the neural network
model of interpolation. The classification accuracy of the
MI-EEG dataset is up to 77.9%. Compared with the latest
methods, the proposed S-EEGNet improves the classification
accuracy by 2%. To prove the robustness of S-EEGNet in
MI-EEG classification, our team conducted fourfold cross-
validation on the classification results of S-EEGNet, as shown
in Figure 10.

As shown in Figure 10, the S-EEG proposed in this paper
was tested in BCI competition IV dataset 2a, and the high-
est accuracy of MI-EEG classification was 79.5%, which is
3.6% higher than in the latest methods. After fourfold cross-
validation, the average accuracy of MI-EEG classification
obtained by S-EEG was 77.9%, which is 2% higher than the
latest method. It can be seen that the proposed method based
on the separable CNN and using the bilinear interpolation
method to add displacement variables in the convolution layer
can effectively improve the classification accuracy of the MI-
EEG dataset.

In this study, the team used HHT to preprocess the EEG
signal. To verify that the preprocessing method is superior
to other commonly used preprocessing methods, the team

TABLE 2. Using BCI competition dataset 2a to compare various
preprocessing methods.

FIGURE 11. Comparison of accuracy of S-EEGNet and various advanced
neural networks for EEG emotion classification.

conducted a comparative experiment. The team used HHT
and Fourier transform (FT), STFT, and WT to carry out
comparative experiments, using the above methods to prepro-
cess the EEG signal, then input neural network for training
and compare the accuracy results. Table 2 shows the experi-
mental results of the comparative experiment.

In terms of EEG signal preprocessing, our team compared
the HHT preprocessingmethod used in this studywith several
common methods. As shown in Table 2, compared with the
three other preprocessing methods, HHT was used to prepro-
cess the EEG signals, improving the classification accuracy
by 2.6%. Compared with no preprocessing of the original sig-
nal, HHT could improve the classification accuracy by 2.8%.
It can be seen that, based on not using HHT to preprocess
the EEG signal, the original EEG signal was input into the
neural network in this study, and the classification accuracy
results obtained were 0.8% higher than they were using the
latest methods. After preprocessing, the classification accu-
racy results were further improved, reaching 79.5% and 3.6%
higher than the latest methods.

2) EMOTION CLASSIFICATION EXPERIMENT ON S-EEGNET
To show the effectiveness of S-EEG in EEG classification,
the team also used the DEAP dataset (emotion classification)
to test it and still employed fourfold cross-validation. The
team compared S-EEGNet with other EEG emotion classifi-
cation networks with the best effect, including Stack AutoEn-
coder (SAE)+LSTM [40], deep CNN [17], LSTM RNN [9],
convolutional recurrent neural network (CRNN) [41],
and compared with these methods, S-EEGNet still
achieved satisfactory results in emotion classification tasks.
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TABLE 3. Comparison with the most advanced models. All of these
models employ the deap dataset.

Figure 11 shows the accuracy comparison of S-EEGNet and
other latest models for DEAP dataset classification tasks.

In Figure11, we compare S-EEGNet with the latest
EEG emotion classification network model on the DEAP
dataset. For the high or low classification task of valence,
S-EEGNet achieved good results, with a classification accu-
racy of 89.91%, which was 1.15% higher than the latest
method. For the high or low arousal classification task,
S-EEGNet still achieved good results; the classification accu-
racy was as high as 88.31%, which was 1.33% higher than
the current latest methods. In general, S-EEGNet has some
advantages in EEG emotion classification. Table 3 more intu-
itively introduces the results of S-EEGNet for DEAP dataset
classification:

In terms of the selection of preprocessing methods,
the team still used the control variable method, HHT, and var-
ious commonly employed EEG signal preprocessingmethods
to preprocess the dataset; it then input the neural network
for training. The classification accuracy results are shown
in Table 4.

The team still compared the HHT pretreatment method
used in this study with several common methods. As shown
in Table 4, comparedwith the other three preprocessingmeth-
ods, using HHT to preprocess the dataset improved the classi-
fication accuracy by 1.89% and 1.05% respectively. This can
be compared with no preprocessing, where the original sig-
nal was directly input into neural network; the classification
accuracy improved by 2.77% and 2.19%, respectively with
HHT preprocessing.

IV. DISCUSSION
In the EEG classification work, our team established an
EEG classification network model S-EEGNet based on HHT

TABLE 4. Using deap dataset to compare various preprocessing methods.

and separable CNN with bilinear polarization. First, HHT
was used to preprocess the original EEG signal, and then
depthwise and pointwise methods were combined to extract
the feature map of the EEG signal. On the convolution layer
of a separable convolution network, the displacement variable
was added by the bilinear interpolation method, allowing
the free deformation of the sampling grid. The deformation
depends on the local, dense, and adaptive input characteristics
of the EEG data. S-EEGNet does not need any additional
monitoring signals and can be directly obtained by learning
the EEG signal. The displacement variable added by the bilin-
ear interpolation method can easily replace several standard
convolution elements in the network and carry out end-to-end
training through standard back propagation. Compared with
the traditional neural network, end-to-end learning from the
spatial and temporal features of EEG signals is carried out
to obtain its dynamic correlation, to improve the accuracy of
EEG classification. The team tested this in BCI competition
IV dataset 2a and the DEAP dataset. In BCI competition IV
dataset 2a, the highest accuracy of MI-EEG classification
was 79.5%, which was 3.6% higher than the latest methods.
In the high or low classification task of value/arousal in the
DEAP dataset, the S-EEGNet results were 1.15% and 1.33%
higher than the latest research results. Most EEG classifica-
tion networks in existing research are aimed at a specific field
(motor imagery, emotion classification, error-related poten-
tial, visual-related potential, rest state, etc.), whereas our team
used the motor imagery and emotion classification datasets
to separate S-EEGNet. The test results are satisfactory. This
study has a certain value for BCI and HCI.

V. CONCLUSION
In this paper, a neural network–based EEG signal classi-
fication model S-EEGNet was established. The S-EEGNet
proposed by our team showed strong performance in various
types of EEG classification tasks, effectively improving the
accuracy and stability of EEG signal classification and pro-
viding a valuable method for more accurate HCI and further
realization of computer-integrated intelligence.

Although S-EEGNet obtained good experimental results
in this study, it still needs further research, including further
research on music emotion classification based on EEG and
prediction of epilepsy based on EEG. The team will further
study how to build a more powerful and robust EEG classifi-
cation model. All these points represent the direction of our
next research work.

CONFLICTS OF INTEREST
The authors declare that they have no conflicts of interest
regarding the publication of this paper.

VOLUME 8, 2020 131645



W. Huang et al.: S-EEGNet: EEG Signal Classification Based on a Separable Convolution Neural Network

REFERENCES
[1] H. Singh and J. Singh, ‘‘Object acquisition and selection using automatic

scanning and eye blinks in an HCI system,’’ J. Multimodal User Interface,
vol. 13, no. 4, pp. 405–417, Dec. 2019.

[2] Ç. I. Acı, M. Kaya, and Y. Mishchenko, ‘‘Distinguishing mental attention
states of humans via an EEG-based passive BCI using machine learning
methods,’’ Expert Syst. Appl., vol. 134, pp. 153–166, Nov. 2019.

[3] C. Meisel and K. A. Bailey, ‘‘Identifying signal-dependent information
about the preictal state: A comparison across ECoG, EEG and EKG using
deep learning,’’ EBioMedicine, vol. 45, pp. 422–431, Jul. 2019.

[4] X. Xi, C. Ma, C. Yuan, S. M. Miran, X. Hua, Y.-B. Zhao, and Z. Luo,
‘‘Enhanced EEG–EMG coherence analysis based on hand movements,’’
Biomed. Signal Process. Control, vol. 56, Feb. 2020, Art. no. 101727.

[5] K. Samiee, P. Kovacs, and M. Gabbouj, ‘‘Epileptic seizure classification
of EEG time-series using rational discrete short-time Fourier transform,’’
IEEE Trans. Biomed. Eng., vol. 62, no. 2, pp. 541–552, Feb. 2015.

[6] Z. A. A. Alyasseri, A. T. Khader, M. A. Al-Betar, A. K. Abasi, and
S. N. Makhadmeh, ‘‘EEG signals denoising using optimal wavelet trans-
form hybridized with efficient metaheuristic methods,’’ IEEE Access,
vol. 8, pp. 10584–10605, 2020.

[7] N. Yahya, H.Musa, Z. Y. Ong, and I. Elamvazuthi, ‘‘Classification ofmotor
functions from electroencephalogram (EEG) signals based on an integrated
method comprised of common spatial pattern andwavelet transform frame-
work,’’ Sensors, vol. 19, no. 22, Nov. 2019, Art. no. 4878.

[8] S. I. Cho and S.-J. Kang, ‘‘Gradient prior-aided CNN denoiser with sepa-
rable convolution-based optimization of feature dimension,’’ IEEE Trans.
Multimedia, vol. 21, no. 2, pp. 484–493, Feb. 2019.

[9] S. Alhagry, A. A. Aly, and R. A. El-Khoribi, ‘‘Emotion recognition based
on EEG using LSTM recurrent neural network,’’ Int. J. Adv. Comput. Sci.
Appl., vol. 8, no. 10, pp. 355–358, Oct. 2017.

[10] A. E. Hramov, V. A. Maksimenko, S. V. Pchelintseva, A. E. Runnova,
V. V. Grubov, V. Y. Musatov, M. O. Zhuravlev, A. A. Koronovskii, and
A. N. Pisarchik, ‘‘Classifying the perceptual interpretations of a bistable
image using EEG and artificial neural networks,’’ Frontiers Neurosci.,
vol. 11, Dec. 2017, Art. no. 674.

[11] H. Yu, X. Lei, Z. Song, C. Liu, and J. Wang, ‘‘Supervised network-based
fuzzy learning of EEG signals for Alzheimer’s disease identification,’’
IEEE Trans. Fuzzy Syst., vol. 28, no. 1, pp. 60–71, Jan. 2020.

[12] M. H. Bhatti, J. Khan, M. U. G. Khan, R. Iqbal, M. Aloqaily, Y. Jararweh,
and B. Gupta, ‘‘Soft computing-based EEG classification by optimal fea-
ture selection and neural networks,’’ IEEE Trans. Ind. Informat., vol. 15,
no. 10, pp. 5747–5754, Oct. 2019.

[13] Q. Liu, Y. Jiao, Y. Miao, C. Zuo, X. Wang, A. Cichocki, and J. Jin,
‘‘Efficient representations of EEG signals for SSVEP frequency recogni-
tion based on deep multiset CCA,’’ Neurocomputing, vol. 378, pp. 36–44,
Feb. 2020.

[14] K.-W. Ha and J.-W. Jeong, ‘‘Motor imagery EEG classification using
capsule networks,’’ Sensors, vol. 19, no. 13, Jul. 2019, Art. no. 2854.

[15] L. Liu, ‘‘Recognition and analysis of motor imagery EEG signal based
on improved BP neural network,’’ IEEE Access, vol. 7, pp. 47794–47803,
2019.

[16] J. Jin, S. Li, I. Daly, Y.Miao, C. Liu, X.Wang, and A. Cichocki, ‘‘The study
of generic model set for reducing calibration time in P300-based brain–
computer interface,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 1,
pp. 3–12, Jan. 2020.

[17] J. X. Chen, P. W. Zhang, Z. J. Mao, Y. F. Huang, D. M. Jiang, and
Y. N. Zhang, ‘‘Accurate EEG-based emotion recognition on combined
features using deep convolutional neural networks,’’ IEEE Access, vol. 7,
pp. 44317–44328, 2019.

[18] J. Yang, S. Yao, and J. Wang, ‘‘Deep fusion feature learning network for
MI-EEG classification,’’ IEEE Access, vol. 6, pp. 79050–79059, 2018.

[19] T. Wen and Z. Zhang, ‘‘Deep convolution neural network and
autoencoders-based unsupervised feature learning of EEG signals,’’
IEEE Access, vol. 6, pp. 25399–25410, 2018.

[20] N.Waytowich, V. J. Lawhern, J. O. Garcia, J. Cummings, J. Faller, P. Sajda,
and J. M. Vettel, ‘‘Compact convolutional neural networks for classifi-
cation of asynchronous steady-state visual evoked potentials,’’ J. Neural
Eng., vol. 15, no. 6, Dec. 2018, Art. no. 066031.

[21] H. Wu, Y. Niu, F. Li, Y. Li, B. Fu, G. Shi, and M. Dong, ‘‘A parallel mul-
tiscale filter bank convolutional neural networks for motor imagery EEG
classification,’’ Frontiers Neurosci., vol. 13, Nov. 2019, Art. no. 1275.

[22] M. Kwon, S. Han, K. Kim, and S. C. Jun, ‘‘Super-resolution for improving
EEG spatial resolution using deep convolutional neural network–feasibility
study,’’ Sensors, vol. 19, no. 23, Dec. 2019, Art. no. 5317.

[23] P. Nejedly, J. Cimbalnik, P. Klimes, F. Plesinger, J. Halamek, V. Kremen,
I. Viscor, B. H. Brinkmann, M. Pail, M. Brazdil, G. Worrell, and
P. Jurak, ‘‘Intracerebral EEG artifact identification using convolutional
neural networks,’’ Neuroinformatics, vol. 17, no. 2, pp. 225–234,
Apr. 2019.

[24] V. J. Lawhern, A. J. Solon, N. R.Waytowich, S.M.Gordon, C. P. Hung, and
B. J. Lance, ‘‘EEGNet: A compact convolutional neural network for EEG-
based brain–computer interfaces,’’ J. Neural Eng., vol. 15, no. 5, Oct. 2018,
Art. no. 056013.

[25] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter,
K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball,
‘‘Deep learning with convolutional neural networks for EEG decoding and
visualization,’’ Human Brain Mapping, vol. 38, no. 11, pp. 5391–5420,
Nov. 2017.

[26] A. R. Ozcan and S. Erturk, ‘‘Seizure prediction in scalp EEG using
3D convolutional neural networks with an image-based approach,’’ IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 11, pp. 2284–2293,
Nov. 2019.

[27] N. D. Truong, A. D. Nguyen, L. Kuhlmann, M. R. Bonyadi, J. Yang,
S. Ippolito, and O. Kavehei, ‘‘Convolutional neural networks for seizure
prediction using intracranial and scalp electroencephalogram,’’ Neural
Netw., vol. 105, pp. 104–111, Sep. 2018.

[28] M. Wang, H. El-Fiqi, J. Hu, and H. A. Abbass, ‘‘Convolutional neural
networks using dynamic functional connectivity for EEG-based person
identification in diverse human states,’’ IEEE Trans. Inf. Forensics Secu-
rity, vol. 14, no. 12, pp. 3259–3272, Dec. 2019.

[29] A. Antoniades, L. Spyrou, D. Martin-Lopez, A. Valentin, G. Alarcon,
S. Sanei, and C. C. Took, ‘‘Detection of interictal discharges with con-
volutional neural networks using discrete ordered multichannel intracra-
nial EEG,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 12,
pp. 2285–2294, Dec. 2017.

[30] M. Yu, Y. Sun, B. Zhu, L. Zhu, Y. Lin, X. Tang, Y. Guo, G. Sun, and
M. Dong, ‘‘Diverse frequency band-based convolutional neural networks
for tonic cold pain assessment using EEG,’’ Neurocomputing, vol. 378,
pp. 270–282, Feb. 2020.

[31] S. Opałka, B. Stasiak, D. Szajerman, and A. Wojciechowski, ‘‘Multi-
channel convolutional neural networks architecture feeding for effective
EEG mental tasks classification,’’ Sensors, vol. 18, no. 10, Oct. 2018,
Art. no. 3451.

[32] Z. Yuan, L. B. Zhang, L. X. Duan, and T. Li, ‘‘intelligent fault diagnosis of
rolling element bearings based on HHT and CNN,’’ in Proc. Prognostics
Syst. Health Manage. Conf., P. Ding, C. Li, R. V. Sanchez, and S. Yang,
Eds., 2018, pp. 292–296.

[33] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convolu-
tions,’’ 2016, arXiv:1610.02357. [Online]. Available: http://arxiv.org/abs/
1610.02357

[34] M. Dätig and T. Schlurmann, ‘‘Performance and limitations of the Hilbert–
Huang transformation (HHT) with an application to irregular water
waves,’’ Ocean Eng., vol. 31, nos. 14–15, pp. 1783–1834, Oct. 2004.

[35] M. X. Tan and Q. V. Le, ‘‘EfficientNet: Rethinking model scaling for
convolutional neural networks,’’ in Proc. Int. Conf. Mach. Learn. (ICML),
Nov. 2019, pp. 1–10. [Online]. Available: http://arxiv.org/abs/1905.11946

[36] M. Liu, W. Wu, Z. Gu, Z. Yu, F. Qi, and Y. Li, ‘‘Deep learning based on
batch normalization for P300 signal detection,’’Neurocomputing, vol. 275,
pp. 288–297, Jan. 2018.

[37] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimiza-
tion,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/abs/
1412.6980

[38] S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi,
T. Pun, A. Nijholt, and I. Patras, ‘‘DEAP: A database for emotion analysis;
Using physiological signals,’’ IEEE Trans. Affect. Comput., vol. 3, no. 1,
pp. 18–31, Jan./Mar. 2012.

[39] S. U. Amin, M. Alsulaiman, G. Muhammad, M. A. Bencherif, and
M. S. Hossain, ‘‘Multilevel weighted feature fusion using convolutional
neural networks for EEG motor imagery classification,’’ IEEE Access,
vol. 7, pp. 18940–18950, 2019.

[40] X. Xing, Z. Li, T. Xu, L. Shu, B. Hu, and X. Xu, ‘‘SAE+LSTM: A new
framework for emotion recognition from multi-channel EEG,’’ Frontiers
Neurorobot., vol. 13, Jun. 2019, Art. no. 37.

[41] X. Li, D. Song, P. Zhang, G. Yu, Y. Hou, and B. Hu, ‘‘Emotion recognition
from multi-channel EEG data through convolutional recurrent neural net-
work,’’ in Proc. IEEE Int. Conf. Bioinf. Biomed., Kansas City, MI, USA,
Nov. 2017, pp. 352–359.

131646 VOLUME 8, 2020


