
Received June 5, 2020, accepted July 5, 2020, date of publication July 15, 2020, date of current version July 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3009333

Multi-View Tree Structure Learning for 3D Model
Retrieval and Classification in Smart City
AN-AN LIU , (Member, IEEE), ZHENLAN ZHAO, WENHUI LI , AND DAN SONG
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China

Corresponding authors: Wenhui Li (liwenhui@tju.edu.cn) and Dan Song (dan.song@tju.edu.cn)

This work was supported in part by the National Natural Science Foundation of China (61772359, 61872267, 61902277), the grant of
Tianjin New Generation Artificial Intelligence Major Program (19ZXZNGX00110,1 8ZXZNGX00150), the Open Project Program of the
State Key Lab of CAD & CG, Zhejiang University (Grant No. A2005, A2012).

ABSTRACT The application of digital products in smart city results in ever-increasing 3D model data and
how to obtain the relevant 3D model becomes a crucial issue. In this paper, we propose the Multi-View Tree
Structure (MVTS) learning for 3D model retrieval and recognition. MVTS contains three key consecutive
modules. Firstly, the visual feature learning module extracts the visual features of multiple views. Then,
we design a score matrix to estimate the value of contextual information between view pairs. Based on the
score matrix, a maximum spanning tree is constructed to further explore the contextual information within
multiple views. Then, we utilize the bidirectional Tree-LSTM to encode the contextual information among
views and the spatial information of tree structure and optimize the tree parameters. After that, the tree
attention strategy is adopted to explore the importance of each view. Comparing to existing methods, our
proposed method explores the spatial information of 3D model without the requirement of specific camera
settings, which is more suitable for real applications. Moreover, our method jointly realizes the feature
learning, view-wise contextual information and tree spatial information encoding and view importance
estimating, which enhances the discrimination of the 3D model representation. Extensive experimental
results on Modelnet40 and ShapeNetCore55 demonstrate the superiority of our method.

INDEX TERMS 3D model retrieval, multi-view representation, long short-term memory, smart city.

I. INTRODUCTION
With the development of digital and smart city, massive
and complex data are produced by various applications, e.g,
unmanned vehicle, intelligent manufacturing and smart trans-
portation. Due to the sophisticated structure, modality and
appearance of data, it is difficult to process these data by using
regular management approach or software. Therefore, it is
essential to design efficient mechanisms to learn and repre-
sent these data for intelligently management and application
within the smart city environment.

A. MOTIVATION AND OVERVIEW
Three-dimensional (3D) model data is an important infor-
mation carrier in smart city and it gets a lot of attentions
because of the convenience and effectiveness to describe
the virtual industrial products. In recent years, the develop-
ment of 3D modeling technology and low-cost acquisition
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FIGURE 1. 3D modeling softwares and low-cost acquisition equipments.

equipment (Figure.1) have brought ever-increasing 3D data.
Because of its advantages in shortening design cycle, reduc-
ing new product development risk and investment cost, 3D
data has received much attention and wide application. Thus,
how to effectively retrieve and classify 3D models in the
dataset has become a crucial issue.
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FIGURE 2. The flowchart of our proposed method is demonstrated as above, which mainly contains three consecutive modules: visual feature learning,
tree model generation and tree contextual encoding. Firstly the feature of model views are extracted independently by CNN. In tree model generation
module, a score matrix is calculated to measure the contextual information value of view pairs. Based on this matrix, the tree model is constructed
recursively. Then, we adopt the bidirectional Tree-LSTM to encode the contextual and spatial information. The bidirectional (top-down and bottom-up)
Tree-LSTM enables the hidden state to obtain richer and deeper contextual information inside the view sequence. All output hidden states of Tree-LSTM
and the shape feature that is obtained by view-level max pooling will be inputted into the tree attention module together, where the weights of all
hidden states will be calculated. The weighted sum of hidden states after applying the tree attention is employed as the final shape descriptor for the
following retrieval or classification task.

The 3D model retrieval & recognition is broadly clas-
sified into two groups, the model-based method and the
view-based method. The early research mainly focuses on the
model-based method. These methods try to design the hand-
craft features to extract the surface geometry, volume and
skeleton information to represent the 3D model data [1]–[3].
However, the performance of these method is limited by the
complex topology structure and the diversity of categories.
Moreover, inspired by the breakthrough progress made in
the field of 2D image and videos, many researches focus
on the view-based methods, which obtain multiple views of
the 3D model with virtual camera set [4]–[6]. View-based
methods usually extract representative views from the view
set or pooling the multiple views into one view to represent
the corresponding 3D model and the performance heavily
depends on the ability of view selection strategy. On the
other hand, to explore the sequential information of multiple
views, a lot of workminemulti-view information by using the
LSTM model or design the strategy to group the multi-view
into subset [7]. However, these methods mainly have several
critical problems: 1) It might lose the useful information
by adopting max-pooling strategy to fuse multi-view rep-
resentations. 2) It is sensitive to the order of views when
using the sequence-based methods to learn the 3D model
representation, such as Long short-term memory (LSTM),
which is difficult to model the spatial characteristic of the 3D
model. 3) Due to the difference in rendering angle, different
views have different importance for shape representation and
they should be given different weights.

To address the above problems, we propose a Multi-View
Tree Structure Learning for 3D Model Retrieval and Clas-
sification (MVTS). The pipeline of our method is show in
Figure. 2. Our method has three key modules. Firstly,

we adopt deep CNN to extract the multi-view features. Then,
we design a score matrix in which each cell indicates the
contextual information value of the corresponding view pair.
Based on the score matrix, the tree structure model is pro-
posed to model the spatial characteristic information of 3D
model and the bidirectional Tree-LSTM is adopted to encode
the contextual and spatial information. Moreover, we adopt
the tree attention strategy to model the importance of each
view in model representation. In this way, our method can
effectively avoid the negative influence caused by different
view orders and model structure information based on multi-
ple views. The weighted sum of all hidden states are utilized
as the final model feature, which can be used for model
retrieval based on distancemetric ormodel classification after
being passed through the softmax layer.

B. CONTRIBUTION
The main contributions of this paper are summarized as
follows:
• We propose a novel tree structure learning method for
view-based 3D model retrieval and recognition. Differ-
ent from depending on the sequential information of
multiple views, our method designs the tree structure to
explore the spatial information without the requirement
of specific camera settings, which is suitable for real
applications.

• Our method introduce the bidirectional Tree-LSTM to
encode the contextual information between view pairs
and the spatial information of the tree structure. Besides,
the tree attention strategy is adopted to estimate the view
importance. Our model jointly realizes the feature learn-
ing, view-wise contextual information and tree spatial
information encoding and view importance estimating,
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which helps the network to obtain more discriminative
representation of 3D models.

• We conduct extensive experiments on two large-scale
3D model datasets and the experimental results demon-
strate the superiority of our method.

The rest of this paper is organized as follows. We overview
the existing related work in Section II and detail the proposed
method in Section III. The Section IV describes the experi-
ment setting and SectionV discusses the experimental results.
Finally, we conclude this work in Section VI.

II. RELATED WORK
Generally, the existing methods for 3D model retrieval
and classification can be grouped into model-based and
view-based methods. In this section, we will introduce some
representative methods of both categories as follows.

A. MODEL-BASED 3D MODEL RETRIEVAL
3D models have spatial structures and complex geome-
tries with diverse variations. In model-based 3D model
retrieval methods, the 3D model feature is extracted based
on the model characteristics directly, such as grid, vox-
elized 3D network, mesh and point cloud. Overall, the geo-
metric information and the topological or skeletal graph
structures of a 3D model are popular model information
adopted in model-based methods. [8]. The distance of
random surface points, angle, area and volumes can be
utilized for similarity measurement between 3D models.
Wu et al. [9] designed the 3D convolutional restricted
Boltzmann machine to learn the global features from vox-
elized 3Dmodels. Furuya and Ohbuchi [10] designed a novel
aggregation network to extract the rotation-invariant 3D
local features and unified these features in a single archi-
tecture. Tabia and Laga [11] used the descriptor’s covariance
matrix to encode different feature forms and types into a
single compact descriptor to represent 3D models. Then the
Riemannian manifold is used to calculate the geodesic dis-
tance of the paired models. Charles et al. [12] proposed
to the make use of point cloud descriptions for 3D mod-
els for classification. Dominguez et al. [13] proposed the
graph-based method to apply transfer learning strategy on
3D point cloud data, which was demonstrated to have the
ability to represent the unforeseen test models. You et al. [14]
integrated point clouds and multi-view data into 3D model
recognition. Shi and Rajkumar [15] designed a graph neural
network, named Point-GNN, to predict the category and
model of the object that each vertex in the graph belongs to.
Although the model-based methods can make full use of the
structure of 3D objects, they are computationally expensive
due to the complexity of 3D models, especially when the
model reconstruction are required in practical application.
Moreover, the regular poor reconstruction performance and
high computational complexity limit their flexible application
in real applications.

B. VIEW-BASED 3D MODEL RETRIEVAL
Different from model-based methods in which the 3D model
information is required directly, view-based methods employ
the 3D model Information indirectly by view rendering pro-
cedure. Besides,multi-view representation can be achieved
by view information fusion [16]. Generally, model views
are captured by setting virtual cameras around the model.
Then, we can select a representative view feature or fuse
all views into a compact descriptor to represent the model.
The GIFT [17] is a well-designed 3D shape search engine.
In GIFT, the projection rendering and the view feature extrac-
tion was accelerated by using CNNwith GPU and the embed-
ding of two inverted files (F-IF and S-IF) are adopted to
enable real-time retrieval. However, only a single view is
utilized in GIFT. Many algorithms focus on utilizing the
multi-view sequence to build a compact shape descriptor.
One typical view fusing method is the MVCNN proposed
by Su et al. [18]. In MVCNN, a novel CNN architecture is
proposed, where the view-level pooling layer is added after
all convolutional layers. The view-level pooling layer can
combine multiple view information into a single and compact
model descriptor.The view fusion operation can represent
the model effectively and provide better retrieval or classi-
fication performance. Feng et al. [19] introduced a group
view CNN framework, named GVCNN, for hierarchically
correlated modeling to produce a discriminative and compact
3D model representation. The grouping strategy is used to
solve the problem that the inherent hierarchical correlation
and distinguish ability between views are not well utilized.
In addition to fusing all view information, selecting more
important views at first and just ensembling their information
is also an effective way. Stereographic Projection Neural
Network (SPNet) proposed by Yavartanoo et al. [20] is a
valid model descriptor learning method. After employing the
stereographic projection to transform the 3D volume into 2D
planar image, a shallow 2D CNN is presented for object cate-
gory estimation. At last, view selection and view ensembling
are added to enhance the final performance.

To solve the problem of only partial views are obtainable
in real applications, Kanezaki et al. [21] proposed a novel
CNN-based network called RotationNet. The RotationNet
takes the multiple views of a model as input and estimates
both the pose and category jointly. The pose alignment
strategy ensures high accuracy in both model categoriza-
tion and pose estimation by sharing view-specific descriptor
across classes. Besides, RotationNet can learn the viewpoint
labels without object labels. In the field of autonomous
driving, due to the association of complementary devices
such as LiDAR, Beltrán et al. [22] proposed an effective
LiDAR-based 3D model detection method(BirdNEt) in driv-
ing environments. Firstly, in order to conduct bird’s eye view
projection, the laser information is projected into a new cell
encoding. Then both the object position and its course are
estimated by CNN. At last, 3D oriented detections are cal-
culated in a post-processing phase. BirdNet also introduces
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pedestrians and cyclist detection with only BEV images and
can be applied in real-time scenes. Chen et al. [23]proposed
Multi-View 3D networks (MV3D), where a sensory-fusion
framework is proposed to predict oriented 3D bounding boxes
with both the RGB images and LIDAR point cloud as input.
The sparse 3D point cloud can be encoded with a compact
multi-view representation. In addition, they introduced a deep
fusion scheme to combine region-wise features and ensure the
interactions between intermediate layers.

III. METHODOLOGY
In this section, we firstly overview the whole framework of
our method. Then, we introduce each module of the frame-
work in detail.

A. OVERVIEW
Our framework contains three consecutive modules as shown
in Fig 2.

• View Feature Learning. After obtaining the view set
for each 3D model, we utilize this module to encode the
multi-view information and extract the visual feature for
each view.

• TreeModel Construction. This module designs a score
matrix where each cell indicates the relevance between
the corresponding view pair. Based on the score matrix,
a maximum spanning tree will be constructed to process
the multi-view features and the tree structure will be
used to initialize the next module.

• Tree Model Context Encoding. This module utilizes
the tree structure to discover the contextual information
of multiple views. Firstly, the bidirectional Tree-LSTM
is used for contexual and spatial information encoding.
Then the tree attentionmechanism is designed to explore
the importance of each view and get the unified repre-
sentation bymerging themulti-view contextual informa-
tion with different importance.

Our framework can be trained in an end-to-end manner and
the details of above three modules are descried as follows.

B. VIEW FEATURE LEARNING
In order to obtain themulti-view representation of 3Dmodels,
we set a group of virtual cameras around the model to capture
its rendered views based on Phong reflection model [18].
By changing the interval angle between virtual cameras,
the number of rendered views of each model can be changed
as well. For instance, when the angle is set to 30◦, the view
number will be 12, which is employed as the default setting
in all our experiments. Given N 3D models, the view set
for all 3D models is denotes as V =

{
vti |t = 1, . . . , S

}N
i=1,

where S is the view number. vti denotes the t-th view of
model i. Due to the simpler architecture, less parameters
and competing performance of Alexnet, it is employed as
the backbone network to extract view feature in our method.
AlexNet is composed of five convolutional layers, conv1 −
conv5, and three fully connected layers, fc6−fc8. For retrieval

and classification task, the output of fc7 is usually used as
the visual representation of individual views. We utilize the
F =

{
f ti |t=1,...,S

}N
i=1 to denote the view feature set, where

f ti ∈ R
1×D, D is the dimension of visual feature vector.

C. TREE MODEL CONSTRUCTION
Long Short-Term Memory (LSTM) network is a represen-
tative and special type of recurrent neural network (RNN).
It has a more complex and precise computational unit so
that the sequence information over time can be preserved.
LSTM is mainly designed to solve the problem of gradient
disappearance and gradient explosion during long sequence
training and performs well on various sequence modeling
tasks. However, the structure of normal LSTM a linear chain,
which is too simplistic to capture complex spatial infor-
mation. Therefore, we developed LSTM with tree structure
rather than chain structure so that the information from each
child can be incorporated selectively. It overcomes the limi-
tation of LSTM architecture that only allows information to
be spread in sequential order. The input gate, output gate,
a memory cell and the hidden state form a basic unit of Tree-
LSTM. The states of all possible child units decide whether
the gating cell and the memory cell should update or not. The
hidden state of Tree-LSTM is composed from the input vector
and arbitrary number of child units instead of the input of
the current time step and the hidden state of preceding time
step. Therefore, richer network typologies are obtained to
enable each Tree-LSTM unit to incorporate richer and more
comprehensive information from multiple child units.

The model views are obtained by rendering the model from
different perspectives. Thus, the views are related to each
other because they can be regarded as progressive sequence.
For example, the views rendered by adjacent virtual cameras
are similar, which makes the corresponding view pair con-
tains richer contextual information. Thus, before constructing
the tree, a score matrix M need to be learnt to estimate the
value of the contextual information between view pairs. In our
method, the score matrix is computed based on view pair
information, formulated as:

Mi(x, y) = D(f xi , f
y
i ) (1)

where f xi and f yi are the features of vxi and view vyi , where v
x
i

and vyi are the x-th and y-th view of model i respectively and
they are the output of fc7 with the dimension of 4096. D is
the distance for similarity measure, which can be Euclidean
distance. Since M as a S × S symmetric adjacency matrix,
a maximum spanning tree can be constructed by adopting the
Prim’s algorithm [24]. Firstly, the vertices set of the graph are
separated into two disjoint subsets. One contains the vertices
that have been included in the maximum spanning tree while
the other contains the vertices not yet included. In our imple-
mentation, all view of a model are utilized as the vertices of
graph and the edge weight between two vertices is the cor-
responding value of matrix M. The maximum spanning tree
will be constructed recursively by comparing the weights of
all edge between the nodes included in the tree and the nodes
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FIGURE 3. Illustration of tree generation procedure. Given the root node
or part nodes of the tree, we connect the node of the tree by utilizing
maximum weight between the nodes and current tree. Then the node that
corresponds to the maximum weight will be connected to the tree. The
edge weight is the corresponding cell value of the score matrix M that
indicates the contextual information between view pairs.

not included in the tree. Then the node of the largest weight
edge will be selected and connected to the corresponding tree
node, which will update the spanning tree as well as the com-
ponents of the two subsets. The largest edge weight indicates
the maximum correlation and validity. Figure. 3 shows how
the maximum spanning tree is constructed. This algorithm
ensures the final spanning tree to have the maximum edge
weight sum regardless the selection for the initial root node,
which will be verified experimentally later.

The resultant maximum spanning tree is a sparse graph
with multi-branch and merely a single type of connection
exists, which is inappropriate to distinguish the hierarchical
relationship and the parallel relationship when it encodes the
contextual information. Therefore, we convert the tree into
a Left-Child Right-Sibling (LCRS) tree [25]. LCRS tree is
a different kind of an n-ary tree in which a tree node only
refers to two nodes at most, i.e. its first (leftmost) child
and its immediate next sibling, rather than refer to its every
child node. The leftmost child node will become the left
branchwhile the immediate next sibling nodewill become the
right branch. The left branch corresponds to the hierarchical
relationship between nodes and the right branch corresponds
to the parallel relationship between nodes. The transforma-
tion from original spanning tree to LCRS tree is revealed as

Figure. 4 below. Compared with chain structure and the
original spanning tree, the LCRS tree is more efficient and
dynamic. In addition, with the hierarchical and parallel infor-
mation, the tree structure can deeply mine the structural
information of 3D model.

D. TREE MODEL CONTEXT ENCODING
1) BIDIRECTIONAL TREE CONTEXT ENCODING
After constructing the tree model based on the score
matrix M , we adopt the bidirectional Tree-LSTM to encode
the contextual information among model views and the spa-
tial information of the maximum spanning tree structure.
In the LSTM structure, a new hidden state hn and cell state is
generated by last hidden state hn, last cell state cn and current
input f x . While in the Tree-LSTM structure, we update these
states by using the states of child nodes. For node j of the tree
model, the unit equations of the tree structure are formulated
as follows:

h̃j =
∑
k∈C(j)

hk (2)

ij = σ
(
W (i)xj + U (i)h̃j + b(i)

)
(3)

fjk = σ
(
W (f )xj + U (f )hk + b(f )

)
(4)

oj = σ
(
W (o)xj + U (o)h̃j + b(o)

)
(5)

uj = tanh
(
W (u)xj + U (u)h̃j + b(u)

)
(6)

cj = ij � uj +
∑

fjk � ck (7)

hj = oj � tanh
(
cj
)

(8)

For a node j in a tree, C(j) denotes the children set of node j
and k ∈ C(j). Each unit of Tree-LSTM consists of a collec-
tion of vectors including an input gate ij, an output gate oj,
a memory cell cj and a set of forget gate

{
fjk |k ∈ C(j)

}
of the

children nodes. The entries of the gating vectors ij, oj, fjk are
in [0,1]. In the transition equations of Tree-LSTM, xj is the
input of node j, σ denotes the logistic sigmoid function and

FIGURE 4. Illustration of transforming the maximum spanning tree into the LCRS tree. The left child of the node (denoted in black) in LCRS correspond
to the leftmost child node and the right child of the node (denoted in red) in LCRS correspond to the immediate next sibling node in the maximum
spanning tree.
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� denotes the elementwise multiplication. All parameters
in these equations need to be learned and can be regarded
as the encoding correlations between the input vector xj,
the component vectors of the tree structure unit and the hidden
state hk of all its children nodes. Given the view feature set
Fi =

{
f ti |t=1,...,S

}
, the contextual encoding can be defined as:

E = BiTreeLSTM
({
f ti
}
t=1,2,...,S

)
(9)

whereE = [e1, e2, . . . , eS ] is the encoded view-level context.
Each ei =

[
−→
h i;
−→
h i

]
denotes the concatenation of the top-

down (→) and bottom-up (←) hidden states, which ensure
the hidden state to capture more comprehensive information.

−→
h i = TreeLSTM

(
zi,
−→
h p

)
(10)

←−
h i = TreeLSTM

(
zi,
[
←−
h l;
←−
h r

])
(11)

where the subscripts p, l, r denotes the parent, left child and
right child of node i, respectively.

2) TREE ATTENTION
The above tree architecture treats every node in the tree struc-
ture equally. However, multiple views captured from different
perspectives of the model contain information of different
degrees of importance. Thus, we apply the attention mecha-
nism over the tree components. The attentive Tree-LSTM can
assign different weights to all children in the tree structure,
i.e. different views will be assigned with different weights
based on their contribution to the final model representation.

Based on the hidden states set e1, e2, . . . , eS produced
by the Tree-LSTM encoding of all view features and an
auxiliary vector fshape, the wight αk of each hidden state
can be computed by the tree attention mechanism. Firstly,
an affine transformation on each hidden state hk is conducted
to calculate a vector mk , formulated as:

mk = tanh
(
W (m)ek + U (m)fshape

)
(12)

whereW (m) and U (m) are the parameter matrices and fshape is
the representation feature vector of all view features which is
obtained by the view-level max-pooling. Then, the attention
weight αk of hk is computed as follows:

αk =
wTmk∑S
j=1 w

Tmj
(13)

where w is the parameter vector. After computing the weights
of all hidden states, the vector g is calculated by the weighted
sum of all hidden states, formulated as:

g =
s∑

k=1

αkek (14)

At last, the new hidden state h̃ is obtained by employing
another affine transformation on g as follows:

h̃ = tanh
(
W(a)g+ b(a)

)
(15)

As the new hidden state h̃ contains the contextual infor-
mation between model views and the contribution of each
view feature to the model representation, it is utilized as the
final model descriptor. On retrieval task, the model pairwise
distance will be calculated based on h̃. While on classification
task, the softmax function will be used as follows:

ŷ = softmax
(
Wyh̃+ by

)
(16)

IV. DATASET AND EXPERIMENT SETTINGS
In this section, we introduce the dataset, evaluation criteria
and other implementation details of our method in detail.

A. DATASET
In order to evaluate the effectiveness of our proposed method,
several comparison experiments are conducted on two main-
stream and challenging 3Dmodel datasets, ModeleNet40 and
ShapeNetCore55.The model samples are shown in Figure. 5
and the introduction of the two datasets are described as
follows:
• ModelNet40 [9]: ModelNet40 is the subset of Princeton
ModelNet dataset, which is composed of 12311 com-
mon CAD models from 40 categories. In our imple-
mentation, we follow the official setting and take
9843 models for training and 2468 models for testing.

• ShapeNetCore55 [26]: ShapeNetCore55 is the subset
of the complete ShapeNet dataset, which contains
51300 common CAD models from 55 categories. The
official splitting way of ShapeNetCore55 is to portion
the train subset, validation subset and test subset with
70%, 10% and 20%, respectively. In our implementa-
tion, we adopt the official splitting way.

B. EVALUATION CRITERIA
For 3Dmodel retrieval task, each model of test dataset will be
employed once as the query. In order to quantify the perfor-
mance of our proposed method on retrieval task, we employ
the Nearest Neighbor (NN), First Tier (FT), Second Tier (ST),
F measure (F), Discounted Cumulative Gain (DCG), Average
Normalized Modified Retrieval Rank (ANMRR) and Mean
Average Precision (mAP) as the evaluation criteria to quantify
the retrieval performance [16].

To evaluate our method on the ShapeNetCore55, we fol-
lowing the work [26] to adopt the macro-averaged and
micro-averaged measure, where macro-averaged measure
employs the evaluation criteria to compute the unweighted
average over the entire dataset while the micro-averaged
measure utilizes the aforesaid criteria to compute a weighted
average which takes the number of 3D models of each cate-
gory into consideration.

C. IMPLEMENTATION DETAILS
We utilize the Alexnet as the backbone CNN architec-
ture for feature extraction. AlexNet contains five convo-
lutional layers and three fully connected layers. During
training, we fine-tune the weights of AlenxNet that has been
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FIGURE 5. 3D model samples on Modelnet40.

TABLE 1. Comparison experiments on ModelNet40.

pre-trained on ImageNet to update the parameters of our
network. We adopt SGD for optimizing and the learning rate
is fixed to 5e-5. Besides, we adopt the weight decay strategy
during training and employ an element-wise dropout mask in
Tree-LSTM. The dimension of hidden state in our method is
set to 1024 and the view number is set to 12.

V. EXPERIMENT AND DISCUSSION
In this section, in order validate the effectiveness and effi-
ciency of our proposed method, we conducted several com-
parative experiments on ModelNet40 and ShapeNetCore55.
Firstly, we compare the performance of our proposed meth-
ods with several state-of-the-art methods on 3D model
retrieval task. Then we explore the influence of the variation
in view number to validate the robustness of our method and
verify the effectiveness of different modules via the sensitiv-
ity analysis on networkmodules. Besides, we confirm the the-
ory that the selection for tree root node don’t affect the final

result experimentally. Finally, a visualization experiment is
conducted to show the retrieval performance intuitively.

A. COMPARISON WITH THE STATE-OF-THE-ART
METHODS
In this section, the experimental results of our proposed
method and several representative state-of-the-art methods
of both view-based category and model-based category
are revealed for comparison. The comparison results of
ModelNet40 and ShapeNetCore55 are showed in Table 1 and
Table 2, respectively.
On ModelNet40 (Table 1), our method outperforms other

benchmark methods in both classification accuracy and
retrieval mAP criteria. Specifically, comparing to the existing
methods, the classification accuracy and retrieval mAP are
improved by 1.6% to 16.4% and 3.8% to 34.2&, respectively.
On ShapeNetCore55 (Table 2), we employ the same criteria
to evaluate the corresponding performance. We follow the
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TABLE 2. Comparison of performance (%) on the ShapeNet55 normal version with official testing method.

official splitting way and employ the 70% training sub-
set along with the 10% validation subset for network training,
the test subset is used for retrieval and classification tasks.
The performance in Table 2 indicates that our proposed
method can outperforms the existing methods by around
3.0%-61% in microALL mAP and by around 6.4%-41.5% in
macro mAP. In addition, we have several important observa-
tions as follows:

• Our method is consistently competitive compared with
other representative view-based and model-based meth-
ods for both 3D model retrieval and classification tasks,
which demonstrates the superiority and efficiency of our
proposed method.

• Previous view-basedmethods usually just select one rep-
resentative view from the view sequence of the model,
or employ simple view-level aggregation strategy, like
the max-pooling (eg. MVCNN) method to fuse multiple
views. Although some generally typical information of
all views is preserved, the correlation among views are
often neglected, causing the lack of valuable informa-
tion. However, by employing the Tree-LSTM architec-
ture, the intrinsic correlation among views are encoded
so that the valuable information among views can be
preserved to boost the final retrieval performance.

• Generally, the model-based methods usually adopt the
topological or locally geometric structure information
of 3D models directly, which results in the lack in global
information of the 3D model. However, our proposed
method can not only extract the view-level feature of
individual view to capture local information, but also
obtain the compact feature of whole view sequence
of the 3D model to capture the global information.
Combining the local information with the global infor-
mation of the 3D model helps get better performance.

B. SENSITIVITY ANALYSIS ON VIEW NUMBER
In order to investigate the influence of view number ofmodels
on the retrieval and classification tasks, we conducted the
comparative experiment by varying view number. In detail,
we change the intervals between the virtual cameras when

rendering the views from the 3D model. The corresponding
angle θ of interval is set to {180◦, 90◦, 60◦, 45◦, 36◦, 30◦} so
that the view number of each model can be set to {2, 4, 6,
8, 10, 12}, respectively. The experiment results are showed
in Table 3. From the results, we can find that with the view
number increasing, the retrieval performance is becoming
better. This is because more views can provide richer and
more diverse information to represent the 3D model more
comprehensively. The performance reaches the peak when
the view number is set to 12. Specifically, when the view
number is set to 12, it outperforms other view number settings
by 0.9%-8.0%, 1.0%-6.4%, 0.8%-14.6%, 0.8%-7.5%, 1.2%-
9.7% on NN, FT, ST, F and DCG, respectively. For ANMRR,
the performance decreases by 1.2%-10.2% comparing to
using other view numbers.

TABLE 3. Retrieval performance on ModelNet40 with different view
numbers.

C. SENSITIVITY ANALYSIS ON DIFFERENT MODULES
To validate the effectiveness of different modules in our
framework, we evaluate the our method with different mod-
ules on Modelnet40 and the results are shown in Table. 4.
The ‘‘Base model’’ indicates that we only employ the tree
structure with one direction. The ‘‘MVTS w/o A’’ means our
framework without attention module. The ‘‘MVTS w/o B’’

TABLE 4. Retrieval performance on ModelNet40 with different modules.
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FIGURE 6. The experiment result for different root node selection on
ModelNet40. The horizontal axis is the ranking index of the root node
after sorting the views by their sum of similarity scores in an ascendant
order.

means our framework does not contain the bidirectional mod-
ule. Comparing to the ‘‘Base model’’, the ‘‘MVTS w/o A’’
utilizes the bidirectional tree structure to capture the spatial
contextual information and outperforms the ‘‘Base model’’
by 2.5%, 3.5%, 2.4%, 1.2%, 3.5%, 3.3% in terms of NN, FT,
ST, F, DCG andANMRRcriteria, respectively, which demon-
strates the bidirectional module of our method. The similar
observation can be found by comparing the ‘‘Base model’’
with the ‘‘MVTS w/o A’’. The MVTS with all modules gets

the best performance, which further proves the effectiveness
of our method.

D. THE INFLUENCE OF ROOT NODE SELECTION ON
RETRIEVAL RESULT
From the theoretical analysis, the selection for root node don’t
affect the structure of the final spanning tree. Because at each
step, the edge with the highest weight will be selected, which
ensures the final spanning tree to be the maximum span-
ning tree with the maximum edge weight sum. To confirm
this experimentally, we conduct a comparison experiment on
ModelNet40, in which the root node is varied. Firstly, the sum
of similarity scores of each view is calculated as:

Sumvdi
=

∑
Mi(f di , .) (17)

where vdi denotes the d-th view of model i and Sumvdi
is the corresponding sum of similarity scores. Then
Sumv0i

. . . Sumvdi . . . SumvSi are sorted in an ascendant order.
According to this order, we repeat the experiment S times by
selecting the different view as the root node to construct the
tree. The experiment results are revealed in Figure. 6. From
the results we can find that the selection for root node don’t
affect the retrieval result, which demonstrates the robustness
of our method.

E. RESULTS VISUALIZATION
The visual retrieval results on ModelNet40 are presented
in Figure. 7. The left column shows the query models and the

FIGURE 7. Examples of retrieval results on ModelNet40.

VOLUME 8, 2020 129751



A.-A. Liu et al.: MVTS Learning for 3D Model Retrieval and Classification in Smart City

rest columns are retrieval results. In this figure, the 3Dmodels
surrounded by the green box denote the correct retrieval
results and the models surrounded by red box denote the
false retrieval results. When we use the desk as query model,
the retrieval results contain the Bookshelf and Table, which
are the different classes while have similar visual pattern.
Consequently, although there exist failure cases, the retrieved
results are still visually similar to the query model, which
demonstrates the robustness and effectiveness of our pro-
posed method.

VI. CONCLUSION
In this paper, we propose a Multi-View Tree Structure
(MVTS) learning method for 3Dmodel retrieval and recogni-
tion. Different from the traditional LSTM methods, in which
the specific view order is needed to explore the structure
information of multiple views, our method adopts the tree
structured LSTM to model this information and abandon
the limitation of view order for multiple views. Moreover,
we introduce the Tree-LSTM with binary directions to help
encode the contextual information between view pairs and
the spatial information of the tree structure better. In order to
distinguish the contribution of each view to the final model
representation, the tree attention strategy is adopted to assign
higher weights to more important views. The weighted aver-
age sum of hidden states after applying tree attention is uti-
lized as the final model descriptor. The experimental results
on ShapeNet55 and ModelNet40 are revealed and discussed
to demonstrate the superiority of our proposed method. In the
future, we intend to construct the multiple trees by using the
different visual features to enrich the contextual information
and further boost its performance in both 3D shape retrieval
and classification tasks.
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