
Received June 10, 2020, accepted July 6, 2020, date of publication July 16, 2020, date of current version July 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3009877

A Full-Image Full-Resolution
End-to-End-Trainable CNN Framework
for Image Forgery Detection
FRANCESCO MARRA 1, (Member, IEEE), DIEGO GRAGNANIELLO 1, (Member, IEEE),
LUISA VERDOLIVA 2, (Senior Member, IEEE), AND GIOVANNI POGGI 1, (Member, IEEE)
1DIETI, Università degli Studi di Napoli Federico II, 80125 Napoli, Italy
2DII, Università degli Studi di Napoli Federico II, 80125 Napoli, Italy

Corresponding author: Francesco Marra (francesco.marra@unina.it)

This work was supported in part by the Google Faculty Research Award, in part by the Air Force Research Laboratory, in part by the
Defense Advanced Research Projects Agency under Grant FA8750-16-2-0204, and in part by the PREMIER project, funded by the Italian
Ministry of Education, University, and Research within the Progetti di Ricerca di Interesse Nazionale (PRIN) 2017 Program.

ABSTRACT Due to limited computational and memory resources, current deep learning models accept only
rather small images in input, calling for preliminary image resizing. This is not a problem for high-level
vision problems, where discriminative features are barely affected by resizing. On the contrary, in image
forensics, resizing tends to destroy precious high-frequency details, impacting heavily on performance. One
can avoid resizing bymeans of patch-wise processing, at the cost of renouncing whole-image analysis. In this
work, we propose a CNN-based image forgery detection framework which makes decisions based on full-
resolution information gathered from the whole image. Thanks to gradient checkpointing, the framework is
trainable end-to-end with limited memory resources and weak (image-level) supervision, allowing for the
joint optimization of all parameters. Experiments on widespread image forensics datasets prove the good
performance of the proposed approach, which largely outperforms all baselines and all reference methods.

INDEX TERMS CNN, digital image forensics, forgery detection.

I. INTRODUCTION
In this work, we propose a new framework for image forgery
detection based on convolutional neural networks (CNN).
This may not look particularly exciting: deep learning is
by-now common practice to solve all kinds of vision-related
problems. However, image forensics has some peculiarities
that set it apart from standard computer vision problems.
We can summarize them in the need to look, at the same time,
at the whole image but also at its tiniest details. Consider the
example of Fig.1. This well-crafted splicing does not show
obvious artifacts that allow detection by visual inspection,
but a suitable textural analysis reveals differences that may be
due only to the insertion of alien material in the host image.
Indeed, many state-of-the-art forensic tools rely on the
statistical analysis of local micro-patterns, observed at their
native (full) resolution. However, local analysis alone are nec-
essarily suboptimal. Clues emerging from the whole image,
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FIGURE 1. Example of carefully crafted splicing. Visual inspection does
not allow detection, but pixel-level analysis performed with Noiseprint
extraction technique [1] expose suspicious textural differences.

and at multiple scales, should be combined and processed
jointly to make a reliable decision. Therefore, our goal is to
design CNN-based forensic tools that meet the contrasting
requirements of full-resolution and full-image training and
analysis.
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It should be realized that this problem is indeed peculiar
of multimedia forensics. Typical CNN classifiers for com-
puter vision problems rely on macroscopic features, which
bear high-level semantic clues on the scene. For example,
a face detector may look for the presence of specific facial
features with suitable spatial relationships. Such large-scale
information persists nicely after resizing the image. And in
fact, target images of wildly different sizes are routinely
resized to match the input CNN layer. Actually, resizing is
even used on purpose, during training, to gain robustness
to scale changes. In the context of image forensics, instead,
resizing may destroy the very same information classifiers
rely upon, the pixel-level micro-patterns that characterize
different digital histories. By analyzing such patterns one can
identify camera models, individual devices, or discover the
traces of out-camera processing. A huge scientific literature
testifies on the importance of such high-frequency features.
Hence, image resizing and resampling should be definitely
avoided when performing forensic tasks.

So, one could naively think of using a network with an
input size as large as the target image. Besides the lack
of generality (images can be of any size) a more funda-
mental issue concerns computational and memory resources.
Acquisition devices are continuously improving their res-
olution, with commercial smart-phone cameras delivering
photos with many millions of pixels. Deep learning hardware
capabilities do not increase at the same rate. Due to compu-
tation and memory limitations, state-of-the-art architectures
accept only small images in input, especially when very deep
networks are used. Therefore, the highly informative image
samples cannot be directly fed to a network and analyzed as
a whole.

Eventually, when high-resolution must be preserved,
a simple solution is to perform patch-wise feature extraction,
followed by some forms of feature aggregation to exploit
the full-image information. This approach makes full sense,
and largely predates deep learning. Yet, even with good
CNN-based feature extractors and classifiers, it is inherently
suboptimal for several reasons: i) poor feature extraction;
ii) poor global decision; iii) need of over-detailed ground
truth.

First of all, since the patch-wise feature extractor is trained
without taking into account full-image information, the best it
can do is to learn good features for local decisions, which are
not necessarily the best ones in view of future aggregation.
Then, the global classifier, trained after freezing the patch-
level processing, operates only on intermediate features,
hence is necessarily suboptimal with respect to a classifier
trained end-to-end on the original data. Last, patch-wise train-
ing requires a detailed, handcrafted, ground truth. Therefore,
the large datasets necessary to train deep learning models
require a huge man-power and are inevitably affected by
errors, with a sure impact on the eventual performance.

All these considerations motivate our work, and allow us
to define the final goal more clearly. We want to design deep
learning models for image forgery detection which are:

1) full-image: make decisions based on information gath-
ered from all over the image;

2) full-resolution: do not perform any harmful image
resizing;

3) end-to-end trainable: optimize jointly all model param-
eters for image-level classification, based only on
image-level (weak) supervision.

To achieve this goal, we propose a framework compris-
ing three blocks in cascade performing, respectively, patch-
wise feature extraction, image-wise feature aggregation, and
global decision. By itself, this structure is not new. However,
unlike in the current literature, where feature extractor and
classifier are trained independently of one another, we train
all blocks jointly, based on image-wise labels, allowing infor-
mation to flow backward through the whole network. There-
fore, the global decision takes into account features extracted
from the whole image, whatever its size, and based on
local micro-patterns. To perform end-to-end training with the
full-image and full-resolution constraints, however, we must
overcome the problem of insufficient memory resources.
So we trade memory for computation in an advantageous
way, by means of the gradient checkpointing strategy [2],
solving the memory problems at the cost of a very limited
increase of processing time. Eventually, the proposed frame-
work allows one to optimize jointly the local information
extraction, the global feature aggregation, and the whole-
image classification, whatever the input image size.

We implemented several versions of this general frame-
work, through appropriate selection of the major architec-
tural blocks. After training on suitable synthetic datasets,
we performed extensive experiments on realistic datasets
widespread in the image forensics community, focusing on
local manipulations, such as splicings, copy-moves, and
inpainting, likely indicators of malicious attacks. Results
fully support our approach which largely outperforms both
baseline methods and state-of-the-art references, including
methods requiring strong supervision.

In the following, we analyze related work (Section II),
describe the proposed approach (Section III), report on the
results of numerical experiments (Section IV), and finally
draw conclusions (Section V).

II. RELATED WORK
Forgery detection is a central topic in image forensics,
and there is a large bulk of relevant literature. In addi-
tion, it is necessary to consider both forgery detection and
localization, since these tasks are tightly related. Indeed,
detection methods can be used for localization through
sliding-window analysis, and localization method may allow
detection by suitable post-processing. So, to limit the scope,
in the following analysis we take a historical perspective, but
focus especially on recent CNN-based methods. Moreover,
we neglect global manipulations, such as histogram equaliza-
tion or gamma correction [3], [4], which are not necessarily
related to a malicious forgeries, as well as methods devoted
only to copy-move forgery detection [5]–[8].
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Early contributions were mostly model-based, looking for
statistical anomalies related to the color filter array (CFA)
[9], [10], double JPEG compression [11], [12], or sensor
noise [13], [14]. Most of these methods assume a priori
the presence of a forgery and pursue localization through
pixel-level analysis, generating a heat-map. Then, a global
score can be easily computed from the latter and used for
detection. Model-based approaches are elegant and do not
require extensive training, but work only in quite restrictive
hypotheses.

The advent of data-driven solutions granted a quantum
leap in performance and ensured higher generality. Methods
based on machine learning extract suitable hand-crafted fea-
tures from the image, both in the spatial domain [15]–[19]
and in the transform (DCT, wavelet) domain [20]–[22], which
are used to train a classifier. Extracting features from the
whole image allows direct and reliable image forgery detec-
tion. Instead, localization can be obtained by working in
sliding-windowmodality and using a suitable local score. The
most discriminative features rely on high-order image statis-
tics which help revealing spatial inconsistencies originated
by the presence of forgeries. To this end, high-pass resid-
ual images are often used, obtained by means of derivative
filters [23] or image denoisers.

In recent years, methods based on deep learning have
become dominant. Some early papers, inspired by the success
of residual-based machine learning methods, propose CNN
architectures with a first layer of high-pass filters, either
fixed [24], [25], or trainable [26], meant to extract residual
feature maps. In [27] it is even shown that successful methods
based on hand-crafted features can be recast as CNNs and
fine tuned for improved performance. In [28] these low-level
features are augmented with high-level ones in a two-stream
CNN architecture. Recent findings [29], [30], however, show
that such constrained first layer is only useful with small
networks and datasets. Given a suitably large training set,
general-purpose very deep architectures provide the same
good results in favourable cases, but ensure higher robustness
to compression and training/test misalignments.

Several papers, to begin with [24], followed more recently
by [31] and [4], train explicitly the net to distinguish between
homogeneous and heterogeneous patches, the latter charac-
terized by the presence of both pristine and forged areas. The
rationale is to catch the patterns that characterize transitions
regions, anomalous with respect to the background, so as to
localize possible forgeries. This idea is followed also in [32],
where an hybrid CNN-LSTM architecture is trained end-to-
end to produce a binary mask for forgery localization. These
methods, however, require detailed ground truth maps to train
the net, which may not be available or precise.

For architectural constraints, most of these methods carry
out a patch-based analysis, working on relatively small
patches, with further steps needed to compute a global score
at image-level. In [24], for example, the CNN extract features
patch-wise and later aggregates them in a global feature

vector used to feed a SVM classifier. This may impact on
detection performance. A more fundamental limit concerns
the need of strongly aligned training and test sets. Somemeth-
ods, e.g., [4], [32], carry out experiments on a single database
split into training and test, others [28] require fine-tuning
on target data. All this highlights the limited generalization
ability of supervised learning, as also shown in [33].

A more promising line of research is to revisit the anomaly
detection approach under a data-driven paradigm. Anomalies
are detected by means of single-image analysis, with a sort of
blind source identification. In [34] this was accomplished in a
fully unsupervised fashion by using an autoencoder architec-
ture. More recent proposals [1], [35], [36] use camera-model
features, gathered off-line by dedicated CNNs, or leverage
metadata information [37] for direct detection. A strong pro
of this approach is that training is performed only on pris-
tine images, with no need of aligned datasets and ground
truths, which ensures good robustness and adaptability to
unseen manipulations. In [1] and [37], in particular, this is
achieved by using a Siamese training on pairs of patches
extracted from pristine images, with a suitable consistency
metric.

Besides its technical content, this short review of ideas
makes clear that there is high and growing interest for new
solutions in this field, to face the threats posed by increasingly
sophisticated fake multimedia tools.

III. PROPOSED METHOD
Our aim is to design a deep network to detect the presence of
localized forgeries in a target image, irrespective of the image
size and the forgery size. Of course, images can have wildly
different sizes, depending also on the context, but the trend is
towards higher and higher resolutions. For Christmas 2019,
Xiaomi released a 500$ smartphone featuring a 108-Mpixel
camera. On the other hand, due to computation/memory bot-
tlenecks, deep networks accept rather small images in input,
for example 256× 256-pixel. Hence, a strong size mismatch
typically occurs between target image and network input. For
most image analysis applications, this mismatch is not a big
problem and two solutions can be considered:

1) images are rescaled to fit the network input, or
2) images are processed patch-wise, and results are fused

off-line to make a global decision.

In the following paragraphs, we first explain why such
solutions are not viable for image forgery detection, then
describe the proposed architecture, and finally show how it
can be trained end-to-end based on the gradient checkpoint-
ing method.

A. THE NEED FOR FULL-IMAGE FULL-RESOLUTION
PROCESSING
The first solution listed before is to rescale the image to fit
the network first layer. However, this is not advisable when
dealing with forgery detection. In some cases, the forged
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FIGURE 2. Strong image resizing corrupts the textural patterns used in
forensics. Here the pixel-level analysis performed with Noiseprint [1]
does not show anymore such strong differences.

region could be so small to become practically undetectable
after strong downsampling. A more fundamental problem,
however, is that some sophisticated forgeries may only be
detected based on the statistical analysis of micro-textures.
These precious high-frequency components are strongly cor-
rupted when the image is resized or resampled. Fig.2 shows
a clear example, in which the markedly different textures
highlighted in Fig.1, after resizing become very similar to one
another and basically useless for forensic analysis.

The second solution is to perform patch-level detection,
with no resampling, followed by some form of information
fusion tomake a global decision. Indeed, given an ideal patch-
level classifier, the fusion problem has an obvious solution,
and the presence of a forgery can be declared if at least one
forged patch is detected. However, real-world detectors are
far from ideal, they always have non-zero missing-detection
and false-alarm rates. For example, assuming a rather opti-
mistic 1% patch-level false-alarm rate, and independent deci-
sions, a 100-patch pristine image would present a false-alarm
rate beyond 63%. Therefore, the fusion problem is not at
all trivial with real-world detectors, as our experiments will
confirm. In addition, the patch-level detector itself should be
designed taking into account image-level performance.

These considerations motivate the need for a full-image
full-resolution detector. In this way, precious microtextures
can be preserved and, at the same time, information coming
from all patches can be processed jointly to make a reliable
decision. A naive implementation of this idea, with a CNN
input size matching the image size, would require huge com-
putational and memory resources, not to speak of the number
of images needed for reliable training. Instead, we propose a
suitable architecture that, through reasonable structural con-
straints, satisfies the needs of forensics detection with limited
resources.

B. PROPOSED FRAMEWORK
The proposed framework is represented pictorially in Fig.3.
It consists of three blocks performing, respectively, patch-
level feature extraction, feature aggregation, and decision.
These blocks are deliberately left unspecified at this time
because their precise implementation is not the core of the
proposal. In the following, we try several CNNs as feature
extractors, as well as several forms of pooling and several
classifiers, selecting eventually the architecture that performs
best in our test. However, this is only for the purpose of

carrying out experiments on real-world datasets and prove
the potential of this approach. Better implementations will be
certainly possible within the same general framework.

1) PATCH-LEVEL FEATURE EXTRACTION
After dividing the image in overlapping patches, these
are processed to extract discriminative features. As feature
extractors, we adopt some state-of-the-art deep networks, tak-
ing the output of the penultimate layer as feature vector, and
discarding the final class probabilities. However, considering
the peculiarities of image forgery detection, we modify the
input layer to accommodate some additional inputs, the image
noiseprint [36], besides the image color bands. Noiseprints
are high-pass image residuals, extracted through a dedicated
network, in which camera-related artifacts are emphasized.
Therefore, they highlight possible spatial anomalies and may
help detecting local manipulations.

2) FEATURE AGGREGATION
The feature extractor produces a large number of features,
which are aggregated image-wise to obtain a single descriptor
for the classification task. To this end, we consider several
forms of pooling, maximum, minimum, average, and average
of squares:

Fmax = max
i=1,..,Np

Fi

Fmin = min
i=1,..,Np

Fi

Fmean =
1
Np

∑Np
i=1 Fi

Fmsq =
1
Np

∑Np
i=1 F

2
i (1)

where Fi = [Fi,1, . . . ,Fi,C ] is the C-component fea-
ture extracted from the i-th patch, Np is the number of
(possibly overlapping) patches, and all operations on features
are component-wise. The most appropriate type of pooling
depends on the problem of interest. When the information
is spread over the whole image, an average pooling is rea-
sonable, while min or max pooling are more appropriate
when the discriminative information is concentrated in a
localized region. In any case, we also use the combination of
multiple types of pooling, leaving the final choice to experi-
ments. After aggregation all explicit spatial dependencies are
discarded.

Note that the type of pooling impacts on how information
back-propagates from the output to update the parameters
of the feature extractor. In more detail, let Fagg denote the
aggregated feature, L the loss function of the framework, and
θ a generic parameter of the CNN. Then, the gradient of L
with respect to θ reads

∂L
∂θ
=

C∑
c=1

∂L
∂Fagg,c

∂Fagg,c
∂θ

(2)
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FIGURE 3. Proposed end-to-end-trainable framework for image forgery detection, comprising extraction, aggregation, and
classification blocks. During the forward pass, a memory-efficient implementation allows us to process the entire full-resolution image
as a whole. During the backward pass, all framework blocks are optimized jointly and the network learns how to extract and aggregate
the most discriminant information towards the correct classification of the whole image.

with

∂Fagg,c
∂θ

=



∂Fi,c
∂θ
· δi,imax(c), max pooling

∂Fi,c
∂θ
· δi,imin(c), min pooling

1
Np

Np∑
i=1

∂Fi,c
∂θ

, average pooling

1
Np

Np∑
i=1

2Fi,c
∂Fi,c
∂θ

, av.square pooling

(3)

In the above equation, δi,j equals 1 when i = j and 0
otherwise, while imax(c) and imin(c) point to the feature vec-
tors with the largest, respectively smallest, c-th component.
Therefore, with max or min pooling, only some ‘‘active’’
patches contribute to the gradient, and are updated during
training. Instead, with average and average of square pooling
all patches are involved. Of course, when multiple forms of
pooling are used at the same time, the gradient is obtained as
the weighted sum of the individual terms.

3) DECISION
After aggregating the local information in a single descriptor
F for the whole image, this is classified by means of a
few fully-connected layers. This is the typical classifier used
in deep networks, and usually two layers provide a good
trade-off between complexity and accuracy.

C. END-TO-END TRAINING
If we focus only on the post-training operations, the proposed
architecture does not look much different from conventional
approaches based on patch-wise feature extraction, pooling,
and classification. In the literature, however, these blocks are
trained independently of one another. The feature extractor
is trained on a large number of labeled patches to minimize
some patch-wise loss. Once the training is over, the network
is frozen. Subsequently, it can be used to extract all the
features of an image and generate an image level feature
through pooling. Then, given a large number of image-level
features and image-level labels, the final classifier is trained.
On the contrary, our framework is trainable end-to-end. That
is, we train the whole framework, top to bottom, on full-
size images, with a single label associated with each one:
forged or pristine. The loss back-propagates through the net
up to to individual patches, allowing the feature extractor to
learn the most discriminative patterns for the final decision,
and adapting the classifier jointly with the extractor itself.

To better underline the difference with respect to patch-
wise CNN training, consider that in a large image with a
localized forgery most patches are actually pristine, and only
a few ones truly forged. In our end-to-end training, all these
patches share the same image-level label (forged). Therefore,
the net is forced to learn how to manage such contrasting
indications to make the correct decision. As a side benefit,
there is no need to have a pixel-wise ground truth for training,
since the only relevant label applies to the whole image. Also,
images of any size can be used for training, with forgeries of
any size (especially if max/min pooling is used).

Going into technical details for each training batch of
images, the framework performs i) an inner loop on the
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patches of each image, computing the back-propagation at
the end of the loop, and ii) an outer loop on the images of
the batch, that sums up gradients computed for each inner
loop and finally updates the weights once at the end of the
batch. Due to the arbitrary size of input images, each inner
loop involves a different number of patches, impacting on
the computational effort, which may vary significantly from
batch to batch. This is a minor issue, though, with respect
to memory requirements. In fact, to back-propagate the loss,
gradients must be computed for all processed patches, caus-
ing an increase of the occupiedmemory, which grows linearly
with the image size. For deep networks and large images, this
memory is simply unavailable.

FIGURE 4. Conventional CNN training with backpropagation. During the
forward pass (a) all the activations are stored (black dots). During the
backpropagation (b), the activations are erased (small dots) as soon as
they are used to back-propagate the gradients.

The situation is described pictorially in Fig.4, where a
circle represents a layer, and a black dot at the center indicates
that activations are stored. In the forward pass (a), in fact, all
activations at each layer are computed and stored. Then, in the
backward pass (b), they are used to propagate gradients from
the last layer, where the loss is computed, to the input. After
usage, they are erased (small dots). It should be realized that
deep nets can include hundreds of layers, with several feature
maps at each layer, whose size is typically proportional to the
input size. Therefore, to process a large input image at once,
a huge number of variables should be stored, exceeding the
available memory.

To manage this problem we resort to the gradient check-
pointing strategy, originally proposed in [2], which trades off
memory for computation. This solution is described picto-
rially in Fig.5. During the forward pass (a), all activations
are deleted immediately after use, except for those in a few
‘‘checkpoint’’ layers (red dots). In the backward pass (b)-(e),
gradients are computed one group at a time (in the figure we
show two groups of 4 layers). Since activations are necessary
to this end, they are recomputed, but only from the last
checkpoint on, (b). This allows backpropagating the gradient
until the checkpoint layer itself (c). At this point all variables
at layers beyond the checkpoint are deleted, and the process
goes on with a new group of layers (d)-(e).

With a judicious choice of the number of checkpoints,
memory occupation can be significantly reduced and become
manageable. Of course, each activation is computed twice,
but the computational overhead is limited, because the for-
ward pass is lighter than the backward pass. Note that gradient
checkpointing has been recentlymade available in PyTorch as

FIGURE 5. CNN training with gradient checkpoints. After the forward
pass (a), activations are stored only at checkpoint layers (red). The
backward pass (b)-(e) proceeds one group of layers at a time. Activations
at intermediate layers must be recomputed each time a group is
processed.

well as in other platforms. With this solution, we were able
to train our network end-to-end seamlessly, with a increase of
the training time that never exceeded 20%.

IV. EXPERIMENTAL ANALYSIS
Here, we design and perform numerical experiments to vali-
date the proposed approach. In the following subsections, we
first describe the training procedure, then present the results
of some preliminary experiments carried out to make key
design choices, and finally compare the proposed method
with both baselines and state-of-the-art references on several
challenging datasets widespread in the community.

A. TRAINING
In order to train our networks, we generated a suitable syn-
thetic dataset. Background images are taken from the Vision
dataset, proposed originally [38] for camera model identifica-
tion, which comprises 7565 images acquired by 35 different
devices with the native high-quality JPEG compression.
To generate manipulated images, we spliced on them objects
drawn from a set of 81 objects manually cropped from the
uncompressed images of the UCID dataset [39]. Details on
all datasets used in this work are reported in Tab.1.

We used all images from 25 devices of the Vision dataset
for training, and kept the others for validation, with an
approximate 70%-30% split, so as to avoid any possible bias.
For each pristine image, we created on the fly a manipulated
image by inserting in a random position one of the UCID
objects, selected at random, with random scaling and rotation.
Scaling is such that the size of spliced objects goes from
about 1% to about 10% of the image size. Eventually, both
pristine and manipulated images are flipped or rotated, and
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TABLE 1. Features of datasets used for training and testing.

FIGURE 6. Examples from the synthetic Vision/UCID training set. Spliced
objects are delimited by a red contour for the sake of clarity.

JPEG compressed with QF going from 75 to 100, obtaining
a significant augmentation. Fig.6 shows a few examples of
manipulated Vision/UCID images (without rotations).

In the training procedure we used the Adam optimizer
with minibatches of 10+10 images and a learning rate
of 0.001. Training took about three days with an Nvidia
Tesla P100 GPU.With the same hardware, testing takes about
half a second for a 3072 × 4096-pixel image, including
the noiseprint extraction, which decreases to 0.01 seconds
if the image tiles are already stored in the GPU memory.
The trained net is available online at https://github.com/
FrancescoMarra/E2E-ForgeryDetection.

B. PRELIMINARY EXPERIMENTS
The proposed framework aims at the detection of local-
ized manipulations, such as splicing, copy-move, and object
removal through content-aware inpainting. Towards this goal,
we instantiated the proposed framework by means of some
key design choices. In particular, we

• augmented input RGB bands with the corresponding
noiseprint bands;

• used Xception [40] as feature extractor;
• performed aggregation by including all types of pooling;
• used two fully connected layers, of size FC1=512 and
FC2=256, to perform the final classification.

We arrived at these choices as a result of a large number
of preliminary experiments, whose description would be dis-
persive and tedious. However, we can study experimentally
the impact of each individual choice on the performance of
the proposed architecture. To this end, we generated a new
dataset, with the same modalities used for the training set, but
completely separated from it. Background images were taken
from theDresden dataset, originally proposed [41] for camera
model identification, and manipulated images were created
by splicing on them 13 objects taken from the FAU dataset [5]
(see again Tab.1 for details on datasets). After performing the
splicing, images were JPEG compressed at high (QF≥95),
medium (90≥QF≥85), or low quality (80≥QF≥75), and
eventually resized at scale=0.75 or left unchanged. Spliced
objects can be classified as large, medium, or small, depend-
ing on the largest dimension of their bounding box (after
image resizing), set to 1024, 384, or 128, respectively. Note
that, to carry out the large number of tests required by this
analysis, we use a small training set, here, and results indicate
main trends but can be improved by a more accurate training.

To assess performance, here and in all subsequent experi-
ments, we classify the whole test set, compute false positive
rate (FPR) and true positive rate (TPR) as a function of
the detection threshold, going from 0 to 1, and obtain the
corresponding receiver operating characteristic (ROC) curve.
Eventually, we compute the area under the ROC curve (AUC)
as a synthetic measure of performance.

In Tab.2 we report the results of our ablation study. The
second row refers to the selected architecture, which uses
Xception, takes in input both RGB and noiseprint bands,
concatenates vectors given by all pooling types, and uses a
size-512 FC1 layer. In all other rows, we modified a single
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TABLE 2. Results of ablation studies on the Dresden/FAU dataset.

item of this reference architecture. A number of non-trivial
results appear. First of all, Xception is a much better feature
extractor than the two alternatives, Resnet101 [42] and Incep-
tionV4 [43]. We had already observed a similar edge in other
applications [30] although never so sharp. The likely reason
is Xception’s better use of resources, with a much smaller
number of parameters to optimize for a given network depth.
It also clearly emerges that using 4 types of pooling together
ensures a significant improvement w.r.t. using only one of
them. Using only max-pooling, as suggested by the nature
of the problem, is even worse than using average pooling,
probably because of its lower robustness to noise. As for the
size of the first FC layer, 512 appears to be the best choice,
although just slightly. The only controversial choice concerns
the input. In fact, using only the RGB bands or only the
noiseprint (NP) bands provides results very close to those of
RGB+NP, with a statistically insignificant gap. Therefore,
we refrain from sharp decisions on the input, and will keep
testing several options in real-world cases.

TABLE 3. Results on subsets from the Dresden/FAU dataset.

We now study the impact of compression, resizing, and
splicing size on the performance of the proposed method
by collecting results for specific relevant subsets. A quick
look at the numbers of Tab.3 makes clear that only minor
variations occur across such subsets, with all AUC’s in the
0.84–0.89 range. The largest performance gap is observed
between original-size and resized images. Also JPEG
compression affects somewhat the detection performance,
although no significant difference emerges between the
medium-QF and low-QF cases. The size of the spliced area,

instead, seems to have a minor impact and, contrary to expec-
tation, relatively small-size splicings are detected more easily
that large-size ones. Note that, on the average, the AUC on
specific subsets is larger than the global AUC, but this is a
consequence of the higher homogeneity of the tested images.

C. COMPARATIVE PERFORMANCE ANALYSIS
Having justified our design choices, we nowmove to compare
the performance of the proposed framework with those of
suitable baselines and state-of-the-art methods, using not only
our relatively simple Dresden/FAU synthetic dataset, but also
several realistic and challenging datasets widespread in the
forensic community.

1) REFERENCE METHODS
First of all, we consider three natural baselines, all relying
on Xception, given its good performance. The first one,
Xception-resize, consists simply in resizing the target image
to fit the CNN input, with straightforward training procedure.
Xception-patchwise, instead, works by analyzing the image
patch-by-patch, with no resizing and some spatial overlap-
ping, and finally fusing scores. Accordingly, the net is trained
to perform binary patch classification. Eventually, the out-
put probabilities are collected in a heatmap, from which a
suitable statistic is extracted (after some tests, we chose the
max statistic) and compared with a threshold to make the
image-level decision. Xception-pooling, instead, performs
patch-level feature extraction, image-level pooling, and clas-
sification exactly like the proposed method with RGB input.
However, CNN and classifier are trained independently of
one another. Therefore, it provides direct insight into the com-
petitive advantage of end-to-end over independent training.
Both Xception-patchwise and Xception-pooling need labeled
patches for training. Since the detectors look for anomalies,
we decided to label as forged only boundary patches, that is,
patches including a significant fraction of both background
and manipulated areas.

Just like our baselines, methods proposed in the litera-
ture can be grouped in two classes. A few ones work at
image level, like Xception-resize, while the majority, like
Xception-patchwise/pooling, work at patch-level, as they pur-
sue forgery localization, and are converted into image-level
detectors through some simple post-processing.

For the first category, we selected the SPAM+SVM
method [16], winner of the First IEEE Forensic Chal-
lenge and based on the SPAM steganalytic features [23],
the CNN+SVM method of [24], which extract features
through a constrained CNN, LSTM-EnDec [32], which uses
a long-short term memory recurrent neural network to detect
pristine/forged spatial transitions, andMantraNet [44], which
performs joint image-level detection and pixel-level local-
ization of forgeries, regarded as local image anomalies. For
the second category, we consider several forgery localiza-
tion methods converted into image-level detectors. In par-
ticular, we selected the best performing methods resulting
from the analysis carried out in [1], that is, CFA [10], which
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TABLE 4. Results of all versions of E2E and all references methods on the test datasets. No fine-tuning.

exploits features related to the color-filter array, DCT [11],
based on the analysis of double-quantized DCT coefficients,
NOI [9], looking for spatial inconsistencies in the noise
level, EXIF-SC [37], looking for anomalies in the image
leveraging the EXIF metadata during the training phase,
and Noiseprint [1], which extracts and analyzes an image
fingerprint where camera model-related artifacts are empha-
sized. All these methods compute a heatmap representing
the probability that a certain patch has been manipulated.
To make the image-level decision we extract several statistics
from such heatmaps: mean, maximum, and q-quantile, with
q ∈ {5, 10, . . . , 95}, selecting the best one in terms of AUC
performance separately for each method. Note that all these
latter methods are blind, that is, they require no training on
forged images or patches.

2) DATASETS
For performance assessment, besides our synthetic Dresden/
FAU dataset, we consider several more datasets, widely used
in the forensics community, with markedly different charac-
teristics. DSO-1 [45] features only splicings, with little or no
post-processing. In Korus [46], instead, both splicings and
copy-moves are present. Both datasets include only large-
size high-quality images, not even compressed in the case of
Korus. A very different, andmuchmore challenging, scenario
is given by the NC2017, MFC2018, and the very recent
MFC2019 datasets [47], developed by NIST1 in the con-
text of the Medifor initiative. Images of these datasets have
been manually doctored, often with multiple and possibly
overlapping manipulations of various types. In addition, they
have wildly different sizes and quality levels, and have been
subject to several anti-forensics measures to prevent easy
detection and localization of forgeries. For our tests, we kept

1https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2019-0

FIGURE 7. Examples from the NIST datasets.

all images with splicing, copy-move, inpainting, or computer-
generated material. The reader is referred to Tab.1 and to the
original papers for more details, while some example images
are shown in Fig.7.

3) NUMERICAL RESULTS
In Tab.4 we report the detection AUC for all reference
and proposed methods on all test datasets. Next to each
method, in column 2, we give the level of supervision it
requires, strong (pixel-wise ground truth), weak (only image
label), or – (none) for blind methods. In the upper part
of the table we group all reference methods, including our
three baselines, and in the lower part all versions of the
proposedmethod with end-to-end (E2E) training. Best results
are highlighted in red for reference methods and in blue
for our proposal. In Fig.8 we also show ROC curves for a
subset of methods (for readability) and datasets (for space)
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FIGURE 8. ROC curves on Dresden/FAU (top-left), NC2017, MFC2018, MFC2019 (bottom-right) datasets. For the sake of clarity, ROCs
are shown only for selected methods: the best proposed (E2E-Fusion), two baselines, and the best references (SPAM+SVM,
CNN+SVM, Noiseprint, EXIF-SC). Only for Dresden/FAU we also show other E2E versions. E2E-Fusion is always clearly, and almost
uniformly, the best. The resizing-based baseline always the worst.

characterized by very different features. On the Dresden/FAU
dataset, disjoint from the training Vision/UCID dataset, but
well-aligned with it, the proposed method (E2E-RGB+NP)
largely outperforms all references, with a gain of almost
10 percent points over the best one, the strongly supervised
Xception-pooling. On this dataset, comprising pretty large
images, ManTraNet does not run, as it requires memory
exceeding the GPU capacity. For the same reason, it can
process only about 20% of the images in the NIST datasets.
Therefore its performance should be taken with care. Guided
by the outcomes of preliminary experiments, together with
the ‘‘best’’ version, with RGB+NP input, we consider also
the versions with only RGB and only NP inputs. To our
surprise, E2E-RGB provides a further significant perfor-
mance improvement. Our explanation for this phenomenon
is the strong heterogeneity of the input: since RGB bands
and noiseprints have quite different statistics, the net may
have a hard time processing them jointly. To confirm such
hypothesis, we considered a further versions of the proposed
method, where the networks trained on RGB-only, NP-only,
and RGB+NP inputs are fused afterwards by a trivial average

of scores. This strategy proved successful, with the new
version, E2E-Fusion, providing almost perfect detection
(see also the top-left ROC in Fig.8), thus confirming our
conjecture.

Moving to the DSO-1 dataset, we observe again a sig-
nificant gain, more than 5 percent points, of the best E2E
method over the best reference. On this dataset, Noiseprint
provides an especially good performance, a phenomenon
already observed in [1], and likely related to all images being
JPEG compressed at high-quality. Accordingly, also E2E
works best with only noiseprints as input, with no fusion.
Images of the Korus dataset, instead, are uncompressed. This
removes a major source of forensic traces, which impacts all
methods, some of which exhibit a 0.5 AUC, equivalent to
coin tossing. CFA (relying on color filter array properties) and
Noiseprint, keep providing decent results, however they trail
all E2E versions, featuring AUC’s between 0.60 and 0.66.
It is worth underlining that the poor results observed in some
cases are also a consequence of our experimental setting.
In fact, all data-driven methods, including all versions of
E2E, are trained on the Vision/UCID dataset and then tested,
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with no fine-tuning, on other datasets completely unrelated
with it. In the literature, aligned training and test sets are often
considered, with a consequent boost in performance.

Turning to the more challenging NIST datasets, the gen-
eral behavior does not change, with E2E working generally
better than reference methods. The best reference method is
not always the same for all such datasets: CNN+SVM for
NC2017, ManTraNet for MFC2018 (only on small images),
NOI forMFC2019. On the contrary, E2E-Fusion is always the
best version of proposed method, and the best overall, with a
significant performance gain over the best reference, going
from 0.048 (NC2017) to 0.080 (MFC2018).

The final column shows the average over all datasets,
which confirms all above observations. We only underline
that the Xception-patchwise and Xception-pooling baselines
are among the best references, although they require strong
supervision, while Xception-resize, as expected, performs
quite poorly, not far from coin tossing. This is very likely
due to the loss of precious high-frequency details induced by
resizing. However, to gather more objective data on this point,
we carry out a further experiment by letting the scale of resiz-
ing vary on a wide range in a controlled way. Since Xception-
resize cannot work on large images without an appropriate
(strong) resizing, we consider instead the SPAM+SVM ref-
erence, which is a well-established method and can work
on images of any dimension. Tab.5 provides the results for
the DSO-1 dataset. It clearly appears that even a moderate
resizing (scale=0.9) causes a sever performance loss, with
AUC going from 0.768 to 0.669, and stronger resizing lead to
decisions that are basically random. It is worth emphasizing
that even a three-fold reductionmay not be enough to perform
image-level analysis through standard CNNs.

TABLE 5. Results of SPAM+SVC on DSO-1 vs. resizing scale.

Going back to the results of Tab.4, a general observation is
that the performance of E2E is consistently good in all cases
(with a small dip on Korus), including the NIST datasets,
despite their great variety and the abundance of counter-
forensic measures. This is all the more remarkable, consider-
ing that the network was trained on a dataset, Vision/UCID,
lacking such a diversity. Therefore, we carried out a further
experiment on NC2017 and MFC2018, in which the E2E
methods are fine-tuned on their respective development sets,
provided by NIST together with the test sets. Detailed results
in terms of ROC curves are reported in Fig.9. It is clear that
fine-tuning on the development set, certainly more aligned
with the test set than Vision/UCID, grants further perfor-
mance gains. In both cases, all curves show a large improve-
ment with fine-tuning, with the E2E-Fusion AUC growing
from 0.846 to 0.932 on NC2017, and from 0.838 to 0.902
on MFC2018. The larger improvement on NC2017 can be
attributed to better development-test alignment and lighter

FIGURE 9. ROC curves of all E2E variants on NC2017 (top) and
MFC2018 (bottom) without (dashed lines) and with (solid) fine-tuning on
the NIST development sets. Fine-tuning provides a significant gain in all
cases.

TABLE 6. Analytic results on NC2017 per type of manipulation.

TABLE 7. Analytic results on MFC2018 per type of manipulation.

counter-forensic actions. In any case, results are extremely
satisfactory for such challenging datasets.

Taking advantage of the auxiliary information provided
with these datasets, in Tab.6 and Tab.7 we provide also
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FIGURE 10. Example images (top) and activation maps (bottom) from the Dresden/FAU dataset. Pristine images are on the odd columns, forged
images (with hand-made splicings for higher visibility) on the even columns. Active patches are superimposed in cyan to the gray-scale/red-scale
version of the images.

analytic results for each type of forgery. Together with all
versions of E2E (no fine-tuning), we also include some
strong references, CNN+SVM and NoisePrint. Even though
E2E is trained only on splicing, it works well also on the
other manipulations and, with the exception of inpainting on
NC2017, much better than the reference methods. Results are
also rather stable across the two datasets, except for a sharp
performance drop on computer-generated fakes going from
NC2017 to MFC2018. This is probably the effect of the fast
pace of progress in the quality of such manipulations.

D. MODEL INTERPRETABILITY
The E2E framework was conceived and trained with the
goal of making global decisions. During training, with no
information on forgery location, like ground truth masks, the
model learns automatically to single out the image details that
most contribute to decide on the nature of the whole image,
forged or pristine. In the following subsections we provide
some insight into how the system exploits and combines
local information coming from all over the image, giving an
interpretation of the global decision making process.

1) ACTIVATION MAPS
First of all, we try to investigate the impact of each patch
of the image on the final decision. To this end, we consider
a simplified framework in which only the max pooling is
used. Given this hard selection rule, we can easily compute
a spatial activation map which counts how many features
each patch contributes to the overall feature vector. Such a
map, however, would be extremely coarse, due the low reso-
lution of patch-wise analysis. Therefore, we combine it with
the a high-resolution map, the Grad-CAM (guided gradient
weighted class activation map) obtained by backpropagating
the loss gradient to the full-resolution input [48]. In Fig.10
we show some results for images of the Dresden/FAU dataset
(hand-made to look more realistic). For this synthetic dataset,

we have the pristine version of each manipulated image,
so we can analyze the network behavior in both circum-
stances. In all cases, the network focuses on high-activity
regions, often corresponding to object boundaries. When
there is no manipulation, the salient regions are scattered all
over the image. On the contrary, when a splicing takes place,
they tend to concentrate on the boundaries of the spliced
object, proving that the system has learned to look at these
patches tomake its decisions. Therefore, when a forged image
is detected, this activation provides hints about the possible
site of the manipulation.

2) ROI-BASED ANALYSIS
Moving towards forgery localization, we can obtain some
interesting results by leveraging the flexibility of the pro-
posed framework. Indeed, since the system can analyze
images of any size, it can also analyze regions of interest
(ROI) selected by the user based on the previous activation
map or any other criterion. If the ROI contains manipulated
material, the system will likely provide a large probability
of manipulation (score, from now on). Therefore, the system
can be used in supervised modality to test suspicious objects.
Also, it can be recast to perform automatic box-like localiza-
tion. In fact, once features have been computed and stored
for all patches, the aggregation and classification phases are
extremely simple, with light-speed processing. Therefore,
one can easily test a large number of boxes and select auto-
matically as ROI those with the largest scores, obtaining a
rough but effective form of localization.

Fig.11 shows some examples taken from the MFC2018
dataset. Together with the original images (top) and acti-
vations maps (middle) it also shows (bottom) the scores
obtained over the whole image (white number in the top-
left corner) and on selected boxes (colored numbers). The
green boxes have been selected manually around possible
subjects of interest, while the magenta boxes are selected
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FIGURE 11. Manipulated images from the NIST datasets (top) corresponding activation maps (middle) and ROI-based localization results (bottom)
with hand-made (green) and automatic (magenta) box-shaped ROIs. Detection scores are shown on the top-left of each box.

by our automatic procedure around the local maxima of
the score. In the first image, the man on the right has been
spliced on the host background. Here, the activation map
provides strong hints on the possiblemanipulation, confirmed
by a large image-level score (0.935). However, an even larger
score (1.000) is obtained when a ROI is correctly placed
around the splicing. The automatic procedure also selects
a ROI roughly covering the splicing, with unitary score.
Another ROI is selected automatically in a pristine area in
correspondence of a local maximum, but is has a rather low
score (0.428). In the second image, a further splicing has
been added, the woman in the center. Neither the activation
map nor the automatic ROI selection procedure highlight this
new subject. So, we selected a ROI manually around this
splicing, obtaining a rather low score. Exploiting the side
information provided with the NIST datasets, we investigated
on this splicing, to discover that the inserted object had been
acquired with the same camera model as the host image. This
fact reduces the discriminating power of the noiseprint input,
justifying in hindsight such result. In the third image, the only
manipulation is a tiny inpainted region. Here, a supervised
selection makes no sense, since the manipulated region does
not correspond to any semantic object. However, the manip-
ulation is nicely localized through the automatic procedure,
with unitary score, unlike other candidate ROIs characterized
by low scores. The last image shows an opposite case, with
many large, semantically relevant, objects spliced on the host
image. To avoid cluttering the image, we now show only
the supervised ROIs and the corresponding scores, which are
very large in all cases.

FIGURE 12. Examples of missed detection from the NIST datasets.

To complete this visual inspection of results, it is fair to
show, in Fig.12, some counter-examples where the proposed
framework fails to detect the manipulation. Reasons for fail-
ure are not always obvious. In these cases, they may be
related to the absence of texture in the spliced object (right)
or the strongly textured host image (right) which may hide
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the discriminating information. Note that in the image on
the right, a well-placed ROI would allow detection, but there
is no semantic hint to select it.

V. CONCLUSION
We proposed a new CNN-based framework for image
forgery detection. Thanks to suitable architectural solutions,
the framework can be trained end-to-end, based only on weak
(image-level) supervision, exploiting information gathered at
full-resolution from the whole image. Therefore, all com-
ponents of the framework, from feature extractor to classi-
fier, are optimized jointly. We proved the effectiveness of
this solution by extensive performance analysis on forensic
datasets widespread in the community. A large performance
gain is observed in all cases with respect to all reference
methods. In addition, preliminary analysis show that the
framework can also provide clues on forgery localization.

Despite the very promising results, there is still much room
for improvement. In particular, better forms of pooling should
be considered to preserve long-range spatial relationships in
the aggregation phase; image and object semantics should
be taken into account to complement the low-level infor-
mation analyzed by the current framework; and a dedicated
forgery localization tool should be designed based on the
same approach. Work is under way along these paths.
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