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ABSTRACT Background subtraction is commonly employed in foreground object detection in urban traffic
scenes. Most of the current color or texture feature-based background subtraction models are easily con-
taminated by sudden and gradual illumination variations in urban traffic scenes. To resolve this deficiency,
an adaptive local median texture feature, which extracts the adaptive distance threshold employing the
median information in a predefined local region of a pixel and Weber’s law, is introduced. In addition,
a sample consensus-based model that evolved from portable visual background extractor is proposed using
an adaptive local median texture feature. Then, the foreground is labeled by comparing the input video
frames feature with the model. Moreover, to adapt the dynamic background, the random update scheme is
used to update the model. Extensive experimental results on the public Change Detection data set of 2014
(CDnet2014) and the real-world urban traffic videos demonstrate that our background subtraction method is
superior to the other state-of-the-art texture-feature-based methods. The qualitative and quantitative results
show the encouraging efficiency of the proposed technique to deal with sudden and gradual illumination
variations in real-world urban traffic scenes.

INDEX TERMS Background modeling, illumination variations, local median texture feature, urban traffic
scenes.

I. INTRODUCTION
Accurately and reliably segmenting foreground objects from
the increasing number of video-based urban traffic scenes
is the first key step for surveillance applications, develop-
ing intelligent transportation systems (ITS) and high-level
vision understanding. Bottom-up that first detects and clas-
sifies parts of an object using features such as Histogram
of Oriented Gradients (HOG), Haar-like features and Local
Binary Pattern (LBP) and top-down which pixels are grouped
into objects early during the processing using background
subtraction method are typically used for foreground objects
recognition [1]. In recent years, the background subtrac-
tion method, which is the comparison of observed image

The associate editor coordinating the review of this manuscript and

approving it for publication was Donato Impedovo .

sequences with the constructed background image, has drawn
increasing research attention and is widely used to seg-
ment foreground objects. A wide variety of background
subtraction methods have been proposed in [2], and most
of these methods involve three basic aspects: background
modeling, difference comparison and image labeling. Many
background subtraction methods have been introduced for
foreground segmenting. However, these models still face
various challenges: bad weather, dynamic textures in the
background, lighting variations and so on. In particular, var-
ious illumination changes, which frequently occur in urban
traffic scenes, increase the difficulty of vehicles detection.
For example, as the sun moves across the sky it provides a
light source that varies during the day, which may lead to
the incorrect foreground detection under gradual illumina-
tion changes scenes; frequent sudden changes, such as the
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headlights and taillights of passing vehicles and sudden illu-
mination changed from electronic billboard screens will lead
to various false-positives. Many background models treat the
illumination change problem by employing model updat-
ing, spatio-temporal intensity information or illumination-
invariant features [3].

Recently, parametric models have been increasingly
introduced to deal with illumination change due to their
ability to update background models using an adaptive learn-
ing rate. To address the limitations of the single Gaussian
model [4], Stauffer and Grimson proposed a more advanced
multi-distribution Gaussian Mixture Model (GMM) [5] that
can tackle multivariate real-world and illumination chang-
ing situations and leads to reliable results using learn-
ing rate online updating. GMM has obtained widespread
popularity and inspired many researchers to improve the
update scheme and parameters of GMM under varying
illumination environments. For instance, Zivkovic [6] intro-
duced the recursive updating scheme, which is effective to
cope with illumination changing situations to improve GMM.
Similarly, to effectively deal with illumination changes,
White and Shah [7] exploited the particle swarm optimization
to obtain the parameters of GMM. The optimal value of
GMM and its improvements cannot be set exactly because
illumination changes are hardly estimated in complex out-
door environments. Then, two or multiple GMM-based
approaches were introduced to manage illumination changes.
A two-layer GMM to represent the background at different
lighting conditions was introduced, and a joint posterior func-
tion of background state and segmentation were simultane-
ously optimized using a nested two-layer optimization [8].
An illumination evaluation is used to analyze illumination
changes and determine light background and dark back-
ground candidates [9]. Two backgroundmodels with different
adaption rates were utilized to address the updating of the
model in sudden illumination changes [10]. Recently, an illu-
mination change model, a chromaticity difference model and
a brightness ratio model were developed to deal with fast
illumination changes in a visual surveillance system [11].
However, the evaluation of illumination changes and selec-
tion of the corresponding learning rate or model is difficult in
the multiple model method.

In a low-rank based model, the background model can be
represented as a low-rank matrix while foreground objects
are detected as outliers to handle illumination changes in
successive frames. For example, robust principal component
analysis (RPCA) is applied to the background model [12],
where varying illumination can be successfully approximated
using the corresponding low-rank subspace and moving
objects consist of correlated sparse components. To address
the computation cost issue, a fast background/foreground
separation algorithm where the low-rank constraint is solved
using the matrix factorization method was proposed in [13].
To overcome the background initialization challenge, a spa-
tiotemporal low-rank modeling method was developed to
estimate a robust background model by dynamic video clips

in [14]. A novel background subtraction method with mul-
tiscale structured low-rank and sparse factorization, which
explore the structured smoothness with both appearance con-
sistency and spatial compactness, was introduced in [15].
The low-rank based model has the remarkable improvement
employing the implicit integration of illumination changes
into low-rank space. However, low-rank based approaches
need additional memory space for batch-based processing.
Although improved RPCA with optimization techniques can
improve the processing speed, it is also time-consuming.

Some researchers have attempted to apply a deep neu-
ral network (DNN) to maintain the background model
under illumination changes. A triple multitask generative
adversarial network [16], which models the semantic rela-
tionship between dark and bright images and fuses fea-
tures of images with varying illumination, was proposed
to extract the foreground in continuously varying illu-
mination sequences. A novel background subtraction that
uses a deep convolutional neural network (CNN) to handle
various video scenes was introduced in [17]. To grapple
with missing temporal information in complex situationa,
a 3D convolutional neural (3D-CNN) with long short-term
memory (LSTM) is proposed using fully convolutional net-
working, 3D transpose convolution, and residual feature
flows in [18]. To handle illumination variations and dynamic
backgrounds, encoder–decoder fully convolutional neural
network architecture is applied and trained to automatically
fuse different background methods in [19]. Many researchers
are now starting to pay attention to deep learning-based mod-
els for illumination changes.

In contrast to parametric models, low-rank based models
and deep neural network-based models, some researchers
have introduced an illumination-invariant feature to represent
the underlying structure of the model under illumination
changing environments. Kim et al. [20] introduced a new
illumination-invariant feature (IIF) using the coefficients of
the singular value decomposition (SVD) and provided that the
corresponding feature is useful for modeling the background
under diverse lighting conditions without any preprocessing
tasks. Then, Kim proposed edges of residuals features to
detect moving objects under varying illumination conditions
in [21]. Local-texture feature matching with a pattern or
multiple pixels is more accurate than pixel-pixel matching.
The local binary pattern (LBP) [22], which is one of the
more widely used and computationally simplicity descriptors
to overcome illumination changes, checks the relative dif-
ference between spatially neighboring pixels to construct an
illumination-invariant feature background model. Compared
with Histogram of Oriented Gradients (HOG) and Haar-like
features, LBP features perform better with a higher detection
rate in traffic scenes [41], and its spatiotemporal information
can be used to to deal with illumination changes. To resolve
frequent illumination changes in outdoor scenes, the LBP are
computed based on the frame difference result to efficiently
smooth unexpected noise and they preserve the boundaries
of the moving objects using an edge-aware filtering technique
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in [23]. Goyal and Singha [24] improved an LBP-based back-
ground to manage illumination variations using an adaptive
learning rate. Zeng et al. [25] take advantage of local texture
features, which are represented by an extended scale invariant
LBP and color intensities, to achieve good tolerance against
illumination variations. The LBP and its improved have indi-
cated to be powerful local image descriptors, but the LBP
operator is not robust to local image noise when neighboring
pixels are similar. To eliminatemost of the effects of changing
illumination and noise, Tan and Triggs [26] introduced the
local ternary pattern (LTP) operator, which is more discrim-
inant and less sensitive to noise in uniform regions. Then,
the scale invariant local ternary patterns (SILTP) [27] and
3D local spatiotemporal ternary patterns (3D-LStTP) [28]
were applied to the background model. An SILTP that
improved the performance of the LTP was combined with
the pattern kernel density estimation technique to model
the probability distribution of local patterns under varying
illumination situations. Inspired by human cognitive vision,
3D-LStTP was proposed for employing moving object
detection and collecting multi-directional spatio-temporal
information from three consecutive frames, and then
3D-LStTP-based model were constructed by using tex-
ture and color features in varying illumination scenes.
Chan K.L. [29] proposed a perceptual-based LTP feature
to adapt to abrupt illumination changes and background
motions. A new local binary similarity pattern (LBSP) [30]
feature was proposed to handle the sensitivity of illumina-
tion changes. Our previous work [31] introduced an adaptive
local texture feature (ALTF) to deal with sudden and gradual
illumination changes using Weber’s law and a sample con-
sensus scheme. To address the illumination variation issue,
a new spatial feature descriptor, which extracts the promi-
nent directional information in the local neighborhood of a
pixel, was introduced in [32]. The LBP and its improved
descriptors are computational simplicity and can effectively
manage illumination changes. However, all the LBP-based
binary feature descriptors (e.g., LBP, LTP, LBSP, SILTP
and ALTF) are computed based on the intensity value of the
center pixel region, in which the value of the center may
be a noise point in complex urban traffic scenes. Moreover,
some texture features require parameter control (e.g. SILTP
and LBSP), which may fail to generate reliable code in local
region.

Due to the power of illumination-invariant features, many
researchers are now starting to give considerable atten-
tion to it, and the development of a reliable background
model with illumination-invariant features remains hot issues
in complex urban traffic scenes. For example, the LBP,
LTP, SILTP, LBSP, XCS-LBP, spatio-temporal local binary
patterns (STLBP) and center symmetric spatio-temporal
local binary patterns (CS-STLTP) [33] were proposed to
deal with illumination changes and local noise. Numer-
ous of illumination-invariant features are computed based
on the center pixel, which may be an outlines point,
and the performance of these features or approaches are

unsatisfactory for resolving sudden and gradual illumination
variations in urban traffic scenes. To resolve those prob-
lems and increase the robustness of the feature descriptor,
inspired by median LTP [34] and the perception-inspired
confidence interval [35], we introduced a novel adaptive
local median texture (ALMT) feature that utilizes the local
median intensity value to replace the center value and an
adaptive parameter to replace the fixed threshold to deal with
illumination variations in urban traffic scenes. To efficiently
address the deficiencies of BS-based methods that are easily
contaminated by sudden and gradual illumination changes in
urban traffic scenes, we combined the illumination-invariant
features of the adaptive local median texture (ALMT) feature
and the non-parametric sample consensus technique to intro-
duce an adaptive local median texture feature background
model (ALMTFM) to manage illumination changes.

The overall proposed adaptive local median texture fea-
ture background model (ALMTFM) is depicted in Fig. 1.
First, the method obtains the median in a predefined N×N
local region and extracts the adaptive parameter threshold
using Weber’s law for the adaptive local median texture fea-
ture (ALMT) representation. Second, ALMTFM is derived
from the calculated ALMT feature and nonparametric sample
consensus scheme [36]. Then, the background model sam-
ples and the coming video images are compared using the
ALMT feature to label the foreground pixels, and the model
is updated employing a random update strategy. Finally,
the results obtained from experiments on real world urban
traffic scenes and ChangeDetection data sets from 2014 show
that the ALMTFM performs better than numerous state-of-
the-art texture-based background models.

FIGURE 1. Overview of the proposed algorithm using ALMT feature.

The main contributions of this paper are summarized as
follows: first a novel perceivable adaptive local median tex-
ture feature is introduced to handle illumination changes.
Second, a novel model is derived from the ALMT and sam-
ple consensus technique. Finally, experimental results on
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real-world urban traffic videos and the Change Detection
dataset of 2014 obtain excellent performance in detection of
vehicles in illumination changing urban traffic scenes.

The rest of this paper is structured as follows. In the next
section, the ALMT feature is explained in detail. Section 3
provides the adaptive local median texture feature back-
ground model (ALMTFM) to detect foreground objects using
adaptive local median texture (ALMT) feature. The experi-
mental results and reports of the ALMTFM compared with
state-of-the-art models are presented for urban traffic envi-
ronments in Section 4. Conclusion and future work are dis-
cussed in Section 5.

II. ADAPTIVE LOCAL MEDIAN TEXTURE FEATURE
A novel perception-based adaptive local median texture fea-
ture that can be employed effectively to characterize sudden
and gradual illumination changes of urban traffic scenes is
introduced by the perceivable distance threshold. The adap-
tive local median texture (ALMT) feature is computed on
a predefined local block of size 5 × 5 pixels, and its pat-
tern is similar to LBSP. An example block of 5 × 5 and
the corresponding pattern to calculate the ALMT feature
are shown in Fig.2, where C is the center pixel, N denotes
the corresponding neighbor pixels of C in the pattern and
M denotes the median of all N and C pixels in the pattern.

FIGURE 2. A 5 × 5 block pattern with center pixel C, neighbor pixels N
and median pixel M are used to calculate ALMT.

Each pixel of the block pattern is compared with the
median of all N and C in the pattern. Assuming I (x) is a pixel
of image at a given location x and the size of predefined block
of I (x) is n × n, the adaptive local median texture feature
ALMT (x) operator binary value is computed according to the
following equations:

ALMT (x) =
P−1∑
p=0

dT
(
Ix,p,M

)
· 2p, (1)

dT
(
Ix,p,M

)
=

{
1, if

∣∣Ix,p −M ∣∣ ≤ T ,
0, otherwise,

(2)

M = median
{
Ix,p, I (x) |p ∈ P

}
(3)

where Ix,p is the intensity of the p th pixel neighbor of I (x)
on predefined block pattern P, M is the median of all N
and C in block, and T is the adaptive threshold.
The ideal T should be small for darker situations and

larger for brighter environments. According to Weber’s law,
which states that the initial background stimulus intensity I is

linearly proportional to the Just-Noticeable Difference 1I,
and the adaptive distance threshold T is provided to increase
the robustness of the texture feature. The relationship of 1I
and I can be expressed as the following equation:

1I/I = c, (4)

Here, the ratio c is a constant, and 1I is small in dark and
large in bright environments. Because human visual system
(HVS) perceptual characteristics are in direct proportion to
background illumination, the adaptive threshold T depends
on the perceptual characteristics of the median sample inten-
sity, and T should be large for a brighter median sample
and low for a darker median sample. Mapping to Weber’s
law in the ALMT, the median sample M is regarded as
initial intensity I and T can be regarded as Just-Noticeable
Difference 1I. The difference between neighboring pixel N
and median pixel M is the intensity change. Therefore, we set

T/M = c, (5)

whereM is the median pixel, c can be inferred using the peak
signal-to-noise-ratio (PSNR) measure similar to [37] and
c = 0.11. The relationship of the median sample and its
adaptive distance threshold is as follows:

T = 0.11M , (6)

Moreover, in the extremely dark or bright regions,
the Weber’s law may fail to precisely describe the linear
relationship between perceptible value changes of HVS and
the median sample. To deal with too high or too low median
samples, the adaptive distance threshold is cut off at the upper
bound Tu or lower bound Tl .In the urban traffic environment,
the range [Tl,Tu] = [255× 0.1, 255× 0.9] is practically set
to satisfy the linear relationship of Weber’s law. That is, the
adaptive distance threshold is set according to the following
equation:

T = cmin {max [M ,Tl] ,Tu} , (7)

A simple example of the process for calculating the
ALMT feature is illustrated in Fig. 3, which shows the
predefined block of 5 × 5 pixels and the corresponding
pattern in the block. The median sample value M is 98,
and the corresponding adaptive threshold of 98 is 10.7
using equation (6). Finally, we obtain the binary string to
be 01011000110101011, and the length is 17 bits.

The comparison encoding of the adaptive local
texture feature (ALTF), LBSP and adaptive local median
texture (ALMT) are depicted in Fig.4 to deal with illumina-
tion change noise. The ALTF and LBSP were introduced to
efficiently cope with illumination changes in previous work.
(a) and (b) of Fig.4 are contrast encoding examples of ALTF,
LBSP and ALMT at the same pixel location of different
grayscale frames under different illumination conditions. The
center pixel value of (a) is 78 at one moment, and the (b) at
the same position is 224 at the moment of local illumination
change. As illustrated in Fig.4 (b), the center pixel value may
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FIGURE 3. Example of ALMT feature calculating.

be a point of noise caused by the headlights of one vehicle.
The result of the binary string using the ALTF and LBSP is
nearly identical with the ALMT in Fig.4(a), and the ALMT
is more precise. Nevertheless, the contrast encoding results
are different in Fig.4(b). The LBSP operator is not robust to
local image noise when noise is truly on the center of the
predefined block. The ALTF and ALMT are more robust to
handle local image noise, while the ALMT can improve the
precise performance of the ALTF.

III. TEXTURE-BASED BACKGROUND SUBTRACTION
MODELING
In this section, adaptive local median texture (ALMT) feature
and sample consensus scheme are employed to construct
a novel vehicle detection background subtraction model in
urban traffic scenes with illumination changes adaptive local
median texture feature background model (ALMTFM). The
detailed description of the framework for the ALMTFM can
be divided into the background model representation, back-
ground model initialization, foreground object detection and
background updating.

A. BACKGROUND MODELING AND INITIALIZATION
Background subtraction models are the first step in vehicle
detection, and the ideal algorithm may improve excellent
performance to deal with complex environments and sud-
den or gradual illumination changes in urban traffic scenes.
A sample consensus background approach that is pixel-based
and light weight is proposed using the ALMT. For each
pixel p (x), the sample-based background model B (x) con-
tains an array of N recently observed ALMT features and is
constructed at location x as follows:

B (x) = {b1 (x) , b2 (x) , · · ·, bN−1 (x) , bN (x)} , (8)

where bj (x) , j = [1,N ] is the recently observed ALMT
features background samples.

FIGURE 4. Contrast examples of calculating the ALTF, LBSP and ALMT at
the same pixel location of different frames. (a) Original encoding
example. (b) Encoding example with noise cause by local illumination
change.

Many popular background subtraction methods employ a
sequence of frames or a single frame to initialize the ideal
background models. For example, the pixel-based adaptive
segmentation (PBAS) model [38] initializes the background
model using the firstN frames, and ViBe [36] is initialized by
only one frame. However, these initialization methods may
fail to form the ideal initial model and lead to numerous
ghosts in urban traffic scenes due to slow-moving or tem-
porarily stopped vehicles.

To deal with slow-moving or temporarily stopped vehicles,
the ideal initialization model needs to take samples from one
or more traffic light cycles. According to the principle of
consistency of time, assuming that we have a pixel p (x),
the corresponding background model B (x) is initialized by
a short interval selecting the ALMT features values from the
feature image sequence as follows

B (x) =
{
I1 (x) , · · ·, I1+(N-2)×K (x) , I1+(N-1)×K (x)

}
, (9)
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where N is the number of ALMT feature samples in the
background model and K is the short frame interval, I1 (x)
is the ALMT feature sample which is selected from the first
frame and I1+(N-1)×K (x) is the ALMT feature sample in the
1+ (N − 1)×K th frame. Therefore, the 1+ (N − 1)×K th
frame is at least out of the frame of one traffic light cycle,
and K is variable, for example, the frame rate of real-world
video sequences is 25 frames per second and one traffic light
cycle is approximately 50 seconds in our real-world traffic
environment, K is 40 frames at this scenes. Initialization
employing no-sequence frames based on equation (9) can
distinctly decrease the probability of slow-moving or tem-
porarily stopped vehicles blending into the initial background
model and to ensure accurate initial background model.

B. FOREGROUND DETECTION
After initialization of the background model, foreground
detection procedure is used to generate the foregroundmasks.
To classify a pixel p (x) as background or foreground at
time t, we need to calculate the times of matches between the
input ALMT feature It (x) and the ALMT feature samples
bj (x) , j = [1,N ] in its background B (x). The times of
matches are presented in the following equation:

P (x) =

{
1, if H

(
It (x) , bj (x)

)
< R, j = [1,N ]

0, otherwise,
(10)

T (x) =
N∑

M=1

P (x) , (11)

where R is the matching threshold of It (x) and bj (x) ,P (x)
denotes the state of matches and T (x) denotes the times of
matches. H

(
It (x) , bj (x)

)
calculated the Hamming distance

between It (x) and its samples bj (x) , j = [1,N ] in the back-
ground model. If H

(
It (x) , bj (x)

)
< R, it denotes that It (x)

matches with bj (x) and that the possibility of background
pixels will increase. The Hamming distance is adapted to
measure the similarity and the XOR operator is employed to
get the distance. For example, there are two ALMT in Fig.4:
011 110 00110 001 010 and 011 110 00110 001 0 01 and the
corresponding distance is 2. If 2 < R, a match is found and
P (x) = 1. A small R will be very accurate to successfully
classify pixels as the background, and a larger R will lead to
better resistance against irrelevant change, but will make it
model more difficult to find those foreground objects which
are similar to the background.

After the number of matches is obtained, the label of pixel
p (x) is classified as foreground or background according to
the following equations:

D (x) =

{
1, S (x) < Th,
0, otherwise.

(12)

where D (x) denotes the output detection result, 1 implies
that the current pixel is a foreground pixel and 0 denotes
the background. Th is a fixed predefined threshold that is
the minimum number of matches required for a pixel to be

detected as background. In this paper, we set Th = 4 to
obtain a reasonable trade-off between detection results and
computational complexity.

C. BACKGROUND UPDATES
Background updating is an important step of vehicle detec-
tion to adapt to scenes that change after segmenting the
foreground pixels. Our proposed method uses a conservative
update strategy and a random subsampling strategy, and this
strategy is better than the state-of-the-art FIFO to make the
background model more appropriate for the real-world urban
traffic environment. Samples of the model replaced with
conservative and random subsampling instead of an FIFO
strategy guarantee that the ‘‘right’’ background representa-
tion samples can be maintained in the model. New samples
may be integrated only if they are detected as background pix-
els. Thus, the slow-moving or temporarily stopped vehicles
can be prevented from being absorbed into the background
sample too fast. The main strategy of the model contains two
steps: first of all, when the pixel p (x) in the incoming frame
is determined to be a background point, it has a 1

/
θ ratio

to replace a recorded sample which possesses the maximum
Hamming distance between p (x) and samples of background
model in B (x), where θ is a subsampling factor as described
in ViBe (θ is 16 in this paper). Then, p (x)′, one of the
neighbors of p (x) in F × F region is randomly updated with
the 1

/
θ ratio to replace its sample of the background model

using the ALMT feature of p (x).
To deal with the ghosting problem, which is caused by the

conservative update strategy, a counter is used to save the
number of times one pixel has been consecutively detected
as foreground. If the counter exceeds a predefined threshold,
the current pixel is replaced by the recorded sample of the
model at the same time. The neighbor update strategy helps
the ghost region to be automatically added into the model
from time to time.

IV. EXPERIMENTS
A. EXPERIMENTAL DATASETS AND MODEL
COMPARISONS
To demonstrate the efficiency and robustness of our model,
three comparative experiments were introduced on the
real-world urban traffic scene videos and change detec-
tion challenge (CDnet2014) [39] with illumination changes.
Real-world urban traffic scene video sequences provided by
the traffic police detachment of Jining City in Shandong
Province were recorded with traffic surveillance cameras
installed at different urban traffic intersections. This dataset
was captured between 7:00 A. M. and 10:00 P.M. over a
one-week period and encompass a wide range of weather and
illumination conditions. The CDnet2014 dataset is available
online at <http://changedetection.net/> and it is allowed to
evaluate the performance of background subtraction mod-
els. The set consists of nearly 160000 realistic scenario
frames and the corresponding accurate human annotated
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ground-truth is employed for performance evaluation. This is
the most complete and popular dataset for background sub-
tractionmodels, and all frames are grouped into 11 categories.
NightVideos of dataset contains 5 kinds of night urban traffic
video with illumination changes and the ‘‘fluidHighway’’ is
relatively complex because the vehicles in different direc-
tions are in the region of interest (ROI). Three typical urban
traffic videos with a number of illumination change scenes
were selected from real world videos and fluidHighway of
CDnet2014 to test in the following comparison experiments.
The three corresponding scenes were named ‘‘the traffic
scenes of strong shadows on a sunny day and waving trees
(SSSW)’’, ‘‘traffic-light scenes at night (TLSN)’’ and ‘‘the
traffic scenes of night video in CDnet2014 (TSCD14)’’.

Our background subtraction model was compared with
several related state-of-the-art local binary texture-based
methods and rigorously tested on typical urban traffic videos
with illumination changes. For the purpose of fair compar-
ison, the LBP, LTP, SILTP, LBSP and ALTF features were
employed to construct a sample consensus background sub-
traction model. That is, all the compared models were recon-
structed with a sample consensus scheme without pattern
kernel density estimation or histogram approach. The ALMT
feature of our model was replaced by LBP [22], LTP [26],
SILTP [27], LBSP [30], LLSD [40], IIF [20] and ALTF [31]
features to build corresponding LBP model (LBPM), LTP
model (LTPM), SILTP model (SILTPM), LBSP model
(LBSPM), LLSD model(LLSDM), IIF model (IIFM) and
ALTF model (ALTFM), respectively. Moreover, all the
parameters of features in the compared methods were set to
the optimum values according to the original authors’ recom-
mendations and the other parameters of consensus scheme
method were set to the same value as in our model.

B. PARAMETERS SETTING
The parameters of the model may improve or weaken the
performance of the background subtraction method in differ-
ent environments. The matching threshold R, the minimum
number of matches’ threshold Th and the number of back-
ground samples N from (8), (10) and (12) were studied in
this subsection. R and Th need to be adjusted in different
environments to obtain the optimal performance, which is a
challenging work. Therefore, employing several experiments
in real-world urban traffic scenes, we empirically set R =
Th = 4, as in our previous work [31]. For urban traffic
scenes, the threshold value of the Hamming distance R = 4
and the minimum match threshold value Th = 4 are an
excellent trade-off between noise resistance and accuracy of
foreground detection.

A reasonable number of samples in the background sub-
traction model are crucial for the balance of the detec-
tion precision, computational complexity and sensitivity in
real-world urban traffic scenes. Fewer samples will increase
the sensitivity of model and reduce the computational com-
plexity, but it will decrease the precision of foreground detec-
tion. To a certain extent, increasing the number of samples

will elevate computational complexity but may not promote
the precision of foreground detection. The relation between
the number of samples N in the model and the correspond-
ing performance based on real-world urban traffic video
sequences is shown in Fig. 5. As we can see in this figure,
the F-measure value tends to reach the plateau when
N reaches the value of 35. In this paper, we determined to
set N = 35. Although N = 60 will obtain a better F-measure
in real-world urban traffic video sequences, a bigger N will
increase memory and computational complexity, but with
little F-measure improvement. Moreover, the first Th are
usually sufficient to stop searching the matched sample in
stable regions, so increasing N may not directly improve the
performance.

FIGURE 5. The relation between the number of samples N and the
corresponding F-measure using the real-world urban traffic video
sequences.

C. QUALITATIVE EVALUATIONS
Qualitative evaluation, which is provided employing visual
assessment of detected binary objects’ masks for test video
sequences, is a subjective measurement of foreground detec-
tion results among the different compared methods. The qual-
itative comparisons of the LBPM, LTPM, SILTPM, LBSPM,
LLSDM, IIFM, ALTFM and our model under three urban
traffic scenes is shown in Figs.6-8. Ground truth images of
SSSW and TLSNwere created in a semi-supervised way, and
the corresponding images were marked with the following
steps: to begin with, edge detection approach was employed
to get the edges of foreground objects in the original real-
world image. Then, traditional background subtraction meth-
ods (GMM and ViBe in OpenCV Library) were employed
to obtain sketchy foreground. Next, an image marked by
classical methods was marked a number of times based on
different persons using the original image and edge image
and foreground objects. Finally, the ultimate ground-truth
image was constructed by averaging labeled images. Note
that the foreground detection of all compared approaches
is pixel-based and the experimental images of each model
are original results without the application of morphological
post-processing.
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FIGURE 6. Qualitative comparative results of detection masks for
sequence with strong shadows on a sunny day and waving trees.

FIGURE 7. Qualitative comparative results of detection masks for
sequence of in traffic-light at night.

First, the compared foreground detection results about
the traffic sequence of strong shadows on sunny days and
waving trees are illustrated in Fig.6, where typical sam-
ples of SSSW, corresponding ground-truth and detection
results of foreground objects obtained by the LBPM, LTPM,
SILTPM, LBSPM, ALTFM, LLSDM, IIFM and our adaptive
local median texture feature background model (ALMTFM)
method are demonstrated from the second to the tenth row,

FIGURE 8. Qualitative comparative results of detection masks for traffic
sequence of night video in CDnet2014.

respectively. The main challenges of these environments are
the random illumination changes in nature (such as the sun
reappearing from behind a cloud), the shadows of the swaying
trees or foreground objects and the reflected light of vehicles
and advertising boards. Five typical frames including part
of the challenges were selected to illustrate the comparison
of results of foreground detection from the second to the
sixth column. The second column illustrates the 340-th frame
in which vehicles slow down to wait for a green light and
pedestrians start to pass through the intersection when the
traffic light turns yellow. A few seconds later, the traffic light
turning red at frame 340 is shown in the second column to
describe the fact that some vehicles have stopped to wait for
the green light and pedestrians are passing the intersection.
As we can see, all the methods almost detect the foreground
objects in the first two columns, but the LBPM, LTPM,
SILTPM, LBSPM and LLSDM cannot effectively prevent a
large amount of noise. In the third column at frame 2500,
where the sun reappears from behind a cloud, simultaneously
leading to a large amount of strong shadows, one can notice
that the LBPM, LTPM, SILTPM, LBSPM and LLSDM are
susceptible to shadows and cannot effectively manage strong
shadows of the vehicles, whereas ALTFM and ALMTFM
are visibly better and precisely acquire a large number of
vehicles during the middle of the green light. In the final two
columns, in which a cloud blocks the sunlight at frame 5265
and then the sun reappears 4 seconds later, leading to daz-
zling reflected light on the windshield at frame 5340, our
approach mitigates all the challenges in a better way to obtain
satisfactory results. A comparison of the results shows that
the random illumination changes may produce some noise or
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incorrect detection of the existing objects. Our approach is
superior in the result of completely and precisely detection
vehicles and can resist more noise of foreground detection
in Fig.6.

Second, the comparative experiment about the traffic-light
sequence at night is shown in Fig.7, where frequent sudden
illumination changes are the main challenges. In this scene,
the traffic light and interference of street lamps will produce
strong and frequent sudden illumination variation glares and a
large amount of specific image noise. In the case of the green
light at frame 250, a vehicle that is passing the intersection
can be partly or fully observed for all compared approaches
in the second column. Two seconds later at frame 300, where
the traffic light turns yellow and the vehicle in frame 250 is
still in view is shown in the third column. It can be seen
that the LBPM and IIMF fail to discover the vehicle and
that the remaining approaches can partly or fully observe the
vehicle. In the red traffic light scene at frame 600, where a
vehicle is crossing the intersection, we would observe that
our proposed approach can completely and precisely acquire
the foreground objects with little noise. The fifth column
of the figure illustrates the middle of a green light in the
1150-th frame, in which three vehicles are passing the view.
It can be seen that all the approaches would partly or fully
discover three vehicles and our model handles noise and the
glare effect better than others. Finally, the traffic light is
starting to turn yellow at frame 1500, in which two vehicles
are leaving the intersection and one motorcycle is coming.
The ALTFM and ALMTFM can detect the motorcycle well
without much noise. Visually, the proposed approach not only
observes wonderful foreground results that are closer to the
ground truth but it also produce little noise in contrast with
other model in Fig.7.

Finally, we present qualitative comparisons between these
models using the sequence that is the traffic sequence of night
video in CDnet2014 dataset in Fig.8. The main challenges
of these night videos are the strong glare that is produced
by vehicle headlights over the road surface, the turning
on/off of high or low beam lights and the reflected light
of other vehicles or electronic advertising boards. It can be
seen that the LBPM, SILTPM and IIFM cannot clearly find
the corresponding vehicle and LTPM, LBSPM, ALTFM,
LLSDM and our approach can partly or completely detect
the vehicles. Visually, our method handles the strong glare
effect better than other and could obtain correct and fuller
foreground vehicles withoutmore noise in Fig.8. This demon-
strates the effectiveness of the ALMTFM to manage sudden
and gradual illumination variations in urban traffic
scenes.

D. QUANTITATIVE EVALUATIONS
To compare the performance of different background mod-
els by quantitative evaluation, the typical evaluation metrics
have been used. According to [39], the recall, precision and
F-measure are employed to compare the performance of
background subtraction methods in urban traffic scenes at the

pixel level, and these metrics are defined as follows:

Recall =
TP

total of actual foreground object pixels

=
TP

TP+ FN
, (13)

Precision=
TP

total of estimated foreground object pixels

=
TP

TP+ FP
, (14)

F − measure =
2 · Recall · Precision
Recall + Precision

, (15)

where TP stands for the total number of the true positive
pixels that are correctly labeled as foreground, FN stands for
the total number of false negative pixels that are incorrectly
labeled as background and FP stands for the total number of
false positive pixels that are incorrectly labeled as foreground.
A higher metric value means a higher performance of back-
ground subtraction approaches. The F-measure, which can
reconcile the accuracy measurements of recall and precision
by fairly weighting their harmonic balances, is commonly
employed as a good indicator of the overall performance of
background subtraction approaches.

As presented in Fig.9, which presents a comparison of
the results of recall for SSSW, TLSN and TSCD14, LBSPM
outperforms all methods in real-world scenes and LLSDM
outperforms all methods in CDnet2014 dataset scenes. The
results of our approach are high in the ranking. It can be seen
that the precision of the ALTFM and ALMTFM outperforms
that of the other compared models in real-world scenes and
LBSPM outperforms all other methods in CDnet2014 dataset
scenes in Fig.10. In addition, as indicated in Fig10 for the
TLSN sequence, the precision of our method is up to 0.545,
which is higher than all the compared methods. The results
of the F-measure on SSSW, TLSN and TSCD14 are indi-
cated in Fig.11, where the F-measure results for our model
are up to 0.699, 0.560 and 0.261 in the SSSW, TLSN and
TSCD14 sequence, respectively. The compared results of the
metrics revealed in Figs.9-11 clearly show that the proposed

FIGURE 9. The comparison recall results of all compared for the
real-world and CDnet2014 datasets.
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FIGURE 10. The comparison precision results of all compared for the
real-world and CDnet2014 datasets.

FIGURE 11. The comparison F-measure results of all compared for the
real-world and CDnet2014 datasets.

FIGURE 12. The average processing speed in terms of frames/second(fps).

model provides outstanding F-measure performance in com-
parison with the other excellent methods in the SSSW, TLSN
and TSCD14 sequence. The reason for this is that an adap-
tive feature and sample consensus scheme were combined
to handle sudden and gradual illumination changes in com-
plex urban traffic scenes and performed well for illumination
changes.

Finally, evaluating the computational complexity of
background model is important for real-time video-based
applications scenes. In this experiment, the average pro-
cessing speed results of all models on three urban traf-
fic scenes is shown in Figs.12. Full-resolution Images
(1280× 720: width × height) were sub-sampled to a resolu-
tion of 280×160 before processing in VS2012+opencv2.4.2
environment, and PC equipped with intel(R) core(TM)
i5_4300 cpu@2.60GHz. LBPM processed the highest num-
ber of frames per-second. Furthermore, LTPM, SILTPM,
LBSPM, LLSDM and ALTFM had fairly good process-
ing speeds. However, IIFM is not suitable for real-time
applications due to its matrix decomposition operation. The
experimental shown that the average process speed reach
is 35 frames/s. Thus, the performance of the proposed
ALMTFM is suitable for real-time surveillance systems.

V. CONCLUSION
In this study, an adaptive local median texture feature and
sample consensus scheme are combined to efficientlymanage
the deficiencies of the background subtraction model, which
is easily polluted by sudden or gradual illumination changes
in complex real-world urban traffic scenes. Local median tex-
ture features extract the adaptive distance threshold employ-
ing the median information in a predefined local region of a
pixel and Weber’s law. The ALMTFM is proposed to handle
illumination changes and detect vehicles in real-world urban
traffic scenes. The qualitative and quantitative comparisons
of the results indicate that this background model achieves
better performance than other methods suggested in the lit-
erature. The theoretical analysis and experiment results of
the ALMTFM revealed that it is excellent for handling sud-
den and gradual illumination changes in real-world complex
urban traffic scenes. However, the parameters of our proposed
model are difficult to determine due to random illumina-
tion changes scenes and a large number of experiments are
required to determine the parameters. In addition, our method
cannot manage motionless or low-speed motion objects of
urban traffic intersections. In future work, we will focus on
eliminating the influence of these parameters, and shadows
and motionless or low-speed motion problems will be dis-
cussed to improve the performance in real-world urban traffic
scenes.
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