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ABSTRACT Automatic modulation classification (AMC) plays a key role in cognitive radio. For AMC,
convolutional neural networks (CNNs) have been explored in previous works extensively and deliver the
best performance. However, temporal dependencies of signals modeled by CNNs are inherently implicit and
insufficient. As a result, models need more data to learn discriminative features automatically. In this work,
we propose a hybrid model named HybridNet, where a bidirectional gated recurrent unit (Bi-GRU) is placed
after CNN to capture temporal dependencies explicitly. In addition, we investigate why varying Signal-
to-Noise Ratio (SNR) dataset makes performance deteriorate. By visualization, we discover that the increase
of the intra-class divergence under sharply varying SNR is the central cause. To this end, channel-wise
attention is adopted in HybridNet to learn different patterns existing in SNR, which does not require SNR
labels in the training process or inference values of SNR. On RadioML2016.10b, our HybridNet obtains
the best accuracy among all scales of training data. Especially, in small datasets, our model obtains 87.4%
accuracy that is 9.7% higher than the baseline method.

INDEX TERMS Cognitive radio, modulation recognition, deep learning, signal-to-noise ratio.

I. INTRODUCTION
Automatic modulation classification (AMC) is a key compo-
nent in intelligent wireless communication, which is widely
used in cognitive radio and military electronic warfare.
In dynamic spectrum access, modulation classification is
applied to identify radio sources and avoid interference in
the vicinity to enhance spectral efficiency [1]. In warfare,
it helps to identify hostile or friendly signals without prior
information.

There are two categories of traditional modulation
classification methods, likelihood-based approaches and
feature-based approaches. In likelihood-based approaches,
the likelihood ratio is computed by the probability density
function of the observed wave and compared with a thresh-
old [2], [3]. In feature-based approaches, several features
are extracted by hand and hard boundaries or classic pattern
recognition methods are utilized to make a decision [4], [5].
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However, with the explosion in data scale and the evolution of
modulation technology, simplemethods have exposed several
problems. For example, the accuracy decreases in multi-class
tasks and the data is not efficiently utilized.

Recently, convolutional neural networks (CNNs) have
made a series of breakthroughs in computer vision [6]–[8].
The success of CNN based neural networks raises more
attention in AMC. O’Shea et al. [9] firstly proposed a CNN
for classifying modulation types, which showed the CNN
based method was superior to traditional methods and more
robust for a variety of signal types. Ramjee et al. [10]
explored several mainstream neural structures, among which
ResNetSig obtained the highest accuracy with adequate data.
Wang et al. [11] proposed a model integrating two CNNs,
where the former was trained on samples composed of
in-phase and quadrature components to classify easy types
while the posterior one learned from constellation diagrams
to identify QAM16 and QAM64.

Previous works have made significant contributions to the
exploration of CNN structure in AMC and obtain pretty
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good results. However, temporal dependencies of signals
modeled by CNNs are inherently implicit and insufficient.
CNNs fuse both spatial and channel-wise information
within local receptive fields at each layer to construct
discriminative features. To capture long term dependencies,
CNNs need wider receptive fields. Stacking convolutional
layers is the way for CNNs to broaden receptive fields.
Meanwhile, it pushes the net to deeper and more data is
needed for training. Recurrent neural network (RNN) is
simple and effective in modeling long term dependencies.
In [10], [12], a two-layer Long Short Term Memory (LSTM)
obtained comparable accuracy to ResNetSig at high SNR and
outperformed CNNs significantly with small data. Although
RNNs can capture temporal information efficiently, their time
costs are unacceptable and models are not as robust as the
CNNs at varying SNR. Themixed structure of RNN andCNN
was widely used in the image caption, video classification
and speech recognition, in which CNN was exploited as a
feature extractor and RNN was responsible for modeling the
temporal dependencies [13]–[15]. Convolutional Long Short
Term Deep Neural Network (CLDNN)[15] is a typical kind
of mixed structure that integrated CNN layers and LSTM
layers for speech recognition. Then the same structure [10]
was introduced into AMC, but it didn’t show any advantages
in speed or accuracy. We argue that the capacity of the mixed
structure is limited by unsuitable configurations, such as the
lack of pooling operations, too many channels on CNN.
We propose an efficient hybrid structure, named HybridNet,
that outperforms the state of the art accuracy.

In addition, we investigate the reason why the training
set with various SNR makes performance deteriorate. The
strength of noise in the signal is described as Signal-to-Noise
Ratio (SNR). In [16], authors noticed negative impacts of
samples with low SNR during training and proposed an
SNR-aware loss, by which high-quality samples denoted as
high SNR were emphasized and weights of samples with
low SNR were suppressed. Although this strategy improved
the accuracy at high SNR, it brought the decrease at low
SNR and required SNR labels. Xie et al. [17] proposed a
multi-branch model for varying SNR environments, in which
an M2M4 algorithm was utilized to estimate SNR and then a
specific branch was selected for AMC according to the value
of SNR. That model isolated the interference of SNR through
different branches. But it enlarged the number of parameters
and requiredmore samples for training because different SNR
samples were used in a non-shared manner. Why samples
with sharply different SNR affect the training process remains
unknown.

In this paper, to improve the ability of CNN in cap-
turing temporal information of the signal, we propose
the HybridNet, where the bidirectional gated recurrent
unit [18] (Bi-GRU) is used after CNN to model the temporal
dependencies explicitly. To understand the effects of noise,
we visualize distributions of samples at each SNR using
principal component analysis (PCA). We discover that the
distribution shift caused by noise results in the increase of

the intra-class divergence, which puts a severe challenge on
training. In this case, more samples are required to match
the divergence. Squeeze-and-Excitation (SE) [19] block is
an implementation of channel-wise attention, which enables
the net to model differences among samples by recalibrating
channel responses. We adopt channel-wise attention in
HybridNet to learn different patterns existing in SNR without
adding data or SNR labels. Our main contributions are
summarized as the following three points.

Firstly, we propose the HybridNet to make up the
insufficiency of CNN in capturing temporal information of
the signal, in which the Bi-GRU is used after CNN to
capture temporal dependencies of the signal explicitly and a
dual-classifier is applied to produce predictions.

Secondly, we introduce channel-wise attention to model
different patterns existing in SNR for mitigating interference
brought by noise.

Thirdly, a thorough evaluation is done on RadioML2016.
10b. Our HybridNet achieves the best performance at various
data scales. Especially, our model is 9.7% higher than the
baseline in small datasets.

The rest of this paper is organized as follows. Section II
details problems existing in current CNNs. Section III
presents our HybridNet and intuitive understandings behind
it. Experimental settings and results are shown in Section IV.
Ablation experiments in Section V reveal the effects of each
part in HybridNet. In Section VI, we summarize the whole
work.

II. PROBLEM STATEMENT
Two main problems are existing in current CNNs for AMC.
One is the absence of capturing temporal dependencies of the
signal. Another is the interference of noise in the training
process. Without considering those problems, CNNs need
more data to match intricate distributions by themselves.
We describe those problems in detail as follows.

A. MODELING TEMPORAL DEPENDENCIES
In general, CNNs exploit CNN as a feature extractor and
place fully connected layers subsequently to produce the
predictions. We consider both of them are incompetent to
model the temporal dependencies.

The essence of CNNs is the convolution operator, which
fuses both spatial and channel-wise information within
local receptive fields to produce informative features. The
convolution operator maps an input X ∈ RN×H×W with
N channels to features U ∈ RM×H×W . We use V =

[v1, v2, . . . vM ],V ∈ RM×N×k×k , to denote the convolutional
kernels and formulate the transformation as (1).

um = vm ∗ X =
N∑
i=1

vim ∗ x
i (1)

where ∗ denotes the convolution, X = [x1, x2, . . . , xN ],
U = [u1, u2, . . . , uM ]. vm = [v1m, v

2
m, . . . , v

N
m ], v

i
m ∈

Rk×k , k is the size of convolutional kernels. Receptive fields
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of units in U are limited by both the kernel size k and
input X . Deeper structure and bigger kernel size are helpful
to broaden the receptive fields. Benefiting from the local
correlation captured by kernels and the hierarchical structure
of networks, temporal dependencies are implicitly embedded
into feature maps. However, temporal dependencies captured
by CNNs are inherently inefficient because this manner is
hard to capture long term dependencies (e.g. two ends of the
sample) and requires deeper structure.

The fully connected layer is able to model long term
dependencies because of global receptive fields, but it is
dragged down by numerous parameters. It operates all units
of input simultaneously so that it is hard to concentrate on
useful parts without sufficient data.

RNN is direct and effective in modeling temporal depen-
dencies. We propose a HybridNet, where a Bi-GRU is placed
after CNN subsequently to grasp the temporal dependencies
without stacking deeper layers.

B. THE DIVERGENCE LED IN BY NOISE
Noise increases the intra-class divergence and narrows the
gap of inter-class, both of which make a severe challenge
in classification. For electronic signals, a variety of noise
exists inherently and is inevitable. To quantitative analysis,
SNR is adopted as the measure of the quality of signal in
communication systems, shown as (2).

SNR = 10× lg
PS
PN

(2)

PS and PN represent the effective power of signal and
noise, respectively. Typically, it’s more difficult to extract
information from low SNR samples than high SNR ones.
Intuitively, we made a hypothesis that the distribution suffers
different degrees of shift according to SNR, which increases
the intra-class divergence. Taking the extreme situation as
an example, at low SNR (e.g. −20dB), information of
modulation has been submerged in noise, which means
all categories with −20dB only show the distribution of
noise and can’t be classified correctly. To examine the
assumption, we visualize GFSK and WBFM with different
SNR using principal component analysis (PCA). Specifically,
we extract two hundred of samples from each class at each
SNR randomly and concatenate in-phase and quadrature
components as the input of PCA. Shown as Fig. 1, although
samples hold the same modulation type, there are apparent
differences in distributions of each SNR. Meanwhile, all the
categories form a cluster at the center when SNR is equal to
−8 dB. Those observations confirm our hypothesis.

Within the same category, different SNR samples hold
diverse distributions, imposing interference with each other.
We note that training ResNetSig on the full range of SNR
(SNR ∈ [−20, 20]), the curve of training loss oscillates
heavily. Once low SNR (SNR > 0 dB) samples are removed
from the training set, the instability is mitigated. Another
observation is that accuracy of the model trained on high
SNR is about 1% higher than the ones trained at the full

FIGURE 1. Visualization of WBFM and GFSK using PCA. Naming scheme:
Modulation_SNR(dB).

range of SNR. Those observations suggest that modeling the
divergence led in by noise would improve the performance of
models.

To this end, channel-wise attention that is able to model the
divergence existing among samples is utilized in HybridNet
to learn different patterns varied by SNR.

III. ARCHITECTURE
As shown in Fig. 2, our HybridNet comprises a feature
extractor, a bidirectional gated recurrent unit (Bi-GRU)
and a dual-classifier. For each input with the form of IQ
components, it produces the probabilities of categories.

A. CNN BASED FEATURE EXTRACTOR
For the robustness of the model over the full range of SNR,
HybridNet applies a convolutional neural network as the
feature extractor. The feature extractor is composed of a
stack of 3 basic blocks. Each block consists of a pre-filter,
a standard residual block [8], two Squeeze-and-Excitation
(SE) blocks and a maxpooling layer, see Fig. 2. All of the
convolutional layers use the same filter size of 1× 3.
The pre-filters have two effects in HybridNet. Firstly, they

are used to convert the input into specific dimensions so
that the residual blocks can use identity mapping simply
without dimensional projection. In addition, the pre-filters
avoid introducing the raw distribution, which is similar to
the first 7 × 7 filter adopted in ResNet [8]. ResNetSig [10]
used 1×1 filters for matching dimensions while it introduced
raw distributions into subsequent layers. That is the reason
why training loss of ResNetSig was unstable. ReLu [19]
activation function and batch normalization [24] are used
for all CNN layers. Maxpooling operations provide the
shift-invariant features that are required for fully connected
layers. Meanwhile, it reduces the feature size so that the cost
of time in GRU is mitigated.

The squeeze and excitation (SE) block is placed after
each pre-filter and residual block to model the intra-class
divergence. SE block [19] is a kind of channel-wise atten-
tion that investigates interdependencies between channels.
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FIGURE 2. HybridNet-b. HybridNet comprises a feature extractor, a bidirectional gated recurrent unit (Bi-GRU) and a
dual-classifier. Features extracted by CNN are fed to Bi-GRU for temporal dependencies. Then dual branches of classifier operate
forward and backward output of Bi-GRU individually to produce the prediction.

FIGURE 3. Squeeze and Excitation Block (SE).

The central of SE is squeeze and excitation operation, see
Fig. 3. The squeeze operation aggregates global information
of each channel in the input X ∈ RN×H×W to form channel
descriptors C = [c1, c2, . . . cN ], formulated as (3). The
excitation operation consists of two fully connected layers,
formulated as (4). It maps channel descriptors into a set of
weights to emphasize more informative channels.

ci = Fsq(xi) =
1
HW

H∑
m=1

W∑
n=1

xi(m, n) (3)

wi = Fex(C,W ) = σ (W2ReLu(W1C)) (4)

x̃i = wi ∗ xi (5)

Here C ∈ RN×1×1, W = [W1,W2] are learnable
parameters of fully connected layers. σ refers to the logistic
sigmoid function and ReLu [23] is a activation function. X =
[x1, x2, . . . , xN ] are input feature maps. SE blocks re-weight
the input X to produce the output X̃ = [x̃1, x̃2, . . . , x̃k ].
With the increasing depth, the manner that SE blocks activate
feature channels changes from a class-agnostic to a highly

class-specific. In our model, it excites different feature
channels according to input, which enables samples with
varying values of SNR to rely on diverse channels to avoid
interference.

B. THE BI-GRU AND CLASSIFIER
To make up the insufficiency of CNN in capturing temporal
information of the signal, we adopt a bidirectional gated
recurrent unit to model the temporal dependencies explicitly.
Gated recurrent unit (GRU) [14] is a typical kind of
RNN, which operates on a variable-length sequence, x =
[x1, x2, . . . , xT ], to learn the probability over the sequence.
At each time step t , it receives the xt and previous state ht−1
as inputs to produce the hidden state ht .

ht = f (ht−1, xt ) (6)

rt = σ (Wr [ht−1, xt ]) (7)

zt = σ (Wz[ht−1, xt ]) (8)

h̃t = tanh(Wh̃[rt � ht−1, xt ]) (9)

ht = zt � ht−1 + (1− zt )� h̃t (10)

f is a non-linear activation function that is implemented
by a reset gate rt and an update gate zt , shown in Fig. 2.
Wr ,Wz,Wh̃ are parameters in corresponding gates and σ
denotes sigmoid function. � denotes Hadamard product.
At each time t , rt and zt are computed by previous state ht−1
and input xt . The reset gate and update gate are sensitive
to shorter and longer term dependencies respectively so that
GRU is able to capture dependencies over different scales.
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In our HybridNet, the features produced by the extractor
are sent into a bidirectional GRU to capture the temporal
dependencies. At each time, the Bi-GRU produces two
components, the forward component is calculated from front
to end and the backward component is the opposite. Each
input to the Bi-GRU has the same receptive fields and
may be equally important. After the GRU, post-computed
components access to larger fields and therefore are more
informative. The forward and backward components pass
through an unshared classifier that is two fully connected
layers to generate predictions respectively. Then, two results
are added together and category probabilities are calculated
with softmax.

C. MODEL PARAMETERS
We have designed two models, HybridNet-big and
HybridNet-small, both of which share the same structure but
are different in the parameter size. In the convolutional part,
HybridNet-b follows the idea of VGG [6], which doubles
the number of filters once the feature map size is halved.
HybridNet-s is conformant with the ResNetSig [10] using
fixed 32 channels. HybridNet-b has 32 hidden units in each
of GRUs, while HybridNet-s reduces the number of hidden
units to half, 16.

IV. EXPERIMENTS
In this section, we introduce the dataset used for evaluation.
Then, implementation details are described, including the
re-implementation of three baseline models reported in [10].
Results obtained over different scales of training datasets are
presented.

A. DATASET
We use the RadioML2016.10b [20] generated with GNU
Radio as our dataset in our experiments. The dataset has
1.2M samples that consist of eight digital modulations and
two analog modulations. Eight digital modulations contain
BPSK, QPSK, 8PSK, QAM16, QAM64, BFSK, CPFSK and
PAM4. Two analog modulations are WBFM and AM-DSB.
A variety of noise is considered in the dataset, including
moderate LO drift, light fading and Gaussian white noise in
different intensity. Each sample has a length of 128 and is
stored as a complex array, in which the real and imaginary
parts represent I and Q component respectively. The label
consists of two elements, the modulation type and the SNR
value. SNR ranges from−20dB to 20dBwith the step of 2dB.

B. IMPLEMENTATION DETAILS
1) DATA AUGMENTATION
We use random flipping and cropping in our experiments,
which are commonly used in computer vision [6] and efficient
to enhance generalization. Flipping operation reverses the
sample from beginning to end. Random cropping selects
continuous K-length from the N-length sample as the input.
Usually, to keep the length of the input, interpolation

is always applied to expand dimensions before cropping.
Different from interpolation methods used in CV, we argue
that FFT interpolation [21] is a better choice for the signal.
FFT interpolation that inserts zeros between the negative
and the positive frequency components is a non-destructive
operation and mitigates the fence effect. Other methods
are just fitting the distribution. FFT interpolation can not
create extra information and cropping discards a part of
the information, according to the proportion of cropping.
So expanding too much is not recommended.

2) TRAINING SETTINGS
To evaluate the performance of each model, we split the
whole dataset into training and test set equally. To assess the
efficiency of models, we conduct experiments on different
sizes of the training sets (20000, 100000 and 600000) and
calculate test accuracies at samples in the test set whose
value of SNR are higher than 0dB. We adopt Adam [22]
solver with a batch size of 1024 in most cases and decrease
the batch size to 256 under 20,000 samples. The learning
rate starts with 0.01 and is decayed by 0.1 once the number
of epoch reaches one of the milestones, [20, 50, 70]. The
number of epochs is set to 100. Randomflipping and cropping
are default preprocessing operations in all experiments. For
cropping, each sample is expanded to 140 points using FFT
interpolation and then cropped into 128 points randomly. The
default probability of flipping is 0.2. All experiments are
implemented in Pytorch and conducted on an Nvidia K80s
GPU to speed up training. For stable results and statistical
significance, all experiments using 20,000 training samples
are repeated ten times. And then the average is taken as the
final value. For experiments using 0.6M training samples,
results are averaged by three repeated experiments.

C. BASELINE MODELS
To enable a fair comparison, We re-implement three models
reported in [10], namely LSTM, CLDNN and ResNetSig.
Our re-implementations use the same configuration with our
model and obtain better accuracies than results reported in
the original paper. Originally, LSTM took the best accuracy
under a small dataset followed by CLDNN and ResNetSig.
In our case, CLDNN gets the best and ResNetSig is better
than LSTM. We think that the rank changes because training
settings aremore suitable for CNN-basedmodels than LSTM,
such as random cropping.

D. RESULTS
We evaluate each model trained at different data scales
to assess efficiency. As shown in Table 1, test accuracies
of HybridNet outperform previous works in all tests. With
the decrease of data size, the improvement of accuracy is
becoming obvious. Especially, with 20,000 training samples,
the accuracy of HybridNet-b is 9.7% higher than ResNetSig.
Under 20,000 training samples, we visualize the confusion
matrix at 10dB that is obtained by HybridNet-b using the
test set. As shown in Fig. 5, accuracies of most categories
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TABLE 1. Test accuracy (%) and Speed. N is the number of training samples. Accuracies of models are calculated by samples in the test set whose value
of SNR is higher than 0dB. The speed refers to the time consumption of one epoch when the model is trained in 0.6M samples.

TABLE 2. Statistical Significance (%).

are higher than 97% and misclassifications are mainly
concentrated in two pairs of categories, QAM16 andQAM64,
WBFM and AM-DSB. Those confusions also happen under
enough training data but are more serious in small datasets.
In the convolutional part, HybridNet-s have the same number
of channels as ResNetSig and fewer layers. Accuracies of
HybridNet-s are significantly better than baseline models
among all tests of different scales. It suggests that our
improvements are based on utilizing temporal information
and attention mechanism rather than using more feature
maps.

For statistical significance, we conduct ten repeated
experiments for models trained in 20,000 samples and list
means and standard deviations of test accuracy in Tab 2.
Results suggest that our model is significantly better than
baselines and has better stability in varying SNR dataset.
Because leading the raw distribution of samples into deeper
layers, ResNetSig is affected by noise severely and its
standard deviation behaves as an outlier.

Evaluated in 600,000 training samples, HybridNet-s is
the fastest model in our experiments whose training time
is 50s per epoch despite time-consuming RNN. Although
HybridNet-b is better than HybridNet-s marginally at accu-
racy, it costs much more time than the small one. Weighing
the cost of time and accuracy, we consider HybridNet-s
is comparable to HybridNet-b and doubling the number of
channels after pooling is not an essential operation.

Training on 20,000 samples, over-fitting can be observed
in all models. However, we do not take any measures to
deal with it but data augmentation. The last line in Tab 1
is the results of HybridNet-b without data augmentation
methods. Those methods contribute to enhancing the gen-
eralization mainly and improve test accuracy. Without it,
training accuracies reach an unrealistic point and over-fitting
is serious. The flipping operation in data augmentation
plays a role in preventing overfitting. Indeed, it mixes the
forward and backward temporal dynamics, which makes

TABLE 3. Flipping with different probabilities. The model,HybridNet-b,
is trained in 20,000 samples and evaluated by samples whose SNR are
greater than 0dB.

FIGURE 4. Training accuracy is calculated by 20,000 samples whose SNR
range from −20dB to 20dB. Validation accuracy is obtained by
270,000 samples whose SNR are greater than 0dB. Note that
train-accuracy and eval-accuracy are calculated using different ranges of
SNR. So, there is a significant gap.

the net do not overfit to the training set. We conduct
experiments to show the performance of our model in
different values of the probability of flipping. Results have
been listed in Tab 3 and curves of training and validation
accuracy are plot in Fig. 4. Because of temporal confusion
led in by flipping operation, evenly flipping is showed
as underfitting that will degrade the accuracy. As the
probability goes from 0 to 0.5, the model will transition from
overfitting to underfitting. In our experiments, we set the
probability to 0.2, a good balance between underfitting and
overfitting.
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FIGURE 5. With SNR value of 10 dB, confusion matrix is obtained by
HybridNet-b using the test set. The model is trained by 20,000 samples
whose SNR values range from −20dB to 20dB.

V. ABLATION
In this section, we conduct ablation experiments to investigate
the effects of each part on HybridNet-b. The training
configuration follows the description in Section IV-B.

A. SE BLOCK
Improvements brought by SE blocks are evaluated on
different data scales, shown in Tab 4. With 600,000 training
samples, improvement of accuracy is about 0.8%, and
increases to 2% under 20,000 samples. We consider that
sufficient data enables the network to eliminate interference

TABLE 4. Ablation of SE blocks.

automatically, while explicit modeling is more effective
under a limited data scale.

To reveal how SE block improves the performance, we plot
distributions with respect to different classes and different
SNR of each basic block in HybridNet, shown in Fig. 6.
Specifically, we extract 500 samples randomly for each SNR
from the test set and compute the average of activations for
the first sixteen channels. The distributions of activations of
classes are obtained in the same manner.

As shown in Fig. 6, SE block not only is sensitive
for different modulation types (see Fig. 6(a-c)) but also
responds to varying SNR (see Fig. 6(d-f)). We make two
observations from visualization. First, distributions across
different modulation types or SNR are very similar in the first
block, which is consistent with the conclusion drew in [19]
that the importance of feature channels is likely to be shared
by different classes in the early stages. The second is that
distributions across different SNR samples or modulation
types exhibit different preferences to feature maps at deeper
layers.

For response for different modulation types, channels
show category-related characteristics. Especially, channels’
responses to analog modulation types, AM-DSB andWBFM,
are highly coincident, shown as Fig. 6(b).

FIGURE 6. Channel responses. Naming scheme: SE_BlockID_LayerID. Subfigures (a-c) show distributions of excitation for different modulation
types. Subfigures (d-f) show how SE blocks respond to varying SNR. With increasing depth, the excitations become increasingly class-specific or
SNR-specific.
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TABLE 5. The effect of temporal information.

For response for varying SNR samples, some channels’
responses are highly correlated with SNR, while the others
are insensitive to SNR. For example, at Fig. 6(e), the strength
shows a negative correlation with SNR at 2th channel and
exhibits a positive correlation at the 7th channel. When
the value of SNR is greater than 0dB, their distribution
curves almost coincide. Channels that are insensitive to
SNR are likely to work in a shared way, while the others
affiliate to different SNR individually. These observations
suggest that the network assigns different patterns for sharply
different SNR. So that samples with sharply different SNR
propagate the gradient along different paths, which is a little
similar to a multi-branch net. That may be why channel-wise
attention is able to eliminate the interference and improve
accuracy.

B. BI-GRU
To assess the importance of temporal information, we com-
pare the differences between the same model adding Bi-GRU
or without it. Results shown in Tab 5 suggest that using GRU
to grasp the temporal information is helpful to improve the
accuracy of models, especially under small datasets. With
enough data, temporal dependencies can be embedded in
feature maps or captured by fully-connected layers implicitly.
Under small datasets, CNNs can also achieve high training
accuracy, but they are hard to generalize in the test sets.
At this time, the model with GRU is significantly better than
CNNs, which shows that temporal dependencies are essential
properties.

We use bidirectional GRU to improve generalization.
As shown at line 2 in the Tab 5, compared to Bi-
GRU, a single GRU with 64 hidden units achieves similar
results and is sufficient for most cases. Bi-GRU that
provides different features obtained from forward and
backward direction contributes to generalization in small
datasets.

VI. CONCLUSION
In this work, we propose the HybridNet, in which a Bi-GRU
is placed after the CNN based feature extractor to capture
the long term dependencies of the signal. In addition,
we figure out that noise makes the distribution shift and
increases the intra-class divergence. Then we introduce
channel-wise attention to model the divergence. A thorough
evaluation on RadioML2016.10b shows the effectiveness of
our model, which obtains the best result over diverse data
scales.
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