IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 23, 2020, accepted July 9, 2020, date of publication July 16, 2020, date of current version July 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3009819

A Dynamic DL-Driven Architecture to Combat
Sophisticated Android Malware

IRAM BIBI', ADNAN AKHUNZADA 2, JAHANZAIB MALIK3, JAVED IQBAL',
ARSLAN MUSADDIQ*, AND SUNGWON KIM 4

!Computer Science Department, COMSATS University, Islamabad 46000, Pakistan

2Technical University of Denmark, 2800 Copenhagen, Denmark

3National Cyber Security Auditing and Evaluation Laboratory, NUST, Islamabad 44000, Pakistan

4Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, South Korea

Corresponding author: Sungwon Kim (swon@yu.ac.kr)

This research was supported in part by the Brain Korea 21 Plus Program (22A20130012814) funded by the National Research Foundation
of Korea (NRF), in part by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center)
support program (IITP-2020-2016-0-00313) supervised by the IITP (Institute for Information & communications Technology Planning &
Evaluation), and in part by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (2018R1D1A1A09082266).

ABSTRACT The predominant Android operating system has captured enormous attention globally not
only in smart phone industry but also for varied smart devices. The open architecture and application
programming interfaces (APIs) while hosting third party applications has led to explosive growth of varied
pervasive sophisticated Android malware production. In this study, we propose a robust, scalable and
efficient Cuda-empowered multi-class malware detection technique leveraging Gated Recurrent Unit (GRU)
to identify sophisticated Android malware. Experimentation of the proposed technique has been carried
out using current state-of-the-art datasets of Android applications (i.e., Android Malware Dataset (AMD),
Androzoo). Moreover, to rigorously evaluate the performance of the proposed technique, we have employed
standard performance evaluation metrics (e.g., accuracy, precision, recall, F1-score etc.) and compared it
with our constructed DL-driven architectures and benchmark algorithms. The GRU-based malware detection
system outperforms with 98.99% detection accuracy for malware identification with a trivial trade off in
speed efficiency.

INDEX TERMS Android malware, deep learning, recurrent neural network, convolutional neural network,

deep neural network, mobile security.

I. INTRODUCTION

The evolution from traditional to smart devices has revolu-
tionized the world. Currently, an exponential growth of smart
devices has been witnessed both for personal and commer-
cial use. According to a report published by Gartner [1],
approximately 400 million smartphones were sold in 2019.
By analysing smartphones popularity, stakeholders have also
shown strong interest towards developing proprietary mobile
operating systems (OS) [2]. Android being an open source
and versatile platform is considered as a leading giant in
the telecommunication industry and a de facto standard for
various smart phone manufacturers. In 2019, Android is the
most predominant OS; holding an approximately 74% of
market shares around the globe in smart phone industry [3].
Additionally, apart from smart phones Android is also taking

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Aljawarneh

129600

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

over smart watches, tablets, televisions, digital boxes and so
forth.

Due to the prevailing environment of Android, it is
becoming a potential target for cyber adversaries. Malware
developers are essentially motivated of crafting sophisticated
malwares to exploit existing OS vulnerabilities [4], [S]. The
term malware is a collection of malicious software vari-
ants intentionally designed (i.e., Viruses, Trojans, Spyware,
Adware and Ransomware etc.) [6] to cause extensive damage
to data and system as privilege escalation, information theft,
remote control and privacy breach etc [7]. Sophisticated mal-
ware is highly impeccable and can simply throw the whole
industry into chaos. Moreover, malware growth continues to
increase by the fact that Android malware can immensely
influence both enterprise and end-users. The literature is
evident that malware can possibly get Android root access
and is not traceable subsequently [8].

Cyber attackers manage to produce unprecedented levels
of disruption such as exploitation of zero-day vulnerabilities

VOLUME 8, 2020

https://orcid.org/0000-0001-8370-9290
https://orcid.org/0000-0001-8454-6980
https://orcid.org/0000-0001-5748-4921

1. Bibi et al.: Dynamic DL-Driven Architecture to Combat Sophisticated Android Malware

IEEE Access

leveraging diverse tools and tactics [4] to disrupt various
systems. To reverse the effects of ever evolving cyber threats,
the situation makes malware detection techniques worth
studying and improving. Deep learning techniques can help
tackle dynamic evolving malware in Android environment
timely and efficiently [9], [10]. In this paper, we propose an
efficient and scalable Deep Learning (DL) based malware
detection scheme employing Gated Recurrent Unit (GRU) to
comprehensively detect varied Android malware timely and
efficiently.

A. CONTRIBUTIONS
The main contributions of the proposed study are manifold:

o The authors propose a flexible, innovative and scalable
DL-based detection mechanism leveraging Recurrent
Neural Network (RNN), particularly Gated Recurrent
Unit (GRU) to identify multi-class attacks effectively in
Android environment.

o To comprehensively evaluate multi-class attacks and
evolving malwares in Android, a current state-of-the-art
publicly available android datasets (i.e., AMD, Andro-
700) have been employed.

« Standard performance evaluation metrics (i.e., accuracy,
precision, recall, F1-score etc.) have been used to thor-
oughly evaluate our proposed mechanism. Moreover,
our proposed technique outperforms in terms of detec-
tion accuracy with a trivial trade-off in computational
complexity.

o Furthermore, we also compare our proposed tech-
nique with our constructed other DL-driven algorithms
(i.e., Long short-term memory, Convolutional Neu-
ral Network, and Deep Neural Network) and current
benchmarks.

B. ORGANIZATION

The remaining paper is adjusted in the following ways;
section II shows the relevant literature. Section III is about
the detailed architectural description of utilised algorithms.
Section IV includes of a detailed overview of our proposed
system (i.e., system design, dataset, and constructed algo-
rithms). Section V discusses experimental results and our
findings from evaluation. Finally, Section VI concludes the
paper and defines future directions.

Il. RELATED WORK

In recent work, researchers have proposed different malware
detection framework to protect against ever evolving sophisti-
cated malware in Android. The majority of the current works
are Artificial Intelligence-based binary malware recognition
systems. However, deep learning (DL) structures like Con-
volutional Neural Network (CNN), Deep Belief Network
(DBN), Recurrent Neural Networks (RNN), Deep Neural
Network (DNN) are still in its earliest stages towards compre-
hensive evaluation of lethal multi-class attacks for Android
platform.

VOLUME 8, 2020

In [11], millar et al. proposed Android malware
detection framework leveraging Discriminative Adversar-
ial Network (DAN) for classification of obfuscated and
un-obfuscated applications as malicious or benign. Practical
experimentation is performed on Drebin dataset and achieved
97% average detection accuracy. Lee et al. in [12], presented
a malware identification scheme employing Gated Recur-
rent Unit (GRU) and Convolutional Neural Network (CNN).
The experiment has been performed on about two million
samples collected from VirusTotal and achieved detection
accuracy of 97.7%. The study [13] implemented Deep Neural
Network (DNN) architecture to classify malicious Android
applications. An Android package kit (APK) based dataset for
binary classification have been employed for evaluation for
the proposed framework that achieves 95% detection accu-
racy. Alzaylaee et al. in [14], proposed a DL-Droid framework
to detect malicious Android applications through using a
input generation scheme for efficient code coverage and to
improve performance. Features are extracted from Android
applications and genuine API calls. The experiment is per-
formed on total 31,125 Apk’s, where 11,505 were malwares
and 19,620 benign samples were taken from Intel-Security
(McAfee Labs). The proposed framework acquires 95.2%
detection accuracy. Additionally, in [15], the authors pre-
sented a malware detection framework using system calls
while employing Long short-term memory (LSTM). The
employed dataset (i.e., Drebin) contain 3567 Malicious and
3536 Benign applications and obtain detection accuracy
of 93.7%.

Moreover, real time automated framework has been devel-
oped in [16] to classify malicious and benign Android appli-
cations. The proposed Gated Recurrent Unit (GRU) based
framework achieved detection accuracy of 91.42% utilizing
Contagio malware dump dataset.

C. Hasegawa et al. proposed a lightweight malware iden-
tification technique leveraging Convolutional Neural Net-
work (CNN) to analyse raw APK’s in [17]. The dataset con-
sidered in this study contains 5000 malware and 2000 benign
Android applications from AMD and Drebin dataset. The
framework secures 97% of an average detection accuracy
while employing a 10-fold cross validation technique. Using
permissions and API call’s, [18] proposed Deep Neural Net-
work (DNN) to classify Android malicious applications. The
framework outperforms with 97% detection accuracy on
Drebin dataset. To detect Android sophisticated Malware,
Karbab et al. presented a system called MalDozer [19] to
determine malware sequence from raw data of different API
calls. The proposed system employs Artificial Neural Net-
work (ANN) and acquire 90% of detection accuracy. The
utilized datasets for proposed framework are Malgenome-
2015 with 1K samples, Drebin-2015 with 5.5K samples,
MalDozer dataset with 20K samples. Moreover, 38k benign
Android applications are downloaded from google play store.
To convert the APK’s binary data into images, the study
presented the image texture-based classification mechanism
in [20]. The technique utilizes Deep Belief Network (DBN)

129601

IEEE Access

. Bibi et al.: Dynamic DL-Driven Architecture to Combat Sophisticated Android Malware

and extracts features like API calls, permissions and activ-
ities. The framework is experimented on Drebin dataset
and the achieved results shows that image texture when
combined with API calls gets 95.6% detection accuracy.
In [21], Zhang et al. proposed DeepclassifyDroid that is
based on Convolutional Neural Network (CNN) for Android
malware detection. The dataset containing 5546 malicious
and 5224 benign applications achieves 97.4% accuracy which
also reveals lack in system performance and need of dataset
with enough instances present. However, [22] establish a
DDefender technique for malware identification using Deep
Neural Network (DNN) for dynamic as well as static anal-
ysis. The dataset comprised of 4208 Android applications
instances and achieved 95% detection accuracy which is not
good enough for real time deployment of system. Li et al.
in [23] implemented a malware identification system based
on API calls and permission to design a Deep Belief Network
(DBN). The proposed scheme considered Drebin dataset for
experimentation and achieves 90% detection accuracy.

Moreover, Long short-term memory (LSTM) in [24] is
employed for malware characterization in Android. The
dataset containing 1738 records of Android applications that
obtain 93.9% and 97.5% detection accuracy for dynamic
and static analysis separately. The study [25] suggests Deep-
Refiner malware identification framework likewise auto-
mates feature extraction process leveraging Long short-term
memory (LSTM). Deep-Refiner considers dataset with
62,915 malware and 47,525 benign Android Apk’s. The
achieved detection accuracy of proposed technique is 97.74%
that is still not adequate for real time deployment of the
proposed framework. Consequently, Convolutional Neural
Network (CNN) based Android malware detection system
represents Android applications into RGB colour code is
presented in [26]. The encoded image is passed as an input
to CNN classifier for automation of feature extraction and
execution process. The proposed approach achieved 97.25%
detection accuracy for 829356 android application of leopard
mobile Inc. The presented technique in [27] utilized diverse
DL-based classifiers (i.e., CNN, RNN, DAE, DBN and
LSTM) to efficiently detect Android malware by considering
the requested permissions, components and filtered intents.
For practical experimentation Drebin and Virus-share dataset
achieves 93.6% detection accuracy for LSTM. To detect
sophisticated malwares, [28] proposed multimodal Convo-
lutional Neural Network (CNN) to reflect the properties of
Android applications as malevolent or benign. Feature vec-
tor is extracted through similarity-based feature extraction
method while using Permissions, API calls and so forth. The
dataset comprises of 41260 applications (i.e., Virus-Share,
Malgenome Project, Google Play App Store and Virus-Total)
and achieved 98% detection accuracy.

Reference [29] presented the technique based on Natu-
ral Language processing (NLP) for Android malware anal-
ysis. The proposed system considers system call sequence
as text file. The dataset contains 14231 applications in total
from Android virtual device (AVD) system calls dataset and

129602

acquire an accuracy of 93.16%. Singh et al. presented the con-
ventional machine learning and deep learning models in [30]
for pervasive malware detection. Considered algorithms
are Decision tree, Random forest, Gradient boosted trees,
K-NN, Deep Neural Network (DNN) and SVM. However,
SVM performs better having 97.16% of detection accu-
racy. The utilised dataset comprises of small number of
instances (i.e., 494 applications). Additionally, [31] develop
Auto-Droid (automatic Android malware detection) rather
than depending on API call mentioned in manifest file,
the technique used API calls of smali code at the kernel of
Android OS. The model gets performance of 95.98% using
Deep Belief Network (DBN) and Stacked Auto-Encoders
(SAE) for newly unknown malware detection.

Reference [32] presented Deep Flow based Deep Belief
Network (DBN) for malware identification based on
data streams for malignant applications that differ from
benign applications. The proposed system is executed for
3000 benign and 8000 malicious applications and obtains an
accuracy of 95.05%. To explore the ability of Convolutional
Neural Network (CNN) for malware detection through con-
version of bytecode into text in [33]. The proposed frame-
work has an edge to extract features automatically from raw
data. The experiment performs on diverse datasets: Genome
project and McAfee Labs dataset. The model achieves accu-
racy of 98% by utilizing Genome dataset and 87% accuracy
for McAfee dataset. Adversary resistant technique developed
in [34] that obstructs adversary from constructing adver-
sarial samples. The DNN-based framework is experimented
employing a dataset of 14,679 malware and 17,399 benign
variants from MNIST CIFAR-10. The presented technique
attain accuracy of 95.2% detection accuracy. The framework
in [35] converts Android permissions into features leveraging
LSTM layer and bag-of-words technique. Cyber Security
Data Mining Competition (CDMC2016) dataset has been
utilized and achieved 89.7% detection accuracy.

The given literature comparison (see Table 1) is quite
evident that DL models are still in its commencement towards
comprehensive evaluation of diverse multi-attacks in Android
environment. Clearly, most of the existing mechanisms are
devised for binary classification only. Further, this research
came up with the idea of cuda-empowered GRU-based detec-
tion framework to extensively evaluate DL-models for the
detection of sophisticated Android malware.

lll. PRELIMINARIES

The basic architecture and explanation of the utilized varied
DL-algorithms (i.e., Gated Recurrent Unit, Long short-term
memory (LSTM), Convolutional Neural Network (CNN) and
Deep Neural Network (DNN)) have been briefly explained.

A. GATED RECURRENT UNIT (GRU)

Gated Recurrent Unit (GRU), is a powerful variant of stan-
dard Recurrent Neural Network (RNN) and similar to an
LSTM utilise the combined gating mechanism as a solution
to short-term memory. The GRU has an internal mechanism

VOLUME 8, 2020

1. Bibi et al.: Dynamic DL-Driven Architecture to Combat Sophisticated Android Malware

IEEE Access

TABLE 1. Selected previous studies for android malware detection.

REF YEAR FEATURES DATASET Model CONTRIBUTION LIMITATION
Android malware detection
framework leveraging Dis-
. criminative Adversarial Net- .
|| G | D DAY | WorkDAN aclasiso. | Nt P ficn
P ’ pp fuscated and un-obfuscated ploy '
apps and achieved 97% aver-
age detection accuracy.
Proposed a DL-based frame- . .
o GRU work for identification of Not satisfactory
[12] 2019 Permissions, Intents APK files > . . performance for real
CNN Android malware employing time deplovment
GRU and CNN. ployment.
. Implemented . a DL- The detection accuracy is
Permission extracted based technique for the ot 200d enoush for mal-
[13] 2019 by using Android As- | Android APK files DNN classification of Android & oug .
. . ware detection to provide
set Packaging Tool. malware and achieves 95% .
. secure mechanism.
detection accuracy.
Features(dynamic) 31,125 Apks; 11,505 Proposed DL-Droid system
extracted from malware and 19,620 to detect Android malicious Need to investigate other
[14] 2019 applications through | benign samples obtained | DNN applications through analysis | DL-based classifiers to im-
smartphones ie., | from Intel Security using stateful input generation | prove detection accuracy.
permission, API calls (McAfee-Labs). and achieves 95.2% accuracy.
3567 Malicious and 3536 Zr‘a;n:;??;c:iislasgsime ;21; Need to investigate other
[15] 2019 system call sequence Benign applications from | LSTM S suag DL-based classifiers to im-
- proposed a LSTM-based deep .
Drebin 1 . prove detection accuracy.
earning framework.
Implemented a framework
100 malicious and benign Zsetliica:i(:)md;islefry beirildxfogi The framework execution
[16] 2018 API calls Java samples from Conta- | GRU pF; 1) . Rg is limited for just labelled
i0 malware dump malware feveraging GRU z}nd data.
& achieved 91.42% detection ’
accuracy.
S Presented a lightweight 1D-
code analysis (i.e., 5000 Mahmou§ from CNN scheme to evaluate the | Limited set of raw APK
L. AMD and Drebin, 2000 - . R
[17] 2018 permissions and API . CNN raw APK files for sophisti- | files may not achieve good
Benign from APKpure and .
calls) cated malware and achieves | results.
APPsapk.
97% average accuracy.
Utilized Deep Neural Net-
AP calls, | Drebin-5560 Malicious, work (DNN) to classify An- | The approach is suscepti-
[18] 2018 Permissions 123453 Benien DNN droid malicious applications | ble to different obfuscation
S & and obtained 97% classifica- | attacks.
tion accuracy.
Drebin, Genome, ing ANN 1o determine ml
[19] 2018 API sequence calls Virusshare, Contagio, | CNN g) . o Limited family attribution.
minidump ware sequence from raw data
of different API calls.
proposed the image
. s texture-based classification | limited feature set do not
[20] 2018 API Lo .Cfﬂ.]s’ 6965.Andr01d APK’s from DBN mechanism leveraging DBN | lead classifier towards high
permissions, activities | Drebin . -
achieves 95.6% detection | accuracy.
accuracy.
Presented DeepClassifyDroid
employed three-step
Permissions AP 5546 Malicious from approach: feature extraction, Suscentible to impersonate
[21] | 2018 calle otont Flter Drebin, 5224 Benign from | CNN feature embedding and CNN- an;wkp pers
’ Chinese third-party market based malware detection ’
framework and achieved
97.4% detection accuracy.
Proposed DDefender
technique ~ for malware | Tool used for events cap-
Permissions. Linux 2104 Benign, 2104 Ma- identification executed on | turing (Monkey Tool) is
[22] 2018 system call; licious from Drebin and | DNN user’s device to detect | not able to capture all
Y Marvin Android malware and | events generated by mal-
achieved 95% detection | wares.
accuracy.
Permissions API 1400 Malicious from Executed DBN to build auto- | Susceptible to adversarial
[23] 2018 ? Drebin, 1400 Benign from | DBN matic malware classifier and | attack, not efcient for real

calls

Google play store

achieved 95% accuracy.

time deployment.

VOLUME 8, 2020

129603

IEEE Access

. Bibi et al.: Dynamic DL-Driven Architecture to Combat Sophisticated Android Malware

TABLE 1. (Continued.) Selected previous studies for android malware detection.

Android malware detection
Permissions ~ events | Running an emulator and S‘;gegl:e dle;f(e):;a%:;lchaSrll(;Mdlf For dynamic analysis, ap-
[24] 2018 generated through | collecting feature vectors | LSTM Propf . e plications were running in
Monkey Tool in real-time namic analysis and achleyes emulator for a short time
97.5% and 93.4% detection ’
accuracy respectively.
Proposed Deep-Refiner lever-
110440 applications from aging LSTM on the_seman— Frequent update required
. . tic structure of Android byte- | for labelled features and
[25] 2018 Android bytecode virus-share, Google play, | LSTM . .
code to detect Android mal- | computationally complex
Massvet .
ware and achieves 97.74% de- | process.
tection accuracy.
Proposed framework
Extract fe:atures 829356 applications col- for _ automatic feat!.lre Samples are not in enough
through conversion of learning through translating .
[26] 2018 . N lected through leopard mo- | CNN Lo . numbers to get desirable
Android APk’s into bile Inc applications into RGB color resuls
RGB color code image and achieves 97.25% ’
detection accuracy.
CNN, The proposed scheme prac- .
R;fgf;;ﬁig RNN, ticed different DL classifiers Cr(z)r;lep:;tatl((i)lrlueilly t(fonigie)e(
[27] 2018 p ’ Drebin and Virus-share DAE, to efficiently detect malware P g
components and . T dataset of more than 1
filtered intents DBN, mn Andrmd applications and million APK’s
LSTM achieves 93.6% accuracy '
Virus-Share. Maleenome Proposed framework utilized
(28] 2018 Permissions, API Project Goz) le Pli A CNN multimodal CNN to reflect the | Prone to obfuscation tech-
calls Ject, 008 y APP properties of Android applica- | nique.
Store, Virus-Total . . e
tions as benign or malicious.
Designed end-to-end malware
. . . identification technique
[29] 2017 System Call | Android Virtual Device CNN by considering system | Not performance efficient.
Sequences (AVD) system calls
call sequences as text and
acquired 93.16% accuracy.
ANN,
.. DT, RF, | Proposed conventional mal- | The small number of in-
216 malicious from con- .
) tagio project, 278 applica- k—NN, ware detection schf:me based staqce§ are reason for not
[30] 2017 system calls behavior . ’ Gradient on ANN and 6 diverse ma- | achieving efficient perfor-
tions normal from Google . . . i . .
Play Store boosting chn}e learning classifiers and mance from deep learning
trees, achieves 97.16% for SVM. classifier.
SVM
The author executed DBN and
API calls of smali 2509 Malicious and 2500 DBN, SAE for newly unknoyv n An- Susceptible to adversarial
[31] 2017 code Benign from Comodo SAE droid malware detection and attack
cloud security obtained 95.98% detection ac- ’
curacy.
8000 Malicious from proposed Flow-Droid frame-
. . work for malware identifica- . .
Static data flow analy- | virusshare and Genome, X Susceptible to adversarial
[32] 2017 . . DBN tion leverages data flow analy-
sis 3000 Benign from Google . ; attack.
sis and achieved 95.05% clas-
play store . .
sification accuracy.
Designed detection technique
for malware relies to extract " . o
27377 applications from and learn features from raw Trgmed on large'ddtdset,
[33] 2017 Opcode Sequence Genome, McAfee Labs CNN data automatically and the sZilforrlr(;ltar:/:;};fsgt;i?fcite(;ry
framework achieves 98% de- | P ’
tection accuracy.
Implemented adversary resis-
. tant technique that obstructs
random adversarial 14,679 malware variants, adversary from constructing | Need to investigate on dif-
[34] 2017 17,399 Benign from | DNN . . e
samples impactful adversarial samples | ferent applications.
MNIST CIFAR-10 . .
and achieves 95.2% detection
accuracy.
. Proposed framework converts | Due to low achieved ac-
Cyber Security Data . . .
. e .. Android permissions into fea- | curacy value, framework
[35] 2017 Permissions Mining Competition | LSTM . .
tures by using LSTM and | cannot be deployed in real
(CDMC2016) . . .
achieves 89.7% accuracy. time scenario.

called gates that regulate and even circulate the flow of
information. The gates help to learn the GRU cell which
information is important to store or erase. Thus, the important

information is passed further to make predictions. Forget gate
and input gates are also joined together to design an update
gate z;. The update gate is responsible for maintaining the

129604 VOLUME 8, 2020

1. Bibi et al.: Dynamic DL-Driven Architecture to Combat Sophisticated Android Malware

IEEE Access

amount of previous memory and new information to be hold.
X; is a current input vector and A,_1 is basically value calcu-
lated from previous adjacent layer. However, w; is learnable
weight matrix for update gate.

7t = o(wg.[hi—1, x¢]) (D

GRU also combines current input with previous memory at
reset gate r;. Moreover, r; is responsible for determining how
exactly the equation combines previous state and new output.

re = o(wr.[h—1, 1) (2)

Tanh is a hyperbolic tangent function. The output range for

tanh is (—1,1). Moreover, /; is the calculated value for current
cell.

hy = tanh(ry * [hy—1, x¢]) 3)

he = (A —z)xh—y + 2z % Iy)

The architecture of GRU is simple than standard RNN

but proved to be performance and speed efficient. The basic
architecture of GRU can be seen in Fig.1.

® ©
by

GRU UNIT

— (B

FIGURE 1. The Architecture of basic Gated Recurrent Unit (GRU).

B. LONG SHORT-TERM MEMORY

Long short-term memory (LSTM) [36], a variant of Recurrent
Neural Network (RNN) is an incredible classifier for tempo-
ral data mining and learning. LSTM model utilize extraor-
dinary module known as constant error carousel (CEC) to
spread constant error signal through time to learn long-term
features and dependencies. Furthermore, through utilization
of well-designed ‘““gate’ structure prevents backpropagated
error. The internal values of CEC is decided by the “gate”
state according to current information and previous flow
to control the data steam and memory. One LSTM cell is
comprised of three gates and two states named input gate,
forget gate, output gate, hidden state and cell state respec-
tively. Given an input sequence x = {x] +x2,, x; } Where
input gate, forget gate, and output gate in LSTM structure,
individually are documented as i;, f; and o; and the weights
attached to them are W;, Wy, W, b;, by and b,,. For each time
step, LSTM updates two states, hidden state 4, and cell state
¢; and o symbol is used for sigmoid function. The basic and
cell architecture of LSTM is illustrated in Fig.2. In equation 5,

VOLUME 8, 2020

<t+l>

<1> <2> <t>

) ¥

o O LI a<t-1>, r a<t> .

e -—E
t t t t
<1> <2> <t> <t+1>]
X X X X

FIGURE 2. The Architectural diagram of a basic LSTM Unit.

<t+1>
Y
ot

—

The f; gate decides how much information is to be kept in the
cell. h;_1 is obtained output value from previous layer while
x; is the current input vector. by is referred as forget gate bias
and Wy is weight matrix.

Jr = oW x[h—1, x] + br) (5

After the decision of information to be kept, next step is to
update cell state and it is achieved through input gate i;.

ip = o (Wi [hi—1, x;] + bi) (6)

Tanh which is a hyperbolic tangent function, generates a
vector of new candidate values, c;.

¢; = tanh (W,.[hy—1, x;] + be))

The current candidate value which decides to change the
value is done through multiplication of old value and f;.
Further, i;* ¢, is added to the equation.

G =fixco1+i*xc (8)

Finally, a filtered output o; of the cell state is obtained as a
final output.

o = o(Wo x [hy — 1, x:] + bo) ©))
ht = O * tanh(ct) (10)

For a typical LSTM cell, the sequence data is considered as
an input to LSTM cell and hidden layers are fully connected
to the input layer. The size of LSTM output layer depends
upon to the number of classes to classify.

C. CONVOLUTIONAL NEURAL NETWORK

After achieving outstanding results in the fields of image
recognition, speech recognition, computer vision, and natural
language processing, Convolutional Neural Network is now
prospering its roots in cyber security. CNN can learn the
important features automatically compared to conventional
feature selection algorithms. CNN [37] is considered as a
sequence of interconnected processing components intended
to transform the set of inputs to the set of required outputs
in Fig.4. Input, output and hidden layers are main components
of a CNN classifier. CNN performs multiple operations on
the input data, which include convolution, pooling, flattening
and padding, finally the network relates to a fully connected
neural network.

129605

IEEE Access

1. Bibi et al.: Dynamic DL-Driven Architecture to Combat Sophisticated Android Malware

Data Acquisition, - Data Preggocessmg N~ Results —
j\ '\i .. Detection
g Android | ‘\ s é : ® i
> | @I Data Transformation 3
l > Feature Selection ff" Refined Data Time
- Code, P = i
M%”eife“ > Data Normalization Label Encoding = S
kI o ﬂ ?:xiasses \)
e
xtraction v v v) . v v v Precision
l e Model Engineering ————
e
<S> Manifest ! / AU-ROC
anifes 1 Benign APK » l
l = 'M| »
y Dataset ' » Reoall
. Malicious APK Fl_escélo 6
L Dataset) _ Classification _)

FIGURE 3. The Simplified Overview of Proposed GRU-based Android Malware Detection scheme.

D. DEEP NEURAL NETWORK

Deep Neural Network (DNN) [38] is recognised as standard
Artificial Neural Network with multiple inter-connected lay-
ers between input and output layers. The DNN finds the
correct mathematical calculation to convert the input into the
output. The single layer of DNN contains several neurons
where computations are performed. The node receives input,
performs operations while utilizing stored weights, applies
activation function and then finally pass the information to
the next subsequent node until it reaches to a conclusion.
Fig.5 depicts complete simplified overview of DNN.

IV. METHODOLOGY

Fig.3 illustrates the simplified overview of the proposed
graphical processing unit (GPU) empowered GRU-based
deep learning scheme for detection of Android malware.
The first Data Acquisition phase is structured to generate
dataset which includes with code, manifest file and classes
extraction from Android package kit (Apk) and the feature
vector generation from manifest file. The data preprocessing
phase is comprised of feature selection, data normalization,
data transformation and label encoding to convert dataset
into a classifiers acceptable format. In the model engineering
phase DL-driven GPU-accelerated GRU model is employed
for detection of ever evolving sophisticated cyber threats and
attacks in Android ecosystem. Finally, the achieved results
have been rigorously evaluated through standard perfor-
mance evaluation metrics (e.g., Accuracy, Precision, Recall,
F1-score, AU-ROC and etc).

A. DATA ACQUISITION

An Android APK includes with a manifest file named as
AndroidManifest.xml. Manifest file contains metadata that
supports the access privileges, installation and execution of

129606

Convolution Subsample Convolution Full convo

FIGURE 4. The Basic Architecture of Convolutional Neural Network.

7|
CEx
e

7Y

A
XD
Y

SN
1798

7\

N

XN y/
R V>

FIGURE 5. The Basic Architecture of Deep Neural Network.

the Android packages. In the proposed methodology, Java
code is structured to extract manifest file from an Android
APK. For the extraction of useful information and feature
vector generation from manifest file, python script has been
written. The designed code extensively examines manifest
file and extracts diverse features (i.e., permissions, API calls
and filtered intents). The initial extracted features through
python script includes with permissions like access to cam-
era, GPS, Mic or touchscreen. Mostly malicious intended
application asks to access those components which are not

VOLUME 8, 2020

1. Bibi et al.: Dynamic DL-Driven Architecture to Combat Sophisticated Android Malware

IEEE Access

TABLE 2. Description of proposed gated recurrent unit (GRU) architecture for malware detection system.

. GRU LSTM DNN CNN

Algorithms
Layer Neurons Layer Neurons Layer Neurons Layer Neurons
GRU 400 LSTM 400 Dense 100 CNN 150
GRU 350 LSTM 250 Dense 75 CNN 350
GRU 300 LSTM 200 Dense 50 CNN 300
GRU 125 LSTM 125 Dense 32 CNN 125
GRU 50 LSTM 50 Dense 3 CNN 50
Dense 32 Dense 32 Dense 30
Dense 3 Dense 3 Dense 3

Activation function Relu, Softmax

Loss function categorical crossentropy

Optimizer Adam

Epochs 30

Batch-size 32

Learning rate 0.01

even required for any purpose or the functionality of the
application.

Requested permissions are also considered important for
Android malware detection system as they are granted to
the application at installation time. We nearly accumulated
one thousand distinct permissions that are used by various
Android applications. An Android application is built upon
four main components known as Activity, Service, Broad-
cast Receiver and Content provider. These four components
are also considered as features of dataset. Intents are a
message-passing mechanism within the application’s compo-
nents or with other connected applications. Filtered intents
are also considered.

B. DATA PREPROCESSING

Data preprocessing refers to a process of all the transfor-
mations on raw data before input to an algorithm for effi-
cient performance. Furthermore, it also reduces the com-
plexity of the available resources in term of storage and
time. Apk’s of AMD and Androzoo are combined to gen-
erate dataset for our proposed Android malware detection.
It satisfies every one of the criteria such as labelled dataset,
complete manifest files features, malware diversity and het-
erogeneity. Through python script, around 19000 features
were extracted but 150 most appearing features has been
selected. To increase the effectiveness of malware detection
system there is a need to shift all the feature values into
the scaled version. For this, python Standard Scaler func-
tion is used to perform the normalization of the dataset.
To reduce data redundancy and improve data integrity data
transformation has been performed which remove dupli-
cate, null and infinity values. The conversion of each value
in a column to a number is also executed through label
encoding.

C. MODEL ENGINEERING
The DL-driven GPU-empowered GRU is employed for detec-
tion of ever evolving sophisticated cyber threats and attacks

VOLUME 8, 2020

in Android. An efficient, robust and scalable Android mal-
ware detection scheme have been implemented which detect
multi-class malwares like Backdoor and Trojan. The com-
plete design of the proposed benchmark GPU-empowered
GRU classifier and other experimented architectures for per-
formance evaluation (i.e., Layers, Neurons, Activation Func-
tions, Loss Function, Optimizer, Batch Size, Epochs and
Learning rate) are detailed in Table.2.

D. DATASET

The selection of current state of the art dataset plays a
significant role in analysing the performance of a mal-
ware detection system. For malware detection, dataset com-
prised of 38842 APK’s (i.e., 30831 benign APK’s have been
collected from Androzoo [39] and 8011 Malware APK’s
from Android Malware Dataset (AMD) [40]. AMD con-
tains 10 diverse classes of malware (i.e., Backdoor, Trojan,
Trojan-Banker, Trojan-clicker, Trojan-Dropper, Trojan-SMS,
Trojan-Spy, Adware, HackerTool, Ransom) with 71 distinct
malware families. For dataset, we merge 6 different classes of
trojan into single trojan class. Thus, the complete distribution
of dataset is across 3 different classes including Benign,
Backdoor and Trojan which can also be seen in Fig.6.

Trojan: 6863 - 18.2% -

N

Backdoor:1022 B
2.7%

Benign:29903 - 79.1%

FIGURE 6. The Dataset Distribution Graph for Proposed scheme.

129607

IEEE Access

. Bibi et al.: Dynamic DL-Driven Architecture to Combat Sophisticated Android Malware

V. EXPERIMENTAL SETUP, RESULTS AND DISCUSSION
The section provides complete overview of the experimental
setup, standard performance evaluation metrics and results
along with discussion.

A. EXPERIMENTAL SETUP

For the experimental setup, the authors have employed Intel
processor, Graphical Processing Unit (GPU) for hardware
setup. Whereas, the proposed methodology is implemented
using Keras for software implementation [41]. The python
language is utilized for development of proposed methodol-
ogy. Detailed hardware and software specifications can be
seen in Table.3.

TABLE 3. Hardware and software specifications for proposed GRU-based
android malware detection architecture.

CPU Processor Model Generation
Core-19(4.0Ghz) 9900K Nineth(9th)

GPU NVIDIA GTX-1080

oS Windows 10 - 64 Bit

RAM 32GB - 3600 MHz

language Python

Software Numpy, Tensorflow, Scikitlearn, Pandas

B. EVALUATION METRICS
For comprehensive performance evaluation of proposed mal-
ware detection model, we have employed standard evaluation
metrics (i.e., accuracy, precision, recall, F1-score, and ROC
curve). For a more thorough evaluation, we have also calcu-
lated extended evaluation metrics (i.e., True Negative Rate,
(TNR), Matthews Correlation Coefficient (MCC), Negative
Predictive Value (NPV), False Positive Rate (FPR), False
Negative Rate (FNR), False Discovery Rate (FDR) and False
Omission Rate (FOR). The detailed description of perfor-
mance evaluation metrics can be seen in [42].

The True Positve, True Negative, False Positive and False
Negative are described as:

True Positive (TP) is equal to number of malicious records
classified as malicious.

True Negative (TN) is equal to number of benign samples
predicted as benign.

False Positive (FP) is equal to number of benign samples
mis-classified as malicious one.

False Negative (FN) is equal to number of malicious
records mis-classified as benign.

1) ACCURACY

Accuracy is the number to correctly predicted samples over
total number of samples.
TP+ TN

Accuracy = (11)
TP+ TN + FP + FN

2) PRECISION
Precision is the ratio of malicious applications that are
classified correctly, to the total number of all malicious

129608

applications.

- TP
Precision = —— (12)
TP + FP
3) RECALL
Recall is the number of correctly predicted values from total
records for each class. Recall is also called True Positive Rate
(TPR).

TP
Recall = —— (13)
TP + FN
4) F1-SCORE
F1 score shows the correlation between recall and precision.
2% TP
F1-score = (14)

2%xTP+FP+FN

5) CONFUSION MATRIX

A confusion matrix is used to describe the overall perfor-
mance of a classification model. Confusion Matrix is rep-
resented in either for binary or multi-class. The Confusion

Matrix is useful to measure the values of accuracy, precision,
recall and AUC-ROC curve.

6) AUC-ROC

AUC-ROC represents the degree of separability and mainly
represents the performance of multi-class classification prob-
lems. This one of the most important evaluation metrics
to distinguish between multiple classes. The Higher AUC,
the model is good at predicting Os as Os, 1s as 1s. The plot
of ROC curve is between TP rate and FP rate.

C. DISCUSSION

The Cuda-empowered GRU-based Android malware detec-
tion scheme is proposed for 3 diverse classes (i.e., benign,
trojan and backdoor).

For comprehensive performance evaluation, we compare
the proposed technique with our constructed contemporary
DL algorithms such as Long short-term memory (LSTM),
Convolutional Neural Network (CNN) and Deep Neural Net-
work (DNN). The confusion matrix in Fig.7 depicts the
performance efficiency of our proposed technique for multi
attack classification. The highly achieved values of True Pos-
itive (TP) and True Negative (TN) defines the performance
of our system to be effectively utilized for ever-evolving
sophisticated cyber threats and malware detection in Android.

To measure, how accurately the Android applications are
classified as benign or malicious, detection accuracy, pre-
cision, recall and Fl-score is also calculated and depicted
in Fig.8. The proposed GPU-enabled GRU-based mal-
ware detection technique achieves 98.96% detection accu-
racy, 99.38% precision, 99.31% recall and 99.35% F1-score
for malware classification. However, DNN accomplished
99.59% precision value which is higher than our proposed
model is due to less number of records and less complex
architecture. classified the relevant instances more correctly.

VOLUME 8, 2020

1. Bibi et al.: Dynamic DL-Driven Architecture to Combat Sophisticated Android Malware

IEEE Access

LSTM
T 2 Benign 9 2
2 3
= Backdoor 2 198 1 — Backdoor- 18 186 5
@ P
& £
= =]
Trojan 23 2 1307 Trojan 2% 1 1315
Benign Backdoor Trojan Ben‘ign B;\cl:(lool' Tro'jm.l
Predicted Label Predicted Label

FIGURE 7. Confusion Matrices of proposed GRU, LSTM, DNN and CNN model.

100

[l GRU B8 LSTM

Percentage (%)

Accuracy

Recall Precision F1-Score

Evaluation Metrics

FIGURE 8. Accuracy, Precision, Recall, F1-Score values for proposed
GRU-based Android malware detection technique.

Our proposed technique is overall achieving high perfor-
mance compared to other constructed classifiers. To rig-
orously evaluate the proposed model, True Negative Rate
(TNR), Matthews Correlation Coefficient (MCC) and Neg-
ative predicted values (NPV) are also calculated. our pro-
posed mechanism achieves 97.34%, 96.92%, 97.60% for
TNR, MCC and NPV as presented in Fig.9. The proposed
mechanism clearly outperforms the rest of the classifiers.

Moreover, False Negative Rate (FNR), False Positive Rate
(FPR), False Omission Rate (FOR) and False Discovery
Rate (FDR) are fundamentally determined to show the classi-
fier execution for mischaracterization of instances. The pro-
posed GRU-based malware detection solution accomplished
0.68%,0.63%, 2.4% and 0.68% for FDR, FNR, FOR and FPR
respectively as shown in Fig.10. Results for FDR, FOR, FNR
and FPR clearly show great performance of our proposed
architecture.

The AU-ROC illustrates the relationship between True
Positive Rate (TPR) and False Positive Rate (TNR). The area
under the curve shows robust performance of the proposed
technique as shown in Fig.11. AU-ROC’s clearly demon-
strates the reliable performance of our proposed technique.

VOLUME 8, 2020

DNN CNN
Benign 4 18 Benign 8 2
3 3
£ 2
— Backdoor 23 200 2 — Backdoor 18 200 7
@ @
& &
Trojan 3 3 1317 Trojan 16 4 1335
Benign Backdoor Trojan Benign Backdoor Trojan
Predicted Label Predicted Label
T ‘ L] T T T
#=—TNR ——M Ao— NPV
98.5 — CG
98.0 1
<y
=
-
)
©097.5
]
-
=
)
]
5970
=W
96.5
96.0 T T T T
GRU LSTM DNN CNN
Algorithms

FIGURE 9. TPR, MCC, NPV values for proposed cuda-empowered
GRU-based model.

52555253352

9 L
o Bzl
i >
4.0 e« || FDR FN

N W
. o W
1 1 1

Percentage (%
5 8
1 1

—_
(=]
1

J0.68

o
W
1 L

N
T
e
SR

o
=]
] n
b

GRU

LSTM
Algorithms

DNN CNN

FIGURE 10. The achieved FDR, FNR, FOR and FPR values for Proposed
cuda enabled GRU-based technique.

The time efficiency of our proposed technique is defined
in Fig.12. The proposed GRU model took 1005 (millisec-
onds) almost equal to 1 second for 7560 instances in testing

129609

IEEE Access

. Bibi et al.: Dynamic DL-Driven Architecture to Combat Sophisticated Android Malware

TABLE 4. Comparison of proposed GPU-empowered GRU technique with other contemporary existing state-of-the-art solutions for android malware

detection.
Papers Algorithms Multi-class Accuracy(%) Precision(%) Recall(%) F1-score(%) Detection Time
Proposed Technique GRU v 98.96 99.31 99.38 99.35 1005(ms)
Jha et al. [16] GRU - 91.42% - - - -
Lee et al. [12] GRU, CNN - 97.70% - - - 40(ms)
Stuart et al. [11] DAN - 97.30 98.00 96.60 97.30 -
Wei et al. [43] DAE-CNN - 98.60 98.65 98.65 98.69 -
karbab et al. [19] DNN - 90.00 98.00 99.00 99.00 -
kim et al. [28] DNN - 98.00 98.00 99.00 99.00 -

Abbreviation Terms: GRU — Gated Recurrent Unit, DAN — Discriminative Adversarial Network, DAE-CNN — Deep Auto-Encoder- Convolutional Neural

Network, DNN — Deep Neural Network.

GRU CNN
10 g 10 10 10 e T T T . ”
4 Pl o wr
£ " 2 &] rod
=08 p Zos Ron Sos L
x - x Sl z s
v - o o o -
=3 - > > 3 -
Zos 4 06 Zos £06 L
z # z Z = #
o Tt o o = ”
&0 B Eos & o4 Bt
o Ideal Performance-AUC = 0.99 o Ideal Performance-AUC = 0.99 @ 04 Ideal Performance-AUC = 0,99 P Ideal Performance-AUC = 0.99
2 L Grand Average of All CLasses-AUC = 0.9 2 L Grand Average of All CLasses-AUC = 0.97 = % Grand Average of All CLasses-AUC = 0.97 H] L Grand Average of All CLasses-AUC = 0.97
= ROC curve of class 0 AUC = 0.99 # = ROC curve of class 0 AUC = 0.98 - L = it) = ¢ = ROC curve of class 0 AUC = 0.99
o 7 ROC curve of class 1 AUC = 097 Foz 7 ROC curve of clase 1 AUC = 05 Foz -~ fict uree o com 140~ 00 o 77 — ROC curveofclass 1 ALC - 0.94
e = e = #" = ROC curve of class 1 AUC = 0.94 s =
ke — ROC curve of class 2 AUC = 0.93 ke — ROC curve of class 2 AUC = 0.93 4 I i B T ke — ROC curve of class 2 AUC = 0.93
00

08 08

02 04 06 02 04 06
False Positive Rate False Positive Rate

02 08

04 06 08 02 04 06
False Positive Rate False Positive Rate

FIGURE 11. The graphical representation of AU-ROC Curve for proposed GRU and other experimented classifiers like LSTM, DNN and CNN.

1006

1004 H

1 Second

—_ —_

Nel Nel (=3 (=3

O O (=3 S

N [S NS
1 1 1

A\
\
A\

Testing Time (milisecond)
N

(3]
1

—0O—Testing Time

0 T T T
GRU LST™M DNN
Algorithms

CNN

FIGURE 12. Testing Time of Proposed GPU-accelerated GRU, LSTM, DNN
and CNN.

phase. The GRU is clearly showing a trivial trade off of
speed efficiency with other compared algorithms. Though,
the speed efficiency of GRU is not very promising, however;
there is a room for improvement in terms of time complexity.
Our future work plans to improve the speed efficiency of the
proposed algorithm.

Consequently, the proposed technique is also compared
with current benchmarks. The comprehensive comparison of
GRU-based technique with current state of the art is shown
in Table.4. The achieved values evidently show the outper-
formance of our proposed mechanism for Android malware
detection.

129610

VI. CONCLUSION

Increasing demand of open and prevalent environment of
Android OS not only revolutionized the digital landscape but
also bring novel sophisticated cyber security vulnerabilities,
threats and attacks. To tackle sophisticated multi-class mal-
ware threats and attacks, we propose a robust, scalable and
efficient DL-based Android malware detection technique.
The proposed mechanism has been thoroughly evaluated
with standard performance metrics and compared extensively
with current benchmarks and our constructed contemporary
DL-driven algorithms. The proposed scheme outperforms in
terms of high detection accuracy that means accurately iden-
tifying prevalent varied Android malwares. The efficient and
timely detection of the proposed technique can remarkably
help for subsequent mitigation and prevention of attacks.
Finally, we endorse varied deep learning architectures to find
a promising solution to combat novel and emerging sophisti-
cated Android malwares.

REFERENCES

[1] L. Goasduff. (2020). Gartner Says Global Smartphone Sales Fell Slightly
in the Fourth Quarter of 2019. [Online]. Available: https://www.gartner.
com/en/newsroom/press-releases/2020-03-03-gartner-s%ays-global-
smartphone-sales-fell-slightly-in#:~:text=Global %20sales %200t %20%
smartphones%20to,%2C %?20smartp-hone%20sales %20declined %201%25
C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and wireless
networking: A survey,” IEEE Commun. Surveys Tuts., vol. 21, no. 3,
pp. 2224-2287, 3rd Quart., 2019.

Statista. (2019). Number of Smartphone Users Worldwide From 2016 to
2021 (in Billions). [Online]. Available: https://www.statista.com/statistics/
330695/number-of-smartphone-users-w

A. Qamar, A. Karim, and V. Chang, “Mobile malware attacks: Review,
taxonomy & future directions,” Future Gener. Comput. Syst., vol. 97,
pp- 887-909, Aug. 2019.

[2]

[3]

[4]

VOLUME 8, 2020

1. Bibi et al.: Dynamic DL-Driven Architecture to Combat Sophisticated Android Malware

IEEE Access

[5]

[6]

[71

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

S. Sen, E. Aydogan, and A. I. Aysan, “Coevolution of mobile malware
and anti-malware,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 10,
pp. 2563-2574, Oct. 2018.

L. Liu, O. De Vel, Q.-L. Han, J. Zhang, and Y. Xiang, “Detecting and
preventing cyber insider threats: A survey,” IEEE Commun. Surveys Tuts.,
vol. 20, no. 2, pp. 1397-1417, 2nd Quart., 2018.

M. Conti, Q. Q. Li, A. Maragno, and R. Spolaor, ““The dark side(-channel)
of mobile devices: A survey on network traffic analysis,” IEEE Commun.
Surveys Tuts., vol. 20, no. 4, pp. 2658-2713, 4th Quart., 2018.

P. Yan and Z. Yan, “A survey on dynamic mobile malware detection,”
Softw. Qual. J., vol. 26, no. 3, pp. 891-919, Sep. 2018.

J.Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, ‘‘Significant permission
identification for machine-learning-based Android malware detection,”
IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3216-3225, Jul. 2018.

S. Ni, Q. Qian, and R. Zhang, “Malware identification using visualiza-
tion images and deep learning,” Comput. Secur., vol. 77, pp. 871-885,
Aug. 2018.

S. Millar, N. McLaughlin, J. Martinez del Rincon, P. Miller, and Z. Zhao,
“DANdroid: A multi-view discriminative adversarial network for obfus-
cated Android malware detection,” in Proc. 10th ACM Conf. Data Appl.
Secur. Privacy, Mar. 2020, pp. 353-364.

W. Y. Lee, J. Saxe, and R. Harang, “Seqdroid: Obfuscated Android
malware detection using stacked convolutional and recurrent neural net-
works,” in Deep Learning Applications for Cyber Security. Springer, 2019,
pp. 197-210.

J. Booz, J. McGiff, W. G. Hatcher, W. Yu, J. Nguyen, and C. Lu, “Towards
deep learning-based approach for detecting Android malware,” Int. J.
Softw. Innov., vol. 7, no. 4, pp. 1-24, Oct. 2019.

M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-droid: Deep learning
based Android malware detection using real devices,” Comput. Secur.,
vol. 89, Feb. 2020, Art. no. 101663.

X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah, “Android
malware detection based on system call sequences and LSTM,” Multime-
dia Tools Appl., vol. 78, no. 4, pp. 3979-3999, Feb. 2019.

P. K. Jha, P. Shankar, V. Sujadevi, and P. Prabhaharan, “Deepmal4j: Java
malware detection employing deep learning,” in Proc. Int. Symp. Secur.
Comput. Commun., Springer, 2018, pp. 389-402.

C. Hasegawa and H. Iyatomi, “One-dimensional convolutional neural
networks for Android malware detection,” in Proc. IEEE 14th Int. Collog.
Signal Process. Appl. (CSPA), Mar. 2018, pp. 99-102.

D. Li, Z. Wang, and Y. Xue, “Fine-grained Android malware detection
based on deep learning,” in Proc. IEEE Conf. Commun. Netw. Secur.
(CNS), May 2018, pp. 1-2.

E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, ‘“MalDozer: Auto-
matic framework for Android malware detection using deep learning,”
Digit. Invest., vol. 24, pp. S48-S59, Mar. 2018.

L. Shiqi, T. Shengwei, Y. Long, Y. Jiong, and S. Hua, “Android malicious
code classification using deep belief network,” KSII Trans. Internet Inf.
Syst., vol. 12, no. 1, 2018.

Y. Zhang, Y. Yang, and X. Wang, “A novel Android malware detection
approach based on convolutional neural network,” in Proc. 2nd Int. Conf.
Cryptogr., Secur. Privacy ICCSP, 2018, pp. 144-149.

H. Alshahrani, H. Mansourt, S. Thorn, A. Alshehri, A. Alzahrani, and
H. Fu, “DDefender: Android application threat detection using static and
dynamic analysis,” in Proc. IEEE Int. Conf. Consum. Electron. (ICCE),
Jan. 2018, pp. 1-6.

W. Li, Z. Wang, J. Cai, and S. Cheng, “An Android malware detection
approach using weight-adjusted deep learning,” in Proc. Int. Conf. Com-
put., Netw. Commun. (ICNC), Mar. 2018, pp. 437-441.

R. Vinayakumar, K. P. Soman, P. Poornachandran, and S. Sachin Kumar,
“Detecting Android malware using long short-term memory (LSTM),”
J. Intell. Fuzzy Syst., vol. 34, no. 3, pp. 1277-1288, Mar. 2018.

K. Xu, Y.Li, R. H. Deng, and K. Chen, “DeepRefiner: Multi-layer Android
malware detection system applying deep neural networks,” in Proc. IEEE
Eur. Symp. Secur. Privacy (EuroS&P), Apr. 2018, pp. 473-487.

T. H.-D. Huang and H.-Y. Kao, “R2-D2: ColoR-inspired convolutional
NeuRal network (CNN)-based AndroiD malware detections,” in Proc.
IEEE Int. Conf. Big Data (Big Data), Dec. 2018, pp. 2633-2642.

M. Nauman, T. A. Tanveer, S. Khan, and T. A. Syed, “Deep neural
architectures for large scale Android malware analysis,” Cluster Comput.,
vol. 21, no. 1, pp. 569-588, Mar. 2018.

T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep
learning method for Android malware detection using various features,”
IEEE Trans. Inf. Forensics Security, vol. 14, no. 3, pp. 773-788, Mar. 2019.

VOLUME 8, 2020

(29]

(30]

(31]

(32]

(33]

(34]

[35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

H. Liang, Y. Song, and D. Xiao, “An end-to-end model for Android
malware detection,” in Proc. IEEE Int. Conf. Intell. Secur. Informat. (ISI),
Jul. 2017, pp. 140-142.

L. Singh and M. Hofmann, “Dynamic behavior analysis of Android
applications for malware detection,” in Proc. Int. Conf. Intell. Commun.
Comput. Techn. (ICCT), Dec. 2017, pp. 1-7.

S. Hou, A. Saas, L. Chen, Y. Ye, and T. Bourlai, “Deep neural networks
for automatic Android malware detection,” in Proc. IEEE/ACM Int. Conf.
Adv. Social Netw. Anal. Mining, Jul. 2017, pp. 803-810.

D. Zhu, H. Jin, Y. Yang, D. Wu, and W. Chen, “DeepFlow: Deep learning-
based malware detection by mining Android application for abnormal
usage of sensitive data,” in Proc. IEEE Symp. Comput. Commun. (ISCC),
Jul. 2017, pp. 438-443.

N. McLaughlin, J. M. del Rincon, B. Kang, S. Yerima, P. Miller, S. Sezer,
Y. Safaei, E. Trickel, Z. Zhao, A. Doupé, “Deep Android malware
detection,” in Proc. 7th ACM Conf. Data Appl. Secur. Privacy, 2017,
pp. 301-308.

Q. Wang, W. Guo, K. Zhang, A. G. Ororbia, X. Xing, X. Liu, and
C. L. Giles, “Adversary resistant deep neural networks with an application
to malware detection,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2017, pp. 1145-1153.

R. Vinayakumar, K. P. Soman, and P. Poornachandran, “Deep Android
malware detection and classification,” in Proc. Int. Conf. Adv. Comput.,
Commun. Informat. (ICACCI), Sep. 2017, pp. 1677-1683.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

M. Sabokrou, M. Fayyaz, M. Fathy, Z. Moayed, and R. Klette, “Deep-
anomaly: Fully convolutional neural network for fast anomaly detection in
crowded scenes,” Comput. Vis. Image Understand., vol. 172, pp. 88-97,
Jul. 2018.

S. Walczak, “Artificial neural networks,” in Advanced Methodologies and
Technologies in Artificial Intelligence, Computer Simulation and Human-
Computer Interaction. Hershey, PA, USA: IGI Global, 2019, pp. 40-53.
K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo: Collecting
millions of Android apps for the research community,” in Proc. 13th
Int. Workshop Mining Softw. Repositories MSR, 2016, pp. 468-471, doi:
10.1145/2901739.2903508.

F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth analysis
of current Android malware,” in Proc. Int. Conf. Detection Intrusions
Malware, Vulnerability Assessment. Springer, 2017, pp. 252-276.

A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.
Newton, MA, USA: O’Reilly Media, 2019.

A. Tharwat, ‘“Classification assessment methods: A detailed tutorial,”
Appl. Comput. Informat., to be published.

W. Wang, M. Zhao, and J. Wang, “Effective Android malware detec-
tion with a hybrid model based on deep autoencoder and convolutional
neural network,” J. Ambient Intell. Humanized Comput., vol. 10, no. 8,
pp. 3035-3043, Aug. 2019.

IRAM BIBI received the B.S. degree (Hons.) in
software engineering from the National Univer-
sity of Modern Languages (NUML), Islamabad,
Pakistan, in 2017, and the Master of Science
degree in information security from COMSATS
University, Islamabad, in 2020. She is currently
working with ProSanct, for one year, as a Research
Assistant. Her research interests include analysis
and detection of network based cyber threat and
attacks for Android, the Internet of Things, and
software defined networking.

129611

http://dx.doi.org/10.1145/2901739.2903508

IEEE Access

1. Bibi et al.: Dynamic DL-Driven Architecture to Combat Sophisticated Android Malware

ADNAN AKHUNZADA is an enthusiastic and
dedicated professional with extensive 12 years
of Research and Development experience in ICT
industry and academia, with demonstrated history
and a proven track record of high impact pub-
lished research (i.e., Patents, Journals, Transac-
tions, Commercial Products, Book chapters, Rep-
utable Magazines, Conferences, and Conference
Proceedings). His experience as an Educator and
a Researcher is diverse. It includes work as a
Lecturer, a Senior Lecturer, a year Tutor, an Occasional Lecturer at other
engineering departments, as an Assistant Professor with COMSATS Univer-
sity Islamabad (CUI), a Senior Researcher with RISE SICs, Vasteras, AB,
Sweden, as a Research Fellow and the Scientific Lead at DTU Compute, The
Technical University of Denmark (DTU), and a Visiting Professor having
mentorship of graduate students, and supervision of academic and Research
and Development projects at UG and PG level. He has also been involved in
international accreditation such as Accreditation Board for Engineering and
Technology (ABET), and curriculum development according to the guide-
lines of ACM/IEEE. He is currently involved in various EU and Swedish
funded projects of cyber security. His main research interests include cyber
security, machine learning, deep learning, reinforcement learning, artificial
intelligence, blockchain and data mining, information systems, large scale
distributed systems (i.e., edge, fog, and cloud, SDNs), the IoT, Industry
4.0, and the Internet of Everything (IoE). He is a member of the technical
programme committee of varied reputable conferences and editorial boards.
He has been serving as an Associate Editor for IEEE Accgss.

JAHANZAIB MALIK received the B.S. degree
(Hons.) in software engineering from the National
University of Modern Languages, Islamabad,
Pakistan, and the M.Sc. degree in informa-
tion security from COMSATS University, Islam-
abad. He is currently a Researcher with the
National Cyber Security Auditing and Evaluation
Laboratory (NCSAEL), National University of
Science and Technology (NUST), Islamabad. His
J research interests include software defined net-
working, smart devices security, threat detection and intelligence, malware
analysis and detection, application of deep learning and machine learning in
cyber defense, distributed computing, and big data.

129612

JAVED IQBAL received the Ph.D. degree in com-
puter science from the University of Malaya,
Malaysia, in 2016. He is currently an Assistant
Professor with the Department of Computer Sci-
ence, COMSATS Institute of Information Tech-
nology, Islamabad, Pakistan. His research interests
include software process improvement, require-
ments engineering, and software development out-
sourcing. He received the Award and the Adolph
Lomb Medal (OSA).

ARSLAN MUSADDIQ received the B.S. degree in
electrical engineering (telecommunication) from
Bahria University, Islamabad, Pakistan, in 2011,
and the M.S. degree in communication and net-
work engineering from University Putra Malaysia,
in 2015. He is currently pursuing the Ph.D. degree
with the Department of Information and Com-
munication Engineering, College of Engineering,
Yeungnam University, Gyeongsan, South Korea.
His research interests include wireless networking,
the Internet of Things, wireless resource management, routing protocols, and
ad hoc networks. He was a recipient of the Outstanding Dissertation (M. S.
level) Award at the IEEE Malaysia Communication Society and the Vehicular
Technology Society Joint Chapter, in 2015.

SUNGWON KIM received the B.S. and M.S.
degrees from the Department of Control and
Instrumentation Engineering, Seoul National Uni-
versity, South Korea, in 1990 and 1992, respec-
tively, and the Ph.D. degree from the School of
Electrical Engineering and Computer Sciences,
Seoul National University, in 2002. From 1992 to
2001, he was a Researcher with the Research
and Development Center, LG Electronics, South
Korea. From 2001 to 2003, he was a Researcher
with the Research and Development Center, AL Tech, South Korea. From
2003 to 2005, he was a Postdoctoral Researcher with the Department of
Electrical and Computer Engineering, University of Florida, Gainesville,
USA. In 2005, he joined the Department of Information and Communication
Engineering, Yeungnam University, Gyeongsan, South Korea, where he is
currently a Professor. His research interests include resource management,
wireless networks, mobile networks, performance evaluation, and embedded
systems.

VOLUME 8, 2020

