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ABSTRACT Image translation tasks based on generative models have become an important research area,
such as the general framework for unsupervised image translation-CycleGAN (Cycle-Consistent Generative
Adversarial Networks). A typical advantage of CycleGAN is that it can realize the training of two image sets
without pairing, but there are still some problems in the preservation of semantic information and the learning
of specific features. In this paper, we propose the CycleGAN-AdalIN framework based on the CycleGAN
model, which can translate real photos into Chinese ink paintings. In order to retain the content of the image
completely, we use one cycle consistency loss to replace two in the structure of the model. To learn the style
information of the ink painting, we introduce an AdaIN (Adaptive Instance Normalization) module before
the decoding process of the generation network. In addition, to correct the details of the generated image,
we add the MS-SSIM (Multi-Scale-Structural Similarity Index) loss in the reconstruction loss to generate
a higher quality image. Compared with the existing methods in FID, Kernel MMD, PSNR and SSIM, the
experiment results show that our method can accomplish the task of transferring real photos to ink paintings

and get better performance than the baseline model.

INDEX TERMS Chinese ink painting, CycleGAN, detail-preserving, style transfer, AdaIN.

I. INTRODUCTION

In recent years, more and more researches have been devoted
to the digital protection of traditional art. As a traditional
Chinese painting, Chinese ink painting (paintings made by
mixing water and ink into different shades of ink) has not
only formed many styles and factions, but also has many tech-
niques and great research value after long-term reform and
development. Generally, in computer simulation, we extract
typical artistic effects that can reflect its characteristics, such
as voids, brush strokes and ink diffusion effects, and analyze
them to realize their digital definition. Studying and realizing
the digital definition and simulation of the traditional painting
art are not only helpful to the training of painters’ painting
skills, but also beneficial to the inheritance and protection of
traditional art.
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There have been a lot of works for the study of ink painting.
Generally speaking, these methods can be roughly divided
into three categories: physical modeling based simulation
methods, non-physical based methods, and deep learning
based methods. Although methods based on physical mod-
eling perform well, they are computationally complex and
inefficient, and it is difficult for untrained users to draw
ideal results. Non-photorealistic rendering methods deal with
inputs of two-dimensional images, and take a single image
with a specific style as the output, however, these methods
process the images simply and roughly, and they are limited to
a single style, which makes it difficult to generalized to other
styles. With the rise of deep learning, the high-level features
of images have been effectively used. The image style transfer
methods based on convolutional neural network (CNN) can
quickly extract the stylized features and content features of
the image, and has gradually become the mainstream tech-
nology in the field of image style transfer.
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In this paper, inspired by a typical unsupervised image
translation framework, CycleGAN [1], we implement the
image translation from real photos to ink paintings. Only two
datasets with different styles are needed to learn the character-
istics of the image and then realize the style transfer process.
First of all, we found that CycleGAN has a disadvantage in
retaining the content of the image, and compared to using
two cycle consistency losses to constrain the quality of the
generated image, the network structure using only forward
one can make the generated image have more complete stroke
information and more voids effect while saving a lot of
training time. Secondly, although the structure of using only
forward cycle consistency loss can better retain the content
of an image, the generated image lacks the sense of space,
therefore we introduce the AdaIN [2] module to learn the
style information of ink painting before the decoding process
of the generated network, so as to ensure that some details
of the generated image are improved while generating more
natural ink painting. Finally, we add the MS-SSIM [3] loss
to the reconstruction loss to strengthen the constraints of
the generative network and generate higher quality images.
Fig.1 shows the pipeline of our proposed framework. Briefly,
the contributions of this paper are as follows:

(1) We propose an image translation framework of
CycleGAN-AdalN from real photos to ink paintings,
which uses one cycle (X2Y2X) instead of two (X2Y2X
+ Y2X2Y) of CycleGAN. Compared with the base-
line model, our method can not only better retain the
content of the generated image, but also save a lot of
training time.

(2) An additional AdaIN module is designed to learn the
style information of ink painting. We add it before the
decoding process of the generator, which can not only
keep the spatial structure of the generated image while
retaining its content, but also produce more realistic
ink diffusion effect.

(3) In order to correct the details of the generated image,
we combine cycle consistency loss and MS-SSIM loss
to strengthen the constraints on the generative net-
work, so as to generate more realistic and natural ink
painting.

The rest of this paper is structured as follows: The related
works are introduced in Section 2. Section 3 describes the
methods proposed in this paper in detail. Section 4 shows the
experiment results and evaluations. Section 5 concludes this
paper and describes our future work.

Il. RELEATED WORK

A. INK PAINTING

Traditional ink painting simulation research is mostly based
on physical modeling and non-photorealistic rendering. The
physical modeling methods are mainly completed by physical
analysis of the brush, paper, and ink diffusion effects, etc.,
and then establishing suitable models, while the non-physical
simulation methods mainly refer to the non-photorealistic
graph generation algorithms. Wang et al. [4] presented a
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real-time rendering method based on the GPU programmable
pipeline for rendering the 3D scene in the ink-wash painting
style. They used an ink dispersion model which was defined
by referencing the theory of porous media to simulate the
dispersion of ink. Gua et al. [S] proposed a technique for
using geometric buffers to render 3D ink paintings in real
time. According to the characteristics of hand-drawn ink
paintings, contour lines and coloring area in the ink paint-
ings were stylized by rendering 3D models to 2D texture
images. At present, there are few studies on ink paintings
based on deep learning. Luo e? al. [6] proposed a multimodal
fusion framework and system to generate traditional Chinese
paintings. By selecting the appropriate existing networks for
different elements in the traditional works, these networks
and elements are integrated to create a complete new painting
finally. He et al. [7] put forward ChipGAN, which mathemat-
ically defined and implemented the voids, brush stroke and
ink-diffusion characteristics of ink painting. Zhou et al. [8]
produced an accelerated version of the transfer for Chinese
traditional ink painting style to improve the calculation speed
and quality by reducing the size of the rendering network.

B. GENERATIVE ADVERSARIAL NETWORKS

Since Goodfellow et al. [9] proposed GAN (Generative
Adversarial Network), it has received more and more atten-
tions from academia and industry. GAN regards the gener-
ation problem as the confrontation and game between the
discriminator and the generator. The generator generates
synthetic data from the given noise, and the discriminator
distinguishes the generated data from the real data. Since
the introduction of GAN, many variants have been produced.
LSGAN was proposed in [10], and the loss function of least
squares was used to replace the original loss function. WGAN
[11], [12] and WGAN-GP [13] stabilized the training of
GAN and improved its convergence speed. Radford et al. [14]
applied a convolutional network to GAN, and provided a
good network topology for its training. In order to solve the
problem that GAN is too free, a kind of GAN with conditional
constraints was proposed in [15], in which a conditional
variable was introduced into the modeling of the generator
and discriminator to guide the data generation process. As a
generative model, GAN is widely used in data generation,
the most common one is image generation [16]—[18]. There
are also many applications in other fields such as style
transfer [19]-[21], and feature extraction [22], [23].

C. STYLE TRANSFER

Style transfer is to transform the image representation of
an object into another image representation of the object.
Real-time style transfer has attracted a lot of research due to
its high speed and little requirement on datasets. AdaIN [2]
was proposed to solve the dilemma of flexibility and speed
in the transfer process. It is applied between the encoder
and decoder of the generative network to match the feature
space of the content image and style image, which can not
only help transform any style in real time, but also ensure
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FIGURE 1. The pipeline of our proposed method, in which G and F are generators with the same structure, AdalN is used between encoder and

decoder.

the efficiency of calculation. The GAN-based style transfer
is mainly reflected in the image translation between different
style datasets, which requires a lot of training time, but is
convenient and fast in the subsequent image transformation
process. Among them, the supervised model Pix2Pix [24] and
the unsupervised model CycleGAN [1] are the most classic.
CycleGAN defines two generators and two discriminators,
which is essentially a ring network composed of two mirror-
symmetric GANs. The generators G and F are respectively
responsible for the mapping of the image from the X domain
to the Y domain and from the Y domain to the X domain, and
the discriminators Dy and Dy are respectively responsible
for distinguishing the generated data and the real data of the
X domain and the Y domain. In addition, cycle consistency
loss is designed to replace the reconstruction loss. Recently,
more and more attention models have been designed to realize
image translation, such as Selection GAN [25], CSA [26], etc.

lll. THE PROPOSED METHOD

Our method includes two generators and one discriminator.
Generator G is used to convert images in domain X (real
photos) to domain Y (ink paintings), and generator F is used
to convert the generated domain Y images back to domain X.
The discriminator is a 0-1 classifier, which is used to judge
the generated picture and the real ink picture. The generated
picture is represented by 0, and the real ink picture is rep-
resented by 1. We carry out back propagation by combining
the adversarial loss, cycle consistency loss, identity loss and
MS-SSIM loss to calculate the learning parameters.

A. FORWARD CYCLE FOR VOIDS AND STROKES

As we mentioned in the introduction, our method uses only
a forward cycle to learn the content of the image. We know
that CycleGAN can retain the outline of the image to a certain
extent, because the introduction of the cycle consistency loss
reduces the possibility of mapping paths from the source
domain to the target domain. However, in the ink painting
style transfer task, we found that the ink paintings generated
using two cycles are not as good as using one cycle in strokes
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FIGURE 2. Diagram and results of one cycle and two cycles. top:

schematic diagram of CycleGAN, bottom-left: schematic diagram of one
cycle. bottom-right: the comparison results of one cycle and two cycles.

and voids. We believe that the strong constraint of the two
cycle consistency losses enables the model to learn more
complex and higher-level features, but also causes the loss of
some semantic information that should be retained; and the
model’s excessive learning of different brightness informa-
tion in each part of the image brings about the generation of
unnatural voids (Void is an abstract feature that is difficult to
define mathematically, here we perceive it with a subjective
vision). The top of Fig. 2 shows the schematic diagram of
CycleGAN’s forward and backward cycles, in ink painting
learning task, we only use the forward cycle consistency loss
(Fig. 2 bottom-left).

B. LEARNING OF INK DIFFUSION

For further generating a more hierarchical image, we need
to learn another typical feature of ink painting: ink diffusion,
which refers to the edge diffusion effect formed by the move-
ment of ink and water in the paper. To achieve this feature,
we input both the content figure and the style figure into the
generative network for encoding, and integrate them through
AdalN at the feature map level.

Specifically, AdalN is similar to style transfer. It aligns the
normalized channel-wise mean and variance of the content
image to the styled image’s, so that the generated picture
has the same feature distribution as the ink painting. Differ-
ent from other normalization methods, such as BN (Batch
Normalization) and IN (Instance Normalization), AdalN has
no learnable affine parameters. According to the input style
image, it adaptively generates affine parameters. If x and y
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FIGURE 3. Data distribution of feature maps. (a) before the AdaIN
module, (b) after the AdaIN module.

represents the feature map of content image and style image
respectively, then the calculation of the AdaIN layer is as
follows:

AdalN(x, y) = o () _(“§ ) & u) (1)

The feature map after AdalN integration will be mapped to
the image space through the decoding network. In addition,
in order to maintain the data distribution after the calculation
of AdalN layer, we do not use any normalization layer in
the decoder as mentioned in [2]. Fig. 3 shows the distri-
bution of feature data before and after the AdaIN module.
The horizontal axis represents the mean and the vertical axis
represents the variance. We can see that the data points after
AdalN calculation is closer because of learning the similar
ink diffusion effect.

C. LOSSES

1) ADVERSARIAL LOSS

Given a set of unpaired data from domain X and domain
Y, by calculating the loss of generated image after domain
X — Y mapping on the discriminator and the loss of real
image in domain Y on the discriminator, the adversarial loss
is expressed as follows:

EGAN(G’ DY’ X’ Y) = E)’”[’dma(y) [log DY()/)]
+ EX”Pdam(x) [log(l - DY(G(X)))] (2)

where x represents the sample from the real photo dataset, y
represents the sample from the real ink painting dataset, G(x)
represents the generated sample, and Dy is a 0-1 classifier
used to distinguish the generated image from the real ink
image. G tries to minimize this loss function, while Dy tries
to maximize it.

2) CYCLE CONSISTENCY LOSS

The process of mapping sample x from domain X to domain
Y through G and then back to domain X through F is called
reconstruction. The reconstructed image and sample x should
be highly similar, that is to say, F(G(x)) ~ x. Therefore,
the cycle consistency loss is defined as follows:

Leye(G, F) = Exmpyoao[I1F(G(x)) — x||1] 3

where F(G(x)) is the reconstructed image, we use L; norm
to calculate the loss between the reconstructed image and the
real image.
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TABLE 1. Generator size of different methods.

Model Params size Layers Estimated Total Size
of G (MB) of G of G (MB)
DistanceGAN [28]  43.44 71 791.19
CycleGAN [1] 43.40 71 979.38
ChipGAN [7] 43.40 91 979.38
Ours 85.37 173 1744.06

3) MS-SSIM LOSS

Structural similarity index (SSIM) is an indicator that mea-
sures the similarity of two images. In practical applications,
the Gaussian function is generally used to calculate the mean,
variance, and covariance of the image, rather than traversing
the pixels, in exchange for higher efficiency. Given images
x,y, we first calculate the mean and variance of each image
and the covariance of the two images:

R C

e = o ;;x(i,j) 4
1 R C
M= Re 2 ;y(i,]) )
5 1 R C
0 = peT IEFZ(x(z )= 1) ©)
1 R
% = Re =T 2o 2 06— ) (7

O J) = my)  (8)

1 R C
Oy = re T 2 2 D)~

then the luminance, contrast and structure comparison mea-
sures are given as follows:

2uxpy + Cy
l(X,Y)=m 9
x y
20x0y~|—C2
cx,y) = ———— 10
(.7 02 +ol+C (10)
ny+c3
s(x,y) = ———— 11
(x,y) 020y + C3 (11)

finally the value of SSIM is calculated by:

SSIM (x, y) = [1Ge, I¥ - [cCe, 1P - [sCe, 7 (12)
when C3 = (/2,0 = B = y = 1, the calculation of SSIM
can be simplified as:

Cpxpy + C1)2oyxy + C2)
(U2 + 12 + C)(02 + 02 + C2)

MS-SSIM is obtained by calculating the value of SSIM on
multiple scales:

SSIM (x, y) =

13)

M
g G, 1 - T Lo, PP LsiCe, )17 (14)

J=1

SSIM (x,y) =
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where M = 1 represents the original image size, M = 2
represents 1/2 of the original image size, and so on., «, 8, y
adopt the given default value.

Through the above formulas, we get the MS-SSIM loss
between the image of domain X and its reconstructed image:

Cus—ssim(G, F) =1 — SSIM (x, F(G(x))) (15)

4) IDENTITY LOSS

In order to ensure that generator G is mapping to the Y
domain, the image of ¥ domain input to G should still gener-
ate the image of ¥ domain. We calculate the loss between the
input y and output y':

Cidentity(G) = Ey~puua LIIG() — ¥ll1] (16)

D. OBJECTIVE FUNCTION
To sum up, our total loss function is defined as follows:

UG, F,Dy) = £gan(G, Dy, X, Y) + My (G, F)
+ Blus—ssm (G, F) + Lideniiry(G) - (17)

where the parameters A and B are used to control the linear
combination of these losses. Our goal is to optimize a mini-
max function:

G* F* = i UG, F,D 18
arg min max ( Y) (18)

IV. EXPERIMENT

In this section, we will prove the effectiveness of our proposed
method through several evaluation indicators and compara-
tive experiments. We select the following existing methods
for comparison: Neural Style Transfer [27], DistanceGAN
[28], CycleGAN [1], ChipGAN [7]. Table 1 shows the size
of the generator for different GAN-based models. Our exper-
iments were executed under winl0 system, using an Intel(R)
Xeon(R) Silver 4110 CPU at 2.10 GHz with 16GB memory
and a 11GB NVIDIA GeForce RTX 2080 Ti GPU.

A. DATASETS AND TRAINING DETAILS

1) DATASET

We use the ChipPhi dataset collected in [7]. There are two
kinds of ink datasets, one is horse and the other is landscape
painting. We conducted experiments on the horse dataset.
Domain X contains 1478 training images with different res-
olutions and 160 test images of 256 * 256 size. Domain Y
contains 822 training images with different resolutions and
90 test images of 256 * 256 size.

2) TRAINING DETAILS

In our experiments, we initialize the weights of the convolu-
tional layer to a normal distribution with a mean of 0 and a
standard deviation of 0.02. We set the batchSize to 1 and the
number of epochs to 200. The learning rate is set to 0.0002 in
the first 100 epochs, and the next 100 epochs is linearly
decayed to 0. Adam optimization algorithm with betas =(0.5,
0.999) is used for generator G, F and discriminator Dy . In the
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linear combination of total loss function, the coefficients of
identity loss and cycle consistency loss are set to 5.0 and
10.0 respectively, while the coefficients of other loss terms
are default to 1.0. In addition, the scale in MS-SSIM loss is
setto 5.

B. EVALUATION METRICS

Evaluation indicators are introduced in this section.
We selected four evaluation indicators, which can be divided
into two categories: FID and Kernel MMD for evaluating
GAN networks, PSNR and SSIM for evaluating the quality
of generated images.

1) FID

The FID score [29] measures the distance between the real
picture and the generated picture at the feature level. By using
InceptionV3 to generate N x 2048 vectors for the N pictures
of the real dataset, the mean value u, is obtained, and then
InceptionV3 is also used to generate the M *x 2048 vectors
for the generated M pictures, to obtain the mean value wy.
The FID can be calculated as follows:

FID = ||px — iyl + Tr(Z + Zy — 22,207 (19)

where X, and X, represent the covariance of the real dataset
and the generated dataset respectively, and 7, represents the
trace of the matrix.

2) KERNEL MMD

Kernel MMD [30] measures the difference of data distribu-
tion between the real dataset and the generated dataset, which
can evaluate the quality of the generated image to a certain
extent, with low computational cost.

3) PSNR AND SSIM

PSNR and SSIM [31] are widely used image evaluation indi-
cators, which are based on the error between corresponding
pixels. Since the visual characteristics of human eyes are not
taken into account, there are often inconsistencies between
the evaluation results and human subjective feelings. How-
ever, due to the universality of its use, we still choose it as a
reference. SSIM measures image similarity from brightness,
contrast and structure.

C. EXPERIMENT RESULTS

1) COMPARISON WITH EXISTING METHODS

a: QUALITATIVE COMPARISON

Fig. 4 shows the comparison results of our method and the
existing methods. It can be seen that our method generates
images with higher quality.

For example, in the first row of Fig. 4, our method gener-
ates more natural voids effect on the horse’s neck and hind
legs than ChipGAN, and more realistic stroke information on
the horse’s hind legs than CycleGAN, while the results gen-
erated by DistanceGAN and Neural style transfer are not very
good. For the sample in the second row, our method retains

VOLUME 8, 2020
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FIGURE 4. Comparison with existing methods on real horse->ink painting. In each case: input image (column 1), result of ours (column 2),
result of ChipGAN [7] (column 3), result of CycleGAN [1] (column 4), result of DistanceGAN [28] (column 5), result of Neural Style Transfer [27]
(column 6).
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FIGURE 5. The image quality with different variables for real horse->ink horse task. From left to right: Input, Our proposed method (One cycle
+ AdalN + MS-SSIM loss), One cycle + AdalN, One cycle.
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Generated Image
(without AdalN)

Generated Image
(with AdalN)

Generated Image
(without AdalN)

Generated Image
(with AdalN)

(i

FIGURE 6. The effect of AdaIN module for real horse->ink horse task. In each case: The first row shows the original image (left), generated image
without AdaIN (middle), generated image with AdalN (right), and the second row shows the corresponding edge images.

Rec Image
(without MS-SSIM)

Rec Image

Input (with MS-SSIM)

Rec Image
(without MS-SSIM)

Rec Image

Input (with MS-SSIM)

FIGURE 7. The improvement of reconstructed image quality made by MS-SSIM loss. In each case: Input (left), reconstructed image without MS-SSIM loss

(middle), reconstructed image with MS-SSIM loss (right).

more complete details on the face and ears of the horse than
ChipGAN and CycleGAN, and the generation of Distance-
GAN in the mouth has collapsed, the Neural Style Transfer
method only learned the color of ink painting. For sample 3,
our method produces more realistic visual effects on the face
and ears. In summary, our method produces more satisfactory
results in most cases. ChipGAN is slightly inferior to the
voids effect and the constraints of some details. CycleGAN
produces unsatisfactory results in the retention of image con-
tent. DistanceGAN is prone to generate poor quality data,
and the Neural Style Transfer basically only learns the color
information.

b: QUANTITATIVE COMPARISON

We evaluate our model on five indicators: FID (smaller
is better), Kernel MMD (smaller is better), PSNR (larger is
better), SSIM (larger is better), and training time (smaller is
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better). Table 2 shows the comparison results of our exper-
iments. It can be seen that our method shows better results
on most indicators and requires less training time. It shows
that our method can not only retain the semantic information
of the image, but also learn the style features of ink painting
well.

2) ABLATION STUDY

In Fig. 5, we analyze our model through different variables.
It can be seen that in the structure using only one cycle (the
last column in Fig. 5), although more content is reserved
than the baseline model, in sample 1 (first row), the horse’s
ears still lack some details, and the faces of the two horses
are fused together, the ear of the horse in sample 2 (second
row) is poorly generated, and the tail and background are
mixed together resulting in a redundant part. The structure

VOLUME 8, 2020
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TABLE 2. Comparison with existing methods on the five indicators of FID, Kernel MMD, PSNR, SSIM, and Training time.

Model FID Kernel MMD PSNR SSIM Training time
DistanceGAN [28]  239.567 1.0375 7.2046 0.8482 55h
CycleGAN [1] 219.0869 0.9850 8.7929 0.9101 54.4h
ChipGAN [7] 242.1771 1.1263 8.4180 0.9021 51.5h
Ours 209.8527 0.9581 8.4756 0.9173 40h

TABLE 3. Performance on PSNR and SSIM before and after using AdalN.

Evaluation index Before using AdaIN

After using AdaIN

The enhancement of generated image quality.

PSNR 8.7948 8.9134

SSIM 0.9103 0.9190

11.86%
0.87%

of one cycle 4+ AdalN (the third column of Fig. 5) has been
improved in detail. In the middle of the horse’s face in sam-
ple 1 (first row), due to the filtering out of some background
information, the faces of the two horses can be separated, but
some information at the ears is still lost. In sample 2 (second
row), the ears of the horse are improved and the lines of
the tail are clearer. Our method (one cycle 4+ AdaIN + MS-
SSIM loss, the second column of Fig. 5) further improves the
image generation quality. The ears in sample 1 (first row)
are preserved well. As the stroke information of the face
is more detailed, the two horses are completely separated,
the generated image looks more spatial. The ear and tail parts
of sample 2 (second row) are also closer to the input image.

By comparing generated images and extracting edge infor-
mation, we analyze the effect of the AdaIN module. The first
row of Fig. 6 shows the original images and generated ink
images before and after using AdaIN of the two samples,
and the second row shows the edge images of corresponding
images in the first row. We observe that AdaIN’s learning of
ink diffusion effect mainly focuses on the ink color transition
of horse’s body. The uniform and reasonable transition can
improve the hard color block phenomenon, thus adding more
texture details to the generated ink image. It can also be
clearly observed from the comparison of the edge images that
AdalN removes the extra strokes and replaced them with ink
transitions on the corresponding horse’ body. Table 3 shows
the qualitative comparison results on PSNR and SSIM, which
are increased by 11.86% and 0.87% respectively.

Fig. 7 clearly shows the improvement in visual quality of
the reconstructed image after using MS-SSIM loss through
comparative experiments. We select two types of test data
for horses and landscapes, and find that the generated recon-
structed images tend to be green without using MS-SSIM
loss. We believe that one possible reason is the influence
of background color. For example, the background of most
training images in the horse dataset is grass, and the main
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FIGURE 8. The curve of the GAN loss and MS-SSIM loss as epoch
increases.

body of the landscape dataset is basically trees. However,
MS-SSIM loss restricts the reconstructed image in terms of
luminance, contrast, etc., thereby improving this problem and
maintaining the consistency of the reconstructed image and
the original image.

3) MODEL ANALYSIS
In this section, we analyze the proposed method and evaluate
its generalization ability on different datasets.

Fig. 8 shows the curves of the adversarial loss and
MS-SSIM loss of the training process. It can be seen that
GAN loss is constantly fluctuating, indicating that our net-
work is well trained, and MS-SSIM loss continues to decline
until it stabilizes, indicating that our reconstructed image
continues to be close to the real image as the number of
training epoches increases.

Fig. 9 shows the generalization results of our model on
different datasets. In order to ensure the diversity of the gen-
eralized data, we selected a variety of generalized datasets,
including landscape and flower datasets which involve more
brush strokes and texture details, apple datasets which repre-
sent simple geometric shapes, Western paintings such as Van
Gogh’s Paintings, and animal datasets which contain complex
shapes such as birds, cats, and dogs. Results show that our
method has good generalization ability on different datasets.
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FIGURE 9. Generalization experiments of our proposed method on different datasets.

V. CONCLUSION

In this paper, we proposed an image translation framework
for a real photos to ink paintings task. To resolve the loss of
image content information in the baseline model CycleGAN,
we used only forward cycle consistency loss to replace the
forward and backward combination method, which effec-
tively retains the semantic information and is capable of
generating natural voids. In order to solve the problem that
the generated images are not stereoscopic enough, we used
the AdaIN module to learn the ink diffusion effect of real ink
paintings, so that the generated images look more realistic
and natural. For the correction of image details, we added the
MS-SSIM loss to the reconstruction loss, thereby effectively
improves the quality of the generated images. We conducted
comparative experiments with existing methods on multiple
evaluation indicators, and analyzed the generalization ability,
proved the effectiveness of our method. In the future, we will

132010

study the real-time style transfer of ink paintings, hoping
to learn the typical characteristics of ink paintings under
real-time conditions.
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