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ABSTRACT Aiming at the problem of fault prognostics for the energy storage power station, this paper
proposes a novel data-driven method named multiple elastic networks with time delays (MEN-TD). The
proposed method can learn the status of the energy storage power station in advance and provide early
detection of the fault. First, through the correlation analysis and the mechanism knowledge, the energy
storage power station key parameter and corresponding key factors affecting the parameter are determined.
Secondly, in order to predict the trend of the key parameter over a period of time and improve the prediction
accuracy, the MEN-TD model is constructed. Then, based on the predicted values of the key parameter,
compared with the control limit in the healthy status, the fault can be pre-warned in advance. Finally, through
testing on the practical energy storage power station in Zhenjiang of China, the effectiveness and superiority
of the proposed MEN-TD method are demonstrated.

INDEX TERMS Fault detection, data analysis, fault prognostics, fault diagnosis, process monitoring.

I. INTRODUCTION
With the further requirement of the system safety of energy
storage power stations, not only do we hope to be able to
detect and isolate faults when the status deteriorates, but
also require that we can provide early fault detection and
prognostics before the system deteriorates, to ensure that
there is enough time to take measures to prevent deterioration
and avoid unnecessary losses [1]-[4]. Early fault detection
and prognostics is an area where fault detection and event
prediction technology are combined. The key is to accurately
predict the operating status, estimate the future change trend
[5], [6], and then detect whether the fault occurs or not.
Trend prediction methods can be divided into the
mechanism model based method and data-driven method.
The mechanism model based method refers to the establish-
ment of a mathematical model in the form of differential
equations or algebraic equations based on material balance
and energy conservation. This type of method is based on
the solid process mechanism analysis, so its mathematical
model is accurate and the prediction results are accurate.
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Many scholars have done a lot of research in this field, formed
the mature framework, and obtained successful application
cases [7]. However, because the operating system of energy
storage power stations often has strong nonlinearity, strong
coupling, and instability, if the system mechanism cannot
be fully modeled, it is easy to cause model mismatch. With
the rapid development of the information perception tech-
nology and the application of advanced sensing equipment,
alarge amount of historical data has been accumulated during
the operation of energy storage power stations, providing a
solid foundation for data-driven trend prediction methods.
In addition, mechanism model based method and data-driven
method have been fused. Given that the effect of multiple
causes, Cai et al. proposed the hybrid physics-model-based
and data-driven method for remaining useful life estima-
tion, and obtained satisfactory performance [8]. Data-driven
prediction methods mainly use historical data and current
data to mine valuable information such as periodicity, basic
trends and association rules of data, and construct mathemat-
ical models to predict future trends. At present, data-driven
prediction methods mainly include the statistical learning
based method, the regression based methods, and the neural
network based methods.
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The statistical learning based method builds the statistical
model that can accurately reflect the dynamic dependencies
contained in the data to achieve the purpose of prediction.
Most of these methods require data to meet the assumptions
of stationary, time series correlation, and data variance can-
not be too large. They mainly include auto regressive (AR)
[9], moving average (MA) [10], auto regressive moving
average (ARMA) [11], auto regressive integrated moving
average (ARIMA) [12] and seasonal auto regressive mov-
ing average (SARMA) [13]. However, the above models
are suitable for univariate, same-variance prediction sce-
narios. For multivariate and heteroscedasticity prediction
problems, the auto regressive conditional heteroskedasticity
(ARCH) [14] was proposed. Due to the randomness and insta-
bility of data, the applicability of the statistical learning based
method is limited. In addition, the statistical learning based
method is suitable for short and medium term prediction, and
it has certain limitations for long term prediction.

The prediction process is essentially closely related
to regression analysis. Typical linear regression methods
include partial least squares (PLS), multivariable linear
regression (MLR), principal component regression (PCR),
independent component regression (ICR), ridge regres-
sion (RR) and so on [15]-[18]. According to different appli-
cation scenarios, scholars have studied different improved
algorithms, such as improved PLS (IPLS) [19] and kernel
PLS (KPLS) [20]. In addition to linear regression methods,
support vector machine (SVM) and Bayesian network are
also successfully used in the prediction work. Gestel et al.
proposed applying the Bayesian evidence framework to the
least squares support vector machine to predict the model
parameters and related volatility of the data [21]. This method
mainly includes three steps, where the first step is to infer the
parameters of the time series model using the least squares
support vector machine, the second step is to infer the hyper-
parameters related to the variance of the regularized noise,
and the third step is to evaluate the time series model evi-
dence. Bayesian network prediction is mainly to learn the
Bayesian network structure for a given dataset [22]. This
part is the basis for building the entire prediction model,
and its purpose is to find a network structure that is most
suitable for the data. Chen ef al. designed a dynamic Bayesian
network based on the kernel method to solve the problem of
incomplete input time series prediction [23]. On the basis
of object-oriented Bayesian networks, the fault detection
and diagnosis method for complex systems with repetitive
structures was developed, where both historical data and
expert knowledge were processed [24]. The Bayesian net-
work fault diagnosis method was developed for three-phase
inverters, where two output line-to-line voltages are measured
and the faults are detected based on the Bayesian networks
[25]. The bibliographic review of Bayesian network has been
presented for probabilistic knowledge representation and
inference [26].

For more complex and highly nonlinear processes, the
neural network based model is often used for prediction.
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Neural network has non-linear, self-organizing, self-learning,
self-adaptive ability characteristics, and is an ideal rule and
pattern learner. It converts complex mapping relationships
into network parameters such as weights and thresholds,
and converts model parameter identification problems into
network parameters optimization problems, and then uses
intelligent optimization algorithms to train parameters for
obtaining reliable prediction performance. The neural net-
work based method has been successfully applied to trend
prediction [27]-[31].

With the continuous improvement of computer hardware
and the rise of artificial intelligence, deep neural network
models with complex structures and strong expression capa-
bilities have emerged. Some deep neural network models
have been applied for prediction successfully. The deep belief
network with restricted boltzmann machines has been used
to deal with time series prediction problems [32]. Yuan et al.
proposed the deep learning based feature representation for
top-level product quality prediction [33]. The prediction per-
formance between the deep belief network and the integrated
denoising autoencoder are compared [34]. In many deep neu-
ral network models, the hidden layer of the recurrent neural
network (RNN) not only receives the signal of the neuron of
the previous layer, but also receives the signal of the node
of the previous hidden layer, considering the dependence
between the nodes, which greatly improves the ability to
predict the trend of data. Long short term memory (LSTM)
[35] is an optimized variant of RNN, which is first proposed
by Hochreater and Schmidhuber. The LSTM model makes
up for the problems of gradient disappearance and gradient
explosion of RNN, making it possible to use long distance
time series information effectively [36].

Aiming at the problem of early detection and prognostics
of the fault for the energy storage power station, this paper
proposes the multiple elastic networks with time delays
(MEN-TD) method. First of all, considering that accurate pre-
diction models only relying on quantitative calculation meth-
ods are not enough, quantitative calculation methods based
on the mutual information and qualitative methods based
on the mechanism knowledge are combined to accurately
determine the key factors which affect the energy storage
power station key parameter. Secondly, in order to obtain the
trend of the energy storage power station key parameter for
a period of time, multiple elastic networks with time delays
are established for prediction. Thirdly, to obtain the control
limit of the energy storage power station parameter, the ker-
nel density estimation (KDE) is used to analyze historical
normal data. Finally, on the basis of the predicted values
and the estimated control limit, the energy storage power
station operating status can be evaluated, and the fault can be
pre-warned or detected in advance. The effectiveness of the
proposed method is tested and applied on the practical energy
storage power station in Zhenjiang of China.

The main contributions of our work in this manuscript
include: 1) In order to improve the prediction accuracy, both
the quantitative calculation and the qualitative analysis are
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used to determine the key factors affecting the key parameter
to be predicted. 2) A novel cumulative information percent-
age is proposed to select the number of key factors affecting
the key parameter. 3) A novel multiple elastic networks with
time delays method is proposed to predict the key parameter
over a period of time simultaneously for early fault detection
and prognostics. 4) Compared with the state of the art-the
EN method with fixed delay, the proposed MEN-ED method
can achieve higher accuracy through setting different delays.
5) For the purpose of improving the system safety, the pro-
posed method has been applied to the practical energy storage
power station. 6) The advantage of the proposed MEN-ED
method is tested and proved through comparing with the EN
method with fixed delay, the MEN-ED method without key
factors selection, and the widely used PLS method.

The remaining of this work is listed as follows. Section II
introduces the original EN algorithm. Section III elaborates
the developed multiple elastic networks with time delays
based fault prognostics method. Section IV introduces the
testing results and analysis of the proposed method under
the energy storage power station in Zhenjiang of China.
Section V concludes this article.

Il. PRELIMINARIES

Elastic network (EN) is a regression method with biased
estimation, which can be used for collinear data analysis
[37]. It uses L1 and L2 regularization at the same time.
Thence, the regression prediction model not only has
some non-zero sparse parameters, but also retains some
conventional attributes.

Suppose y € RY *1 js the historical normal dataset of the
key parameter to be predicted, X = [x1x2---x,] € RV*"
is the historical normal operation dataset, where N is the
number of sample and m is the number of variables in the
operation data.

[ x(D)  xa(D) Xm(1)
x1(2)  x2(?2) Xm(2) v
X=1. ) . eRV™ (1)
[ xi(N)  x2(N) Xm(N)
[ (1)
¥(2)
y=1. e RV, )
| Y(N)
where x;(j) is the j — th sample of x;, and y(j) is the j — th
sample of y.
In the EN model, the regression coefficient ,80 =
[,B?, ,38 Lo, ﬂ%]T between X and y is calculated as follows:

N m 2
B’ = argmin | (yo) -3 ﬂ?xm)
j=1 i=1
> Z
i=1

A +a —w)i(ﬂ?)z =t
i=1
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where ¢ is the hybrid parameter of the elastic network, which
controls the ratio of L1 regularization and L2 regularization.

Once the regression coefficient BY = [,8?, ,83, S, ﬂ,?,]T
is obtained, the predicted value $(7') of the key parameter at
time T can be calculated as follows:

HT) =x1(T) % B +x2(T) % BY + - +xu(T) % Bo. (4

In order to realize the simultaneous prediction of the key
parameter for a period of time M, the elastic network with
time delay M needs to be established, where the independent
data and the data to be predicted are constructed as follows

x1(1) x2(1) Xm(1)
REE () n(2)
(N = M) xaN — M) XN — M)

c R(N—M)Xm (5)

yM + 1)

M +2
y= .y( w2 € RN -Mx1, (6)

yM + N)
Similar to the equation in (3), after the regression
coefficient pM = [,BM,ﬂg’l,-n ,ﬂ%]T is obtained,

the predicted value [)A)(T + 1), 9T +2),---,3(T + M)] for
a period of time M at time 7T can be calculated as follows

T4+ =x)(T =M+ 1)« M 4 ...
+xu(T — M + 1) g1

T +2)=x((T —M+2)x B} +---
+xu(T — M +2) * M

m

T +M) = x((T)* Y + -+ xu(T) % Y. 7

IIl. MULTIPLE ELASTIC NETWORKS WITH TIME DELAYS
BASED FAULT PROGNOSTICS METHOD

A. SELECTION OF KEY FACTORS

Considering that some variables in the energy storage power
station operating data are not related to the key parameter to
be predicted, if these variables are added to the prediction
model, the accuracy would be decreased. By using variables
that are correlated with the key parameter to be predicted,
redundant information and noise can be effectively removed.
Therefore, it is necessary to select key factors that are related
with the key parameter to be predicted for establishing the
accurate prediction model.

Let y € RV*! be the historical normal dataset of the
key parameter to be predicted, X = [x1x2---x,,] € RV
be the historical normal operation dataset. For the purpose
of eliminating interference in the historical normal dataset
y € RV"and X = [xix2---x,] € RV*™, three-sigma
rule is used. For convenience, the historical dataset after
eliminating interference is still recorded as y € RV*! and
X = [x1x2---xp] € RVN*™,
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First, the mutual information (MI) is used to calculate the
correlation between variables x;(i = 1,2,---,m) and y.
MI is an information measure algorithm based on the infor-
mation entropy. Suppose the joint probability density of x;
and y is denoted as p(x;,y), and p(x;) and p(y) are the
corresponding edge probability density, respectively. Then,
the mutual information of x; and y is calculated as follows:

I(x;,y) = H{y) —H {y | x;)
p( l’y)
= pxi,y)log ——— ®)
ZZ ’ pa)py)’
Sort the mutual information between variable
xi(i=1,2,---,m)andy in the descending order as
I(x1,y)
I(x2,y) .
I(y) = i e R, ©)
I(xm,y)

where I(x1,y)>I(x2,y) > ... > (X, ).

The number of variables related to y is recorded as k.
In order to determine k, this paper proposes the cumulative
information percentage method as follows

k m
> @i y)/ Y 1xi,y) x 100% > ratio, (10)
i=1 i=1
where ratio represents the minimum cumulative information
ratio. This parameter can be determined by the
cross-validation method. If the value is too large, redundant
information and noise will be selected as the input to the pre-
diction model. When the value is 1, all variables in the energy
storage power station operating data will be determined as
key factors. If the value is too small, the key factors are not
comprehensively selected. When the value is 0, no variable
is determined as the key factor. Whether the value is too
large or too small, the accuracy of the prediction model will
be affected.

According to the correlation with y, X is divided into
two sub-blocks, which are denoted as related dataset X, and
unrelated dataset X, respectively.

Given that quantitative calculation is not enough for
accurate prediction, by analyzing the system mechanism of
the energy storage power station, the series and parallel struc-
ture of the battery and the experience of experts, the key
factors which affect the key parameter to be predicted are
determined as Xg. Finally, the factor dataset Xg, affecting
the key parameter y is determined as follows:

Xp =XpNX, = [¥1%,--%,] € RN (11)

B. PREDICTION MODEL CONSTRUCTION

On the basis of historical dataset Xz, = [¥1%2--- %] €
RV>*P andy € RV ! the regression model is established to
predict the future trend of y. In order to realize the simultane-
ous prediction of the key parameter for a period of time M and
improve the prediction accuracy, multiple elastic networks
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with different time delays are established. Suppose the delay
value is set as L(L = 1,2, --- , M). In the prediction model
with delay L, the independent data matrix and the data matrix
to be predicted are established as follows:

x1(1) X2(1) Xp(1)
. %12 %(2) %(2)
Xgr = . .
}q(N —L) }cz(N —L) }zp(N —L)
e RV-Dxp (12)
y(L+1)
L+2
)-, — y( ) e R(N_L)Xl, (13)
YWN)

where X;(j) is the j — th sample of X;, and y(j) is the j — th
sample of y.

The regression coefficient BL = [,BL /32 Lo ﬂl‘]
between X gr and y is calculated as follows:
I N-L p 2
B~ =argmin| )" (y(L D ﬂfxio))

j=1 i=1

P 2
a-9) (B) = (14)
=1

. o AT
After the regression coefficient ﬂL = [,BIL ,3% R ﬂ,l; ]

is obtained, the L — th predicted value y(T + L) at time T can
be calculated as follows:

H(T + L) =51(T) % By + Fo(T) % By + -+ + Xp(T) % B

15)

By establishing multiple prediction models with different

time delays L = 1, 2, - - - , M, the predicted parameter values

[9(T + 1), 9T +2),--,3(T + M)] within a period of time
M can be obtained simultaneously as follows

T+ 1) = 21(T) * B +52(T) % By +

(T +2) = X1(T) % B + %2(T) * 3 +

4 5(T) * B)
A+ X (T) % B

ST+ M) = Z1(T) % B+ 2o (T) % B+ - + 5,(T) % B

(16)

Comparions: To predict the parameter for a period of
time, there are mainly three differences between the pro-
posed MEN-TD method and the EN method listed in (5),
(6), and (7). First, the EN method uses the data at time
T-M+1,T—M+2,---,T as the input, and the pro-
posed MEN-TD method only uses the data at time T as the
input. Second, the EN method constructs one model g,
and the proposed MEN-ED method constructs M models

~1
/3 , ﬂ ﬁ . Third, the EN method uses m variables of
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the operation data, and the proposed MEN-TD method uses
p variables which are related to the predicted key parameter.

For the complexity of the algorithm, in the offline modeling
stage, due to the need to establish multiple models with
different delays in the MEN-TD method, the computational
complexity of the proposed method is higher than the EN
method. However, in the online prediction stage, since the
model has been established, the computational complexity of
the proposed method is close to the EN method.

Since the data at the current time 7 contains newest
information compared with the data at T — M + 1,
T—M+2,---, T and the model accuracy ofﬁl, ﬁz, cee /}M
is high than B™, it can be concluded that the proposed
MEN-TD method can achieve the higher prediction accuracy.

Remark: The historical offline normal dataset is used to
construct the prediction model in the offline modeling stage.
Once the prediction model is constructed, the predicted value
[J(T + 1), 5T +2), -+, %T +M)] in the period M after
the current time 7 can be obtained in case of importing the
real-time data [x{(T)x2(T) - - - x,(T)].

C. CONTROL LIMIT DETERMINATION

The historical normal dataset y € RV*! of the key
parameter can provide data distribution information in the
normal status and characterize the normal status of the
key parameter. In order to judge whether the predicted
value [jz(T + 1), 9T +2),---,3(T + M)] is under the nor-
mal status and detect the fault in advance, it is necessary to
determine the control limit of the key parameter under normal
status.

The KDE method can be used to mine the distribution
information from a large amount of data. In the field of
statistics, the KDE method is used to estimate the probability
density function of random variables. In the field of early
fault detection and prognostics, the KDE method has been
widely used to determine the control limit. Univariate kernel
estimation is defined as follows

1Sy —yG)
o=y ;K(T)’ (17)

where f(y) is the estimated probability density function, # is
the smoothing parameter, N is the number of samples, and
K is the kernel function. The kernel function can transform
the inner product operation of the high-dimensional space
into the kernel function calculation of the low-dimensional
input space, effectively solving the problem of “‘dimensional
disaster”” in the high-dimensional feature space. The most
widely used kernel function is the Gaussian kernel function.

Based on the KDE, the control limit yjiy, of the key
parameter to be predicted can be determined. If the predicted
value [y(T + ), %(T +2),--- , (T +M)] is less than the
control limit, the energy storage power station is considered
to be in the normal status for the subsequent time period M.
Otherwise, it is considered that the status of the energy
storage power station would occur the fault, and early fault
detection and prognostics should be made.

VOLUME 8, 2020

D. OFFLINE MODELING STAGE AND ONLINE FAULT
PROGNOSTICS STAGE
Offline modeling stage:

1) Collect historical normal datasety of the key parameter
to be predicted and historical normal datasets X of the
operation data.

2) Standardize y and X using the z-score method to make
the mean is 0 and the standard deviation is 1.

3) Combine the quantitative and qualitative methods to
determine X g, which would affect y.

4) Construct multiple elastic networks prediction models
with different time delays.

5) Determine the control limit yj;;, of y using the KDE
method.

Online fault prognostics stage:

1) Obtain the operation data [x1(T)x2(T) - - - x,,(T)] of at
the current moment 7.

2) Standardize [x1(T)x2(T) - - - x,4(T)] with the mean and
the standard deviation of X.

3) Select the current factor [)Ncl(T))?g(T) . -)E,,(T)] corre-
sponding to y from the standardized operating data.

4) Calculate the predicted value [J(T + 1), (T + 2),

-, (T +M)] in the period M after the current time 7.

5) By comparing the predicted value and the control limit,

early fault detection and prognostics can be made.

IV. EXAMPLES AND APPLICATIONS

By analyzing the historical alarm information collected from
the energy storage power station in Zhenjiang of China,
the battery cell voltage is an important parameter, and almost
all alarms are battery cell voltage alarms. Therefore, the bat-
tery cell voltage is selected as the energy storage power
station key parameter to be predicted. The historical dataset
of the energy storage power station is divided into two cate-
gories: battery cell data and battery non-cell data. The battery
cell data include the voltage of 228 battery cells, the temper-
ature of 228 battery cells, and the SOC of 228 battery cells.
The monitored variables of battery non-cell data are listed in
TABLE 1.

According to the historical normal dataset, the quantitative
calculation based on the mutual information and the qualita-
tive analysis based on the system mechanism of the energy
storage power station, the series and parallel structure of the
battery and the experience of experts are used to determine
the key factors affecting the battery cell voltage. The data of
the energy storage power station is sampled in minutes. The
energy storage power station data within 1000 minutes before
the current time T, that is, the data from the time T-999 to
T, are collected as the training dataset to establish the early
fault detection and prognostics model. A total of 440 data
after the current time T, that is, the data from the time T + 1
to T + 440, are collected as the testing dataset. According
to practical needs, in order to test the prediction ability for a
period of time, three cases (Smin, 10min, and 20min accord-
ing to actual system needs) are set to compare the predic-
tion performance. To show the advantage of the proposed
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TABLE 1. Monitored variables of non-cell data.

number battery non-cell data name
1 stack voltage
stack current
3 stack SOC
4 maximum stack voltage
5 minimum stack voltage
6 maximum stack temperature
7 minimum stack temperature
8 stack charge
9 stack discharge
10 total accumulated charge capacity of the stack
11 total accumulated discharge capacity of the stack
12 total cluster voltage
13 cluster precharge voltage
14 cluster current
15 insulation resistance+
16 insulation resistance-
17 cluster SOC remaining capacity
18 cluster average voltage
19 cluster maximum voltage
20 cluster minimum voltage
21 cluster average temperature
22 cluster maximum temperature
23 cluster minimum temperature
24 cluster cumulative charging capacity
25 cluster cumulative discharging capacity
3.4 PL'S(deIay‘=5)
actual value
3.38 predicted value | -
control limit
336 | i“‘l 'ﬂ ‘ ' I l\l
-~ INUNA
| I ‘ i
- 3.32 ' ‘ ‘ n ( H ‘
5 1 il ’ “
3.3
3.28
3.26
3.24 F
3.22

\ . . . . , . ,
0 50 100 150 200 250 300 350 400 450
Sample

FIGURE 1. The first battery cell voltage prediction result of the PLS
method with delay = 5 for 5min prediction.

MEN-ED method, the widely used PLS method with fixed
delay, the EN method with fixed delay, and the MEN-ED
method without key factors selection are compared.

For 5Smin prediction, Fig. 1, Fig. 2, Fig. 3, and Fig. 4 give
the first battery cell voltage prediction result of the PLS
method with delay = 5, the EN method with delay = 5,
the MEN-TD method without key factors selection and the
MEN-TD method. For 10min prediction, Fig. 5, Fig. 6, Fig. 7,
and Fig. 8 give the first battery cell voltage prediction result
of the PLS method with delay = 10, the EN method with
delay = 10, the MEN-TD method without key factors selec-
tion and the MEN-TD method. For 20min prediction, Fig. 9,
Fig. 10, Fig. 11, and Fig. 12 give the first battery cell voltage
prediction result of the PLS method with delay = 20, the EN
method with delay = 20, the MEN-TD method without key
factors selection and the MEN-TD method. In these figures,
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s EN(delay=5)

actual value
predicted value |
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3.38
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FIGURE 2. The first battery cell voltage prediction result of the EN method
with delay = 5 for 5min prediction.

34 MEN-TD(without kay factors selection)

actual value
predicted value |
control limit

3.36 )

3.38

3.34 -

3.32

V01

3.3

3.28

3.26

3.24

3.22

. . . . . . \ .
0 50 100 150 200 250 300 350 400 450
Sample

FIGURE 3. The first battery cell voltage prediction result of the MEN-TD
method without key factors selection for 5min prediction.

the blue line represents the actual value of the first battery cell
voltage, the red line represents the predicted value of the first
battery cell voltage, and the green line represents the control
limit of the first battery cell voltage. In addition, the root mean
square errors of three methods are listed in TABLE 2, where
the obtained minimum value is in bold.

As listed in TABLE 2, Fig. 4, Fig. 8, Fig. 12, for three
cases (Smin, 10min, 20min), the proposed MEN-TD can
obtain the best root mean square error, where the root mean
square errors for Smin, 10min, 20min are 0.03149, 0.3257,
0.03722. In contrast to the PLS method with single fixed
delay, the EN method with single fixed delay can obtain
better root mean square errors (0.03413 > 0.03379, 0.03725
> 0.03681, 0.04011 > 0.03960) for three cases, which can
show the superiority of the EN method. Compared with the
EN method with single fixed delay, the better prediction
result (0.03379 > 0.03149, 0.03681 > 0.03275, 0.03960
> 0.03722) obtained by the MEN-TD method can show
the advantage of constructing multiple EN models with

VOLUME 8, 2020



D. Guo et al.: MEN-TD for Early Fault Detection and Prognostics I E E EACCGSS “

MEN-TD MEN-TD(without kay factors selection)
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with delay = 10 for 10min prediction.

(0.03396 > 0.03149, 0.04568 > 0.03275, 0.06360 >
different time delays. In contrast to the MEN-TD without 0.03722) obtained by the MEN-TD method can prove the
key factors selection method, the better prediction result advantage of the key factors selection.
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FIGURE 12. The first battery cell voltage prediction result of the MEN-TD
method for 20min prediction.

As plotted in Fig.1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6,
Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11, and Fig. 12, the trend

129394

TABLE 2. Root mean square error.

Time PLS(with EN(with MEN-TD(without MEN-

period single fixed single fixed key factors TD
delay) delay) selection)

Smin 0.03413 0.03379 0.03396 0.03149

10min 0.03725 0.03681 0.04568 0.03257

20min 0.04011 0.03960 0.06360 0.03722

of the blue line representing the actual value and the red line
representing the predicted value can coincide. From Fig. 1,
Fig. 5, Fig. 9, for different time periods need to be predicted
at the same time, the prediction error is related to the delay
value (0.03413 < 0.03725 < 0.04011, 0.03379 < 0.03681
< 0.03960, 0.03396 < 0.04568 < 0.06360, 0.03149
< 0.03257 < 0.03722). The smaller the delay value, the more
accurate the prediction result. Although the delay value will
affect the prediction accuracy, as long as the delay value is
controlled within an appropriate range, the predicted trend
can match the actual trend.

By comparing with the control limit, it can realize early
fault detection and prognostics. For the same time period,
the proposed MEN-TD method has the best prediction accu-
racy. Moreover, the control limit of the first battery cell
voltage is the same. Therefore, the high prediction accuracy
means that the key parameter can be more accurately alarmed.
In other words, the accuracy of the proposed MEN-TD
method is highest among three methods.

V. CONCLUSION

This paper proposes the multiple elastic networks with time
delays method for early fault detection and prognostics of the
energy storage power station. By comparing with the control
limit under the normal condition, it is expected to be able
to give fault prognostics and ensure the healthy operation
of the energy storage power station. First, the quantitative
calculation method and the qualitative analysis are combined
to obtain key factors that affect the energy storage power
station key parameter. Then, multiple elastic networks with
different time delays are constructed to predict the change
trend of the key parameter over a period of time simulta-
neously. Based on a large amount of historical normal data,
the kernel density estimation is used to determine the control
limit of the energy storage power station parameter for early
fault detection and prognostics. Finally, the data collected on
the Zhenjiang energy storage power station was tested. The
results show that the predicted value can match the actual
value to a certain extent, which shows the effectiveness of
the proposed MEN-TD method in this paper.
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