
Received July 2, 2020, accepted July 9, 2020, date of publication July 16, 2020, date of current version July 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3009625

Optimal k Cut-Sets in Attack/Defense Strategies
on Networks
MEHDI MRAD 1, UMAR S. SURYAHATMAJA 1, (Graduate Student Member, IEEE),
ASMA BEN YAGHLANE2, AND M. NACEUR AZAIEZ2
1Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
2Business Analytics and Decision Making Laboratory (BADEM), Tunis Business School, Université de Tunis, Tunis 2059, Tunisia

Corresponding authors: Mehdi Mrad (mmrad@ksu.edu.sa) and Umar S. Suryahatmaja (usuryahatmaja@ksu.edu.sa)

This work was supported by the Deanship of Scientific Research at King Saud University through the Research Group Project under
Grant RG-1438-079.

ABSTRACT The paper investigates the most critical k cut-sets to target in the context of attacks on networks.
The targeted network fails if the attack successfully disables a full cut-set. The attack process is dynamic and
targets one link at a time. We assume perfect information, so that the attacker picks the next link to target
after identifying the outcome of the attack on the previous one. The attack may continue to reach up to k cut-
sets. The problem is to identify which cut-sets to target (referred to as the k-critical cut-sets of the network)
that maximize the probability of a successful attack. We distinguish both cases of disjoint and non-disjoint
cut-sets. We develop an algorithm for each case with illustrations. We explore the large scale of networks
and offer guidelines on the corresponding defensive strategies.

INDEX TERMS Cut-set, defense, interdiction networks, multiple-attacks, path-set.

I. INTRODUCTION
The increased frequency of intelligent threats has given
rise to a number of new concepts to approach the problem
including survivability of systems under attack, adversarial
risk analysis, interdiction network and adversarial network.
Many of the developed models arise in a game-theoretic
framework to investigate the interaction between attackers
and defenders. In such situations, the defender seeks to
strengthen the targeted system while the attacker attempts to
use the system’s weaknesses in order to disable it.

Networks represent attractive targets for intentional
attacks. Attacking a network may occur in various ways
such as disturbing the flow, decreasing the network capacity,
or totally disconnecting nodes/links. Examples of attacks on
networks may include cyber-attacks on computer systems,
missile attacks on water distribution networks, and blocking
roads in front of trucks in a transportation context. Attacks on
networkmodels usually account for an attacker (an individual
or an organization) and a defender (often the body in charge
of protecting and preserving the functionality of the network).
In this paper, we will consider a failure of a node/link if it is
totally disabled and hence unable to receive/send flow.
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A. MOTIVATION
Consider for instance that a government, facing some
instability, attempts to block rebels based initially at a
given city from backing their allies at the capital. Hence,
the government’s forces seek to control the traffic in the
main roads preventing the rebels from advancing toward their
destination. The arrival of the rebels to the capital may be
viewed as sending a flow from the source to the sink of
the network. Given that it might be difficult to distinguish
between regular citizens and rebels, strengthening the control
system over various cut-sets of the roads of interests may give
higher reliability to the success of the government’s mission.

Another interesting application would be to extend the
classical minimum bisection problem by partitioning the
network of interest into several rather than two disconnected
sub-networks as previously treated by BenYaghlane et al. [1].
In fact, they consider an integer program that turns out to be
reasonably efficient even for large networks. The challenge
is whether it is still possible to suggest an efficient tool
when the network is to be partitioned into a larger number
of sub-networks.

A third application; which may arise in a business setting,
is as follows. Suppose that a business firm (the attacker
in our context) would like to sabotage some alliance (the
attack process in this situation) between a local competitor
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and a famous international company. Suppose also that the
attacker has received some information about the arrival of
a delegation of the foreign company to sign the necessary
papers. The attack strategy would be to prevent this delega-
tion from traveling to the local competitor’s head-quarter. The
idea is to make a large number of fake reservations through
selected connecting flights in a way to make it impossible
for the delegation to find enough seats on any path of
correspondences linking the source and the destination cities.
This is equivalent to attacking one full cut-set. In anticipation
of overbooking as practiced by many airline companies,
the attacker may opt for disabling several cut-sets to increase
the chance of preventing the delegation from arriving on time.

B. PAPER ORGANIZATION
The remainder of the paper is organized as follows. Section II
reviews the literature. Section III provides the problem
statement. Section IV suggests a solution methodology with
illustrations. Section V explores the large scale of net-
works through an optimization-simulation approach. Finally,
section VI serves for conclusions.

II. LITERATURE REVIEW
In the context of protecting against intelligent threats, Ben
Yaghlane and Azaiez [2] develop the concept of system
survivability upon attack as opposed to the classical concept
of system reliability. Moreover, Yaghlane et al. [1] adapt
system survivability to networks and distinguish two cases
of perfect and absence of information. In the latter case, they
develop two distinct definitions of network survivability; one
related to the attacker, and the other to the defender. They
investigate the relationship between these two definitions
as well as their position with respect to network reliability.
Gharbi et al. [3] consider the attacker problem to fully
disable a network. They identify the optimal cut-set to target.
Minimizing the expected attack cost represents the optimality
criterion for this model. The authors approach the problem
through a chance-constrained integer program where they
consider a confidence level for a successful attack. They
opt for a branch-and-bound spirit using various operations
research tools to generate bounds. Yaghlane et al. [4] identify
an exact method for the problem treated by Gharbi et al. [3].

Cox [5] discusses the resilience of telecommunication
networks subjected to intentional threats. In this context,
the failure of a link occurs when the received flow exceeds the
link capacity. Cox [5] elaborates on various solution methods
relying basically on increasing capacities of links and
rerouting of flow upon failure of a particular link. Bellmore
and Ratliff [6] and Frank et al. [7] investigate similar
problems. Away from telecommunication networks, a variety
of other network problems are investigated. Ausseil et al. [8]
consider some military deception strategies that include
falsifying targets and hiding routes on the network to deceive
the attacker. Alderson, et al. [9] assess the node interdiction
impact on the global maritime transportation. They consider

the node as the seaports and maritime chokepoints where a
disruption will lead to increase the re-route cost.

Recently, the literature on capacitated survivable network
design problems has considerably expanded. In particular,
various models for simultaneously attacking k links are
considered. Attacks consist on disturbing flow circulation.
Defensive strategies call for increasing the capacity of some
selected links at the lowest cost so that any flow at a failing
link can be rerouted. The problem is strongly NP-Hard
as shown by Tomatore et al. [10]. Brightwell et al. [11]
apply relaxations to derive polynomial time solutions through
successive shortest path problems. Kanturska et al. [12]
discuss a transportation network model where multi-path
routing and link defense are used for reliability improvement.

In interdiction network literature, various models are
investigated. Wei et al. [13] propose algorithms to optimize
the consumption of attacker’s resources on the shortest path
interdiction model by limiting the network capacities. They
approach the problem using various tools including Benders
decomposition, Lagrange duality, set-covering, and Lagrange
approximation algorithms. Magliocca et al. [14] consider
counter-drug interdiction to disrupt the cocaine distribution.
Zhang et al. [15] study the stochastic shortest-path interdic-
tion problem using probabilistic detection likelihood to solve
Ports-of-Entry problem; such as human trafficking, illegal
drug distribution, and terrorism. Fang et al. [16] develop
a framework for the electrical power grid interdiction that
balances the difficulties in predicting the hazard with the
over conservatism in the attacker-defender models. Smith and
Song [17] provide a recent review on interdiction networks.
It focuses on the mathematical formulation and solution
approaches using the dual model and the row generation
methods for the network interdiction problem. The paper also
summarizes the basic assumptions of the problem and the
recently developed concepts.

One of the important classes of interdiction network
deals with the k-Most Vital Arcs Problem. The focus is to
identify the most critical nodes/arcs susceptible of making
the maximum disturbance on the network performance once
disabled. In this context, Walteros et al. [18] discuss a
framework to detect the set of critical nodes that maximize
the possibility of disconnecting the network. Karakose
and McGarvey [19] propose a path-based formulation and
multi-commodity flow-based formulations to identify the
optimal k-nodes to be attacked on a directed flow network
so that to maximize the network disruption.

In a similar spirit, the problem of identifying the most
critical network hubs is also investigated. Yahyaei et al. [20]
design a single allocation hub network reliable to massive
disruption using bi-objective quadratic model. Lei [21]
determines the critical air transportation hub facilities to
be protected to reduce the transit time using integer linear
programming formulation. Ramamoorthy et al. [22] identify
n critical hubs from a set of candidate hubs to reduce the
routing cost using Bender decomposition. Quadros et al. [23]
propose a branch and cut technique to fortify n hubs
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recognizing that m hubs will be attacked in a way to avoid
an increase in the total distribution cost.

Many of the interdiction network models are approached
using game theory. Ben Yaghlane et al. [1] investigate Nash
equilibrium in various setting of the network survivability
problem considering both zero and nonzero sum games.
Xiao et al. [24] consider cumulative prospect theory (CPT)
and derive the Nash equilibria in order to find out the attacker
and defender’s interaction when each of their action is made
subjectively.

Bricha and Nourelfath [25] suggest a game-theoretical
model of defense/attack strategies in networks in the
context of incapacitated fixed-charge location prob-
lem. The model considers a non-cooperative two-period
game. Casorran et al. [26] consider multi attackers and
one defender in general and security Stackelberg games.
Li et al. [27] studies Stackelberg games with two attackers
and one defender that fight over the hub nodes by considering
cost-sensitive parameters.

In the same spirit of identifying the k-critical node problem
and the n-critical hub problem, the current paper attempts to
identify the k-critical cut-sets in a network that an attacker
may target. The attacker objective would be to increase the
chance of a successful attack that may completely prevent
a flow from reaching its destination. The problem is highly
challenging and the focus on this paper will be limited to
the case of perfect information related to the outcome of
the attack on a single link. That is, the attacker strategy is
dynamic and accounts for the results of previous trials when
identifying the next link to target.

III. THE PROBLEM
We will start by introducing the general context of the
problem. We will elaborate on the min-cut problem treated
in Yaghlane et al. [1]. Then, we will discuss some drawbacks
of the model consisting of targeting a single cut-set. Next,
we will introduce the k cut problem.

A. THE PROBLEM SITUATION
We consider a network subjected to the threat of attacks.
It is considered as operating if it succeeds to send some
flow from its sources to its destinations. We assume one
attacker targeting the network and one defender attempting
to protect it. An attack is considered as successful if it allows
disabling the network by preventing any flow from reaching
the destinations from its various sources. This occurs if a
full cut-set is disabled. In this context, Yaghlane et al. [1]
determine the optimal cut-set to attack. Optimality is consid-
ered with respect to maximizing the probability of disabling
the network; or equivalently, to minimizing the network
survivability. Without loss of generality, Yaghlane et al. [1]
show that the network can be reduced to a one with a single
source and a single destination.

We display below the linear programming (LP) formu-
lation suggested by Yaghlane et al. [1] to generate the

min cut-set:

min
∑

(i,j)∈E

− ln(1− pij)yij (1)

s.t. ∀(i, j) ∈ E : xj ≤ xi + yij (2)

xn ≥ x1 + 1 (3)

∀i ∈ V : xi ≥ 0 (4)

∀(i, j) ∈ E : yij ≥ 0 (5)

In the above formulation, V is the set of nodes, E is the set
of arcs between nodes i and j, and pij is the probability of each
arc(i, j) to survive an attack. The nodes start from the source
which is node 1 and sink at a destination which is node n.
A cut-set can be defined as a set of arcs that is partitioning
the set of nodes V into two disjoint subsets named S1 and S2,
where the source belongs to S1 and the destination belongs
to S2. We let xi be the binary variable that takes the value 1 if
i belongs to S2 and 0 otherwise. Also, we let yij be 1 if arc(i, j)
is selected and zero else.

At the same time, Yaghlane et al. [1] solve the defender
problem by determining the optimal breakthrough paths (i.e.,
those having the highest probability; referred to as network
survivability) to operate.

One of the limitations of the models by Yaghlane et al. [1]
consists on considering a single cut-set to target by the
attacker. In fact, contenting by attacking one cut-set does not
seem to be favorable to the attacker given that the probability
of a successful attack is still low in general. Indeed, disabling
a full cut-set is equivalent to disconnecting all corresponding
links. It follows that the probability of success is obtained
as a product of probabilities in case of independent failure
probabilities of links in the context of distinct attacks.
Therefore, we assume, in this paper, that the attacker may
target several cut-sets.We are interested in determiningwhich
critical k cut-sets to attack. Here, k might be dictated by a
budget or time constraint.

B. THE PROBLEM STATEMENT
We consider an attacker trying to disable a network by
disconnecting one cut-set among k cut-sets to be targeted
over time while observing the result of an attack on a
given link of a selected cut-set. This is a situation of
perfect information on the outcome of the previous attacks.
This may arise in situations where it is easy to detect the
result of an attack such as destroying a road or a pipeline
through a missile attack or checking if the delegation of the
motivation above has obtained boarding passes in a given
connection flight. It should be clear however that this need
not be true in other situations where the outcomes of an
attack may not be observable or may take some time to be
detected. In the context of our problem of perfect information,
the attack process is dynamic and attack decisions are taken
sequentially.

We assume one attack per link on each considered cut-set.
The choice of the next link/cut-set to be tried accounts for
the previous observed results. Each link has some survival
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probability upon attack. The attack ends in one of three
possible situations, whichever occurs first:

1) The network is disabled and therefore the attack
succeeds

2) The network is guaranteed to send flow to the
destination; in which case the attack fails

3) All selected k cut-sets are unsuccessfully tried; inwhich
case the attack fails

The attacker objective is to determine the best attack
strategy that maximizes the chance of disabling the network.
That is, the attacker will gradually select and the cut-sets
to target (up to k cut-sets) and the order in which cut-sets
and links within a cut-set will be tried. Note that disabling
a cut-set is equivalent to disabling a parallel system (Azaiez
and Bier [28]). Ben Yaghlane and Azaiez [2] identify the
sequence in which a parallel system is to be attacked
in order to minimize the attacker cost. Essentially, when
attacks consume comparable resources, the result is reduced
to starting by targeting the most reliable component and
continuing in this fashion until one component resists to
an attack or all components are disabled. In this paper,
we will use the same strategy once a cut-set is identified for
attack.

IV. SOLUTION METHODOLOGY
We will distinguish two cases. The first one deals with the
situation where the eligible cut-sets to select are disjoint.
The second one is the general case of any cut-sets to
target. At a first glance, it looks awkward to opt for an
attack on disjoint cut-sets. In fact, more resources are
likely to be consumed. In addition, potentially failing links
in previously attacked cut-sets might be unexploited in
selecting the next cut-sets to target. However, it might be
justified to opt for disjoint cut-sets in some situations.
For instance, assume that attacks on different cut-sets
require different tools, trainings, and hence teams. Then,
it would be natural that each team takes care of a separate
cut-set. Other justifications may include security reasons
(such as not simultaneously putting different teams under
the risk of retaliations), or space/logistics reasons and
so on.

In order to show the effectiveness of our proposedmethods,
we will compare each algorithm with a naive approach. The
naive approach will select randomly the cut-set to be attacked
and a successful attack will be determined only on the current
cut-set. The details of the naive approach will be shown in the
next sub section.

A. CASE OF DISJOINT CUT-SETS
We start by the simple case where all cut-sets to be targeted

must be disjoint. The subset of all disjoint cut-sets can
clearly be represented through a series-parallel system. In this
situation, when a cut-set is unsuccessfully tried, all corre-
sponding links will be entirely ignored from consideration
when identifying the next cut-set to target. However, disabled
links within an attacked cut-set will be kept in memory to

Algorithm 1 Naive Approach for Disjoint Cut-Set
Let G(V ,E) is the graph where V is the set of nodes and E
is the set of links
set C = ∅ (the generated cut-set)
succeed = false;
n = a number of cut-sets to be targeted ({3, 5, 10})
i = 0;
while succeed = false and i < n do
generate randomly new survival probabilities for the arcs
that have not been attacked
set C = solve the min-cut problem on graph G(V ,E) to
get a cut-set based on the randomly generated survival
probabilities
if C = ∅ then
succeed = false;
break;

end if
for all link a in cut-set C do

Attack the link a;
if attack failed then
succeed = false;
break;

else
succeed = true;

end if
end for
Update the probability of the arcs in the cut-set C to
1.0 in order not to be considered in the next cut-set
i++;

end while
if succeed = true then
Attack succeed;

else
Attack failed;

end if

identify when the entire network fails. This is different from
the case where the cut-sets are non-disjoint and failing links
should be kept in memory and for identification of network
functionality and for potential consideration with other cut-
sets. Moreover, untried links in the non-disjoint case can be
considered for other cut-sets to target.

Algorithms 1 and 2 will identify the naive and optimal
attack strategy, respectively, targeting up to k cut-sets in
an attempt to fully partition the network under the disjoint
cut-set framework. Given that we approach the problem in the
dynamic case, we will sequentially generate a cut-set. This is
obtained optimally using the min-cut approach as identified
in Yaghlane et al. [1].

Note that the dynamic case is supposed to use the
information on the output of previous attacks when targeting
the next cut-set. However, when cut-sets are disjoint, there is
no opportunity to use failed links of previous survived cut-sets
to determine a new cut-set susceptible of having low survival
probability.
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Algorithm 2 Disjoint Cut-Set
Let G(V ,E) is the graph where V is the set of nodes and E
is the set of links
Stop = false; succeed = false; empty = true; l = 1
set W = ∅ (set of disabled links)
set A = ∅ (current cut-set)
while stop = false do
set A = generate the new optimal cut from the graph
G(V ,E) using the min-cut problem as identified in
Yaghlane et al. [1]
if A = ∅ then

stop = true; succeed = false;
else
sort A using the non-descending rule of survival
probability Pa of its links
for all link a in A based on the above ordering do
attack the link;
if attack fails then
break;

else
updateW with the current link
if link a is the last link in A then

stop = true; succeed = false;
else
if empty = false then

ifW contains a full cut-set then
stop = true; succeed = true;
break;

end if
end if

end if
end if

end for
if W = ∅ then

empty = false;
end if

end if
if stop = false then

for all link a in A do
Pa = 1.0;

end for
if l < k then
l = l + 1;

else
stop = true; succeed = false;

end if
end if
clear A;

end while

1) EXAMPLE OF DISJOINT CUT-SETS
Consider the network depicted in Figure 1. It has seven
nodes and nine arcs with their survival probabilities. A cut-set
will be generated and attacked sequentially by iterating the
procedure as explained in Algorithm 2. As soon as a cut-set

FIGURE 1. Initial network.

is fully disabled, the network fails to supply the destination
node with flow. Based on Yaghlane et al. [1], the attack will
start by the weakest cut-set through the min-cut problem.

FIGURE 2. Iteration 1 of first scenario.

The yellow dot shows the identified cut-set {2 − 5, 3 −
6, 4 − 6} and the numbered arrow shows the sequence of
attacks so that the attack starts with the highest survival
probabilities (evens are broken randomly). The cross sign
means that the attack is successful on the corresponding link.
From the scenario exhibited in Figure 2, the network is fully
disabled at the first attempt. As a result, the attacker stops and
the attack is considered as successful.

In a second scenario of the same example, the attack on the
first identified cut-set fails (Figure 3) upon the failure on link
{2− 5} as shown by the green mark. Thus, a new cut-set is to
be determined using the min-cut problem after discarding the
tried one (by artificially changing the survival probabilities of
its various links to 1.0 as specified in Figure 4-6 below).
This new cut-set at the new iteration is {0 − 1, 0 − 2}

(Figure 4). The attempt on link {0 − 1} is assumed to
fail. We update the survival probabilities of this cut-set and
generate a new cut-set (Figure 5).

The third iteration generates the cut-set {1− 3, 1− 4, 2−
4, 5 − 6}. Assume that the attacks on links {1 − 3}, {2 − 4},
and {1 − 4} are successful. If the attack on link {5 − 6}
also succeeds, then the full cut-set is disconnected and the
attack is successful (Figure 5). Stopping criterion 1 applies.
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FIGURE 3. Iteration 1 of second scenario.

FIGURE 4. Iteration 2 of second scenario.

FIGURE 5. Iteration 3 of second scenario (successful attack).

However, suppose that link {5 − 6} resists to the attack.
It follows that the overall attack fails (Figure 6) because a full
path-set {0− 2− 5− 6} will not be attacked any further and
will be able to send flow from the source to the destination.
Hence, stopping criterion 2 occurs.

For this problem, assuming that k = 3, then the most
critical cut-sets to target are identified to be respectively
{2−5, 3−6, 4−6}, {0−1, 0−2}, and {1−3, 1−4, 2−4, 5−6}.

B. CASE OF NON-DISJOINT CUT-SETS
We consider now the general case of networks where targeted
cut-sets need not be disjoint. That is, the same link may
belong to several cut-sets. Hence, a non-attacked link of

FIGURE 6. Alternative iteration 3 of second scenario (failed attack).

a targeted cut-set can be considered in another cut-set.
Moreover, a link that belongs to more than one cut-set,
once failing, will give rise to an update (based on the state
of functionality) of these cut-sets. We display below an
appropriate algorithm to identify the naive (Algorithm 3) and
the optimal (Algorithm 4) attack policy in this case.

The difference between Algorithms 1 and 3 (the naive
approaches) is in the update of the artificial survival
probability (p′) in order to generate a random cut-set.
However, the difference between Algorithms 2 and 4 resides
in the update of the survival probability (p) of an arc in the
targeted cut-set. In the Algorithms 1 and 2, p′ and p are
updated to 1.0 for all arcs in the current generated cut-set.
This procedure ensures that all arcs in the cut-set whether
attacked or not will not be considered in the next iterations to
warrant that all considered cut-sets will be disjoint. However,
in the Algorithms 3 and 4, only the attacked arc will have
its survival probability (p′ and p, respectively) updated either
to 1.0 or to 0.0 based on whether the arc has survived or
not (respectively). In fact, when the arc survives, it will
not be attempted any further when considering other cut-
sets. If failed, any other cut-set containing this arc might be
tempting as it has already a smaller number of attacks to
carry out. Not tried arcs within a particular cut-set can still
be targeted within other cut-sets (without any change in their
survival probabilities) as we treat here the non-disjoint case.

1) EXAMPLE OF NON-DISJOINT CUT-SETS
Consider the network example of Figure 1. The first iteration
is shown in Figure 7. The yellow dots and arrows with
numbers represent the cut-set {2 − 5, 3 − 6, 4 − 6} and
the sequence of the attacks to be carried out. In the current
iteration, the first attack on arc {2 − 5} succeeds but not on
arc {3 − 6}. The attack fails on that cut-set. The survival
probabilities will be updated for arcs {2 − 5} and {3 − 6}
to take the values of 0.0 and 1.0, respectively (Figure 8).
Figure 8 shows the second iteration with the generated

cut-set {1−3, 2−5, 4−6}. Here, the current cut-set intersects
the previous one at arcs {2 − 5, 4 − 6} (as we treat the
non-disjoint case). The darker color represents the previous
iteration. While arc {2 − 5} has already been disconnected
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Algorithm 3 Naive Approach for Non-Disjoint Cut-Set
Let G(V ,E) is the graph where V is the set of nodes and E
is the set of links
set C = ∅ (the generated cut-set)
succeed = false
n = a number of cut-sets to be targeted ({3, 5, 10})
i = 0
while succeed = false and i < n do
generate randomly new survival probabilities for the arcs
except those who resisted in the previous attacks
set C = solve the min-cut problem on graph G(V ,E)
to get a cut-set based on the new randomly generated
survival probabilities.
if C = ∅ then
succeed = false;
break;

end if
for all link a in cut-set C do

Attack the link a;
if attack failed then

succeed = false;
pa = 1.0;
break;

else
succeed = true;
pa = 0.0;

end if
end for
i++;

end while
if succeed = true then
Attack succeed;

else
Attack failed;

end if

at the previous iteration (and therefore will be ignored in the
current attack), it is an integral link in the identified cut-set.
In the current iteration, suppose that the first attempt targets
arc {1− 3} and succeeds. Suppose also that the second attack
on arc {4− 6} fails. Thus, the attack on the identified cut-set
stops and a new cut-set will be generated at the next iteration.

The next generated cut-set is {1 − 3, 1 − 4, 2 − 4, 2 − 5}
as shown in Figure 9. This cut-set intersects with the second
iteration at arcs {1 − 3, 2 − 5}. Suppose that the attack at
arc {2 − 4} succeeds but not at arc {1 − 4}. Consequently,
the current iteration stops and a fourth iteration (Figure 10)
is launched generating cut-set {0 − 1, 1 − 3, 2 − 4, 2 − 5}.
The required attack on this cut-set is only at arc {0−1}. If the
corresponding attack is successful, then the overall attack on
the network will be successful; as a full cut-set is disabled.
However, if the attack on {0 − 1} fails (Figure 11), then the
overall attack on the network fails because a full path-set
from node 0 to 6 is identified to resist; namely path-set
{0− 1− 4− 6}.

Algorithm 4 Non-Disjoint Cut-Set
Let G(V ,E) is the graph where V is the set of nodes and E
is the set of links
Stop = false; succeed = false; empty = true; l = 1
set W = ∅ (set of disabled links)
set A = ∅ (current cut-set)
while stop = false do
set A = generate the new optimal cut from the graph
G(V ,E) using the min-cut problem as identified in
Yaghlane et al. [1]
if A = ∅ then

stop = true; succeed = false;
else

sort A using the non-descending rule of survival
probability Pa of its links
for all link a in A based on the above ordering do

attack the link;
if attack fails then
Pa = 1.0;
break;

else
updateW with the current link
Pa = 0.0;
if link a is the last link in A then

stop = true; succeed = false;
else

if empty = false then
ifW contains a full cut-set then
stop = true; succeed = true;
break;

end if
end if

end if
end if

end for
if W = ∅ then
empty = false;

end if
end if
if stop = false then
if l < k then
l = l + 1;

else
stop = true; succeed = false;

end if
end if
clear A;

end while

Assuming k ≥ 3, then the most critical cut-sets identified
in this example are {2−5, 3−6, 4−6}, {1−3, 1−4, 2−4, 2−
5}, {0−1, 1−3, 2−4, 2−5}, respectively. Next, we attempt
to identify the k-critical cut-sets of the example investigated
above by respectively running Algorithm 2 and 4. Recall that
the attack strategy accounts for a sequential decision problem
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FIGURE 7. Iteration 1 of the non-disjoint case example.

FIGURE 8. Iteration 2 of the non-disjoint case example.

FIGURE 9. Iteration 3 of the non-disjoint case example.

based on the random result of a single attack on a given
link. Therefore, the algorithm uses a simulation-optimization
model. Since the result of an attack on a given link follows
a Bernoulli distribution (Ben Yaghlane and Azaiez [2]),
we generate probability values from a Uniform distribution
over [0, 1] in the simulation process.

We conduct 100 runs of both the disjoint and the
non-disjoint cases of the example above. Figure 12 numbers
the links of the network as specified below. Table 1 displays

FIGURE 10. Iteration 4 of the non-disjoint case example (successful
attack).

FIGURE 11. Alternative iteration 4 of the non-disjoint case example
(failed attack).

FIGURE 12. Numbered links of the network.

the results related to the number of times each cut-set has been
targeted over the 100 runs of the simulation.

The simulation results state that the three most criti-
cal disjoint cut-sets are respectively {6, 7, 8}, {1, 2}, and
{3, 4, 5, 9}. Note that out-of-100 simulated attacks on the
network, cut-set {6, 7, 8} has always been targeted first
(i.e., 100 times). This is only natural as it is the solution of
the min-cut problem. In 95 cases, the attack on {6, 7, 8} fails
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TABLE 1. Number of times each cut-set is targeted (disjoint case).

TABLE 2. Number of times each cut-set is targeted and related
probabilities (non-disjoint case).

and therefore cut-set {1, 2} is targeted next. This cut-set is
the second most vulnerable cut-set in the disjoint case. The
attack succeeds twice and fails 93 times; in which case the
next most vulnerable disjoint cut-set; namely, {3, 4, 5, 9} is
targeted. Note that regardless of the outcome of the attack
on this cut-set, there are no other disjoint cut-sets that can
further be considered and therefore, the attack process stops.
The simulation gives rise to 7 successful attacks in this
last scenario. Observe that the exact probability that the
attack process targets cut-set {1, 2} is 0.951. Also, the exact
probability that the attack process targets cut-set {3, 4, 5, 9}
is 0.93198. It follows that the gaps between the simulated
probabilities of targeting any of the critical cut-sets and the
exact corresponding probabilities are extremely low.

For the non-disjoint case, the problem is not so obvious
and is not a sequential application of the min-cut problem

(Table 2). Rather, the new iterations depend both on the
identified cut-set to target and on the sequence of attacks to
be carried-out on its various links.

Cut-set {6, 7, 8}, which is the solution of the min-cut
problem of the entire network, is always targeted first.
Therefore, over 100 runs, it is targeted 100 times. It is
therefore the most critical cut-set. Given that we consider the
non-disjoint case, when link 6 resists and hence the attack
fails on cut-set {6, 7, 8}, there is still room to target links 7 and
8 under another cut-set which is {7, 8, 9}.

Based on the simulated results, the 3-critical cut-sets
are {6, 7, 8}, {7, 8, 9}, and {2, 7, 8}, respectively while
the 4-critical cut-sets are {6, 7, 8}, {7, 8, 9}, {2, 7, 8}, and
{3, 6, 8}, respectively.

When comparing the simulated results with the theoretical
ones, we observe that the gap is reasonably low and hence,
the simulation optimization model can be reliable for large
scale problems. One should also note that the next most
vulnerable cut-set is not necessarily the next critical cut-
set. For instance, cut-set {6, 7, 8} is more vulnerable than
the second critical cut-set {7, 8, 9}. This says that the results
are not intuitive and hence unpredictable beforehand.

V. IMPLEMENTATION FOR LARGE SCALE NETWORKS
In order to investigate the performance of Algorithm 2 and 4,
we carry out experimentations using instances generated by
Gharbi et al. [3] for small size and by Yaghlane et al. [4]
for large sizes. The small instances consist of networks with
sizes ranging from 10 to 30 nodes and each node size has
40 different arc sizes. The large instances consist of networks
with sizes varying between 50 and 200 nodes; and each node
size has 20 different arc sizes. The optimized algorithms
are compared to the naive approach for both disjoint and
non-disjoint cases. Based on the results shown in Tables 3
and 4, it is obvious that the optimized approach outperforms
the naive approach.

We also modify the instances into three parts by gradually
increasing the range of values of the survival probabilities
of each instance by withdrawing random numbers in the

TABLE 3. Results of comparison between the naive approach and proposed algorithm for the disjoint cut-set.

VOLUME 8, 2020 131173



M. Mrad et al.: Optimal k Cut-Sets in Attack/Defense Strategies on Networks

TABLE 4. Results of comparison between the naive approach and proposed algorithm for the non-disjoint cut-set.

TABLE 5. Calculation results for Algorithms 2 and 4.

intervals [0.01, 0.25], [0.01, 0.50], and [0.01, 0.99] for the
first, the second, and the third part, respectively. We solve
all instances through an Intel(R) Core (TM) i7 2.00 GHz

Personal Computer with 32GB RAM using C++ and
CPLEX version 12.6. The simulation uses 3 different values
of k; namely, 3, 5, and 10.We repeat the experiment 100 times
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TABLE 6. Results for Algorithm 2 on networks with larger sizes of the shortest path.

for each instance. Table 5 above provides the calculation
results for Algorithms 2 and 4.
All results are obtained instantly. This says that both

algorithms are very computationally efficient. One can
obviously detect that the non-disjoint case strongly dominates
the disjoint case with respect to the success rate. This is only
natural as it contains a larger set of feasible solutions to try.
Clearly, the success rate tends to decrease, as the network gets
very large in either case. For the disjoint case, Algorithm 2
stops after trying very few cut-sets (within 3 on the average)
even when k takes the values 5 and 10. For the non-disjoint
case however, Algorithm 4 stops after attempting almost
exhaustively the k-critical cut-sets (particularly for large
networks and relatively important survival probabilities).
This says that when there are enough resources to target more
than one cut-set in the non-disjoint case, then this is beneficial
for the attacker. For the disjoint case, however, more attacking
resources do not seem to help.

Another important observation to explore has to do with
the major decline in the success rate of attacks for the
non-disjoint case when the survival probability of links
may take reasonably large values (exceeding perhaps 0.5 as
witnessed by the last instances). This holds true even when
attacks may target up to 10 cut-sets.

When considering the disjoint case however, we surpris-
ingly note that the algorithm stops yielding most frequently
unsuccessful attacks after attempting no more than four cut-
sets; even for the case where up to ten cut-sets may be tried.
In situations of small networks, this might be reasonable as
the algorithm may fail to identify additional disjoint cut-
sets. In contrast, when the size of the network gets large,
certainly the algorithm is expected to identify many disjoint
cut-sets to explore. In order to investigate this finding,
we calculate the shortest-path for each of the generated
networks. It turns out that this path possesses up to four links
for all instances. We know that the size of the shortest path
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problem represents an upper bound of the number of disjoint
cut-sets. This says that the algorithm reaches a stopping
criterion by identifying a surviving set of arcs covering all the
disjoint cuts and hence stops without considering available
untried cut-sets. To further verify this outcome, we generate
other networks possessing larger sizes of the shortest path.
The results fully support our claim. In fact, we observe
that the algorithm considers more cut-sets as shown
in table 6.

The defender may exploit this finding by designing
resilient networks containing small paths joining the sources
to the destinations if the attack may only concern disjoint
cut-sets.

VI. CONCLUSION
In this paper, we extend the work by Yaghlane et al. [1] of
interdiction networks by considering attack strategies on the
most critical cut-sets of the network rather than limiting focus
on a unique cut-set. We distinguish both cases of disjoint and
non-disjoint cut-sets. We assume perfect information on the
outcome of an attack on a targeted link before considering
the next one. Consequently, the attack strategy is a sequential
attack. The attacker may try any link at most once. The attack
strategy stops if one full cut-set among the most critical ones
fails, or if a path-set fully resists to the attack, or else the attack
unsuccessfully targets all k cut-sets. In the last two situations,
the attack on the network fails.

We develop two algorithms to determine optimally the
attack strategy both for the disjoint and non-disjoint case,
respectively. Both algorithms heavily rely on the solution
of the min-cut problem. We compare our strategy with the
naive approaches and find out that the proposed methods
not only outperform by far the naive approach, but also
turn out to be computationally very efficient even for large
networks. The paper provides detailed illustrations at some
small scale to explain the process. It also conducts some
simulation-optimization to investigate the large scale of
networks.

For the disjoint case, the critical cut-sets can only be
limited. Therefore, both offensive and defensive resources
should be devoted to only few cut-sets. Further, the defender
may design the network to include some small path sets to
force the attack to be devoted only to a limited number of
cut-sets regardless of the size of k. For the non-disjoint case
however, increasing the potential number of targeted cut-sets
can improve the success rate of the attack.

Among avenues for future investigations, one may con-
strain the attack strategies by some resource or budget
availability. This constraint may dictate the value of k.
Another possible extension would be to model the problem in
a game-theoretic setting. A third challenging extension would
consider the absence of information on the outcomes of the
attacks on successive links. In other words, the attack process
would no further be dynamic and the attacker must plan it all
at once.
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