
Received June 22, 2020, accepted July 5, 2020, date of publication July 15, 2020, date of current version July 27, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3009432

Optimizing Heap Memory Object Placement
in the Hybrid Memory System With
Energy Constraints
TAEUK KIM1, SAFDAR JAMIL 2, JOONGEON PARK2, AND YOUNGJAE KIM 2
1TmaxSoft, Seongnam 13607, South Korea
2Department of Computer Science and Engineering, Sogang University, Seoul 04107, South Korea

Corresponding author: Youngjae Kim (youkim@sogang.ac.kr)

This work was supported by the Next-Generation Information Computing Development Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science, ICT, under Grant 2017M3C4A7080243.

ABSTRACT Main memory significantly impacts the power and energy utilization of the overall server
system. Non-Volatile Memory (NVM) devices, are suitable candidates for the main memory to reduce static
energy consumption. But unlike DRAM, the access latencies and the dynamic energy consumption of write
operation of the NVM devices are higher. Thus, HybridMainMemory Systems (HMMS) employing DRAM
and NVM have been proposed to reduce the overall energy depletion of main memory while optimizing the
performance of application. However, memory object placement is crucial for optimal performance and
energy efficiency in HMMS due to high write latency and energy consumption of NVM devices. This paper
proposes eMap, an optimal heap memory object placement planner for HMMS. eMap takes into account
the object-level access patterns and energy consumption to provide an ideal placement policy for objects to
mitigate performance and energy consumption. In particular, eMap is equipped with two modules, eMPlan
and eMDyn. eMPlan is a static placement planner which provides one-time placement policies for memory
objects tomeet the energy budget. eMDyn is a runtimemodel to consider the requests of changes in the energy
constraint during the application execution. Bothmodules are based in Integer Linear Programming(ILP) and
consider three major constraints, namely decision, capacity and energy constraints to optimally placing the
memory objects in HMMS. We evaluate the proposed solution with two scientific application benchmarks,
NAS Parallel Benchmark (NPB) and Problem-based Benchmark Suit (PBBS), on two testbeds by emulating
theNVMusingQUARTZ [32]. Our extensive experiments in comparisonwithMemoryObject Classification
and Allocation (MOCA) framework showed that our solution is 4.17× less costly in terms of the memory
object profiling and reduce the energy consumption up to 14% with the same performance. On the other
hand, eMDyn module also meets the performance and energy requirement during the application execution
by considering the migration cost in terms of time and energy.

INDEX TERMS Hybrid main memory system (HMMS), memory object placement, energy consumption.

I. INTRODUCTION
In the computing system, there are two major components
to account for most of the energy dissipation, CPU and main
memory. Recent statistics state that CPU consumes 30%-60%
of the system power [10]. Several techniques to reduce that
energy consumption are designed and adopted [4], [6], [7],
[28]. Dynamic Voltage and Frequency Scaling (DVFS) [6]
and Dynamic Power Management (DPM) [7] are the two

The associate editor coordinating the review of this manuscript and
approving it for publication was Laurence T. Yang.

state-of-the-art approaches to compensate for the power and
energy consumption of CPU. DPM blocks the power to the
processor when it is in idle state while DVFS dynamically
adjusts the clock cycles and voltages of the CPU.

On the other hand, 20%-48% of the energy consumption
is attributed to the main memory [3], [10], [19]. Tradi-
tional main memory systems are composed of homogeneous
memory modules, mainly DRAM which is a volatile, high
bandwidth and low latency memory device. But it con-
sumes significant energy due to volatility, destructive read
operations, and refresh energy. CPU-based energy reduction

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 130323

https://orcid.org/0000-0002-9011-6431
https://orcid.org/0000-0001-8786-3850

T. Kim et al.: Optimizing Heap Memory Object Placement in the Hybrid Memory System With Energy Constraints

TABLE 1. Specification of NVM devices and normalized energy of memory command/byte in nano-Joules [1], [11], [18], [24], [30], [36].

methodologies are also studied for DRAM as well, like pow-
ering down the memory ranks, controlling the base memory
voltage and frequency [9], [15]. However, these techniques
do not fulfill the performance and energy requirements per
application. Whereas, using DPM and DVFS at memory
level degrades the overall system performance due to state
transition latency. Specifically, these approaches only enable
system-level power control, which cannot meet the perfor-
mance requirements of various applications. Some applica-
tions need more computation while others frequently access
memory to perform read and write operations.

New materials to design memory devices, such as
Spin-Transfer Torque RAM (STT-RAM), Phase Change
Memory (PCM), Magnetic RAM (MRAM), and 3D-XPoint,
are being studied to either use as main memory or in con-
junction with traditional memory, DRAM. On the other hand,
these devices do not have idle energy consumption, which
makes them suitable for reducing energy consumption. These
Non-Volatile Memory (NVM) devices, such as STT-RAM
and 3D-XPoint, make it a more suitable alternative than
DRAM as the main memory due to specific properties such
as byte-addressability, persistence, high density, and less
energy consumption [14], [18], [27]. However, NVM offers
lower bandwidth and longer latency than DRAM. Therefore,
it cannot serve as a complete replacement of DRAM. Thus,
Hybrid Main Memory System (HMMS) has been proposed
that incorporates both DRAM and NVM on the processor
memory bus [12], [17], [22], [26], [34].

The energy consumption at the application level depends
on the nature of the application workloads and the access
characteristics of its memory variables. Application energy
consumption varies with different workloads as the appli-
cation’s memory object access patterns, such as lifetime,
size, accessed volume, read/write ratio, spatial & temporal
locality, and sequentiality, change with the workload [16].
Further, various memory devices such as DRAM, PCM, and
STT-RAM exhibit different characteristics for performance
and energy consumption, as shown in Table 1. In HMMS,
optimally placing memory variables to a specific memory
module will lead to optimized performance and high energy
efficiency [12]. For example, a write-intensive variable will
consume more energy at the memory module, which has high
write energy, so it will be efficient to place that variable to
a memory module that consumes less write energy. Thus,
placing memory objects on NVM devices by considering
their characteristics is likewise essential.

Several works to place memory objects in HMMS have
been proposed [12], [22], [34]. These works classify the

memory objects in an application into several categories, such
as bandwidth, latency, streaming objects, and pointer tracking
objects, and assign the application to the most appropriate
memory module [12], [34]. Memory Object Classification
and Allocation framework (MOCA) [22] optimizes the per-
formance of the ternary HMMS by placing memory objects
in the best-suited memory module. It considers their access
behavior specifically based on the rate of the Last-Level
Cache misses per kilo instruction (LLC MPKI) and reduce
the energy consumption through object placement. The major
goal of MOCA is to improve the performance of HMMS
by selectively placing memory objects meanwhile, through
placement, it reduces the energy consumption as well. How-
ever, only considering the LLC MPKI does not provide an
optimal placement of memory objects in HMMS to opti-
mize the performance and energy efficiency. As other access
behaviors of the memory objects, such as lifetime, size, and
accessed-bytes, play an important role in the performance
and energy consumption of the application. MOCA only
provides a static placement and does not consider the energy
consumption requirement during the application execution
time.

In this paper, we propose eMap, which is an optimal mem-
ory object placement algorithm based on object level profil-
ing information and ILP-based placement algorithm. eMap
considers the fine-grained memory objects access patterns
and per-object energy consumption of an application to pro-
vide optimal placement policies for memory objects to meet
the energy limiting constraint while optimizing performance
in HMMS. eMap is equipped with two placement modules,
eMPlan and eMDyn. The eMPlan is a static module that
determines static placements of objects before applications
begin to run. It optimizes the application performance while
reducing the energy consumption to a specific rate by opti-
mally placing memory objects in HMMS. The eMDyn is a
dynamic module that reduces the energy consumption while
optimizing an application’s performance by re-evaluating the
object placement and migrating those objects if necessary to
satisfy the energy requirement during application runtime.

This paper provides following specific contributions:
• eMPlan employs the memory object profiler, Integer

Linear Programming (ILP) based Energy Estimator,
Placement Planner, and a Runtime Memory Allocator.
In eMPlan, the memory profiler analyzes the diverse
access patterns of memory objects of applications using
a Two-Pass memory profiler [16]. The Energy Estimator
considers the energy consumption and characteristics of
both devices, DRAM and NVM, in HMMS respectively.

130324 VOLUME 8, 2020

T. Kim et al.: Optimizing Heap Memory Object Placement in the Hybrid Memory System With Energy Constraints

FIGURE 1. Comparison of DRAM and STT-RAM cell architectures.

The Placement Planner calculates the optimal placement of
memory objects by considering the object access patterns
and the energy consumption obtained from the Energy
Estimator. The RuntimeMemoryAllocator allocates mem-
ory objects to respective memory modules according to the
placement policies obtained by Placement Planner.
• eMDyn consists of an ILP-based Migration Planner and

Migration Executor. While eMPlan decides the place-
ment of objects to optimize the performance and meet
the given energy limiting constraints, the runtime memory
allocator of eMDyn can re-allocate the objects following
the decided placement during the application execution.
eMDyn changes the optimal placement decision at runtime
of the application as the energy constraint or the request
to reduce the more energy consumption can be placed by
the user or system. eMDyn considers the incoming energy
change request and anticipates the memory objects migra-
tion by considering their access patterns and obtain a new
placement. eMDyn only migrates those memory objects
which are already allocated while newly allocated objects
are now placed by considering new optimal placements.
• We evaluate the proposed eMap using real-time application
benchmarks, such as NAS Parallel Benchmark (NPB) [2]
and Problem Based Benchmark Suite (PBBS) [29].
We evaluate the proposed eMap on two different testbed
configurations. Testbed I is an IBM server, whereas,
Testbed II is an Intel based Non-Uniform Memory
Access (NUMA) servers. Due to the lack of actual device,
we emulated STT-RAM over DRAM using the emulation
platform, QUARTZ [32]. We compared our solution with
MOCA framework [22]. The evaluation results show that
our eMPlan outperforms MOCA in reducing the energy
consumption up to 14% with the same performance on
both of the application benchmarks. Our proposed eMDyn
also meets the performance and energy requirements for
NAS benchmark with negligible migration cost in terms
of migration time and energy consumption. The average
energy efficiency of eMDyn is up to 4% with considering
migration cost.

II. BACKGROUND
This section provides the background on the object place-
ment in HMMS, our candidate NVM device, and the object
profiling.

A. SPIN-TRANSFER TORQUE RAM (STT-RAM)
From various NVM devices, STT-RAM is one of the
rapidly developing memory technology. The characteristics
of STT-RAM as shown in Table 1 categorize it as one of the
most suitable candidates for this work as it has low latency
and high durability. However, one disadvantage of STT-RAM
is that it has a high write energy consumption. A recent
study states that STT-RAM has more than twice of energy
consumption in writing to a memory array than DRAM [13].
To deal with this, we adopted the partial write methodology
as one of the energy optimization methods of STT-RAM [18].

Figure 1 shows the comparison of the memory cell struc-
ture of DRAM and STT-RAM. As shown in Figure 1(a),
DRAMmemory cell stores data in a storage capacitor. When
a memory row is read, charge sharing occurs between the
precharged bit line and the storage capacitor. This destroys
the data stored in the cell. Due to this destructive read,
DRAM must perform a restore operation, which requires the
sense amplifier to re-write the sensed data to the memory
cell. Therefore, sense amplifier should maintain the data in
itself, which acts as a row buffer in DRAM. However, since
STT-RAM performs non-destructive reads, its row buffer and
sense amplifier exist separately and act independently from
each other as shown in Figure 1(b). Thus, when STT-RAM
array write occurs, updates are first made to the row buffer.
If memory access whose address is not fetched to the row
buffer, a row buffer conflict occurs. The row buffer write-back
is operated and effective memory array write is done.

In addition, this mechanism incurs unnecessary energy
consumption. The [18] states that when an STT-RAM row
buffer conflict occurs, the data in row buffer is clean more
than 60% and it is less than 6% that the number of dirty
cache blocks in a row buffer is more than four. That is, a large
portion of row buffer is unmodified at row buffer conflict,
and if it was modified, the number of modified blocks in
row buffer is generally less than 4 cache blocks. But, without
any optimization, the whole row buffer should be written
back though most of the blocks are clean and it incurs severe
energy consumption in STT-RAM. To mitigate this problem,
[18] proposed an optimization method, partial-write, which
writes back only the dirty blocks when a row buffer conflict
occurs by holding dirty bits of all cache blocks of row buffer
in the memory controller. When the row buffer is 4 KB, only
64 bits of space is required. Therefore, it is spatially feasible

VOLUME 8, 2020 130325

T. Kim et al.: Optimizing Heap Memory Object Placement in the Hybrid Memory System With Energy Constraints

and the energy consumption of the STT-RAM can be reduced
by upto 70%.

In this work, we target STT-RAM specifically as the
energy model of STT-RAM is already presented, while for
other NVM devices, there is no any energy model. Besides,
the adoption of our work on PCM is part of the future work as
it requires considering some architectural choices as for STT-
RAM, we have to consider the Row Buffer. There is no such
architectural design presented for PCM yet.

B. OBJECT PLACEMENT IN HMMS
Memory devices such as High Bandwidth Memory (HBM),
Reduced Latency DRAM (RLDRAM), and Low Power
DDR (LPDDR) are being produced and studied in a consid-
erable pace [24]. On the other hand, PCM and STT-RAM
are the two most rapidly growing NVM devices to be placed
on a processor-memory bus in conjunction with DRAM to
enable HMMS [12], [20], [22], [23], [34], [35], [37]. Various
works [12], [22], [34] have already been studied to place
memory objects on different memory modules in HMMS by
considering their characteristics.

Nevertheless, one type of memory cannot satisfy various
demands at the same time as these memory devices have
different read/write access latency, density, and energy uti-
lization. For example, RLDRAM has low latency whereas,
power and energy consumption are five times higher than
the DRAM. 3D-XPoint has 750 times higher density
than DRAM, but the latency is 1,000 times higher than
DRAM [22]. If the major workload in the system requires
both low latency and high density, then the main memory
configuration with either RLDRAM or 3D-XPoint will not
produce optimal results. However, if the main memory is
configured by using those two types of memory together,
it can achieve optimal results by placing latency-sensitive
objects in RLDRAM and large-sized objects in 3D-XPoint.
Therefore, several studies have shown interest in enabling
performance efficient options to allocate memory objects in
HMMS [12], [22], [33], [34]. Our target memory system is
HMMS environment comprised of DRAM and NVM, where
DRAM has high performance and NVM has high density and
power-efficiency.

In addition, usually the different applications exhibit vary-
ing characteristics according to their object-level access
patterns. In HMMS, placing memory objects according to
their object-level information can be helpful in optimizing
the performance and reducing the energy efficiency [12].
For example, scientific applications majorly work on their
dynamically allocated memory objects and different objects
exhibit different properties [16]. Now if an application allo-
cate two objects, i.e., A and B. If object A is read-intensive
which means that application will mostly read that object
while object B is write-intensive. Now placing both objects in
homogeneous memory system will lead to high energy con-
sumption due to object B. On the contrary, in HMMS, placing
these objects will be non-trivial as if the read-intensive object
will be placed in high latency memory module than it will

degrade the performance and if the write-intensive object will
be placed in energy sensitive device than it will consume high
amount of energy. So, in HMMS, optimally placing these
objects being aware of access patterns and device properties
will lead to optimal performance and high energy efficiency.

C. OBJECT-LEVEL MEMORY PROFILING
As the memory device type has an effect on energy consump-
tion, the memory object access patterns also play a vital role
in energy dissipation. For example, a write-intensive object
will consume more energy in a memory device with high
write energy. Therefore, the placement of objects on the basis
of the object access pattern and NVM device characteristics
will lead to optimized performance and energy efficiency.
In this paper, we adopted the two-pass memory profiler to
extract object access patterns information [16].We utilize that
extracted information to estimate the energy consumption for
objects to be placed onHMMS, and the device specific energy
model is explained in the Section IV.

Two-pass memory profiler targets the dynamically allo-
cated heap memory variables and extracts basic information
such as size, lifetime, and call-stack. We have extended the
two-pass profiler to extract the fine-grained object access pat-
terns and the details are provided in section IV-A1. The dis-
tinction between variables and objects is based on a call-stack
consisting of the order of memory allocation function calls
and the order of allocation function return addresses. The
two-pass profiler workflow is shown in Figure 2.

FIGURE 2. Two-pass memory profiler [16].

III. HEAP MEMORY OBJECT PLACEMENT SYSTEM
This section describes the design goals, various components,
and the interactions between components in the eMap system.

A. GOALS
In this section, we discuss our key design principles.Optimal
Object Placement: The high access latency of NVM devices
makes them ill-suited to replace the main memory. Using
NVMs in conjunction with DRAM forms a HMMS. It helps
in reducing the high access latency of NVM through intel-
ligently placing memory objects in DRAM and NVM.This

130326 VOLUME 8, 2020

T. Kim et al.: Optimizing Heap Memory Object Placement in the Hybrid Memory System With Energy Constraints

FIGURE 3. Description of various components of eMap and how they interact.

first goal of eMap is to obtain the optimal placement for heap
memory objects by considering their detailed access patterns,
such as lifetime, size, accessed volume, and dirty cache-lines,
for an HMMS.
Energy Efficiency: The idle energy consumption of

DRAM makes it a power-hungry device. On the other hand,
NVMs do not have idle energy utilization, which makes them
a suitable candidate for reducing the energy efficiency of the
system. But, the dynamic energy consumption of the NVM
devices is high, specifically when writing. So, placing mem-
ory objects in HMMS effectively will help in reducing the
energy efficiency of the system. The Second goal of eMap is
to optimize the energy efficiency of the HMMS by optimally
placing the memory objects.

To achieve these goals, we proposed eMap, the methodol-
ogy to place thememory objects in theHMMSby considering
their detailed access patterns. In particular, we developed
an Integer-Linear Programming based memory object place-
ment planner to efficiently allocate the memory objects in the
HMMSwhile meeting the energy requirements of the system.

B. OVERVIEW
Figure 3 depicts the interaction between various components
of eMap for HMMS, composed of DRAM and STT-RAM.
The left side of the diagram shows the execution of an appli-
cation in HMMS where it allocates some of the memory
objects in DRAM while some in STT-RAM. The right side
of the figure shows three phases for eMap, Profiling, Plan-
ning, and Runtime. The profiling and planning phases are the
part of our static module of eMap, while the runtime phase
belongs to the dynamic module.
Profiling Phase: It adopted Two-Pass memory profiler for

the extraction of memory-level object access patterns such as
size, lifetime, accessed volume, and last-level cache (LLC)
miss counts [16]. These extracted object access patterns
are stored in the database named Hybrid Memory Object
Database (HyMO-DB), as shown in Figure 3. HyMO-DB

also stores the device-level characteristics and the placement
decisions of the memory objects from planning and runtime
phases.
Planning Phase: It is an ILP-based algorithm and employs

three major constraints, i.e., (i) Decision, (ii) Capacity,
and (iii) Energy. The pseudo-code of planning phase is shown
in Algorithm 1. The object access patterns for an application
are fetched from HyMO-DB and the placement decisions are
generated.

• In the first step (lines 1 to 4), the ILP model is loaded
using a third party library [5] and the Decision constraint
is defined for each memory object from the HyMO-DB
of an application. Decision constraint is bound to be
binary (either 0 or 1) as our target HMMS consists of 2
memory devices, DRAM and STT-RAM.

• In the second step (lines 5 to 9), the Capacity constraint
is defined for all the memory objects. Capacity con-
straint is bound not to exceed the memory modules’
capacity for the placement of memory objects, which
means that the number of objects that are placed on each
memory module should not exceed the memory device’s
capacity individually.

• In the third step (lines 10 to 13), the Energy constraint
is defined to reduce energy efficiency. As one of the
primary goals of our proposed algorithm is to reduce
the energy efficiency by optimally placing the memory
objects in HMMS by considering the energy require-
ment, we take the rate of energy consumption to be
reduced from DRAM energy consumption as input and
bound the ILP constraint to not exceed for each memory
object.

• In the fourth step (lines 14 to 16), we define the objective
function of our proposed algorithm, which is to optimize
the performance, determine the overall latency of each
memory object, and bind the objective function accord-
ing to the latency values.

VOLUME 8, 2020 130327

T. Kim et al.: Optimizing Heap Memory Object Placement in the Hybrid Memory System With Energy Constraints

Algorithm 1 ILP-Based Object Placement Algorithm
Input: Object access patterns and energy rate
Output: Placement decisions

1 Load ILP model;
// Decision Constraint

2 while objects do
3 Add Constraint;
4 Bound to be binary;

// Capacity Constraint
5 while Objects do
6 set objects.size→ ILP Format;

7 Add Constraint;
8 Bound constraint ≤ DRAM capacity;
9 Bound constraint ≤ NVM Capacity;
// Energy Constraint

10 while Objects do
11 set object.energy→ ILP Format;

12 Add Constraint;
13 Bound constraint ≤ energy.DRAM * Energy Rate;
// Objective Function

14 while Objects do
15 set object.latency→ ILP Format;

16 Load ILP_Objective_Function;
// Compute Model

17 set_minim(ILP_model) ; // Optimize for
minimization

18 write_ILP(ILP_model) ; // Write the model
with all the constraints

19 sovel_ILP(ILP_model) ; // Solve the model
20 return Object_placement ; // Return object
placement to HyMODB

• Last but not the least step (lines 17 to 19), we optimize
our ILP algorithm for minimum values so that the per-
formance is optimized. Then we write the ILP model
with all the above three constraints and compute the
model for the optimal placement decisions. Once the
placement is calculated, it is stored in the HyMO-DB,
and the application is executed with static placements.

Runtime Phase: eMDyn plays a vital role during the exe-
cution of the application, as there may be a need to change
the energy limiting constraint during the application execu-
tion. In the Runtime phase, the migration planner is trig-
gered which re-evaluates the placement of memory objects
by considering their current states, such as where an object is
placed and how much lifetime of the object is remaining, and
obtains a new placement policy for all the major objects. The
migration planner is also based on the ILP algorithm shown
in Algorithm 1 with just modifications in the computation
part of the energy consumption. Once the new placement is
obtained, the object is either migrated based on the placement
decision from its previously placed memory module to the

new memory module that is from DRAM to NVM and vice
versa by eMDyn migration executor module.

IV. DESIGN AND IMPLEMENTATION
In this section, we explain the details of our proposed eMap
approach.

A. eMPlan: STATIC OBJECT PLACEMENT
This section provides design details of the eMPlan.

1) OBJECT PROFILER
eMPlan profiles the memory object access patterns and esti-
mates the energy consumption of the object with device
specific energy model and extracted object access patterns.
We extended the Two-Pass memory profiler [16] to extract
fine-grained profiling information of heap memory objects.
As shown in Figure 2, Two-Pass Profiler operates in two
passes, i.e., Fast-pass and Slow-pass. Fast-pass identifies
all the heap memory allocations using the call-stack and
assign a hashed identifier and the size of the objects are
also obtained. In the offline processing (when application is
not being executed), target memory objects are selected for
detailed profiling. For effectiveness and to reduce the com-
plexity of profiling, we only take into account those memory
objects whose accessed size is larger than 1MB, called major
objects.1

The Slow-pass then considers the target objects selected
in the offline processing and extracts the detailed access
patterns. The Slow-pass utilized customized PIN-Tool [21]
which can easily be extended to extract all the necessary
object-level access patterns at instruction-level. Two-Pass
profiler provides a wrapper library for tracing the heap mem-
ory allocation calls, such as malloc, realloc, and calloc, and
each heap memory object access goes through the custom
analysis code which is based on PIN-tool. We extended
the wrapper library to extract the required object access
information using the PIN-Tool. We traced all store instruc-
tions to the heap-allocated objects and calculated the various
object access patterns. Also, we used the Performance API
(PAPI) [31], a hardware event counter, in the custom analysis
code to count the cache misses.

For STT-RAM row buffer, we set a buffer to have the same
size in the virtual memory of profiler. This virtual buffer is
used to count the number of dirty cache blocks which will be
written back to the memory array when a row buffer conflict
occurs. The assumption here is that when a single process
runs on the machine, the number of dirty cache blocks in the
virtual memory buffer and the actual device’s row buffer will
exhibit a consistent pattern if the sizes of both buffers are
identical.

For DRAM page policy, we take into account the closed
page policy, which always flushes open row buffer to corre-
sponding row in the memory array. While open page policy

1Our solution only considers the major objects for the placement and
we interchangeably used the terms major object, heap memory objects and
simply the objects.

130328 VOLUME 8, 2020

T. Kim et al.: Optimizing Heap Memory Object Placement in the Hybrid Memory System With Energy Constraints

has different types, for example fixed open page policy and
adaptive open page policy, we did not consider open page pol-
icy concepts because we just deal with the object placement
in HMMS, not optimization of DRAM memory controller.
Thus, we assumed general memory controller page policy.

The remaining memory objects that are less than 1 MB
are placed in DRAM. And the baseline placement of memory
objects and the code of the application is DRAM. To estimate
the energy consumed by the objects in HMMS, the following
memory access information is required: (i) object size, (ii)
total amount of memory read and written by object, accessed
volume (iii) object lifetime, and (iv) the total number of dirty
cache blocks in a certain size of row buffer.

2) SCALING RATE VECTOR
When an application’s workload changes its access patterns
are also varied accordingly. However, [16] states that 98.1%
of the objects are scaled or fixed as the input workload size
scales. This means that when input workload scales, object
access patterns also scale consistently (with a scaling rate of 1
for a fixed object). Thus, the profiling of target application
is not required for every time the workload changes and a
scaling rate vector can be derived. The scaling rate vector of
the access patterns is based on the profiling information of
various workloads of the application so it can be stored in the
HyMO-DB shown in Figure 3.

The input size of the application can be set by user which
makes the derivation of scaling rate vector easy. For example,
if the workloads of the application are ‘N’, we can derive the
average rates of access patterns among the ‘N’ input sizes and
compose the vector with these rates. A generalized view of the
scaling rate vector for various access patterns can be shown
in Equation 1 where api is a particular access pattern, such as
size, lifetime and LLC miss count, ini is the workload size of
the target application, and N is the total number of workload
a target application provides.

avg_grad =
N−1∑
i=1

{(api+1 − api)/(ini+1 − ini)}/(N − 1) (1)

For example, if the i-th object has size (Si) is 10 MB for the
workload in1, Si = 19 MB for the workload in2 and Si =
25 MB for the workload in3 then the scaling rate vector for
the size of i-th object can be derived as:

{(19 MB−10 MB)/(in2−in1)

+(25 MB−19 MB)/(in3−in2)}/2

3) ENERGY ESTIMATOR
The energy estimation in eMPlan is the key component as
it provide the estimated energy consumption to compute the
optimal placement of memory objects. The energy estimator
calculates the per-object energy consumption for both of the
memory modules of HMMS where all the objects are placed
to either of the memory devices, respectively. We adopted
STT-RAM as an example of NVM device and suggest the

TABLE 2. Energy consumption of memory command per byte [18].

energymodel of DRAMand STT-RAMbased on themethod-
ology [18]. In this work, we target STT-RAM specifically as
the energy model and the architectural details are provided in
[18] while other NVM devices architectural details and the
energy models are not yet determined.

The memory commands are classified as Activate (ACT),
Pre-charege (PRE), Read/Write (RD/WR), Refresh (REF),
Row Buffer Access (RBA), and Write-Back (WB) [18].
ACT is the command which activates the accessed bank
and row before memory RD/WR in both memory devices.
PRE pre-charges the bit-line to prepare the next memory
access and to restore the read or written data in memory
array of DRAM. RD/WR are the actual memory read and
write. REF recharges the voltage to storage capacitor of
memory cell to prevent a data loss due to current leakage
in DRAM. RBA is the cost to access the row buffer and
WB is the cost of writing row buffer data back to memory
array when a row buffer conflict occurs in STT-RAM. Table 2
shows the per-byte energy consumed by above mentioned
commands.

Our proposed energy model calculates the energy con-
sumption on per-object basis. Equation 2 represents the
energy consumption of the i-th object when it is placed in
DRAM. The accessed volume (AVi) of the object represents
how much in total an object is being accessed during its
lifetime which is extracted during the profiling phase. It is
reasonable to multiply (AVi) with DRAMACT, PRE and REF
energy consumption. For DRAM refresh energy (dEREF),
we assumed selective refresh policy per row (4 KB). In addi-
tion, the refresh energy of DRAM is also being considered
with the lifetime (Ti) and actual size (Si) of the object. The
reason to consider the accessed volume and size separately
is to comprehensively take into account all the read and
write operations that are being performed for object during
its lifetime. Equation 3 represents the energy consumption of
the i-th object when it is placed in STT-RAM. As shown in
the section II-A, STT-RAM read/write operations fall back to
Row Buffer that’s why we have considered the row buffers
exclusively while considering the read/write operations to
STT-RAM. Same as DRAM, STT-RAM also bears the cost
of ACT and PRE. In addition, we have considered the write
backs to STT-RAM in terms of number of dirty cache blocks
(NDC) and the cache block size (VCB). Table 3 defines the
notations used in the equations.

DEi = dEA+P · AVi + dERW · AVi + dEREF · Si · Ti (2)

NEi= nEA+P · AVi+nERBA · AVi+nEWB · NDC · VCB (3)

VOLUME 8, 2020 130329

T. Kim et al.: Optimizing Heap Memory Object Placement in the Hybrid Memory System With Energy Constraints

TABLE 3. Notations used in the equations where i represents the ith
object.

4) PLACEMENT PLANNER
The Placement Planner of the eMPlan determines the opti-
mal placement of memory objects to optimize the perfor-
mance while satisfying the energy limiting constraint that
is requested externally. It utilizes the per-object energy esti-
mation model for DRAM and STT-RAM. We modeled the
Integer-Linear Programming (ILP) algorithm for the Place-
ment Planner. Our model is based on three major constraints
for the implementation of Placement Planner, Decision Con-
straint, Capacity Constraint, and Energy Limiting Constraint.
We adopt a third-party shared library, lp_solve [5], to imple-
ment these constraints.

a: DECISION CONSTRAINT
The Decision Constraint is to make the placement decision
for each memory object that whether a particular object will
be placed on DRAM or NVM. This placement can be repre-
sented by an ILP variable, Xi, which represents 0 for NVM
and 1 for DRAM as shown in equation 4.

0 ≤ Xi ≤ 1 for i = 1, 2, . . . ,N (4)

b: CAPACITY CONSTRAINT
The second constraint takes into account the limited capac-
ities of memory devices. It checks that all the allocated
objects sizes should not exceed the capacity of memory
device. Equation 5 shows the capacity constraint for both
memory devices. CD represents DRAM while CN is NVM
capacity.

N∑
i=1

Xi · Si ≤ CD
N∑
i=1

(1− Xi) · Si ≤ CN (5)

c: ENERGY CONSTRAINT
The third constraint considers the energy limitation requests
issued by client or the remaining battery lifetime of the
system. The external energy limit constraint is given as a
specific ratio of existing energy consumption. All objects
of target application must be allocated not to exceed the
required ratio of the energy which is consumed when all
objects are placed in DRAM. Equation 6 shows the energy
limiting constraint. Let the required ratio be R, then the sum
of energy consumption of all the objects placed in HMMS
should not exceed R times the energy consumption of objects
placed entirely in DRAM (DEi).

N∑
i=1

{Xi · DEi + (1− Xi) · NEi} ≤
N∑
i=1

DEi · R (6)

d: OBJECTIVE FUNCTION
The goal of eMPlan is to minimize memory access latency
while satisfying the above constraints. That is, the sum of
whole HMMS access time should be minimized. Each device
access time can be derived by multiplying the total access
counts of objects and the latency of the device. The Perfor-
mance API [31] is used to count the actual memory access in
profiling step to get the total LLC miss counts. This objective
is presented in Equation 7 where LDRAM and LNVM indicate
the latency of DRAM and NVM respectively, and L3Mi
indicates the LLC miss count of i-th object.

f =
N∑
i=1

{Xi · LDRAM · L3Mi + (1− Xi) · LNVM · L3Mi} (7)

5) RUNTIME ALLOCATOR
Once the Placement Planner decides the placements for all
the major variables, the target application is executed in
real-time and the Runtime Allocator of eMPlan operates to
allocate those objects. The Runtime Allocator configures the
object allocation table with the determined placement at the
initialization step. In the object allocation table, the identi-
fication of objects is achieved with the hash values of the
call-stack of dynamic allocation functions. Once the target
application starts execution, eMPlan hooks all the dynamic
memory allocation functions on every object and calculates
the hash value from its call-stack and compares with the
object allocation table to identify the target objects. If the
allocated object is the placement target object, the placement
decision of the object is referred from the object allocation
table. If the mapped device is DRAM, existing allocation
functions such as malloc is used. If the allocated device is
NVM then NVM allocation API, which is provided by NVM
emulation tool QUARTZ [32], is used.

B. eMDyn: DYNAMIC OBJECT PLACEMENT
eMDyn is the second module of eMap and it considers
the energy limiting requests at the runtime and re-evaluate the
placement of memory objects and migrate then to meet the

130330 VOLUME 8, 2020

T. Kim et al.: Optimizing Heap Memory Object Placement in the Hybrid Memory System With Energy Constraints

new energy constraint. eMDyn is based on two sub-modules,
migration planner and migration executor.

1) MIGRATION PLANNER
The migration planner is an ILP-based algorithm to
re-calculate the placement of major objects to meet the new
energy requirements. Shuffling the memory objects to meet
the energy constraint also incurs some energy consumption
of migration, i.e., migration cost. So, it considers the access
patterns, migration costs in terms of energy and performance,
and the new energy limiting constraint to satisfy the energy
while optimizing the performance of application in HMMS.
It is also based on similar three major constraints, Migration
Decision, Capacity, and Energy Constraint.

a: DECISION CONSTRAINT
The migration decision (Xi) shows that if it is beneficial to
migrate an object from its current placement to new one. It is
similar to Equation 4. If it is beneficial to migrate than Xi will
be 1 otherwise 0.

b: CAPACITY CONSTRAINT
Similar to section IV-A4.b, it considers that the migrated
objects size should not exceed the capacity if memory
devices. Let CPi be the previous placement of the object
before energy constraint change. Due to space limitation,
we have omitted the equations of Migration Decision and
Capacity Constraint as they are equivalent to eMPlan.

c: ENERGY CONSTRAINT
The major goal of eMDyn is to meet the new energy limiting
constraint while optimizing the performance. For that migra-
tion planner calculates the total energy consumption includ-
ing the migration cost and then decide the new placement.
The energy consumed by the objects that are being migrating
from DRAM to NVM and NVM to DRAM are shown in
Equation 8 and Equation 9, respectively.

dnEi = DEi ·
t − sTi
Ti
+MigCE1i + NEi ·

fTi − t
Ti

(8)

ndEi = NEi ·
t − sTi
Ti
+MigCE2i + DEi ·

fTi − t
Ti

(9)

Here, t indicates the time point during the application
execution when the request of energy constraint change
occurred. In addition, the migration cost for energy con-
sumption (MigCE1i & MigCE2i) for DRAM to NVM and
vice-versa is equivalent to Equation 2 and Equation 3, respec-
tively. The major difference is instead of counting the total
accessed volume, here we only consider the size of the object
and the migration cost in terms of time deemed with DRAM
REF energy. Due to space limitations, we excluded the equa-
tion representation.

Using Equations 8 and 9, the total amount of energy
consumption involving object migration can be presented in

Equation 10.

Etotal =
N∑
i=1

[
Xi · {CPi · dnEi + (1− CPi) · ndEi}

+ (1− Xi) · {CPi · dEi + (1− CPi) · nEi}
]

(10)

Equation 10 is the left-hand side of the energy limit con-
straint inequality. In the meantime, the right-hand side of the
inequality may vary according to the purpose of the external
request. The requested energy constraint can be categorized
into two possibilities. First, the new energy constraint is
effective only when the limit is strictly kept. That is, if the
object migration cannot satisfy the new energy constraint,
eMDyn does not shuffle the current placement of memory
objects. Second, the new energy constraint does not require
tight limiting. For instance, user may require to reduce energy
consumption regardless of meeting the energy constraint.
In this case, eMDyn shuffles the memory objects.

To consider these different demands, theMigration Planner
provides an additional flag, F , as an input parameter whose
value is 1 when the purpose belongs to case (i) and 0 other-
wise. By considering these cases, the requirement Rq can be
shown as Equation 11.

Rq = F ·
[N∑
i=1

dEi · Rn
]
+(1− F) ·

[N∑
i=1

{CPi · dEi

+ (1− CPi) · nEi}
]

(11)

Equation 11 becomes the right-hand side of the energy lim-
iting inequality and Rn indicates the newly required energy
constraint. Therefore, the total energy constraint shown in
Equation 10 should be less than and equation to the required
energy shown in Equation 11.

d: OBJECTIVE FUNCTION
The Migration Planner aims to minimize the memory access
latency, and it can be calculated by the sum of total latency
due to objects that are either migrated or not. If an object
which is assigned to DRAM currently is a migration candi-
date to NVM, the total latency (dnLi) of that object can be
shown as Equation 12.

dnLi=LD · L3Mi ·
t − sTi
Ti
+MigCTi+LN · L3Mi ·

fTi − t
Ti
(12)

The Placement Planner of eMPlan profiles the number of
LLC misses (L3MI) of memory object in advance to count
the number of actual memory accesses. However, the infor-
mation of how many LLC misses would occur during the
object migration cannot be measured before runtime. Thus,
we assume that the access to the memory device would
occur for the whole object both in reading and writing. The
migration cost (MigCTi) for the time taken to migrate can be
calculated by considering the access latency of each device
(LD & LN) and the size of the memory object.

VOLUME 8, 2020 130331

T. Kim et al.: Optimizing Heap Memory Object Placement in the Hybrid Memory System With Energy Constraints

Likewise, an object which was placed to NVM previous is
the migration candidate then its total access latency can be
presented as Equation 13.

ndLi = LN · L3Mi ·
t − sTi
Ti
+MigCTi + LD · L3Mi ·

fTi − t
Ti
(13)

Thus, the total delay time of the objects for migration can
be presented as shown in Equation 14.

f =
N∑
i=1

[
Xi · {CPi · dnLi + (1− CPi) · ndLi}

+ (1− Xi) · L3Mi · {LD · CPi + LN · (1− CPi)}
]

(14)

2) MIGRATION EXECUTOR
Once the migration decision for all the target objects is made,
the Migration executor operates to perform the migration
task and relocate the memory objects between respective
memory modules. The steps of the object migration are as
follow:

1) A new object with the same size of the candidate object
is allocated in the respective memory module.

2) The currently stored data of the candidate object is
copied to the new object.

3) The pointer of the candidate object is revised to point
towards the newly allocated object.

4) The candidate object is de-allocated.

In step 3, Migration executor should maintain the address
values of not only the pointer directly referring to the object
in the allocation time, but also all general pointer variables
which point to the object in the target application. In this
work, we implement a member function that registers appli-
cation pointers’ addresses, and we have called it in every
pointer reference on major objects in the target application.
But, this method incurs application code modification to
register the pointer addresses for Migration executor. To deal
with this problem, the proxy pointer concept, which is sim-
ilar to the proxy object suggested by [8], can be applied.
Bymaintaining one proxy pointer permajor object,Migration
executor can set all application pointers to refer to this proxy
pointer. Migration executor will be able to migrate the objects
only with changing the destination of proxy pointer. In case
of migration, twominor issues that need to be consider during
the migration are the migration scenarios and the case of
failure at the migration.

a: MIGRATION CASES
Some of the example of migration cases can be: (1) when
the user deliberately wants energy efficiency due to high
charges of supporting systems from the data-center service
providers and (2) when the system is required to reduce the
energy consumption for long running applications to provide
resources to the other applications.

b: FAILURE-SAFE MIGRATION
The memory objects are migrated in a failure-safe manner
across thememorymodules. For instance, if the failure occurs
at Step 2 of the migration executor, the application will
still access the previous object pointer as the pointer in the
application is not updated or if the failure occurs during the
Step 3 of the migration executor, the application will still
access the previous pointer as the new pointer is not updated
completely.

V. EVALUATION
A. EXPERIMENTAL SETUP
We evaluate our proposed eMap system on two different
testbed configurations and we have evaluated two bench-
marks, Problem-based Benchmark Suit (PBBS) [29] and
NAS Parallel Benchmark (NPB) [2] as shown in Table 4.

TABLE 4. Testbed specifications and benchmark workloads.

For the emulation of NVM in HMMS, we adopted the
QUARTZ emulation platform [32]. The read and write
latency of DRAM is considered as 10ns [36] while the read
latency of STT-RAM is 32ns and write latency is 72ns [30].
In our system configurations, the memory latency before
emulation is measured to be 200 ns with QUARTZ [32].
We computed the ratio of DRAM to STT-RAM latency and
shown in Table 4 for emulation. For the evaluation of the
energy consumption in both testbed configurations, we cal-
culated the estimated energy consumption with suggested
equations. Equation variables (memory access patterns)
are derived from object-level profiling. For the evaluation,
we only present the estimated energy consumption of the
memory system excluding the CPU and caches. Asmeasuring
the energy consumption of memory systems in real-time is
not possible due to lack of measuring tools.

We compared eMPlan with MOCA [22], which improves
both performance and energy by selectively placing mem-
ory objects in HMMS. MOCA measures the LLC MPKI
of objects in HMMS consisting of high-bandwidth, low-
latency, and low-power memory modules. In addition,
MOCA also considers the memory-level parallelism in pro-
filing which is beyond the scope of this work. It allocates
memory-intensive objects which have high LLC MPKI val-
ues to high-bandwidth and low-latency memory modules.

130332 VOLUME 8, 2020

T. Kim et al.: Optimizing Heap Memory Object Placement in the Hybrid Memory System With Energy Constraints

This methodology is applicable to HMMS that composed of
DRAM and NVM by considering DRAM as high-bandwidth
and low-latency memory.

B. eMPlan PERFORMANCE AND ENERGY EVALUATION
In this section, we will present the performance and energy
estimation evaluation of our static module of eMap, eMPlan,
using the PBBS and NPB on Testbed I.

1) ANALYSIS ON PBBS APPLICATIONS (BFS, SF)
In this section, we compare the results of eMPlan placement
with multiple energy limiting constraints by counter-part
placement methodology, MOCA [22].

FIGURE 4. The performance and energy consumption of the PBBS BFS
Application. The x-axis represents different HMMS configurations in
terms of capacities of DRAM and NVM. HMMS(8, 16) determines that
DRAM is 8 GB while NVM is 16 GB. While y-axis shows the execution time
and estimated energy consumption percentage for both, respectively.

Figure 4(a) and (b) show the performance and estimated
energy consumption of the proposed eMPlan for BFS appli-
cation, respectively. Considering the larger density of NVM,
we conduct various experiments while reducing the capacity
of DRAM in HMMS. The memory footprint of the workload
is shown in Table 4 and the selection of HMMS configuration
was from extreme limited to enough capacity in terms of
DRAM. In Figure 4, the EC_X shows the energy limit-
ing constraint in contrast to DRAM-only that the allocated
objects will not exceed X times of the energy consumption.
For example, EC_0.9 is the case where objects are allo-
cated in HMMS to consume energy less than 90% of the
DRAM-only case and so on. On the other hand, the random
case shows the execution time and estimated energy con-
sumption when objects are randomly allocated without any
placement decision in a range which does not exceed the
capacity of given memory devices.

The MOCA in the experimental results are the object
allocation followed by the methodology [22]. In Figure 4(a),

FIGURE 5. The performance and energy consumption of the PBBS SF
Application. The x-axis represents different HMMS configurations while
y-axis shows the execution time and estimated energy consumption
percentage for both, respectively.

the execution time increased as the energy constraint becomes
more restricted such as EC_0.8 and above. The reason
is eMPlan gives priority to performance-critical objects to
be placed on DRAM and once the energy limit constraint
becomes more strict than 80%, it starts to allocate the
performance-critical objects to NVM. Nevertheless, if an
application user wants to sacrifice some performance to
reduce more energy, one may need intense constraint over
80%. Random and MOCA methodologies cannot consider
the placement which decreases further energy consumption
with performance trade-off. Figure 4(b) shows that eMPlan
meets the given energy constraints. The random placement
has shown the worst energy efficiency where its execution
time is longer than EC_0.75.

Figure 4(b) has also shown that eMPlan is more
energy-efficient than the MOCA methodology. The A, B,
and C points in Figure 4 show that the placement policies
of eMPlan and MOCA are almost similar, however, at point
A, the energy consumption of MOCA is 8.2% higher than
eMPlan. In contrast, at point B the performance and energy
consumption of both are almost identical. In addition, at point
C, the energy consumption of MOCA is less than eMPlan as
the proposed approach prefers to place performance critical
objects on DRAM to optimize the performance of HMMS.
On the other hand, MOCA only provides one-time placement
policies for memory objects without considering the user
requirements for performance and energy efficiency.

To better understand this, we analyze the per-object energy
consumption of the BFS application as shown in Figure 6.
The object placement decision of both techniques is almost
similar except 4-th object, where eMPlan has placed that
object in NVM while MOCA has placed it on DRAM.

VOLUME 8, 2020 130333

T. Kim et al.: Optimizing Heap Memory Object Placement in the Hybrid Memory System With Energy Constraints

FIGURE 6. Per-object energy consumption of PBBS BFS (normalized to
all-DRAM energy consumption). The x-axis shows the number of memory
objects while y-axis is the estimated energy consumption.

4-th object has the second-longest lifetime among objects of
BFS and occupies the largest memory usage (826 MB), so if
it is placed to DRAM, the amount of energy consumed in
refreshing is large. Also, though the LLCMPKI value of 4-th
object is bigger than the threshold (0.025), it is not too large
enough to impact performance. Therefore, when 4-th object
is allocated to DRAM, it does not only result in significant
performance improvement but also consumes over 2.2×more
energy. The eMPlan module places 4-th object to NVM by
considering this in advance, but MOCA places it in DRAM
because MOCA cannot consider object access pattern and
memory devices characteristics.

Spanning Forest (SF) of PBBS benchmark also shows
consistent results with BFS. Figure 5(a) and (b) show the
performance and estimated energy consumption at given
energy constraint. Figure 5(a) shows that the execution of
eMPlan is same until the EC_0.67 as the application latency
increases as the energy constraint go beyond 67% of DRAM-
only. This is because eMPlan effectively works to minimize
the latency while satisfying the energy constraint until 68%
of DRAM-only as it place the latency-insensitive objects to
NVM in order to further reduce the energy consumption on
67% of DRAM-only energy constraint. Figure 5(a) and (b)
also show that eMPlan is more energy efficient than MOCA.
The A, B, and C points in Figure 5 show that eMPlan place-
ment decisions at energy constraint EC_0.68 have the same
application execution time asMOCA.However, the estimated
energy consumption is 14% more efficient than MOCA as
eMPlan places the memory objects by considering detailed
access patterns and the characteristics of memory devices.
Thus our methodology places only those objects to NVM

which has better energy efficiency than MOCA. On the other
hand,MOCAonly considers the Last-Level Cachemisses and
memory-level parallelism to decide the placement of memory
objects which leads to sub-optimal memory placement deci-
sions and results in high energy consumption consequently.

2) ANALYSIS OF NPB BENCHMARK (CG, FT)
We also evaluate the NPB benchmark, a high-performance
computing workload, to analyze the results by changing
energy limit constraints. The applications used in this exper-
iment are CG and FT. Figure 7(a) and (b) show the
performance and the estimated energy consumption of CG
application with varying energy constraints. Fig 7(a) shows
that performance deteriorates as the energy constraint is
becoming strict due to the small number of objects that
actually affect the performance. In CG, five out of 14 objects
occupy almost 99% of DRAM size. Thus, as energy con-
straint increases, major objects are placed in the NVM caus-
ing performance degradation. Figure 7(b) shows that all the
placement methodologies satisfied the energy constraint. But
for CG, the MOCA placement has the lowest energy con-
sumption but the longest execution time. If a low energy
limit and fast execution time are required, the current MOCA
methodology cannot satisfy this requirement.

FIGURE 7. The performance and energy consumption of the NPB CG
Application. The x-axis represents different HMMS configurations while
y-axis shows the execution time and estimated energy consumption
percentage for both, respectively.

FT application of the NPB benchmark exhibits the same
execution patterns as CG. Figure 8(a) shows the execution
time of FT, as the energy constraint is becoming strict the
application performance is degraded due to the limited num-
ber of major objects. FT has only six objects in total where
four of them occupy 99.7% of total DRAM space. After
certain energy constraints, objects that have major impacts
on the execution time must be placed to NVM in order to

130334 VOLUME 8, 2020

T. Kim et al.: Optimizing Heap Memory Object Placement in the Hybrid Memory System With Energy Constraints

FIGURE 8. The performance and energy consumption of the NPB FT
application. The x-axis represents different HMMS configurations while
y-axis shows the execution time and estimated energy consumption
percentage for both, respectively.

meet the required energy limit. Thus, when those objects
are allocated to NVM, performance is decreased rapidly.
Figure 8(b) shows that eMPlan meets the given energy con-
straint. In FT, the placement policy of eMPlan at energy
constraint EC_0.9 has a similar execution time as of MOCA
in HMMS (2, 16) configuration while it has 4.3% more
energy efficiency. This is because when the DRAM capac-
ity is sufficient, the eMPlan module can take advantage
of energy consumption by calculating the object placement
which MOCA methodology cannot account for. However,
whenDRAMcapacity is reduced, placement cases of eMPlan
are strictly limited, so the energy difference between eMPlan
and MOCA placements decreases.

C. ENERGY CONSUMPTION COMPARISON
MOCA VS eMPlan
In this experiment, we modified the MOCA methodology
and configure it to meet the energy constraint. In original
MOCA [22], objects are allocated on the basis of the spe-
cific threshold of the LLC MPKI, if the object has met the
threshold then it will be placed in high performant memory
otherwise placed at low-performing memory device. The
LLC MPKI threshold is derived from several experiments
for efficient performancewhilemaintaining energy consump-
tion. MOCA can also satisfy the energy limiting constraints if
we set the LLCMPKI threshold effectively. However,MOCA
cannot estimate the amount of energy consumed by each
object in DRAM and NVM based binary HMMS because
it does not consider the detailed object access patterns and
NVM device characteristics. Through MOCA, the threshold
to satisfy the energy constraint cannot be calculated but it

must be empirically set by performing several experiments
repeatedly.

MOCA samples the LLC MPKI and ROBH stall cycle
information at a fixed interval (i.e. 1000 instructions) when
the target application is executed and records the informa-
tion along with the call-stack. After application execution is
finished, MOCA maps those information to the object via
allocation function call-stack, and then calculates thememory
object energy consumption with per-object information. That
is, if we assume that MOCA uses object access pattern profil-
ing and energy models of DRAM and NVM in this research,
MOCA can calculate the total energy consumption after the
execution of the target application.

FIGURE 9. PBBS BFS execution time & energy consumption estimation of
MOCA on various LLC MPKI values. (Estimated energy consumption is
normalized to all-DRAM energy). The x-asis is the LLC MPKI threshold,
M_Thr .

Figure 9 shows the estimated energy consumption based on
various LLCMPKI values of MOCA placement in the PBBS
BFS. It shows if the LLC MPKI threshold varies by same
unit, then the change on energy consumption does not have
any consistent pattern. Thus, to find the LLC MPKI value
satisfying the energy limit constraint throughMOCA, the Thr
should be searched by a certain unit. For example, to meet the
energy constraint that consumes less than 75% of energy to
DRAM-only, MOCA should search by a certain unit increase
in LLC MPKI. In our experimental environment, eMPlan
module takes up to 23.635 seconds of placement computation
time and object allocator overhead, which is only related to
BFS application. On the other hand, MOCA should execute
the application four times, which takes 78 seconds, to find the
adequate LLCMPKI threshold to meet the energy constraint.
With including real execution time that takes 20.6 seconds in
M_0.05, MOCA placement spends 4.17× than eMap execu-
tion time in this example.

Also, there are cases where the fluctuation of LLC MPKI
threshold value, which affects energy consumption and per-
formance, is extremely minimal. In the case of NPB CG, for
example, when the LLC MPKI threshold is 0.0024, the exe-
cution takes 68.715 seconds, and its energy consumption is
equivalent to 91.9% of DRAM-only. But, when the LLC
MPKI threshold is lowered to 0.0023, the execution takes
42.473 seconds and consumes 95.1% of energy of DRAM-
only. If the energy consumption limit less than 92% of
DRAM-only is required, the effective LLC MPKI threshold

VOLUME 8, 2020 130335

T. Kim et al.: Optimizing Heap Memory Object Placement in the Hybrid Memory System With Energy Constraints

can be obtained by performing LLC MPKI value search in
units of 0.0001. When the search is performed in a smaller
unit, the search overhead increases accordingly and process
need to be repeated every time the energy limit is changed.

D. ACCURACY OF SCALING RATE VECTOR
In this section, we evaluated the accuracy of our proposed
scaling rate vector to avoid the profiling of the applica-
tion whenever the workload changes. As the workload of
an application varies, the access information also changes
accordingly and application workloads can be categorized
into three groups; fixed, scaling, and irregular [16]. Most
of the applications from scientific group lies in the scaling
category as their access patterns scale with the scaling work-
load. For this experiment, we profiled the BFS application
with various workloads and calculated the scaling rate vector
for all the major variables as explained in section IV-A2.
We present the accuracy of our proposed scaling rate vector
in terms of the placement of memory objects in HMMS.
We evaluated this experiment on Testbed II.

BFS is categorized in the scaling class that as the input
workload scales the access patterns of the variables also
scales but the ratio of scaling is not consistent for most of
the objects. So, we adopted the generalized way to calcu-
late the scaling rate vector and shows the effectiveness of
our proposal. Figure 10 show the performance and expected
energy consumption with various HMMS configurations and
energy constraints (EC_X). The evaluation shows that most
of the time it accurately places the memory object to their
respective memory module, which ultimately omits the huge
cost of profiling the application again with scaled workload.

FIGURE 10. The performance and energy consumption comparison with
scaled and actual object placement policies. The x-axis shows the
expected (computed using proposed scaling vector), actual (through
profiling), and various HMMS configurations.

E. eMPlan PERFORMANCE AND ENERGY EVALUATION
In this section, we evaluate the performance and energy
efficiency of the second module of eMap system, eMDyn.
Experiments elaborated in this section are performed on
Testbed II. We evaluate NPB Benchmark CG and FT appli-
cations for eMDyn due to their simple code-base and design.
We have modified both of the applications to call the mem-
ber function to register the application pointer addresses as
explained in section IV-B. Due to limited space, we show
the evaluation results of only one configuration of HMMS,
i.e., HMMS(2,16) where the DRAM capacity is 2 GB and
STT-RAM capacity is 16 GB. In the following experiments,
we only consider the migration case (1) where an application
user deliberately requests for energy efficiency.

FIGURE 11. The performance and energy consumption of the NPB CG
Application. The x-axis is energy constraint where Px shows the energy
constraint of eMPlan as baseline and Dy is the changed energy constraint
through eMDyn.

Figure 11 shows the performance and estimated energy of
the CG application under various energy limiting constraints.
During the application execution, the request to change the
energy limiting constraint occurs and eMDyn module is
triggered. It re-evaluates the placement of memory objects
and shuffles them accordingly. To compute the placement,
eMDyn interrupts the execution of the application and per-
forms its task and resumes the execution of the application
from the same point where it interrupted. In Figure 11,
eMdyn_WoMC shows the eMDyn without considering the
migration cost while eMdyn_WMC is with migration cost.
Figure 11(a) shows that the performance deteriorates as the
energy constraint becomes more strict while the performance
is improved with week energy constraint. Figure 11(b) shows
that the eMDyn reduces the energy consumption as the
energy constraint becomes more restricted while the energy
consumption is increased if the requested energy limiting

130336 VOLUME 8, 2020

T. Kim et al.: Optimizing Heap Memory Object Placement in the Hybrid Memory System With Energy Constraints

constraint is to get more performance. The execution time and
the energy consumption of eMdyn_WoMC is almost similar to
the eMdyn_WMC with energy consumption but at the points
shown through arrows in the Figure 11 eMDyn_WoMC did
not meet the performance and energy criteria. This incon-
sistency of eMDyn_WoMC is due to not considering the
migration cost in terms of energy and performance.

FIGURE 12. The performance and energy consumption of the NPB FT
Application. The x-axis is energy constraint where Px shows the energy
constraint of eMPlan as baseline and Dy is the changed energy constraint
through eMDyn.

Figure 12(a) and (b) show the performance and energy
efficiency of eMDyn for the FT application. eMDyn shows
a similar pattern as of CG application. The performance is
degraded as the requested energy constraint is more restricted
while the energy consumption is reduced. eMdyn_WoMC
also showed a consistent pattern in FT application as CG
while the eMDyn satisfied the energy and performance in all
the cases.

Figure 13 shows the overall execution time of CG appli-
cation with eMPlan and eMDyn with various configurations.
We modified the CG application and triggered the eMDyn on
the basis of number of iterations as CG application consists of
main loop for computation. We changed the energy limiting
constraint during the application execution and the number
inside each breakdown of the bar in Figure 13 shows the
changed energy constraint. For the first two bars, we triggered
the eMDyn after the half number of iterations and show
the overhead of eMDyn. The other two bars show when the
eMDyn is triggered after every 20th iteration. From Figure 13,
it is shown that the overall overhead of eMDyn is negligible
and it can be called for several times during the execution of
the application. But it should be noted that this overhead can
be increased according to the number and size of the objects
being migrated.

FIGURE 13. Analysis of time break down of the CG application.

VI. RELATED WORK
Various works have been done to optimize the performance
and energy efficiency of HMMS through the placement of
memory objects. Dullor et al. [12] classif y an object into
streaming, random, and pointer-chasing patterns based on
the dependency and sequentiality of memory access and
determine the placement to optimize performance using a
greedy algorithm. Wu et al. [34] classified memory objects
into bandwidth- and latency-sensitive based on the number
of memory accesses and the time taken for the object to opti-
mize performance inMPI applications. However, these works
only focus on optimizing performance in the assumption that
NVM consumes less power and energy than DRAM. They do
not consider that memory energy consumption is affected by
the characteristics of NVM devices and object access patterns
of application. Further, they also did not consider the energy
consumption requirement of various settings.

In addition, the HMMS which is comprised of high-
bandwidth, low-latency, and low-power memory modules is
also being studied. MOCA [22] and Phadke et al. [25] have
proposed their solutions for it, which place the object in the
most suitable memory device to improve performance and
energy efficiency. Phadke et al. [25] classified the applica-
tions in bandwidth, latency, and power-sensitive and allocates
the objects of the application to a best-fit memory module.
It only optimizes the performance of the HMMS and does
not consider energy efficiency. MOCA [22] considers the
performance and energy consumption of the ternary HMMS
at a finer granularity. They profile the application to obtain the
access behavior in terms of LLCMPKI and provide one-time
placement of memory objects. MOCA methodology can be
applied to binary HMMS consisting of DRAM and NVM.
However, MOCA has limitations that it does not estimate
the energy consumption by considering the characteristics
of the NVM device and the detailed access pattern of the
memory object. It also did not take into account the energy
requirements during the runtime of the application.

Existing studies do not consider the amount of energy an
object consumes due to its various access patterns and the
different characteristics of NVM devices in HMMS. We can
optimize the performance and energy efficiency of HMMS
through detailed profiling of memory objects access patterns
and the NVM device specification.

VOLUME 8, 2020 130337

T. Kim et al.: Optimizing Heap Memory Object Placement in the Hybrid Memory System With Energy Constraints

VII. CONCLUSION
HMMS is a promising solution for an energy-efficient mem-
ory system. Albeit, it requires intelligent data placement
solutions. Prior solutions either placed application-level or
obtained sub-optimal placement of memory objects and only
provide static placement schemes. This paper proposed an
optimal memory object placement solution by considering
both memory access patterns and the nature of memory
devices of HMMS. eMap calculates the expected energy
consumption of objects and allocates the objects to achieve
optimal performance, as well as to satisfy the energy limit-
ing constraint. eMap provides static (eMPlan) and dynamic
(eMDyn) placements of memory objects. eMPlan places the
memory objects at the start of the application by considering
their various access patterns and the energy limiting require-
ments, while eMDyn takes into account the changes in energy
limiting constraint during the runtime of the application. Our
proposed solution meets the energy requirement of 4.17 times
less cost while compared to the state-of-the-art memory
allocation and classification framework MOCA. It reduces
energy consumption by up to 14% without compromising the
performance.

ACKNOWLEDGEMENT
T. Kim is currently with TmaxSoft, South Korea, but most of
the work is done when he was in Sogang University.

REFERENCES
[1] 3D-Xpoint Specification. Accessed: Jul. 16, 2020. [Online]. Available:

https://ark.intel.com/products/187936
[2] D. H. Bailey, NAS Parallel Benchmarks. Boston, MA, USA: Springer,

2011, pp. 1254–1259.
[3] L. A. Barroso and U. Hölzle, ‘‘The case for energy-proportional comput-

ing,’’ Computer, vol. 40, no. 12, pp. 33–37, Dec. 2007.
[4] L. Benini and G. De Micheli, ‘‘Networks on chips: A new SoC paradigm,’’

Computer, vol. 35, no. 1, pp. 70–78, 2002.
[5] M. Berkelaar, K. Eikland, and P. Notebaert. (2004). Lpsolve 5.5, Open

Source (Mixed-Integer) Linear Programming system. Software. Accessed:
Jul. 16, 2020. [Online]. Available: http://lpsolve.sourceforge.net/5.5/

[6] E. Calore, A. Gabbana, S. F. Schifano, and R. Tripiccione, ‘‘Evaluation of
DVFS techniques on modern HPC processors and accelerators for energy-
aware applications,’’ Concurrency Comput., Pract. Exper., vol. 29, no. 12,
Jun. 2017, Art. no. e4143.

[7] E.-Y. Chung, L. Benini, A. Bogliolo, Y.-H. Lu, and G. De Micheli,
‘‘Dynamic power management for nonstationary service requests,’’ IEEE
Trans. Comput., vol. 51, no. 11, pp. 1345–1361, Nov. 2002.

[8] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson, ‘‘NV-Heaps: Making persistent objects fast and safe
with next-generation, non-volatile memories,’’ in Proc. SIGPLAN, vol. 39,
pp. 105–118, Mar. 2011.

[9] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O.Mutlu, ‘‘Memory
power management via dynamic voltage/frequency scaling,’’ in Proc. 8th
ACM Int. Conf. Autonomic Comput. ICAC, 2011, pp. 31–40.

[10] M. Dayarathna, Y. Wen, and R. Fan, ‘‘Data center energy consump-
tion modeling: A survey,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 732–794, 1st Quart., 2016.

[11] G. Dhiman, R. Ayoub, and T. Rosing, ‘‘PDRAM: A hybrid PRAM and
DRAM main memory system,’’ in Proc. 46th Annu. Design Autom. Conf.
ZZZ DAC, Jul. 2009, pp. 664–669.

[12] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran,
J. Jackson, and K. Schwan, ‘‘Data tiering in heterogeneous memory sys-
tems,’’ in Proc. 11th Eur. Conf. Comput. Syst. EuroSys, 2016, p. 15.

[13] F. Hameed, C. Menard, and J. Castrillon, ‘‘Efficient STT-RAM last-level-
cache architecture to replace DRAM cache,’’ in Proc. Int. Symp. Memory
Syst. MEMSYS, 2017, pp. 141–151.

[14] Y. Huai, ‘‘Spin-transfer torque MRAM (STT-MRAM): Challenges and
prospects,’’ AAPPS Bull., vol. 18, pp. 33–40, Jan. 2008.

[15] I. Hur and C. Lin, ‘‘A comprehensive approach to DRAM power man-
agement,’’ in Proc. IEEE 14th Int. Symp. High Perform. Comput. Archit.,
Feb. 2008, pp. 305–316.

[16] X. Ji, C. Wang, N. El-Sayed, X. Ma, Y. Kim, S. S. Vazhkudai, W. Xue, and
D. Sanchez, ‘‘Understanding object-level memory access patterns across
the spectrum,’’ in Proc. Int. Conf. High Perform. Comput., Netw., Storage
Anal., Nov. 2017, p. 25.

[17] J. Kim, Y. Kim, A. Khan, and S. Park, ‘‘Understanding the performance
of storage class memory file systems in the NUMA architecture,’’ Cluster
Comput., vol. 22, no. 2, pp. 347–360, Jun. 2019.

[18] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, ‘‘Eval-
uating STT-RAM as an energy-efficient main memory alternative,’’ in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Apr. 2013,
pp. 256–267.

[19] C. Lefurgy, K. Rajamani, F. Rawson,W. Felter,M.Kistler, and T.W.Keller,
‘‘Energy management for commercial servers,’’ Computer, vol. 36, no. 12,
pp. 39–48, Dec. 2003.

[20] F. X. Lin and X. Liu, ‘‘Memif: Towards programming heterogeneous
memory asynchronously,’’ in Proc. 21st Int. Conf. Architectural Support
Program. Lang. Operating Syst., New York, NY, USA: Association for
Computing Machinery, 2016, pp. 369–383.

[21] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, ‘‘Pin: Building customized program anal-
ysis tools with dynamic instrumentation,’’ in Proc. ACM SIGPLAN Conf.
Program. Lang. design Implement. - PLDI, 2005, pp. 190–200.

[22] A. Narayan, T. Zhang, S. Aga, S. Narayanasamy, and A. Coskun, ‘‘MOCA:
Memory object classification and allocation in heterogeneous memory
systems,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),
May 2018, pp. 326–335.

[23] I. B. Peng, R. Gioiosa, G. Kestor, P. Cicotti, E. Laure, and S. Markidis,
‘‘RTHMS: A tool for data placement on hybrid memory system,’’ in Proc.
ACM SIGPLAN Int. Symp. Memory Manage. ISMM, 2017, pp. 82–91.

[24] I. B. Peng and J. S. Vetter, ‘‘Siena: Exploring the design space of hetero-
geneous memory systems,’’ in Proc. SC Int. Conf. High Perform. Comput.,
Netw., Storage Anal., Nov. 2018, pp. 427–440.

[25] S. Phadke and S. Narayanasamy, ‘‘MLP aware heterogeneous memory
system,’’ in Proc. Design, Autom. Test Eur., Mar. 2011, pp. 1–6.

[26] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, ‘‘Scalable high performance
main memory system using phase-change memory technology,’’ in Proc.
36th Annu. Int. Symp. Comput. Archit. ISCA, 2009, pp. 24–33.

[27] L. E. Ramos, E. Gorbatov, and R. Bianchini, ‘‘Page placement in hybrid
memory systems,’’ in Proc. Int. Conf. Supercomput. ICS, 2011, pp. 85–95.

[28] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi,
S. Dwarkadas, and M. L. Scott, ‘‘Energy-efficient processor design using
multiple clock domains with dynamic voltage and frequency scaling,’’ in
Proc. 8th Int. Symp. High Perform. Comput. Archit., Feb. 2002, pp. 29–40.

[29] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola,
H. V. Simhadri, and K. Tangwongsan, ‘‘Brief announcement: The problem
based benchmark suite,’’ in Proc. 24th ACM Symp. Parallelism Algorithms
Archit. SPAA, 2012, pp. 68–70.

[30] R. Takemura, T. Kawahara, K. Miura, H. Yamamoto, J. Hayakawa,
N. Matsuzaki, K. Ono, M. Yamanouchi, K. Ito, H. Takahashi, S. Ikeda,
H. Hasegawa, H. Matsuoka, and H. Ohno, ‘‘A 32-mb SPRAM with 2T1R
memory cell, localized bi-directional write driver and ‘1’/‘0’ dual-array
equalized reference scheme,’’ IEEE J. Solid-State Circuits, vol. 45, no. 4,
pp. 869–879, Apr. 2010.

[31] D. Terpstra, H. Jagode, H. You, and J. Dongarra, ‘‘Collecting performance
data with papi-c,’’ in Tools for High Performance Computing, M. S.Müller,
M. M. Resch, A. Schulz, andW. E. Nagel, Eds. Berlin, Germany: Springer,
2009, pp. 157–173.

[32] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li, ‘‘Quartz: A lightweight
performance emulator for persistent memory software,’’ in Proc. 16th
Annu. Middleware Conf., 2015, pp. 37–49.

[33] C. Wang, S. S. Vazhkudai, X. Ma, F. Meng, Y. Kim, and C. Engelmann,
‘‘NVMalloc: Exposing an aggregate SSD store as a memory partition in
extreme-scalemachines,’’ inProc. IEEE 26th Int. Parallel Distrib. Process.
Symp., May 2012, pp. 957–968.

[34] K. Wu, Y. Huang, and D. Li, ‘‘Unimem: Runtime data managemen-
ton non-volatile memory-based heterogeneous main memory,’’ in Proc.
Int. Conf. for High Perform. Comput., Netw., Storage Anal., Nov. 2017,
p. 58.

130338 VOLUME 8, 2020

T. Kim et al.: Optimizing Heap Memory Object Placement in the Hybrid Memory System With Energy Constraints

[35] K. Wu, J. Ren, and D. Li, ‘‘Runtime data management on non-volatile
memory-based heterogeneous memory for task-parallel programs,’’ in
Proc. Int. Conf. High Perform. Comput., Netw., Storage, Anal. (SC),
Nov. 2018, pp. 1–13, Art. no. 31.

[36] Y. Zhang and S. Swanson, ‘‘A study of application performance with non-
volatile main memory,’’ in Proc. 31st Symp. Mass Storage Syst. Technol.
(MSST), May 2015, pp. 1–10.

[37] B. Zhao, ‘‘Improving phase change memory (PCM) and spin-torque-
transfer magnetic-ram (STT-MRAM) as next-generation memories: A cir-
cuit perspective,’’ Tech. Rep., Jan. 2014.

TAEUK KIM received the B.S. and M.S. degrees
in computer science engineering from Sogang
University, Seoul, South Korea, in 2017 and
2019, respectively. He is currently a Researcher
with Tmax Cloud, Seongnam, South Korea.
His research interests include parallel and dis-
tributed file system and memory-level energy
consumption.

SAFDAR JAMIL received the B.E. degree in com-
puter systems engineering from the Mehran Uni-
versity of Engineering and Technology (MUET),
Jamshoro, Pakistan, in 2017. He is currently pur-
suing the M.S. degree with Sogang University,
Seoul, South Korea. His research interests include
memory-centric computing and system energy
optimization.

JOONGEON PARK received the B.S. degree from
the Department of Information and Communi-
cation Engineering, Myongji University, Yongin,
South Korea, in 2019. He is currently pursuing
the M.S. degree with Sogang University, Seoul,
South Korea. His research interests include system
energy optimization and embedded systems.

YOUNGJAE KIM received the B.S. degree in
computer science from Sogang University, South
Korea, in 2001, the M.S. degree from KAIST,
in 2003, and the Ph.D. degree in computer science
and engineering from Pennsylvania State Univer-
sity, University Park, PA, USA, in 2009. He is cur-
rently an Associate Professor with the Department
of Computer Science and Engineering, Sogang
University, Seoul, South Korea. Before joining
Sogang University, he was a Staff Scientist with

the U.S. Department of Energy’s Oak Ridge National Laboratory, from
2009 to 2015, and anAssistant Professor with AjouUniversity, Suwon, South
Korea, from 2015 to 2016. His research interests include distributed file and
storage, parallel I/O, operating systems, emerging storage technologies, and
performance evaluation.

VOLUME 8, 2020 130339

