
Received July 3, 2020, accepted July 8, 2020, date of publication July 15, 2020, date of current version July 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3009456

Reusing Preconditioners in Projection Based
Model Order Reduction Algorithms
NAVNEET PRATAP SINGH AND KAPIL AHUJA
Data and Computational Sciences Laboratory, IIT Indore, Indore 453552, India

Corresponding authors: Navneet Pratap Singh (navneet.diat@gmail.com) and Kapil Ahuja (kapsahuja22@gmail.com)

The work of Kapil Ahuja was supported by the Mathematical Research Impact Centric Support (MATRICS) Scheme of Department of
Science and Technology-Science and Engineering Research Board (DST-SERB), India, under Grant MTR/2017/001023.

ABSTRACT Dynamical systems are pervasive in almost all engineering and scientific applications. Simulat-
ing such systems is computationally very intensive. Hence, Model Order Reduction (MOR) is used to reduce
them to a lower dimension. Most of the MOR algorithms require solving large sparse sequences of linear
systems. Since using direct methods for solving such systems does not scale well in time with respect to the
increase in the input dimension, efficient preconditioned iterative methods are commonly used. In one of
our previous works, we have shown substantial improvements by reusing preconditioners for the parametric
MOR (Singh et al. 2019). Here, we had proposed techniques for both, the non-parametric and the parametric
cases, but had applied them only to the latter. We have three main contributions here. First, we demonstrate
that preconditioners can be reused more effectively in the non-parametric case as compared to the parametric
one. Second, we show that reusing preconditioners is an art via detailed algorithmic implementations in
multiple MOR algorithms. Third and final, we demonstrate that reusing preconditioners for reducing a real-
life industrial problem (of size 1.2 million), leads to relative savings of up to 64% in the total computation
time (in absolute terms a saving of 5 days).

INDEX TERMS Model order reduction, moment matching, iterative methods, preconditioners, reusing
preconditioners.

I. INTRODUCTION
Dynamical systems arise in many engineering and scientific
applications such as weather prediction, machine design,
circuit simulation, biomedical engineering, etc. Generally,
dynamical systems corresponding to real-world applications
are extremely large in size. A set of equations describing
a parametric nonlinear second-order dynamical system is
represented as

g(ẍ(t), p) = f (ẋ(t), p)+ h(x(t), p, u(t)),

y(t) = CT x(t), (1)

where t is the time variable, x(t) : R→ Rn is the state, p =
(p1, p2, . . . , pk) is the set of parameters (with pj ∈ R; forj=
1, . . . , k), u(t) : R→ Rm is the input, y(t) : R→ Rq is the
output, CT

∈ Rq×n is the output matrix, and g(·) : Rn+k
→

Rn, f (·) : Rn+k
→ Rn and h(·) : Rn+k+m

→ Rn are some
nonlinear functions [1]–[6]. If m and q both are equal to one,
then we have a Single-Input Single-Output (SISO) system.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yan-Jun Liu.

Otherwise, it is called a Multi-Input Multi-Output (MIMO)
(m and q > 1) system. The functions g(·), f (·), and h(·) are
usually simplified as [2], [6]

g(ẍ(t), p) =
k∑

j=1

gj(p)g(ẍ(t)),

f (ẋ(t), p) =
k∑

j=1

fj(p)f(ẋ(t)),

h(x(t), p, u(t)) =
k∑

j=1

hj(p)h(x(t), u(t)), (2)

where gj(·), fj(·), hj(·) : Rk
→ R are scalar-valued

functions while g(·), f(·) : Rn
→ Rn, and h(·) : Rn+m

→

Rn are vector-valued. Next, we look at simplifications to (1)
based upon the three predicates; the presence of parameters;
the degree of non-linearity, and the order of the system.
• If gj(p), fj(p), and hj(p) are independent of the param-
eters, then (1) becomes a non-parametric dynamical
system.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 133233

https://orcid.org/0000-0001-6403-2229
https://orcid.org/0000-0001-9640-4437

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

TABLE 1. MOR Algorithms.

• Bilinear systems are one of the common types of nonlin-
ear dynamical systems. Here, there is a product between
the state variables and the input variables. Another
important class of nonlinear dynamical systems is the
quadratic systems. Here, there is product among the state
variables. If g(·) andf(·) are linear functions of the state
variables, and h(·) is a linear function of the state and
the input variables, then (1) is called a linear dynamical
system.

• Finally, if the second derivative term in (1) is not present,
then (1) becomes a first-order dynamical system.

Simulation of large dynamical systems can be unman-
ageable due to high demands on computational resources.
These large systems can be reduced into a smaller dimen-
sion by using Model Order Reduction (MOR) techniques
[4], [7]–[11]. The reduced system has approximately the
same characteristics as the original system but it requires
significantly less computational effort in simulation. MOR
can be done in many ways such as balanced trunca-
tion, Hankel approximations, and Krylov projection [4], [7],
[8], [11]. Among these, the projection methods are quite
popular, and hence, we focus on them.

Some of the commonly used projection-based MOR
algorithms for different types of dynamical systems are sum-
marized in Table 1.

In the above mentioned MOR algorithms, sequences of
very large and sparse linear systems arise during the model
reduction process. Solving such linear systems is the main
computational bottleneck in efficient scaling of these MOR
algorithms for reducing extremely large dynamical systems.
Preconditioned iterative methods are commonly used for
solving such linear systems [25], [26]. In most of the above
listed MOR algorithms, the change from one linear system
to the next is usually very small, and hence, the applied
preconditioner could be reused.

Next, we briefly summarize the past work that has been
done in the field of reusing preconditioners. References [27]
and [28] first applied this technique in the quantum Monte
Carlo context, where it is referred to as recycling precon-
ditioners. For the case when the linear system coefficient
matrices are perturbed by a varying constant times the identity
matrix, efficient preconditioners have also been developed.
These preconditioners are independent of the underlying

application and are referred to as preconditioner updates
(see [29] for Symmetric Positive Definite (SPD) coefficient
matrices and [30] for general coefficient matrices).

This approach has been used in the optimization context
in [31], where it is again termed as preconditioner updates.
In the MOR context, [12] and [32] have used this technique
for MOR of non-parametric linear first-order dynamical sys-
tems (part of the first category above).

The main goal of this paper is to demonstrate the reuse of
preconditioners in the remainder of the algorithms for the first
category above (MOR of non-parametric linear second-order
dynamical systems) as well as the algorithms for the second
category above (MOR of non-parametric bilinear/ quadratic-
bilinear dynamical systems).

In one of our recent works [33], we had proposed a gen-
eral framework for reuse of preconditioners during MOR
of both non-parametric and parametric dynamical systems.
However, in [33] we had demonstrated application of this
framework for the parametric case only. That is, the third cat-
egory above (MOR of parametric linear dynamical systems).
We are currently (and separately) working on the algorithms
for the fourth category above as well (MOR of parametric
bilinear/quadratic-bilinear dynamical systems).

To summarize, in this paper we broadly demonstrate the
application of our above mentioned framework for MOR of
non-parametric dynamical systems. We have three contribu-
tions as below, which have not been catered in any of the
above cited papers.
(i) We demonstrate that because of the lack of the param-

eters in the non-parametric case, the reuse of precondi-
tioners here can be done more effectively as compared
to the parametric case.

(ii) We show that the reuse of preconditioners needs to be
fine-tuned for the underlying MOR algorithm. We also
highlight that there are multiple pitfalls in the algorith-
mic implementation of reusing preconditioners.

(iii) We experiment on a massively large and real-life indus-
trial problem (BMW disc brake model), which is of size
1.2 million. Here, we are able to reduce the computation
time from 197 hours to about 72 hours (relative saving
of 64 %).

The paper has four more sections. We discuss MOR tech-
niques in Section II. The theory of reusing preconditioners is

133234 VOLUME 8, 2020

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

described in Section III. We support our theory with numeri-
cal experiments in Section IV. Finally, conclusions and future
work are discussed in Section V. For the rest of this paper,
‖ · ‖f denotes the Frobenius norm, ‖ · ‖ denotes the Euclidean
norm for vectors and the induced spectral norm for matrices,
⊗ refers to the Kronecker product (i.e. an operation on two
matrices of arbitrary size), vec(·) signifies the vectorization
of a matrix, and I denotes the Identity matrix.

II. MOR
As above, our focus is on MOR of the non-parametric
dynamical systems. Hence, we summarize some of the previ-
ously listed such algorithms here. Adaptive Iterative Rational
Global Arnoldi (AIRGA) [15] is a Ritz-Galerkin projection
based algorithm for MOR of linear second-order MIMO
dynamical systems with proportional damping, which for the
MIMO case are represented as

Mẍ(t) = −Dẋ(t)− Kx(t)+ Fu(t),

y(t) = CT x(t), (3)

where M , D, K ∈ Rn×n, F ∈ Rn×m, C ∈ Rn×q, and
D = αM + βK . Here, α, β are some scalar values. Let V ∈
Rn×r and its columns span a r-dimension subspace (r � n).
In principle, the Ritz-Galerkin projectionmethod involves the
steps below.
• Approximating the reduced state vector x̂(t) using V as
x(t) ≈ V x̂(t) leads to

MV ¨̂x(t)+ DV ˙̂x(t)+ KV x̂(t)− Fu(t) = r(t),

ŷ(t) = CTV x̂(t),

where r(t) is the residual after projection.
• Enforcing the residual r(t) to be orthogonal to
V or V T r(t) = 0 leads to the reduced system given as
follows:

M̂ ¨̂x(t)+ D̂ ˙̂x(t)+ K̂ x̂(t)− F̂u(t) = 0,

ŷ(t) = ĈT x̂(t),

where M̂ = V TMV , D̂ = V TDV , K̂ = V TKV , F̂ =
V TF, and ĈT

= CTV . To compute this projection matrix V ,
AIRGA matches the moments of the original system transfer
function and the reduced system transfer function. We briefly
summarize AIRGA in Algorithm 1, where parts relevant to
solving linear systems are only listed.

Bilinear Iterative Rational KrylovAlgorithm (BIRKA) [16]
is a Petrov-Galerkin projection based algorithm for MOR
of the bilinear first-order dynamical systems, which for the
MIMO case are represented as

ẋ(t) = Kx(t)+
m∑

j=1

Njx(t)uj(t)+ Fu(t),

y(t) = CT x(t), (4)

where K , Nj ∈ Rn×n, F ∈ Rn×m, C ∈ Rn×q, and u =
[u1, u2, . . . ,um] ∈ Rm. Let columns of V ,W ∈ Rn×r

span two r-dimension subspaces (where, as earlier, r � n).

Algorithm 1 AIRGA [15]
Input:M , D, K , F, C ; S is the set of initial expansion
points si, i = 1, . . . , `.
Output: M̂ , D̂, K̂ , F̂, Ĉ .

1: z = 1
2: while (no convergence) do
3: for i = 1, . . . , ` do
4: X (0)(si) = (s2iM + siD+ K)−1F

5: V1 =
X (0)(si)
‖X (0)(si)‖f

6: end for
7: j = 1
8: while (no convergence) do
9: for i = 1, . . . , ` do
10: X (j)(si) = −(s2iM + siD+ K)−1MVj

11: Vj+1 =
X (j)(si)
‖X (j)(si)‖f

12: end for
13: j = j+ 1
14: end while
15: ‘‘All the given set of expansion points

(i.e. s1, s2, . . . , s`) are updated’’
16: z = z+ 1
17: end while
18: M̂ = V TMV , D̂ = V TDV , K̂ = V TKV , F̂ =

V TF, and ĈT
= CTV

In principle, the Petrov-Galerkin projection method involves
the steps below.
• Approximating the reduced state vector x̂(t) using V as
x(t) ≈ V x̂(t) leads to

V ˙̂x(t)−KV x̂(t)−
m∑

j=1

NjV x̂(t)uj(t)−Fu(t) = r(t),

ŷ(t) = CTV x̂(t),

where r(t) is the residual after projection.
• Enforcing the residual r(t) to be orthogonal to
W or W T r(t) = 0 leads to the reduced system given by

˙̂x(t)− K̂ x̂(t)−
m∑

j=1

N̂jx̂(t)uj(t)− F̂u(t) = 0,

ŷ(t) = ĈT x̂(t),

where K̂ = (W TV)−1W TKV , N̂j = (W TV)−1W TNjV , F̂ =
(W TV)−1W TF, ĈT

= CTV , and (W TV)−1 is assumed
to be invertible. Here, V and W are computed by using
interpolation, where the original system transfer function
and its derivative are respectively matched with the reduced
system transfer function and its derivative at a set of points.
We briefly summarize BIRKA in Algorithm 2, where again,
only parts related to solving linear systems are listed.
Quadratic Bilinear-Implicit Higher Order Moment Match-

ing (QB-IHOMM) [19] is a Petrov-Galerkin projection based

VOLUME 8, 2020 133235

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

Algorithm 2 BIRKA [16]
Input K , N1, . . . , Nm, F, C , and initial guess of the
reduced system Ǩ , Ň1, . . . , Ňm, F̌, Č
Output K̂ , N̂1, . . . , N̂m, F̂, and Ĉ

1: z = 1
2: while (no convergence) do

3: R3R−1= Ǩ , ˇ̌F = F̌TR−T , ˇ̌C = ČR, ˇ̌Nj = RT ŇjR−T

for j = 1, . . . , m

4: vec (V) =

(
−3⊗ In − Ir ⊗ K −

m∑
j=1

ˇ̌NT
j ⊗ Nj

)−1
(
ˇ̌FT ⊗ F

)
vec(Im)

5: vec (W) =

(
−3⊗ In − Ir ⊗ KT

−

m∑
j=1

ˇ̌Nj ⊗ NT
j

)−1
(
ˇ̌CT
⊗ CT

)
vec(Iq)

6: V = orth (V) , W = orth (W)

7: Ǩ = (W TV)−1W TKV , Ňj =
(
W TV

)−1W TNjV ,
F̌ =

(
W TV

)−1W TF, Č = CV
8: z = z+ 1
9: end while
10: K̂ = Ǩ , N̂j = Ňj, F̂ = F̌, and Ĉ = Č

algorithm for MOR of the quadratic-bilinear first-order
dynamical systems, which for the SISO case are repre-
sented as1

Dẋ(t) = Kx(t)+ Nx(t)u(t)+ H (x(t)⊗ x(t))+ Fu(t),

y(t) = CT x(t), (5)

where D, K , N ∈ Rn×n, H ∈ Rn×n2 , F ∈ Rn×1,
C ∈ Rn×1. Let columns of V , W ∈ Rn×r span two
r-dimension subspaces (where as earlier, r � n). In princi-
ple, the Petrov-Galerkin projection method involves the steps
below.

• As before, approximating the reduced state vector x̂(t)
using V as x(t) ≈ V x̂(t) leads to

DV ˙̂x(t)− KV x̂(t)− NV x̂(t)u(t)

− H
(
V x̂(t)⊗ V x̂(t)

)
− Fu(t) = r(t),

y(t) = CTV x̂(t),

where r(t) is the residual after projection.
• Enforcing the residual r(t) to be orthogonal to
W or W T r(t) = 0 leads to the reduced system

1A variant of BIRKA for MOR of the quadratic-bilinear first-
order dynamical systems also exists. Preconditioned iterative solves and
reusing preconditioners can be applied here as done for BIRKA. Hence,
we focus on QB-IHOMM that has been developed for the SISO case
only.

given by

D̂ ˙̂x(t)− K̂ x̂(t)− N̂ x̂(t)u(t)− Ĥ
(
x̂(t)⊗ x̂(t)

)
−F̂u(t) = 0,

y(t) = ĈT x̂(t),

where D̂ = W TDV , K̂ = W TKV , N̂ = W TNV ,
Ĥ = W TH (V ⊗ V), F̂ = W TF, ĈT

= CTV . Here,
V andW are computed by matching the moments of the orig-
inal system transfer function and the reduced system transfer
function.We briefly summarize QB-IHOMM inAlgorithm 3,
where as earlier, only parts related to solving linear systems
are listed. Here, as in [19], the computation is done with the
first two regular transfer function terms.

Algorithm 3 QB-IHOMM [19]
Input: D, K , N , H , F, C ; interpolation points σi ∈ C
for i = 1, . . . , `; higher orders moments numbers
P,Q ∈ N
Output: D̂, K̂ , N̂ , Ĥ , F̂, Ĉ

1: V = [] , W = []
2: for j = 0, . . . , P+ Q do
3: for i = 1, . . . , ` do
4: Xj(σi) = [(σiD− K)−1D]j(σiD− K)−1F

5: V =
[
V Xj(σi)

]
6: end for
7: end for
8: for j = 0, . . . , Q do
9: for i = 1, . . . , ` do
10: Xj(2σi)T = [(2σiD−K)−TDT]j(2σiD−K)−TCT

11: W =
[
W Xj(2σi)T

]
12: end for
13: end for
14: U = orth([V W])
15: Construct the reduced system as

D̂ = UTDU , K̂ = UTKU , N̂ = UTNU ,
Ĥ = UTH (U ⊗ U), F̂ = UTF, ĈT

= CTU .

III. PROPOSED WORK
Here, we discuss preconditioned iterative methods in
Section III-A. In Section III-B, we revisit the theory of
reusing preconditioners from [33]. Finally, we discuss appli-
cation of reusing preconditioners to the earlier discussed
algorithms in Section III-C.

A. PRECONDITIONED ITERATIVE METHODS
Krylov subspace basedmethods are very popular class of iter-
ative methods [34], [35]. Let Ax = b be a linear system, with
A ∈ Rn×n, b ∈ Rn, x0 the initial solution and r0 (where r0 =
b − Ax0) the initial residual. We find the solution of a linear
system in Kk(A, r0) = span{r0, Ar0, A2r0, . . . , Ak−1r0},
where Kk(·, ·) represents the Krylov subspace.

133236 VOLUME 8, 2020

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

Often iterative methods are slow or fail to converge, and
hence, preconditioning is used to accelerate them. If P is a
non-singular matrix that approximates the inverse of A, then
the preconditioned system becomes APx̃ = b with x = Px̃.
This is termed as right preconditioning. Similarly, left pre-
conditioning can also be performed, where the preconditioner
is present on the left side of the matrix [36].2 If the linear
system coefficient matrices are SPD, then both the types of
preconditioning give the same results [36]. For our MOR
algorithms under-consideration, the linear system coefficient
matrices do not have any special structure. Hence, both these
types of preconditioning work differently.

In our experiments, we use right preconditioning because it
is fairly common [37], [38]. However, to demonstrate that our
techniques are independent of the type of preconditioning, for
one model, we experiment with left preconditioning in the
side as well.

We expect that the preconditioned iterative solves would
find a solution in less amount of time as compared to the
unpreconditioned ones. For most of the input dynamical
systems (as mentioned here), the Krylov subspace methods
fail to converge (see Numerical Experiments section). Hence,
we use a preconditioner. The goal is to find a preconditioner
that is cheap to compute as well as apply. Preconditioning
is of two kinds (implicit and explicit), and we focus on the
latter [39].

In case of implicit preconditioners, application of pre-
conditioning requires solving linear systems. For example,
in factorization based preconditioning A ≈ LU , where
L and U are sparse triangular matrices approximating exact
L and U factors. Here, application of the preconditioner
requires only forward and backward solves. This is usually
referred to as incomplete LU factorization (ILU) based pre-
conditioner. Variations of ILU that exploit certain matrix
constructs can also be developed. For example, ILU based
upon Schur’s complement [40]. Further, ILQ, SSOR and ADI
are other kinds of preconditioning that fall under the implicit
category [39].

Although implicit preconditioners have been used exten-
sively for a very long time, they have their own drawbacks.
For example, ILU based preconditioners do not be scale well
when the system size becomes very large (computation time
becomes prohibitively expensive). This is because, forward
and backward solves in such preconditioners are inherently
sequential and cannot be easily parallelized. Besides this,
the breakdown in the factorization process because of the zero
pivoting carries over from the full factorization case to this
incomplete factorization case.

Explicit preconditioning is one where directly the inverse
of the coefficient matrix is approximated or P ≈ A−1. Hence,
applying the preconditioner just involves performing matrix-
vector products [38]. Sparse approximate inverse (SPAI) are

2If the preconditioner is present on both the sides of the coefficient matrix,
then it is called split/ center preconditioning.

the most commonly used explicit preconditioners, which we
use and are discussed in-detail later in this section.

Variations of approximate inverse preconditioners also
exist. One example, as we have seen in the case of implicit
preconditioning, is the Schur’s complement based approxi-
mate inverse preconditioner [38]. Another example is where
the approximate inverse preconditioner is constructed by
using a high-order convergent scheme that relies on matrix-
matrix multiplications [41], [42].

Hybrid of implicit and explicit preconditioning is also com-
mon. Here, combinations of factorizations and approximate
inverses are used to compute a preconditioner. An example
of this is given in [43], where for a SPD matrix, Cholesky
factorization is first performed. This in-turn is used to obtain
a more efficient approximate inverse preconditioner. Another
example is where the approximate inverse of the coefficient
matrix is used to compute an approximation to matrix’s
Schur’s complement. This is then used to build an ILU pre-
conditioner [40].

Now, we give the details of SPAI. For constructing a
preconditioner P corresponding to a coefficient matrix A,
we focus on methods for finding approximate inverse of A by
minimizing the Frobenius norm of the residual matrix I−AP.
This minimization problem can be rewritten as [37]

min
P
‖I − AP‖2f . (6)

Here, the columns of residual matrix I−AP can be computed
independently, which is an important property that can be
exploited. Hence, the solution of (6) can be separated into n
independent least square problems as

min
P

n∑
i=1

‖(I − AP)ei‖22, or

min
pi
‖ei − Api‖22, for i = 1, 2, . . . , n, (7)

where ei and pi are the i-th column of I and P, respectively.
The above minimization problem can be implemented in par-
allel and one can efficiently obtain the explicit approximate
inverse P of A.

Usually A is sparse. In this case, we can solve a more
efficient version of the optimization problem given in (7).
Here, first, a good sparsity pattern of P is assumed (usually
the Identity matrix). As the solutions of the least squares
problems are iteratively computed, this sparsity pattern is
updated. One common updating strategy adaptively exploits
the number of non-zeros arising in the resulting residuals
(ri = ei − Api), which requires solving 1D minimization
problems [38]. A more sophisticated updating strategy uses a
multivariate minimization [44]. Second, now since bothA and
P are sparse, we solve much smaller least squares problems,
and all matrix-vector products are done in a sparse-mode
(operations involving a sparse-matrix and a sparse-vector).

VOLUME 8, 2020 133237

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

B. THEORY OF REUSING PRECONDITIONERS
In general, the linear systems of equations generated by
lines 4 and 10 of Algorithm 1 (AIRGA); lines 4 and 5 of
Algorithm 2 (BIRKA); and lines 4 and 10 of Algorithm 3
(QB-IHOMM) have the following form:

A1X1 = F1,

A2X2 = F2,
...

A`X` = F`,

where Ai ∈ Rn×n, Xi ∈ Rn, and Fi ∈ Rn; for
i = 1, 2, . . . , `.3

Let P1 be a good preconditioner for A1 (it is a seed pre-
conditioner) that is computed by the theory discussed in the
above section ((6)-(7)) or

min
P1
‖I − A1P1‖2f .

Now, we need to find a good preconditionerP2 corresponding
to A2. Using the standard SPAI theory, this means solving

min
P2
‖I − A2P2‖2f . (8)

If we are able to enforce A1P1 = A2 P2, then P2 will
be an equally good preconditioner for A2 as much as P1 is
a good preconditioner for A1 (since the Spectrum of A2P2
would be same as that of A1P1, on which convergence of
any Krylov subspace method depends). Since P2 is unknown
here, we have a degree of freedom in choosing how to form
it. Without loss of generality, we assume that P2 = Q2P1,
where Q2 is an unknown matrix. Here, we need to enforce
A1P1 = A2Q2P1. Thus, instead of solving the minimization
problem (8), we can solve

min
Q2
‖A1 − A2 Q2‖

2
f .

Note that P2 here is never explicitly formed by multiplying
two matrices Q2 and P1. Rather, always a matrix-vector
product is done to apply the preconditioner.

Next, we apply a similar argument for finding a good
preconditioner Pi corresponding to Ai. For this we refer to
one of our recent works [33], which focused on MOR of
parametric linear dynamical systems (category three from the
Introduction). We can obtain Pi by enforcing either A1P1 =
AiPi or Ai−1Pi−1 = AiPi. For these two cases, Pi would be
as effective preconditioner for Ai as P1 is for A1 or Pi−1 is
for Ai−1, respectively. These two approaches are summarized
in Table 2.

In [33], we have conjectured (with evidence) the following
two results: (a) In the parametric case, the first approach is
more beneficial. This is because, in this case although the
two approaches have a similarly hard minimization problem
(attributed to slowly varying parameters, and in-turn, slowly
changing matrices), the computation of Pi from P1 in the first

3In-case of BIRKA, the coefficient matrices are of size n2 × n2 and
solution vectors as well as right-hand sides of size n2.

TABLE 2. Cheap preconditioner update approaches [33].

approach leads to a preconditioner with less approximation
errors, and hence, a one which is more accurate. (b) In the
non-parametric case, the second approach is more suited.
This is because in this case the minimization problem of
the second approach is much easier to solve as compared to
the first approach (attributed to rapidly changing expansion/
interpolation points, and in-turn, rapidly changing matrices).
The computation of Pi from Pi−1 in this case (rather than P1
as above) does have the drawback of accumulated approx-
imation errors, however, solving the minimization problem
efficiently is a bigger bottleneck for scaling to large problems.

As mentioned in the Introduction, in [33] we have exten-
sively experimented for the parametric case (again, category
three earlier) using the first approach. The focus here is to do
a similar experimentation for the non-parametric case (first
two categories earlier) using the second approach.

C. APPLICATION OF REUSING PRECONDITIONER
Here, we first discuss the application of the above presented
theory of reusing preconditioners to AIRGA. If we closely
observe Algorithm 1, as mentioned earlier, linear systems are
solved at lines 4 and 10. To solve these system, we can chose
any solver from a large pool of available Krylov subspace
methods. For example, GMRES [45], BI-CGSTAB [46],
IDR(s) [47], etc. Since GMRES is the most popular one
among these, we use it inside AIRGA in our result section.

If we relook at linear systems at lines 4 and 10 in
Algorithm 1, we realize that they have more characteristics.
These linear systems can be very easily transformed into
general shifted linear systems of the form ςD + K (see
Section 3 of [48]). Therefore, this property can be exploited
in solving these sets of linear systems simultaneously
[49], [50], which is part of our future work.4

Delving further into the complexity of such linear sys-
tems, we observe that the matrices change with the index
of outer while loop (line 2) as well as with the index
of the for loop corresponding to the expansion points
(line 3). Hence, we denote such matrices not only with a
subscript as in previous subsection but also with a super-

script. That is, A(z)i =
(
s(z)i
)2
M + s(z)i D + K , where z =

1, . . . , z (until covergence) and i = 1, . . . , `. As the matrix

4If the linear system coefficient matrices have special properties, then
more efficiency can be incorporated. For example, if the coefficient matrices
(ςD+ K) have D, K as real and ς as complex, then we can reduce the
number of linear systems that are required to be solved. For more details,
please see Section 1 of [54].

133238 VOLUME 8, 2020

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

FIGURE 1. Reusing preconditioners in AIRGA.

A(z)i changes with respect to two different indices, we can
reuse preconditioners in many ways. However, here we use
the second approach as discussed in the previous subsection.
This approach is diagrammatically represented in Figure 1.

Computation of preconditioners is done only at line 4
because at line 10, matrices do not change, only the right-
hand sides do. Hence, we only focus on reusing precondi-
tioners for line 4.

Next, we show how the new preconditioners are computed
for both, the horizontal direction and the vertical direction.
While looking at the horizontal route, let,

A(z)i−1 =
(
s(z)i−1

)2
M + s(z)i−1D+ K

and
A(z)i =

(
s(z)i
)2
M + s(z)i D+K be the two coefficient matri-

ces for different expansion points s(z)i−1 and s(z)i , respectively,

with i = 2, . . . , `. Using the above theory, we enforce
A(z)i−1P

(z)
i−1 = A(z)i P

(z)
i in Figure 2. Thus, we eventually enforce

A(z)i−1P
(z)
i−1 = A(z)i Q

(z)
i P

(z)
i−1 and solve theminimization problem

min
Q(z)
i

‖A(z)i−1 − A
(z)
i Q

(z)
i ‖

2
f .

This gives us the new preconditioner P(z)i = Q(z)
i P

(z)
i−1. This

minimization is again performed for n independent least
square problems as in (7). Similar steps are followed for
reusing preconditioners along the rest of the horizontal direc-
tions, i.e. for all z = 1, . . . , z.
Now, applying this technique for the vertical direction,

we have for z = 2, . . . , z

A(z−1)1 P(z−1)1 = A(z)1 P
(z)
1 .

Following the steps as for the horizontal direction, here,
we solve the minimization problem

min
Q(z)
1

‖A(z−1)1 − A(z)1 Q
(z)
1 ‖

2
f .

This gives us the new preconditioner P(z)1 = Q(z)
1 P

(z−1)
1 .

Again, this is solved as n independent least square problems
as in (7).
AIRGA with an efficient implementation of the above

discussed theory of reusing preconditioners is given in
Algorithm 4. If we closely look at line 4 of Algorithm 1,
the solution vector is denoted by X (0)(si), where the super-
script ‘‘0’’ refers to the index of the inner while loop
(line 8). We do not bother about this index because, as ear-
lier, matrix does not change inside this inner loop. Rather,
we need to capture the change because of the outer while
loop indexed with z. Hence, we denote the solution vec-
tor as X(z)(si) in Algorithm 4 (lines 8, 11, 19 & 22). It is
important to emphasize again that preconditioners are never
computed explicitly. Rather, they are obtained using matrix-
vector products (please see line numbers 11, 19 & 22 of
Algorithm 4).
Since shift-invariant preconditioners have been proposed

for the general shifted linear systems [49], [51], our this reuse

FIGURE 2. Expressing one linear system matrix in terms of the other.

VOLUME 8, 2020 133239

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

TABLE 3. SPAI and reusable SPAI analysis for the academic disk brake
model.

TABLE 4. SPAI and reusable SPAI computation time for the academic disk
brake model.

SPAI technique can be coupled with these preconditioners for
further efficiency. We plan to look at this aspect as part of our
future work.

The next MOR algorithm under-consideration is BIRKA
(Algorithm 2). Here, the linear solver would be chosen in a
manner similar to AIRGA above. However, the coefficient
matrices here have a block form, and hence, instead of stan-
dard Krylov subspace methods, their block variants should be
used [52].

For the sake of brevity, the reuse of SPAI preconditioners
in BIRKA (Algorithm 2) is discussed as part of Appendix A.
Here also, the block structure can be exploited in developing
a more efficient preconditioner. An example of this is given
in Chapter 11 of [53], where a preconditioner similar to SPAI
has been improved upon by utilizing such a structure. This
aspect is part of our future work.

The third and the finalMORalgorithm under-consideration
is QB-IHOMM (Algorithm 3). As for the earlier two algo-
rithms, any general Krylov subspace solver can be used here.

Algorithm 4 AIRGA With Reuse of SPAI Preconditioner
1: z = 1
2: while no convergence do
3: if z == 1 then
4: for i = 1, . . . , ` do

5: A(1)i =
((
s(1)i
)2
M +

(
s(1)i
)
D+ K

)
6: if i == 1 then
7: Compute initial P(1)1 by solving

min
P(1)1

‖I − A(1)1 P(1)1 ‖
2
f

(First-time; no earlier preconditioner)

8: A(1)1 P(1)1 X(1)(s1) = F
9: else
10: Compute Q(1)

i by solving
min
Q(1)
i

‖A(1)i−1 − A
(1)
i Q(1)

i ‖
2
f

(Reuse along horizontal direction)

11: A(1)i [Q(1)
i · · · Q

(1)
2 P(1)1]X(1)(si) = F

12: end if
13: end for
14: else
15: for i = 1, . . . , ` do

16: A(z)i =
((
s(z)i
)2
M +

(
s(z)i
)
D+ K

)
17: if i == 1 then
18: Compute Q(z)

1 by solving
min
Q(z)
1

‖A(z−1)1 − A(z)1 Q
(z)
1 ‖

2
f

(Reuse along vertical direction)

19: A(z)1
[
Q(z)
1 . . . Q(2)

1 P(1)1

]
X(z)(s1) = F

20: else
21: Compute Q(z)

i by solving
min
Q(z)
i

‖A(z)i−1 − A
(z)
i Q

(z)
i ‖

2
f

(Reuse along horizontal direction)

22: A(z)i

[
Q(z)
i · · · Q

(z)
2︸ ︷︷ ︸

23:

Q(z)
1 . . . Q(2)

1︸ ︷︷ ︸ P(1)1

]
X(z)(si) = F

24: end if
25: end for
26: end if
27: ‘‘All the given set of expansion points

(i.e. s1, s2, . . . , s`) are updated’’
28: z = z+ 1
29: end while

Note: The minimization problems at lines 7, 10, 18 and
21 are solved as n independent least square problems
(see (7)).

133240 VOLUME 8, 2020

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

TABLE 5. Condition numbers of the coefficient matrices before and after
application of SPAI¶ for the academic disk brake model.

Further, as in the case of AIRGA, the linear systems at lines
4 and 10 belong to the class of general shifted linear systems
[48]–[50] and can be solved simultaneously, which is part of
our future work4.
For the sake of brevity, the above theory of reusing SPAI

preconditioners applied to QB-IHOMM is discussed briefly
in Appendix B. Again, our SPAI reuse theory can be coupled
with the specific preconditioners for these kind of systems
(e.g., shift-invariant preconditioners [49], [51]) to develop a
more efficient preconditioning strategy. We plan to look at
this aspect as part of our future work.

IV. NUMERICAL EXPERIMENTS
For supporting our proposed preconditioned iterative solver
theory using AIRGA [15], we perform experiments on two
models. The first is a macroscopic equations of motion
model (i.e. academic disk brake M0) [55], and is discussed
in Section IV-A. The second is also a similar model, how-
ever, this is a real-life industrial problem (i.e. industrial disk
brakeM1) [55]. The experiments on this model are discussed
in Section IV-B. These models are described by the following
set of equations [55]:

M�ẍ(t) = −D�ẋ(t)− K�x(t)+ Fu(t),

y(t) = CT x(t), (9)

where M� = M , K� = KE + KR + �2 KG, D� =
αM� + βK� (case of proportionally damped system; as
needed for AIRGA) with commonly used parameter values
as � = 2π, α = 5 × 10−02, and β = 5 × 10−06. Further,
F ∈ Rn and CT

∈ Rn are taken as [1 0 · · · 0]T , which is the
most frequently used choice. We take four expansion points
linearly spaced between 1 and 500 based upon experience.

Although our purpose is to just reuse SPAI in AIRGA
(Algorithm 4), we also execute original SPAI in AIRGA
(Algorithm 1) for comparison. In Algorithms 1 and 4, at line 2
the overall iteration (while-loop) terminates when the
change in the reduced model (computed as H2-error between
the reduced models at two consecutive AIRGA iterations) is
less than a certain tolerance. We take this tolerance as 10−04

based upon the values in [15]. There is one more stopping
criteria in Algorithms 1 at line 8 (also in Algorithm 4 but not
listed here). This checks theH2-error between two temporary
reduced models. We take this tolerance as 10−06, again based
upon the values in [15]. Since this is an adaptive algorithm,
the optimal size of the reduced model is determined by the
algorithm itself, and is denoted by r .

The linear systems that arise here have non-symmetric
matrices. There are many iterative methods available for
solving such linear systems. We use the Generalized Min-
imal Residual (GMRES) method [45] because it is very
popular [56]. The stopping tolerance in GMRES is taken
as 10−06, which is a common standard. As mentioned in
Introduction, for both the given models, we observe that
unpreconditioned GMRES fails to converge. Hence, we use
the SPAI preconditioner as described above (without and with
reuse).

As mentioned earlier, without loss of generality, we per-
form right preconditioning. To demonstrate the effectiveness
of our theory for all types of preconditioning, for the aca-
demic disk model, we give data corresponding to left precon-
ditioning as well.

We useModified SparseApproximate Inverse (MSPAI 1.0)
proposed in [38] as our preconditioner. This is because
MSPAI uses a linear algebra library for solving sparse least
square problems that arise here. We use standard initial
settings of MSPAI

(
i.e. tolerance (ep) of 10−04

)
.

We perform our numerical experiments on a machine with
the following configuration: Intel Xeon (R) CPU E5-1620 V3
@ 3.50 GHz., frequency 1200 MHz., 8 CPU and 64 GB

TABLE 6. GMRES computation time for the academic disk brake model.

VOLUME 8, 2020 133241

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

TABLE 7. GMRES with SPAI and reusable SPAI computation time for the
academic disk brake model.

RAM.All the codes are written inMATLAB (2016b) (includ-
ing AIRGA, GMRES) except SPAI and reusable SPAI.
MATLAB is used because of ease of rapid prototyping.
Computing SPAI and reusable SPAI in MATLAB is expen-
sive, therefore, we use C++ version of these (SPAI is from
MSPAI and reusable SPAI is written by us). MSPAI further
uses BLAS, LAPACK and ATLAS libraries.

It is important to emphasize that we do not integrate our
MATLAB code base with the C++ based preconditioner.

This is because integrating the two is complicated and is not
needed here as well.

We compute SPAI and reusable SPAI in-parallel, sepa-
rately, and save them on the hard-disk in the standard .mtx
files [38]. When we run our MATLAB code base, then these
files are read from the hard-disk into the main memory and
converted into .mat files for further processing.

A. ACADEMIC DISK BRAKE MODEL
This model is of size 4, 669. Based upon experience,
the maximum reduced system size (rmax) is taken as 20.
As mentioned earlier, however, due to the adaptive nature
of AIRGA, we obtain a reduced system of size r = 13.
For this model, AIRGA takes two outer iterations (line 2 of
Algorithms 1 and 4) to converge (i.e. z = 2).
Reusing the SPAI preconditioner is beneficial when the

values of ‖I − A(z)i ‖f /‖I‖f is large, and the values of
‖A(z)i−1 − A

(z)
i ‖f /‖A

(z)
i−1‖f and ‖A

(z−1)
1 − A(z)1 ‖f /‖A

(z−1)
1 ‖f are

small, which is true in this case (see Table 3). In this table,

TABLE 8. SPAI and reusable SPAI computation time for the industrial disk brake model.

133242 VOLUME 8, 2020

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

TABLE 9. SPAI and reusable SPAI computation time for the industrial disk
brake model.

columns 1 and 2 list the AIRGA iterations and the four
expansion points, respectively. The above three quantities are
listed in columns 3, 4 and 5, respectively. For the first AIRGA
iteration and the first expansion point, SPAI preconditioner
cannot be reused because there is no earlier preconditioner
(mentioned as NA in table). From the second expansion point
(and the first AIRGA iteration), we perform horizontal reuse
of preconditioner (see Figure 1). This is the same for the sec-
ond AIRGA iteration as well. Vertical reuse of preconditioner
is done only for the first expansion point (and the second
AIRGA iteration; again see Figure 1).

In Table 4, we compare the SPAI and the reusable SPAI
timings. As for Table 3, here columns 1 and 2 list the
AIRGA iterations and the four expansion points, respectively.
SPAI and reusable SPAI computation times are given in
columns 3 and 4, respectively. At the first AIRGA iteration
and the first expansion point, both SPAI and reusable SPAI
take the same computation time. This is because, as above,
reusing of SPAI preconditioner is not applicable here. From
the second expansion point of the first AIRGA iteration,
we see substantial savings because of the reuse of the SPAI
preconditioner (approximately 68%).

Before presenting GMRES data, we would like to discuss
improvements in the condition numbers of the coefficient
matrices because of the preconditioning. This data is given
in Table 5. As evident, preconditioning does substantially
improve the quality of the coefficient matrices.

TABLE 10. Condition numbers of the coefficient matrices before and
after application of SPAI for the industrial disk brake model.

Table 6 provides the iteration count and the computation
time of GMRES. Here, we only provide GMRES execu-
tion details since the computation time of preconditioner
has been discussed above. In this table, column 1 lists
the AIRGA iterations. The number of linear solves and
average GMRES iterations per linear solve are given in
columns 2 and 3, respectively. Finally, columns 4 and 5 list the
computation times of GMRESwhen using SPAI and reusable
SPAI, respectively. We notice from this table that solving
linear systems by GMRES with SPAI takes less computation
time as compared to solving them by GMRES with reusable
SPAI. This is because when we reuse the SPAI preconditioner
in GMRES, additional matrix-vector products are performed,
however, this extra cost is almost negligible when compared
to the savings in the preconditioner computation time for the
latter case (as evident in Table 3 above; also see total GMRES
and preconditioner time below).

As earlier, the data in Table 6 is corresponding to right
preconditioning. In the case of left preconditioning we see
only a modest change in the metrics under-consideration.
That is, the total GMRES iterations, the total GMRES plus
SPAI time, and the total GMRES plus reusable SPAI time are
6364, 190, and 204, respectively.

Table 7 gives the computation time of GMRES plus SPAI
(column 2) and GMRES plus reusable SPAI (column 3) at
each AIRGA iteration (column 1). As evident from this table,
reusing the SPAI preconditioner leads to about 60% savings
in total time required for solving all the linear systems.

VOLUME 8, 2020 133243

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

TABLE 11. GMRES computation time for the industrial disk brake model.

B. INDUSTRIAL DISK BRAKE MODEL
This model is of size 1.2 million. Based upon experience,
the maximum reduced system size (rmax) is taken as 100.
As mentioned earlier, however, due to the adaptive nature
of AIRGA, we obtain a reduced system of size r = 52.
For this model, AIRGA takes four outer iterations (line 2 of
Algorithms 1 and 4) to converge (i.e. z = 4).
Again, reusing the SPAI preconditioner is beneficial when

the value of ‖I − A(z)i ‖f /‖I‖f is large, and the value of
‖A(z)i−1 − A

(z)
i ‖f /‖A

(z)
i−1‖f and ‖A

(z−1)
1 − A(z)1 ‖f /‖A

(z−1)
1 ‖f are

small, which is true in this case (see Table 8). The structure of
this table is same as Table 3. As earlier, for the first AIRGA
iteration and the first expansion point, SPAI preconditioner
cannot be reused because there is no earlier preconditioner
(mentioned as NA in table). From the second expansion point
(and the first AIRGA iteration), we perform horizontal reuse
of preconditioner (see Figure 1). This is the same for the
second, the third and the fourth AIRGA iterations as well.
Vertical reuse of preconditioner is done only for the first
expansion point (and the second, the third, and the fourth
AIRGA iterations; again see Figure 1).

In Table 9, we compare the SPAI and the reusable SPAI
timings. The structure of this table is same as that of Table 4.
As before, at the first AIRGA iteration and the first expansion
point, both SPAI and reusable SPAI take the same com-
putation time. This is because, as above, reusing of SPAI
preconditioner is not applicable here. From the second expan-
sion point of the first AIRGA iteration, we see substantial
savings because of the reuse of the SPAI preconditioner (from
160 hours to 26 hrs 30 minutes; approximately 83%).

As in the case of the academic disk model, here too before
presenting GMRES data, we would like to discuss improve-
ments in the condition numbers of the coefficient matrix
because of the preconditioning. This data is given in Table 10.
As evident, preconditioning does substantially improve the
quality of the coefficient matrices.

Table 11 provides the iteration count and the computa-
tion time of GMRES. Here, again we have only provided
GMRES execution details since the computation time of the

TABLE 12. GMRES with SPAI and reusable SPAI computation time for the
industrial disk brake model.

preconditioner has already been discussed above. The struc-
ture of this table is same as that of Table 6. As earlier, we
notice from this table that solving linear systems by GMRES
with SPAI takes less computation time as compared to solving
them by GMRES with reusable SPAI. This is again because
of additional matrix-vector products in the reusable SPAI
case. Here also, this extra cost is almost negligible when
compared to the savings in the preconditioner computation
time (as evident in Table 9; also see the total GMRES and
preconditioner time below).

Table 12 gives the computation time of GMRES plus SPAI
(column 2) and GMRES plus reusable SPAI (column 3) at
each AIRGA iteration (column 1). As before, it is evident
from this table, reusing the SPAI preconditioner leads to about
64% savings in total time (from 197 hours 28 minutes to
72 hours 06 minutes).

To demonstrate the quality of the reduced system, we plot
the relative H2 error between the transfer function of the
original system and the reduced system with respect to the
different expansion points (in Figure 3). The reduced system
considered here is obtained by using GMRES with reusable
SPAI. These expansion points, denoted by S, are computed
as 2π f , where the frequency variable f is linearly spaced
between 1 and 500. As evident from this figure, the obtained
reduced system is good (the error is very small). Further,
we also observe from this figure that the reduced model is
most accurate in 7–10 range of the expansion points. This is

133244 VOLUME 8, 2020

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

FIGURE 3. Relative error between the original and reduced system for the
industrial disk brake model.

because the final expansion points, upon the convergence of
AIRGA, lie in this range.

V. CONCLUSIONS AND FUTURE WORK
In this work, we have focused on MOR of non-parametric
dynamical systems, specifically on the following three algo-
rithms: AIRGA, BIRKA, and QB-IHOMM. Since solving
large and sparse linear systems is a bottleneck in scaling these
MOR algorithms for reduction of large sized dynamical sys-
tems, we have proposed reusing of the SPAI preconditioner.

Specifically, we have demonstrated the following:
exploitation of the simplicity because of the lack of parame-
ters in reusing preconditioners, multiple ways of reusing pre-
conditioners within the algorithm, efficient implementation
to ensure that the savings because of reusing preconditioners
are not negated by bad coding, and experimentation on a
massively large industrial problem. Numerical experiments
show the effectiveness of our approach, where for a problem
of size 1.2 million, we save up to 64% in the computation
time. In absolute terms, this gives a saving of 5 days.

Our future work consists of three main directions, focusing
on other efficient MOR algorithms, better linear solvers and
enhanced preconditioning techniques.

First, we will investigate other important variants of
MOR algorithms discussed in our paper (AIRGA, BIRKA,
QB-IHOMM). For example, T-BIRKA is a more efficient
version of BIRKA [17], and applying our techniques here
would be useful.

Second, in our paper, we have used a basic and common
linear solver (GMRES). However, as discussed earlier, this
aspect can also be optimized. Specifically, for the class of
MOR algorithms to which AIRGA and QB-IHOMM belong,
we will investigate the use of linear solvers specific to general
shifted linear systems [48]–[50].

Finally and third, we will investigate more sophisticated
preconditioning strategies that will further exploit the proper-
ties of the underlyingMOR algorithms as well as the resulting
linear systems. Specifically, we will explore five directions as
below.

(a) Besides the currently used basic SPAI preconditioner,
we will investigate the use of high-order convergent approx-
imate inverse preconditioners [41], [42] as well as hybrid

versions, which use a combination of factorization and
approximate inverse techniques [40], [43].

(b) For AIRGA, QB-IHOMM, and related MOR algo-
rithms where general shifted linear systems arise, we will
investigate the use of our reusable SPAI preconditioner along
with shift-invariant preconditioners that have been developed
specifically for such shifted linear systems [49], [51].

(c) We will investigate exploiting the block structure of the
linear system coefficient matrices in BIRKA such that the
SPAI and its reuse can be done more efficiently [53].

(d) Since randomized preconditioners have shown promis-
ing results in recent years, we will explore their use in the
context of linear systems in MOR algorithms.

(e) Finally, we would also investigate combining machine
learning techniques (e.g., spiking neural networks) to opti-
mize the parameters inside the preconditioners.

APPENDIX A
In the Algorithm 2, we solve linear systems of equations at
lines 4 and 5. We first apply our proposed theory of reusing
preconditioners to line 4, which is given as

vec (V)

=

−3⊗In−Ir⊗K− m∑
j=1

ˇ̌NT
j ⊗Nj

−1(ˇ̌FT ⊗ F) vec(Im).

Here, 3 is a diagonal matrix comprising of interpolation
points, which is updated at the start of the while loop
at line 2. For ease of explanation, we take j = 1 here.
Similar steps can be executed for j = 2, . . . , m. Let

Az−1 = −3z−1 ⊗ In − Ir ⊗ K −
(
ˇ̌NT

1

)
z−1
⊗ N1 and

Az = −3z ⊗ In − Ir ⊗ K −
(
ˇ̌NT

1

)
z
⊗ N1 be the

coefficient matrices corresponding to 3z−1 and 3z, respec-
tively (for z = 1, . . . , z (until covergence)). Expressing Az
in terms of Az−1, we get

Az = Az−1

(
Inr + A

−1
z−1(−3z ⊗ In)+ A

−1
z−1(3z−1 ⊗ In)

+A−1z−1

(
−

(
ˇ̌NT

1

)
z
⊗ N1

)
+A−1z−1

((
ˇ̌NT

1

)
z−1
⊗N1

))
,

where Inr ∈ Rn·r×n·r is the Identity matrix. If we define

Qz =
(
Inr + A

−1
z−1(−3z ⊗ In)+ A

−1
z−1(3z−1 ⊗ In)

+A−1z−1

(
−

(
ˇ̌NT

1

)
z
⊗N1

)
+A−1z−1

((
ˇ̌NT

1

)
z−1
⊗N1

))−1
,

then above is equivalent to

Az = Az−1Q−1z . (10)

Now, we enforce

Az−1Pz−1 = AzPz. (11)

Using (10), instead we enforce

Az−1Pz−1 = Az−1Q−1z Pz.

VOLUME 8, 2020 133245

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

If we take Pz = QzPz−1, then we eventually enforce

Az−1Pz−1 = Az−1Q−1z QzPz−1,

which is true.
Thus, instead of solving for Pz by enforcing (11), which

is harder to solve, we obtain the preconditioner at the zth

iteration (Pz = QzPz−1) by enforcing

Az−1Pz−1 = AzQzPz−1,

which is more easily solvable. The remaining derivation here
is same as earlier (see Section III-C). We reuse precondition-
ers at line 5 similarly.

APPENDIX B
In the Algorithm 3, we solve linear systems of equations at
line 4 and 10. Again, we first apply our proposed theory of
reusing preconditioners to line 4, which is given as

Xj(σi) = [(σiD− K)−1D]j(σiD− K)−1F,

for j = 1, . . . , P+ Q and i = 1, . . . , `.

Let Ai−1 = σi−1D − K and Ai = σiD − K be the two coef-
ficient matrices for different interpolation points σi−1 and σi,
respectively (for i = 1, . . . , `). Expressing Ai in terms of
Ai−1, we get

Ai = Ai−1(I + (σi − σi−1)A
−1
i−1D).

If we define Qi = (I + (σi− σi−1)A
−1
i−1D)

−1, then above is
equivalent to

Ai = Ai−1Q
−1
i .

As for AIRGA and BIRKA, instead of obtaining Pi by
enforcing

Ai−1Pi−1 = AiPi,

which is harder to solve, we obtain the preconditioner at the
ith iteration (Pi = QiPi−1) by enforcing

Ai−1Pi−1 = AiQiPi−1,

which is more easily solvable. Again, here also, the remaining
derivation is same as earlier (see Section III-C). We reuse
preconditioners at line 10 similarly.

ACKNOWLEDGMENT
The authors would like to deeply thank Prof. Dr. Heike
Faßbender (at Institut Computational Mathematics, AG
Numerik, Technische Universität Braunschweig, Germany)
for discussions and help regarding different aspects of this
project. They would also like to thankMs. Apoorva Joshi (IIT
Indore, India) for help in numerical experiments, which she
did as part of her undergraduate thesis.

Thanks to the anonymous reviewers that helped them
greatly improve the quality of this manuscript. Finally, they
would like to thank Dr. Yan-Jun Liu (Editor handling our
manuscript) for his tremendous support during the whole
reviewing process.

REFERENCES
[1] O. Katsuhiko, Modern Control Engineering. Upper Saddle River, NJ,

USA: Prentice-Hall, 2001.
[2] M. Rewienski and J. White, ‘‘A trajectory piecewise-linear approach to

model order reduction and fast simulation of nonlinear circuits and micro-
machined devices,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 22, no. 2, pp. 155–170, Feb. 2003.

[3] A. C. Antoulas, ‘‘Approximation of large-scale dynamical systems:
An overview,’’ IFAC Proc. Volumes, vol. 37, no. 11, pp. 19–28, Jul. 2004.

[4] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems.
Philadelphia, PA, USA: SIAM, 2005.

[5] J. E. S. Socolar, ‘‘Nonlinear dynamical systems,’’ in Complex Systems
Science in Biomedicine, T. S. Deisboeck and J. Y. Kresh Eds. Boston, MA,
USA: Springer, 2006, pp. 115–140.

[6] B. N. Bond, ‘‘Parameterized model order reduction for nonlinear dynam-
ical systems,’’ M.S. thesis, Dept. Elect. Eng. Comput. Sci., MIT,
Cambridge, MA, USA, 2006.

[7] E. J. Grimme, ‘‘Krylov projection methods for model reduction,’’
Ph.D. dissertation, Dept. Elect. Eng., Univ. Illinois Urbana-Champaign,
Urbana, IL, USA, 1997.

[8] S. Gugercin, ‘‘Projection methods for model reduction of large-scale
dynamical systems,’’ Ph.D. dissertation, Dept. Elect. Comp. Eng., Rice
Univ., Houston, TX, USA, 2003.

[9] W. H. Schilders, H. A. Van der Vorst, and J. Rommes, Model Order
Reduction: Theory, Research Aspects and Applications, vol. 13. Berlin,
Germany: Springer, 2008.

[10] S. Gugercin, A. C. Antoulas, andC. Beattie, ‘‘H2 model reduction for large-
scale linear dynamical systems,’’ SIAM J.Matrix Anal. Appl., vol. 30, no. 2,
pp. 609–638, 2008.

[11] T. Breiten, ‘‘Interpolation methods for model reduction of large-scale
dynamical systems,’’ Ph.D. dissertation, Dept. Math., Otto-von-Guericke-
Universität Magdeburg, Magdeburg, Germany, 2013.

[12] S. A. Wyatt, ‘‘Issues in interpolatory model reduction: Inexact solves,
second-order systems and DAEs,’’ Ph.D. dissertation, Dept. Math.,
Virginia Tech, Blacksburg, VA, USA, 2012.

[13] Z.-Y. Qiu, Y.-L. Jiang, and J.-W. Yuan, ‘‘Interpolatory model order reduc-
tion method for second order systems,’’ Asian J. Control, vol. 20, no. 1,
pp. 312–322, Jan. 2018.

[14] Z. Bai and Y. Su, ‘‘Dimension reduction of large-scale second-order
dynamical systems via a second-order Arnoldi method,’’ SIAM J. Sci.
Comput., vol. 26, no. 5, pp. 1692–1709, Jan. 2005.

[15] T. Bonin, H. Faßbender, A. Soppa, and M. Zaeh, ‘‘A fully adaptive
rational global Arnoldi method for the model-order reduction of second-
order MIMO systems with proportional damping,’’Math. Comput. Simul.,
vol. 122, pp. 1–19, Apr. 2016.

[16] P. Benner and T. Breiten, ‘‘Interpolation-based H2-model reduction of
bilinear control systems,’’ SIAM J. Matrix Anal. Appl., vol. 33, no. 3,
pp. 859–885, Aug. 2012.

[17] G. M. Flagg, ‘‘Interpolation methods for the model reduction of bilinear
systems,’’ Ph.D. dissertation, Dept. Math., Virginia Tech, Blacksburg, VA,
USA, 2012.

[18] R. Choudhary and K. Ahuja, ‘‘Inexact linear solves in model reduction
of bilinear dynamical systems,’’ IEEE Access, vol. 7, pp. 72297–72307,
May 2019.

[19] M. M. A. Asif, M. I. Ahmad, P. Benner, L. Feng, and T. Stykel,
‘‘Implicit higher-order moment matching technique for model reduction of
quadratic-bilinear systems,’’ 2019, arXiv:1911.05400. [Online]. Available:
http://arxiv.org/abs/1911.05400

[20] U. Baur, C. Beattie, P. Benner, and S. Gugercin, ‘‘Interpolatory projec-
tion methods for parameterized model reduction,’’ SIAM J. Sci. Comput.,
vol. 33, no. 5, pp. 2489–2518, Jan. 2011.

[21] P. Benner and L. Feng, ‘‘A robust algorithm for parametric model order
reduction based on implicit moment matching,’’ in Reduced Order Meth-
ods for Modeling and Computational Reduction, A. Quarteroni and
G. Rozza, Eds. Cham, Switzerland: Springer, 2014, pp. 159–185.

[22] L. Feng, P. Benner, and J. G. Korvink, ‘‘Subspace recycling accelerates
the parametric macro-modeling of MEMS,’’ Int. J. Numer. Methods Eng.,
vol. 94, no. 1, pp. 84–110, Apr. 2013.

[23] A. C. Rodriguez, S. Gugercin, and J. Borggaard, ‘‘Interpolatory model
reduction of parameterized bilinear dynamical systems,’’ Adv. Comput.
Math., vol. 44, no. 6, pp. 1887–1916, Dec. 2018.

[24] X. Cao, ‘‘Optimal model order reduction for parametric nonlinear sys-
tems,’’ Ph.D. dissertation, Dept. Math. Comp. Sci., TU Eindhoven,
Eindhoven, The Netherlands, 2019.

133246 VOLUME 8, 2020

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

[25] K. Ahuja, E. de Sturler, S. Gugercin, and E. R. Chang, ‘‘Recycling BiCG
with an application to model reduction,’’ SIAM J. Sci. Comput., vol. 34,
no. 4, pp. A1925–A1949, Jan. 2012.

[26] K. Ahuja, P. Benner, E. de Sturler, and L. Feng, ‘‘Recycling BiCGSTAB
with an application to parametric model order reduction,’’ SIAM J. Sci.
Comput., vol. 37, no. 5, pp. S429–S446, Jan. 2015.

[27] K. Ahuja, ‘‘Recycling Krylov subspaces and preconditioners,’’
Ph.D. dissertation, Dept. Math., Virginia Tech, Blacksburg, VA, USA,
2011.

[28] K. Ahuja, B. K. Clark, E. de Sturler, D. M. Ceperley, and J. Kim,
‘‘Improved scaling for quantum Monte Carlo on insulators,’’ SIAM J. Sci.
Comput., vol. 33, no. 4, pp. 1837–1859, Jan. 2011.

[29] S. Bellavia, V. De Simone, D. di Serafino, and B. Morini, ‘‘Efficient
preconditioner updates for shifted linear systems,’’ SIAM J. Sci. Comput.,
vol. 33, no. 4, pp. 1785–1809, Jan. 2011.

[30] W.-H. Luo, T.-Z. Huang, L. Li, Y. Zhang, and X.-M. Gu, ‘‘Efficient
preconditioner updates for unsymmetric shifted linear systems,’’ Comput.
Math. with Appl., vol. 67, no. 9, pp. 1643–1655, May 2014.

[31] A. K. Grim-McNally, E. de Sturler, and S. Gugercin, ‘‘Preconditioning
parametrized linear systems,’’ 2016, arXiv:1601.05883. [Online]. Avail-
able: http://arxiv.org/abs/1601.05883

[32] A. K. Grim-McNally, ‘‘Reusing and updating preconditioners for
sequences of matrices,’’ M.S. thesis, Dept. Math., Virginia Tech,
Blacksburg, VA, USA, 2015.

[33] N. P. Singh and K. Ahuja, ‘‘Preconditioned linear solves for para-
metric model order reduction,’’ Int. J. Comput. Math., vol. 97, no. 7,
pp. 1484–1502, Jul. 2020.

[34] Y. Saad, Iterative Methods for Sparse Linear Systems. Philadelphia, PA,
USA: SIAM, 2003.

[35] H.-L. Shen, S.-Y. Li, and X.-H. Shao, ‘‘The NMHSS iterative method for
the standard Lyapunov equation,’’ IEEE Access, vol. 7, pp. 13200–13205,
Jan. 2019.

[36] M. Benzi, ‘‘Preconditioning techniques for large linear systems: A survey,’’
J. Comput. Phys., vol. 182, no. 2, pp. 418–477, Nov. 2002.

[37] E. Chow and Y. Saad, ‘‘Approximate inverse preconditioners via sparse-
sparse iterations,’’ SIAM J. Sci. Comput., vol. 19, no. 3, pp. 995–1023,
May 1998.

[38] K. Alexander, ‘‘Modified sparse approximate inverses (MSPAI) for paral-
lel preconditioning,’’ Ph.D. dissertation, Dept.Math., TUMunich,Munich,
Germany, 2008.

[39] M. Benzi and M. Tuma, ‘‘A sparse approximate inverse preconditioner
for nonsymmetric linear systems,’’ SIAM J. Sci. Comput., vol. 19, no. 3,
pp. 968–994, May 1998.

[40] S. C. Buranay and O. C. Iyikal, ‘‘Approximate Schur-block ILU
preconditioners for regularized solution of discrete ill-posed prob-
lems,’’ Math. Problems Eng., pp. 1–18, Apr. 2019, Art. no. 1912535,
doi: 10.1155/2019/1912535.

[41] S. C. Buranay, D. Subasi, and O. C. Iyikal, ‘‘On the two classes of
high-order convergent methods of approximate inverse preconditioners
for solving linear systems,’’ Numer. Linear Algebra Appl., vol. 24, no. 6,
p. e2111, Dec. 2017.

[42] F. Soleymani, ‘‘A fast convergent iterative solver for approximate inverse
of matrices,’’ Numer. Linear Algebra Appl., vol. 21, no. 3, pp. 439–452,
May 2014.

[43] L. Y. Kolotilina andA. Y. Yeremin, ‘‘Factorized sparse approximate inverse
preconditionings I. Theory,’’ SIAM J. Matrix Anal. Appl., vol. 14, no. 1,
pp. 45–58, Jan. 1993.

[44] N. I. M. Gould and J. A. Scott, ‘‘Sparse approximate-inverse precondition-
ers using norm-minimization techniques,’’ SIAM J. Sci. Comput., vol. 19,
no. 2, pp. 605–625, Mar. 1998.

[45] Y. Saad and M. H. Schultz, ‘‘GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems,’’ SIAM J. Sci. Stat.
Comput., vol. 7, no. 3, pp. 856–869, Jul. 1986.

[46] H. A. van der Vorst, ‘‘Bi-CGSTAB: A fast and smoothly converging variant
of bi-CG for the solution of nonsymmetric linear systems,’’ SIAM J. Sci.
Stat. Comput., vol. 13, no. 2, pp. 631–644, Mar. 1992.

[47] P. Sonneveld and M. B. Van Gijzen, ‘‘IDR(s): A family of simple and fast
algorithms for solving large non-symmetric systems of linear equations,’’
SIAM J. Sci. Comput., vol. 31, no. 2, pp. 1035–1062, Jan. 2009.

[48] V. Simoncini, ‘‘Restarted full orthogonalization method for shifted linear
systems,’’ BIT Numer. Math., vol. 43, no. 2, pp. 459–466, Jun. 2003.

[49] T. Bakhos, P. K. Kitanidis, S. Ladenheim, A. K. Saibaba, and D. B. Szyld,
‘‘Multipreconditioned GMRES for shifted systems,’’ SIAM J. Sci. Com-
put., vol. 39, no. 5, pp. S222–S247, Jan. 2017.

[50] X.-M. Gu, T.-Z. Huang, B. Carpentieri, A. Imakura, K. Zhang, and L. Du,
‘‘Efficient variants of the CMRH method for solving a sequence of multi-
shifted non-Hermitian linear systems simultaneously,’’ J. Comput. Appl.
Math., vol. 375, Sep. 2020, Art. no. 112788.

[51] X.-M. Gu, T.-Z. Huang, G. Yin, B. Carpentieri, C. Wen, and L. Du,
‘‘Restarted Hessenberg method for solving shifted nonsymmetric linear
systems,’’ J. Comput. Appl. Math., vol. 331, pp. 166–177, Mar. 2018.

[52] V. Simoncini, ‘‘Computational methods for linear matrix equations,’’ SIAM
Rev., vol. 58, no. 3, pp. 377–441, Jan. 2016.

[53] C. C. K. Mikkelsen, ‘‘Numerical methods for Lyapunov equations,’’
Ph.D. dissertation, Dept. Math., Purdue Univ., Lafayette, IN, USA, 2009.

[54] O. Axelsson and A. Kucherov, ‘‘Real valued iterative methods for solving
complex symmetric linear systems,’’ Numer. Linear Algebra Appl., vol. 7,
no. 4, pp. 197–218, Jun. 2000.

[55] N. Gräbner, V. Mehrmann, S. Quraishi, C. Schröder, and U. von Wagner,
‘‘Numerical methods for parametric model reduction in the simulation of
disk brake squeal,’’ J. Appl. Math. Mech., vol. 96, no. 12, pp. 1388–1405,
Dec. 2016.

[56] T. Han and Y. Han, ‘‘Numerical solution for super large scale systems,’’
IEEE Access, vol. 1, pp. 537–544, Aug. 2013.

NAVNEET PRATAP SINGH received the
bachelor’s degree in computer science and engi-
neering from UPTU, Lucknow, India, and the
master’s degree in modeling and simulation from
the Defence Institute of Advanced Technology,
Pune, India. He is currently pursuing the Ph.D.
degree with IIT Indore.

His thesis focuses on Stable Linear Solves with
Preconditioner Updates for Model Reduction. His
research interests include intersection of computer

science and mathematics, especially numerical linear algebra, optimization,
dynamical systems, and machine learning.

KAPIL AHUJA received the bachelor’s degree
from IIT (BHU), India, the double master’s and
Ph.D. degrees from Virginia Tech, Blacksburg,
VA, USA, and the Postdoctoral training from the
Max Planck Institute, Germany.

He is currently an Associate Professor in com-
puter science and engineering with IIT Indore,
India. In the past, he was a Visiting Professor at TU
Braunschweig, Germany, TU Dresden, Germany,
and Sandia National Labs, USA. He is also work-

ing on mathematics of data science as well as computational science. His
research interests in artificial intelligence, machine learning, numerical
methods, and optimization.

VOLUME 8, 2020 133247

http://dx.doi.org/10.1155/2019/1912535

	INTRODUCTION
	MOR
	PROPOSED WORK
	PRECONDITIONED ITERATIVE METHODS
	THEORY OF REUSING PRECONDITIONERS
	APPLICATION OF REUSING PRECONDITIONER

	NUMERICAL EXPERIMENTS
	ACADEMIC DISK BRAKE MODEL
	INDUSTRIAL DISK BRAKE MODEL

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	NAVNEET PRATAP SINGH
	KAPIL AHUJA

