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ABSTRACT This paper presents a data-driven method for designing optimal controllers and robust con-
trollers for unknown nonlinear systems. Mathematical models for the realization of the control are difficult
to develop owing to a lack of knowledge regarding such systems. The proposed multidisciplinary method,
based on optimal control theory andmachine learning with kernel functions, facilitates designing appropriate
controllers using a data set. Kernel-based system models are useful for representing nonlinear systems. An
optimal and an H-infinity controller can be designed by solving Hamilton–Jacobi (HJ) equations, which
unfortunately, are difficult to solve owing to the nonlinearity and complexity of the kernel-based models.
The objective of this study consists of overcoming two challenges. The first challenge is to derive exact
solutions to the HJ equations for a class of kernel-based system models. A key technique in overcoming this
challenge is to reduce the HJ equations to easily solvable algebraic matrix equations, from which optimal
and H-infinity controllers are designed. The second challenge is to control an unknown system using the
obtained controllers, wherein the system is identified as a kernel-based model. Additionally, this study
analyzes probabilistic stability of the feedback system with the proposed controllers. Numerical simulations
demonstrate control performances of both the derived optimal and H-infinity controllers and stability of the
feedback system.

INDEX TERMS Gaussian processes, H-infinity control, optimal control.

I. INTRODUCTION
There exist various unknown nonlinear systems that it is
useful to control. Examples of such systems are (semi-
)autonomous vehicles that comprise a human driver with
unknown nonlinear dynamics [1], [2] and batteries in electric
vehicles that should be managed by taking into account their
unknown dynamics [3]. It is desirable that such systems are
controlled optimally and safely, albeit their dynamics remain
partially unknown. This study focuses on controlling such
unknown nonlinear systems.

When model-based approaches are used to design con-
trollers for unknown systems, system identification is needed
to deduce mathematical models. Precise system model-
ing is crucial in controller design to realize high control
performance without the need for iterative experiments.

The associate editor coordinating the review of this manuscript and

approving it for publication was Moussa Boukhnifer .

Various model types have been developed to identify non-
linear systems in fields of system identification and machine
learning. Data-driven models using kernel functions are
promising because they describe nonlinear dynamics while
requiring limited knowledge regarding the dynamics. Such
kernel-based models include kernel ridge regression mod-
els [4], Gaussian processes (GPs) [5]–[7], and GP-based
state-dependent coefficient models [8]. Successful utilization
of the GPs can be seen in control systems [9]–[13]. This
study focuses on data-driven methods using kernel-based
models to design controllers for unknown systems. The data-
driven methods indicate that the controllers are designed
using data sets of the systems. Although estimate models
of the systems are developed from the data sets, true equa-
tions describing the systems are not used in the controller
design. Such methods are efficient for controlling unknown
systems, regarding which only limited information is
available.
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Various methods have been developed to control kernel-
based systemmodels. Model predictive control [14]–[19] can
design (sub-) optimal controllers to minimize cost functions.
Local (sub-) optimal controllers near reference trajectories
have been calculated using differential dynamic program-
ming [20] and an iterative linear quadratic regulator [21].
Several promising techniques, such as the Dijkstra algo-
rithm [22] and a gradient-based method [11], have been
employed for controller design. Stabilizing controllers have
been proposed using sampling-based approaches [23], [24].
Unfortunately, several drawbacks are associated with the
use of these methods. First, the controllers are designed via
approximations that are sub-optimal for systemmodels. Next,
designing the controllers involves high computational costs.
Lastly, stability of feedback system models with some con-
trollers is not guaranteed. An underlying cause of these draw-
backs is the difficulty in solving nonlinear optimal control
problems for the kernel-based models. This difficulty also
exists when employing other data-driven approaches based
on neural networks [25]–[28].

To overcome these drawbacks, this paper presents a
method to design optimal and H∞ controllers for a class
of kernel-based models. We design not only optimal con-
trollers but also H∞ controllers to ensure robustness against
disturbances. The proposed method derives exact solutions
to optimal control andH∞ control problems via an analytical
approach. The control problems can be automatically solved
without the need for huge computation once the systemmodel
is obtained. Moreover, stability of the feedback systemmodel
during the application of the designed controllers is automat-
ically guaranteed under certain assumptions. The proposed
controllers are data-driven; that is, a true system is identified
as a data-driven model, using which the controllers can be
designed. The resultant controllers consist of kernel functions
with a training data set.

The proposed method focuses on solving Hamilton–Jacobi
(HJ) equations [29], which are powerful tools for analyzing
optimal and H∞ control problems. Solving the HJ equations
yields optimal and H∞ controllers. Unfortunately, it is diffi-
cult to acquire exact solutions to the HJ equations for kernel-
based system models, though approximate solutions can be
obtained, e.g., in [23]. To address this difficulty, we find a
class of kernel-based models for which exact solutions to the
HJ equations can be obtained. A key technique to find such
a model class involves reducing the HJ equations to easily
solvable algebraic matrix equations. The main originality and
novelty of this study involve the implementation of this tech-
nique. The algebraic equations consist of free parameters to
determine a kernel-based model and controllers. The param-
eters are selected such that the algebraic equations hold.
Satisfying the algebraic equations implies that the original
HJ equations are solved. The exact corresponding controllers
are subsequently obtained for the kernel-based model. If
the kernel-based model is equivalent to a true plant system,
the designed controllers stabilize it under certain assump-
tions. However, there almost always exists a modeling error

between the true plant system and its kernel-based model.
This study analyzes probabilistic stability of the true system
when the proposed controllers are employed.

The remainder of this paper is organized as follows.Mathe-
matical notations are described in Section II. Section III states
two main problems associated with control problems that are
addressed in this study. The details of the proposed method
are described in Sections IV and V. Section IV addresses the
first problem, which refers to finding kernel-basedmodels for
which exact solutions to optimal and H∞ control problems
can be obtained. Based on the solutions to the first problem,
Section V solves the second problem, which concerns the
development of a kernel-based system model and (stabiliz-
ing) controllers through the use of a data-driven approach. In
SectionV-B, Algorithm 1 summarizes themethod. SectionVI
demonstrates the effectiveness of the proposed method via
numerical simulations. Section VII summarizes the advan-
tages of the proposed method compared to existing methods.
Section VIII concludes this paper and describes future work.
Contents of this paper have been presented in part at the
2018 American Control Conference [30].

II. NOTATION
The following notations are used in this paper.
• Scalars are denoted by symbols in regular-weight font,
e.g., t ∈ R and J ∈ R.

• Vectors and matrices are denoted by bold letters, e.g.,
v ∈ Rn and A ∈ Rn ×m.

• In: the n × n identity matrix
• [v]i: the i-th component of a vector v ∈ Rn

• [A]i,j: the component in the i-th row and j-th column of
a matrix A ∈ Rn ×m

• [A]i,· ∈ Rm: the i-th row vector of a matrix A ∈ Rn ×m

• [A]·,j ∈ Rn: the j-th column vector of a matrix
A ∈ Rn ×m

• vec(A) := [[A]T
·,1, . . . , [A]

T
·,m]

T
∈ Rn m: the vector form

of a matrix A ∈ Rn ×m

• vech(A) := [[A]1,1, [A]1,2, [A]2,2, . . . , [A]1,j, . . . ,
[A]j,j, . . . , [A]1,n, . . . , [A]n,n]T ∈ Rn(n+1)/2: the half-
vectorization of the upper triangular components of a
symmetric matrix A ∈ Rn ×n

• diag(v) ∈ Rn ×n: the diagonal matrix whose diagonal
components are the components of a vector v ∈ Rn

• Aa⊗Ab ∈ Rnanb×mamb : the Kronecker product of matri-
ces Aa ∈ Rna×ma and Ab ∈ Rnb×mb , given by

Aa ⊗ Ab =

 [Aa]1,1Ab . . . [Aa]1,maAb
...

. . .
...

[Aa]na,1Ab . . . [Aa]na,maAb

 (1)

• ∂vgT(v) ∈ Rn ×m: the partial derivative ∂gT(v)/∂v of a
function g : Rn

→ Rm with respect to v ∈ Rn

III. PROBLEM SETTING
This study focuses on H∞ control and optimal control
problems, both of which are introduced in Section III-A.
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Section III-B defines kernel-based system models to identify
unknown nonlinear systems. On the basis of these prelimi-
naries, the two main problems to be solved in this study are
described in Section III-C.

A. NONLINEAR H∞ CONTROL AND OPTIMAL CONTROL
Consider a nonlinear system affine with respect to its input
and disturbance:

dx(t)/dt = f (x(t))+ Bu(t)+ Bdw(t), (2)

where x(t) ∈ Rnx , u(t) ∈ Rnu , and w(t) ∈ Rnw are the
state, control input, and disturbance, respectively, at the time
t ∈ R. The symbols f : Rnx → Rnx , B ∈ Rnx×nu ,
and Bd ∈ Rnx×nw are the drift term, input matrix, and
disturbancematrix, respectively. Let us assume the following:
f (x) is locally Lipschitz; f (0) = 0 holds; u(t) is continuous;
supt ‖w(t)‖ < ∞ holds; w(t) is continuous and square-
integrable; i.e.,

∫
∞

0 ‖w(t)‖
2dt < ∞. The drift term f (x)

indicates autonomous dynamics without any control input.
The state x drifts according to f (x) when the control input
and disturbance are not applied to the system.

This study considers a nonlinear H∞ control problem. Let
z(t) be the performance output at t:

z(t) := [h(x(t))T, (Rsqru(t))T]T ∈ Rnh+nu . (3)

Here, h : Rnx → Rnh and Rsqr ∈ Rnu×nu are a continuous
function and matrix, respectively, both of which are arbitrar-
ily designed under the condition that the state cost function
q(x) := h(x)Th(x)/2 and input cost matrix R := RT

sqrRsqr are
positive definite. For an L2 gain parameter γ ∈ (0,∞), let us
define the cost function:

J (u,w, x(0))

:=

∫
∞

0

1
2

(
‖z(t)‖2 − γ 2

‖w(t)‖2
)
dt

=

∫
∞

0

(
q(x(t))+

1
2
u(t)TRu(t)−

1
2
γ 2
‖w(t)‖2

)
dt. (4)

The nonlinear H∞ control problem considered in this study
is to determine an H∞ state feedback controller that makes
the L2 gain from w to z less than or equal to γ . That is,( ∫ ∞

0
‖z(t)‖2dt

) 1
2
/(∫ ∞

0
‖w(t)‖2dt

) 1
2
≤ γ, (5)

for x(0) = 0 and any w such that 0 <
∫
∞

0 ‖w(t)‖
2dt < ∞.

This inequality (5) indicates that J (u,w, 0) ≤ 0.
Designing an H∞ controller reduces to solving the

Hamilton–Jacobi–Isaacs (HJI)
equation [31, Theorem 10.3-1]

HHJI(x) := ∂xV (x)Tf (x)

−
1
2
∂xV (x)TS(γ )∂xV (x)+ q(x)

= 0, ∀x ∈ Rnx , (6)

where

S(γ ) := BR−1BT
−

1
γ 2BdBT

d . (7)

A solution V : Rnx → R to the HJI equation (6) is termed
the value function that is assumed to be C1 continuous and
positive definite. If such a positive definite solution V (x)
exists, the corresponding H∞ controller u∗(x) is expressed
as

u∗(x) := −R−1BT∂xV (x). (8)

Unfortunately, the HJI equation is difficult to solve if f (x) is
nonlinear. This difficulty is tackled in Section III-C.

Next, a nonlinear optimal control problem is introduced.
The H∞ control described above covers nonlinear optimal
control. Under the condition that Bd = 0 and w(t) = 0
hold for any t in (2), the optimal control problem corresponds
to designing a feedback controller that minimizes the cost
function:

min
u
J (u,w, x(0))|w=0, (9)

over all admissible controllers [31, Theorem 10.1-2]. The
optimal feedback controller for the problem (9) is expressed
as u∗(x) with substitution of V (x) = V (x)|Bd=0 in (8). The
function V (x)|Bd=0 represents a positive definite solution to
the Hamilton–Jacobi–Bellman (HJB) equation given by

HHJB(x) := HHJI(x)|Bd=0 = 0, ∀x ∈ Rnx . (10)

Therefore, the HJB equation (10) is a special case of
the HJI equation (6). Subsequent sections exclusively con-
sider the HJI equation (6) for handling both optimal and
H∞ controllers.

B. IDENTIFICATION OF DRIFT TERMS USING
KERNEL-BASED FUNCTIONS
Let us focus on a partially unknown nonlinear system for
which the inputmatrixB is known but a true drift term f tr(x) is
unknown. For example, such a partially unknown system can
arise owing to the interaction between autonomous vehicles
and manually operated vehicles [1]. A partially unknown
system can be expressed as

dx(t)/dt = f tr(x(t))+ Bu(t)+ ω(t), (11)

where ω(t) ∈ Rnx denotes system noise or disturbance.
For controlling the system (11), f (x) in (2) corresponds to a
mathematical model of the true drift term f tr(x) in (11). This
indicates that (2) is an approximation of (11). The disturbance
in (2) could be considered as the difference between the true
drift term and its model with noise; i.e., Bdw(t) = f tr(x(t))−
f (x(t))+ω(t). If there exists no noise/disturbance (ω(t) = 0),
the optimal control problem for (2) with the setting ofBd = 0
can be considered.

The true drift term f tr(x) can be identified as the drift term
model f (x) using a given training data set. The training data
set consists ofD pairs of the states xd and true drift terms f tr,d
that obey

f tr,d = f tr(xd )+ ωd , (d = 1, 2, . . . ,D). (12)

Suppose that ωd ∈ Rnx for each d is independently and iden-
tically distributed as a normal distribution with mean zero.
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Measuring the values of x and dx/dt − Bu in (11) can yield
such a data set.

Recall that kernel-based functions have the potential
to describe various nonlinear dynamics, as described in
Section I. This study focuses on kernel-based drift term
models f (x) expressed as

f (x) := C(x)kvec(x), (13)

where

kvec(x) := [k(x, x1), . . . , k(x, xD)]T ∈ RD. (14)

Here, the coefficient matrix C(x) ∈ Rnx×D is a function of x,
and k(x, xd ) ∈ R denotes a positive definite kernel function,
such as a squared exponential kernel or a polynomial kernel.
Suppose that k(x, xd ) is C2 continuous in x.

While practical systems may not be completely described
by (13), kernel functions have recently become popular and
promising for representing unknown nonlinear systems in
fields of system identification and machine learning [32].
Indeed, the kernel-based drift term model f (x) in (13)
includes several functions, such as kernel ridge regression
models [4], GP models [5], and GP-based state-dependent
coefficient models [8].

C. MAIN PROBLEMS
This study aims to solve two main problems.

Kernel-based drift terms f (x) can potentially represent
various nonlinear behaviors in a data-driven manner. Unfor-
tunately, it is difficult to solve the HJI equation (6) for f (x)
owing to nonlinearities. For addressing this difficulty, the first
problem is described as follows.
Problem 1: Find a set F of kernel-based drift terms f (x)

in the form of (13). For this set, an exact solution V (x) to the
HJI equation (6) is to be obtained.

The set F is a set of functions and is clarified at the end of
Section IV. It is challenging to find a new set for which the
HJI equation can be solved. In Section IV, Problem 1 is solved
under certain assumptions by reducing the HJI equation to an
algebraic matrix equation.

After Problem 1 is solved, the true drift term f tr(x) is
identified as a kernel-based model f (x) in the set F using
a training data set. A data-driven H∞ or optimal controller
u∗(x) for the model f (x) is automatically obtained from (8)
because V (x) can be obtained. Note that the controller u∗(x)
may not be optimal for a true system owing to the existence
of modeling errors. To avoid unexpected control failures,
stability of the true feedback system involving u∗(x) should
be ensured. Thus, the second problem is stated as follows.
Problem 2: For a given training data set (xd , f tr,d )

D
d=1, find

a best estimate f (x) in the set F to represent the true drift
term f tr(x), and design anH∞ or optimal controller u∗(x) that
stabilizes the true plant system in a probabilistic sense.

Section V addresses Problem 2 under certain assumptions
pertaining to the true system.

IV. SOLUTION TO PROBLEM 1: KERNEL-BASED
HJI EQUATIONS
In this section, we propose amethod to solve Problem 1 stated
in Section III-C. It is difficult to solve the HJI equation
directly because the kernel functions kvec(x) included in f (x)
increase the equation’s complexity. A key technique to over-
come this difficulty is to reduce the HJI equation to a solvable
algebraic matrix equation. Supposing that f (x) and V (x) are
parametric functions, we attempt to find a symmetric matrix
MHJI and nonlinear function 8(x) that decompose HHJI(x)
in (6):

HHJI(x) =
1
2
kvec(x)T8(x)TMHJI8(x)kvec(x), (15)

where MHJI contains free parameters that determine f (x)
and V (x). If such MHJI and 8(x) exist, the algebraic matrix
equation MHJI = 0 is a sufficient condition for the HJI
equation (6) to be satisfied as follows:

MHJI = 0⇒ ∀x ∈ Rnx , HHJI(x) = 0. (16)

The algebraic matrix equation MHJI = 0 is more tractable
compared to the original HJI equation (6) because the matrix
equation is independent of the kernels and state. Therefore,
we find a set of f (x) for which the matrix equationMHJI = 0
can be solved.

On the basis of this framework, Section IV-A derivesMHJI
and 8(x) for a set of f (x). Section IV-B extends the derived
matrix equation MHJI = 0 such that it can be solved in an
analytical manner. A set F of kernel-based drift terms f (x)
can then be determined as a solution to Problem 1.

A. REDUCING THE HJI EQUATION TO AN ALGEBRAIC
MATRIX EQUATION
This subsection describes how the HJI equation (6) is reduced
to an algebraicmatrix equation, to findMHJI and8(x) in (15).
The value function V (x) should be a flexible parametric
function so that the HJI equation is decomposed, as described
in (15). It is important to parameterize V (x) by considering
the form of the drift term f (x) because V (x) is related to
f (x) through the HJI equation. In a manner similar to f (x),
V (x) is parameterized using kernel functions kvec(x). Such
a parametrization is expressive and used to approximate or
design several functions, e.g., value functions [33], [34],
Lyapunov functions [35], [36], and controllability and/or
observability energy functions [37]. Additionally, sums of
basis functions approximate value functions [38], [39]. We
try to derive an exact V (x) for a set of f (x) apart from these
approximation methods.

Here, we represent the value function V (x) as a kernel-
based parametric function. Recall that the HJI equation (6)
is a partial differential equation of V (x). It is suitable that a
parameter included in the partial derivative ∂xV (x) is sepa-
rated from functions of x so that the HJI equation is decom-
posed, as shown in (15). The value function V (x) is assumed
to be expressed as the following kernel-based parametric
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function:

V (x) = [ψ1(x)p̃1, . . . ,ψD(x)p̃D]kvec(x) ∈ R, (17)

where ψd (x) ∈ R1×np and p̃d ∈ Rnp are a C2 function
of x and a parameter, respectively. The function ψd (x) is
arbitrarily defined such that the following conditions hold:

ψd (0) = 0, (18)

k(0, xd )∂xψd (0) = 0, (19)

k(x, xd ) = 0⇒ ψd (x) = 0. (20)

The conditions (18) and (19) were applied to ensure V (0) = 0
and ∂xV (0) = 0. The condition (20) was introduced for the
following lemma, and it is not restrictive, because nonzero
kernel functions k(x, xd ) 6= 0 for any x can be employed;
examples include squared-exponential kernels.

Kernel functions are regarded as basis functions to express
various types of nonlinear functions. It is reasonable to
employ same basis functions for determining the system
model f (x) and value function V (x). Furthermore, exact solu-
tions to the HJ equations can be obtained using the expression
in (17). By virtue of this expression, the partial derivative
∂xV (x) is linear in p̃d , as shown in the following lemma.
Lemma 1 (Partial Derivative of the Value Function): The

partial derivative ∂xV (x) is given by

∂xV (x) = (p̃T ⊗ Inx )8(x)kvec(x), (21)

where

p̃ := [p̃T1 , . . . , p̃
T
D]

T
∈ RnpD, (22)

8(x) :=

vec(8
′

1(x))
. . .

vec(8′D(x))


∈ RnpnxD×D, (23)

8′d (x) := cV (x, xd )ψd (x)+ ∂xψd (x) ∈ Rnx×np . (24)

The function cV (x, xd ) ∈ Rnx is given by

cV (x, xd ) :=

{
∂xk(x, xd )/k(x, xd ) (k(x, xd ) 6= 0)
0 (k(x, xd ) = 0).

(25)

Proof: The proof is given in Section A of Appendix.
Remark 1: The function cV (x, xd ) in (25) is expressed in

a simple form for specific kernels. For squared-exponential
kernels, k(x, xd ) and cV (x, xd ) are given by

k(x, xd ) = αf exp
(
−1
2

(x− xd )T0−1(x− xd )
)
, (26)

cV (x, xd ) = −0−1(x− xd ). (27)

For rational quadratic kernels, k(x, xd ) and cV (x, xd ) are

k(x, xd ) = αf
(
1+

1
2αb

(x− xd )T0−1(x− xd )
)−αb

, (28)

cV (x, xd ) =
−2αb0−1(x− xd )

2αb + (x− xd )T0−1(x− xd )
. (29)

Here, αf > 0 ∈ R, 0 � 0 ∈ Rnx×nx , and αb > 0 ∈ R are the
hyperparameters of the kernels.

Lemma 1 separates the constant parameter p̃d from the
state-dependent function 8(x)kvec(x) in ∂xV (x). Such a sep-
aration reduces the HJI equation (6) to an algebraic matrix
equation, as described in (16).
Theorem 1 (Kernel-Based HJI Equation): For given

parameters Ã ∈ Rnx×npnxD, p̃ ∈ RnpD in (22), and Q̃ = Q̃
T
�

0 ∈ RnpnxD×npnxD, suppose that V (x) obeys (17) and that f (x)
and q(x) are given by

f (x) = Ã8(x)kvec(x), (30)

q(x) = kvec(x)T8(x)TQ̃8(x)kvec(x). (31)

If the algebraic matrix equation

MHJI = (p̃⊗ Inx )Ã+ Ã
T
(p̃T ⊗ Inx )+ 2Q̃

− (p̃⊗ Inx )S(γ )(p̃
T
⊗ Inx )

= 0 ∈ RnpnxD×npnxD (32)

holds, then the HJI equation (6) holds as well. Furthermore,
f (0) = 0 and the local Lipschitz continuity of f (x) are
satisfied.

Proof: The proof is given in Section B of Appendix.
Remark 2: Theorem 1 is useful for solving not only the

H∞ control problem but also the optimal control problem
introduced in Section III-A. Recall that the optimal controller
is obtained by solving the HJB equation (10). If the alge-
braic matrix equation (32) is satisfied under the condition
S(γ ) = BR−1BT with Bd = 0, the HJB equation holds.
Remark 3: The HJI equation (6) is reduced to the alge-

braic matrix equation (32) independent of the kernels kvec(x)
and state x. It is easy to deal with such an algebraic equation
compared to the HJI equation that is dependent on x. If
MHJI = 0 holds, a set of f (x) obeying (30) corresponds
to a solution to Problem 1 under certain assumptions (see
Remark 4).
Remark 4: We must satisfy several assumptions to obey

f (x) in (30), V (x) in (17), and q(x) in (31). Theorem 1 satisfies
all the assumptions for f (x), which are f (0) = 0 and the
local Lipschitz continuity. The positive definiteness of V (x)
and q(x) is also assumed; this is discussed in Remark 8 in the
next subsection.
Remark 5: The functions f (x), V (x), and q(x) are asso-

ciated with the parameters Ã, p̃, and Q̃, respectively. The
parameter Ã can be determined according to the true drift
term f tr(x) (via identification methods; e.g., the least-squares
method). The parameters p̃ and Q̃ can be designed such that
the matrix equation (32) holds. Some numerical methods can
be used to obtain parameters that satisfy the matrix equation
approximately owing to it being independent of x. For exam-
ple, the following non-convex program is considered:

min
p̃,Q̃
‖MHJI‖

2
Fro, s.t. p̃ 6= 0, Q̃ � 0, (33)

where ‖ · ‖Fro denotes the Frobenius norm. The constrained
optimization problem (33) can be relaxed by an uncon-
strained optimization problem using the barrier method [40,
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Sections 9.1.1 and 11.2.1] provided that the initial condition
satisfies Q̃ � 0; for example,

min
p̃,Q̃

(
‖MHJI‖

2
Fro − η1 ln |p̃

2
| − η2 ln

(
det(Q̃)

))
, (34)

where η1 and η2 are coefficients. As an alternative to such
numerical approaches, an analytical approach for solving the
matrix equation (32) is presented in the next subsection.

B. ANALYTICAL APPROACH FOR FINDING A SET OF
KERNEL-BASED DRIFT TERMS
This subsection extends Theorem 1 such that the derived
matrix equation MHJI = 0 can be solved in an analytical
manner. Such an extension results in the following theorem
yielding one solution to Problem 1.
Theorem 2 (Analytical Kernel-Based HJI Equation): For

given parametersA ∈ Rnx×nx , ν := [ν1T, . . . , νDT]T ∈ RnpD

with νd ∈ Rnp , p ∈ R, and Q = QT
� 0 ∈ Rnx×nx , suppose

that f (x), V (x), and q(x) are given by

f (x) = A(νT ⊗ Inx )8(x)kvec(x), (35)

V (x) = p[ψ1(x)ν1, . . . ,ψD(x)νD]kvec(x), (36)

q(x) = kvec(x)T8(x)T(ν ⊗ Inx )

×Q(νT ⊗ Inx )8(x)kvec(x). (37)

If the algebraic matrix equation

MHJI = (ν ⊗ Inx )
(
pA+ pAT

− p2S(γ )+ 2Q
)
(νT ⊗ Inx )

= 0 ∈ RnpnxD×npnxD (38)

holds, then the HJI equation (6) holds as well. Furthermore,
f (0) = 0 and the local Lipschitz continuity of f (x) are
satisfied.

Proof: The proof is given in Section C of Appendix.
Remark 6: If Q � 0 is set as

Q = −p(A+A
T)+p2S(γ )
2 , (39)

both the algebraic matrix equation (38) and HJI equation (6)
hold automatically. In this sense, Problem 1 can be solved
using a analytical approach. A set of f (x) obeying (35) is
thus a solution to Problem 1 under certain assumptions (see
Remark 8). The drift term f (x), state cost q(x), and value
function V (x) are determined from the parameters ν, A, and
p. Section V proposes a method for determining the values of
the parameters such that f (x) corresponds to a best estimate
of a true drift term f tr(x), considered in Problem 2.
Remark 7: As discussed in Remark 2 for Theorem 1,

Theorem 2 is likewise efficient for solving not only the H∞
control problem but also the optimal control problem by
setting S(γ ) = BR−1BT with Bd = 0.
Remark 8: Recall Remark 4 discussing the assumptions

for f (x), q(x), and V (x). Theorem 2 satisfies all the assump-
tions for f (x), which are f (0) = 0 and the local Lipschitz con-
tinuity. The positive definiteness of q(x) and V (x) is assumed.
The state cost function q(x) in (37) is positive definite if Q
in (39) is positive definite, (νT ⊗ Inx )8(x)kvec(x) 6= 0 holds

for all x ∈ Rnx \ {0}, and (νT ⊗ Inx )8(0)kvec(0) = 0 holds.
Section V-B discusses how to select the values of the parame-
ters ν, A, and p such that V (x) and q(x) are positive definite.
Numerical evaluations described in Section VI demonstrate
that V (x) and q(x) are positive definite at least approximately.
Furthermore, we show that Theorem 2 is consistent with

both linear true systems and linear kernels.
Theorem 3: (Kernel-Based HJI Equation for Linear Sys-

tems): Suppose that (35)–(37) in Theorem 2 hold. For matri-
ces Atr ∈ Rnx×nx and Qtr = QT

tr � 0 ∈ Rnx×nx , suppose
that the pair (Atr,B) is stabilizable, that there exists a positive
definite symmetric matrix P tr � 0 satisfying

PT
trAtr + AT

trP tr − PT
trS(γ )P tr + 2Qtr = 0, (40)

and that the condition

rank([vech(x1xT1 ), . . . , vech(xDx
T
D)]) =

nx(nx + 1)
2

(41)

holds, i.e., the matrix [vech(x1xT1 ), . . . , vech(xDx
T
D)] has full

rank. If

f tr(x) = Atrx, (42)

q(x) = xTQtrx, (43)

k(x, xd ) = αf xTdx, (44)

ψd (x) = xTdx, (45)

then there exist parameters p, ν, A, and Q such that the
algebraic matrix equation (38) holds, V (x) and q(x) are
positive definite functions, and f (x) = f tr(x) holds.

Proof: The proof is given in Section D of Appendix.
Remark 9: Theorem 3 validates the algebraic matrix equa-

tion (38) and positive definiteness of V (x) and q(x). There-
fore, Theorem 2 is consistent with linear systems and linear
kernels.

Consequently,F obtained as a solution to Problem 1 can be
defined as a set, all members of which are f (x) obeying (35)
under the assumption of V (x) and q(x) being positive definite
(refer Remark 8 for discussion pertaining to this assumption).
The next section addresses Problem 2 based on the set F .

V. SOLUTION TO PROBLEM 2: IDENTIFICATION AND
CONTROLLER DESIGN
For a given training data set (xd , f tr,d )

D
d=1, we find a best

estimate f (x) in the set F to represent the true drift term
f tr(x) and design a stabilizingH∞ or optimal controller u∗(x).
The set F includes f (x) obeying (35), which constitutes the
solution to Problem 1. In the following analyses, f (x), V (x),
and q(x) obey (35), (36), (37), and (39) that depend on the
values of the parameters ν, A, and p. The corresponding
controller u∗(x) in (8) also depends on these parameters. The
corresponding functions are denoted by f (x; ν,A),V (x; ν, p),
q(x; ν,A, p), and u∗(x; ν, p), respectively.
In this section, the true drift term f tr(x) in (11) is identi-

fied as the kernel-based model f (x; ν,A). The correspond-
ing functions V (x; ν, p) and q(x; ν,A, p) are simultaneously
determined. Applying the resulting controller u∗(x; p, ν) to
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the true system (11) yields the feedback system. Stability
of the feedback system is analyzed because the controller
u∗(x; ν, p) may not be optimal for the true system.

The idea behind developing the model f (x; ν,A) and ana-
lyzing the stability is to employ GP regression, which is a
successful means to represent system uncertainty. The GP
regression is reviewed in Section V-A. Section V-B describes
determination of the model parameters in f (x; ν,A) using the
GP model. In Section V-C, probabilistic stability of the true
feedback system is analyzed.

A. DRIFT TERM IDENTIFICATION USING GPs
This subsection reviews GP regression [5] and describes
application of GPs to nx-dimensional f tr(x). The true drift
term f tr(x) in (11) is represented by a GP model using the
training data set (xd , f tr,d )

D
d=1 in Section III-B, where

X := [x1, x2, . . . , xD]T ∈ RD×nx , (46)

Ftr := [f tr,1, f tr,2, . . . , f tr,D]
T
∈ RD×nx . (47)

Let us assume that each component of f tr(x) obeys an identi-
cal GP independently, and that the covariance of the noise ωd
in (12) is equal to αnInx . Then, the following relation holds:[

[Ftr]·,s
[f tr(x)]s

]
∼ N

(
0,
[

Kmat kvec(x)
kvec(x)T k(x, x)

])
, (48)

[Kmat]d,d ′ := k(xd , xd ′ )+ δd,d ′αn, (49)

where αn > 0 ∈ R is the hyperparameter and δd,d ′ is the Kro-
necker delta. The symbol Kmat ∈ RD×D denotes an array of
the kernel functions as defined in (49), and kvec(x) ∈ RD was
defined in (14). Let the hyperparameter vector θ ∈ Sθ ⊂ Rnθ

denote a nθ -dimensional vector in a set Sθ . The components
of θ consist of αn and all hyperparameters included within
the kernel functions. The hyperparameter vector θ is trained
to maximize the following log-likelihood function:

θ∗ ∈ arg max
θ∈Sθ

ln Pr(Ftr|X, θ )

= arg max
θ∈Sθ

ln
nx∏
s=1

Pr([Ftr]·,s|X, θ ), (50)

where θ∗ is an optimal hyperparameter vector that maxi-
mizes the log-likelihood function. The problem (50) is solved
to obtain θ∗ (in an local optimal sense) using optimiza-
tion methods, such as the conjugate gradient method [41].
Finally, the GP model obeys a normal distribution, the mean
µf (x) ∈ Rnx and covariance diag(σ f (x))2 with σ f (x) ∈ Rnx

of which are defined by

µf (x) := FT
trK
−1
matkvec(x), (51)

[σ f (x)]s :=
√
k(x, x)− kvec(x)TK−1matkvec(x). (52)

B. DETERMINING THE PARAMETERS OF THE
KERNEL-BASED MODEL
The true drift term f tr(x) is identified as the kernel-based
model f (x; ν,A). Here, a difficulty arises in the facts that the

parameters ν ∈ RnpD andA ∈ Rnx×nx havemany dimensions,
and that the kernel functions kvec(x) include hyperparameters.
Such amultitude of parameters may lead tomodel overfitting.

To address this concern, we employ a two-stage identifica-
tion method to determine the parameters ν, A, and p along
with the hyperparameters of the kernel functions kvec(x)
similarly to that in [8]. Recall that the kernel-based model
f (x; ν,A) has a form similar to the GP mean model µf (x)
in (51), namely, linear combinations of kernels. We first
derive the GP mean model µf (x) using the training data
set, as explained in Section V-A. The hyperparameters of
the kernel functions kvec(x) are then obtained. In the second
stage, the kernel-based model f (x; ν,A) is determined such
that the size of the following difference 1f (x; ν,A) between
the GP mean and kernel-based models is reduced:

1f (x; ν,A) := µf (x)− f (x; ν,A). (53)

It is not straightforward to determine the values of the param-
eters ν, A, and p because the state cost function q(x; ν,A, p)
and value function V (x; ν, p) also depend on the parameters
in the algebraic matrix equation (38). We propose a method
to obtain all of the parameters simultaneously, which yields
the kernel-based model f (x), state cost function q(x; ν,A, p),
and value function V (x; ν, p).
To obtain optimal parameters (ν∗,A∗, p∗) that minimize

the objective function g(ν,A, p), the proposed method is
formulated as follows:

(ν∗,A∗, p∗) ∈ arg min
ν,A,p

g(ν,A, p), (54)

g(ν,A, p) :=
D́∑
d=1

(
‖1f (x́d ; ν,A)‖2

+ ηV ‖V (x́d ; ν, p)− Vref(x́d )‖2
)

− ηQ ln(det(−pA− pAT
+ p2S(γ )))

+ ηreg
(
‖ν‖2 + ‖A‖2Fro + p

2), (55)

where x́d ∈ Rnx (d = 1, . . . , D́) are predefined states. The
symbols ηV ≥ 0 ∈ R, ηQ ≥ 0 ∈ R, and ηreg > 0 ∈ R
are coefficients. The operator

∑D́
d=1(· · · ) in (55) is employed

instead of the integration
∫
(· · · )dx over a state space. Details

concerning the objective function g(ν,A, p) are explained as
follows. The term ‖1f (x́d ; ν,A)‖2 is introduced to reduce the
difference between the GP mean and kernel-based models,
as discussed above. The term ηV ‖V (x́d ; ν, p) − Vref(x́d )‖2

helps satisfy the positive definiteness of V (x; ν, p) by defin-
ing a positive definite function Vref(x), whereas this term is
not necessary for the positive definiteness, as demonstrated
in Section VI. The term ηQ ln(det(· · · )) is the barrier function
employed based on the barrier method [40, Sections 9.1.1 and
11.2.1]. This function constrains the parameters so that the
positive definiteness of Q in (39) is satisfied. The state cost
function q(x) in (37) becomes positive definite if Q is pos-
itive definite and (νT ⊗ Inx )8(x)kvec(x) 6= 0 holds for
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all x ∈ Rnx \ {0}. The last term ηreg(· · · ) regularizes the size
of the parameters.

The above problem (54) must optimize the many param-
eters ν ∈ RnpD, A ∈ Rnx×nx , and p ∈ R. This problem is
difficult to solve owing to its high computational complexity.
We derive the following property to reduce the complexity.
Proposition 1 (Explicit Optimal Parameter): Suppose

that (35), (36), (37), and (39) hold so that f (x; ν,A) is
included in the set F . The optimal ν in (54) for each A and p
is explicitly given by the following function ν of A and p:

ν(A, p) = (Y (A, p)TY (A, p)+ ηregInpD)
−1Y (A, p)Ty, (56)

where Y (A, p) ∈ RD́(nx+1)×npD and y ∈ RD́(nx+1) are defined
as

Y (A, p)

:=



Ak(x́1, x1)8′1(x́1) · · · Ak(x́1, xD)8′D(x́1)
...

...

Ak(x́D́, x1)8
′

1(x́D́) · · · Ak(x́D́, xD)8
′
D(x́D́)

ηV pk(x́1, x1)ψ1(x́1) · · · ηV pk(x́1, xD)ψD(x́1)
...

...

ηV pk(x́D́, x1)ψ1(x́D́) · · · ηV pk(x́D́, xD)ψD(x́D́)


,

(57)

y :=



µf (x́1)
...

µf (x́D́)
ηVVref(x́1)

...

ηVVref(x́D́)


. (58)

Proof: The proof is given in Section E of Appendix.
By virtue of the above proposition, optimal solutions

(A∗, p∗) can be given as follows:

(A∗, p∗) ∈ arg min
A,p

g(ν(A, p),A, p), (59)

where A and p become the only decision variables. The cor-
responding optimal ν∗ is then given by the following explicit
function:

ν∗ = ν(A∗, p∗). (60)

Gradient methods, such as the quasi-Newton and conjugate
gradient methods [41], can be used to obtain A∗ and p∗ in a
local optimal sense because the problem (59) concerns non-
convex optimization.

The proposed method is summarized in Algorithm 1. The
best drift term model f (x; ν∗,A∗) in the set F and the corre-
spondingH∞ or optimal controller u∗(x; ν∗, p∗) are obtained
simultaneously using the training data set.

C. PROBABILISTIC STABILITY OF THE TRUE
FEEDBACK SYSTEMS
This subsection analyzes stability of true feedback sys-
tems when the proposed controller u∗(x; ν, p) is employed.

Algorithm 1 Simultaneous Derivation of the Drift Term
Model and H∞ or Optimal Controller
Input: the L2 gain parameter γ and training data set

(xd , f tr,d )
D
d=1

Output: the drift term model f (x; ν∗,A∗) and H∞ or opti-
mal controller u∗(x; ν∗, p∗)

1: Define the functionψd (x) under the conditions (18)–(20)
2: Develop a GP model µf (x) using the training data set as

shown in Section V-A
3: Determine the parameters A∗ and p∗ by solving (59)
4: Determine the parameter ν∗ in (60)
5: Calculate f (x; ν∗,A∗), q(x; ν∗,A∗, p∗), and V (x; ν∗, p∗)

in (35), (36), and (37) under the definition (39)
6: Calculate u∗(x; ν∗, p∗) by substituting V (x; ν∗, p∗)

into (8)

The GP model in Section V-A represents the uncertainty of
a true system as the standard deviation σ f (x). The following
assumption is introduced to analyze the stability on a given
bounded set X ⊂ Rnx . Let β > 0 ∈ R be a given constant
and Ftr(x;β) ⊆ Rnx be the following set:

Ftr(x;β) :={µf (x)+diag(β1, . . . , βnx )σ f (x) | ∀s, |βs|≤β}.

(61)

Assumption 1 (Inclusion of the True Drift Term in GPs):
For the given β > 0 ∈ R, there exists a constant δ ∈ [0, 1)
such that the following relation holds with probability 1− δ:

∀x ∈ X, f tr(x) ∈ Ftr(x;β). (62)

Assumption 1 implies that the true drift term f tr(x) is
included in the bounded model set Ftr(x;β) with a prob-
ability, albeit it may be difficult to check this property of
Assumption 1 for a system in practice. Note that a large
value of β yields a high probability 1 − δ because the size
of Ftr(x;β) with nonzero σ f (x) is monotonically increasing
in β; i.e., Ftr(x;β) ⊂ Ftr(x;β ′) for any 0 < β < β ′. The
value of 1 − δ depends on the smoothness (which means a
reproducing kernel Hilbert space norm) of the true system
(refer [42] for details).

Assumption 1 describes the relation between the GP
mean model µf (x) and true drift term f tr(x). Thus, combin-
ing Assumption 1 with the difference 1f (x; ν,A), defined
in (53), provides a characterization of the difference between
the true system f tr(x) and kernel-based model f (x; ν,A). This
characterization derives a property for probabilistic stability
of the true feedback system. This study focuses on the Lya-
punov stability theory. Because the Lyapunov inequality for
the true feedback system cannot be evaluated, we employ
another inequality.
Theorem 4 (Probabilistic Stability of the True Feedback

System): Suppose that (35), (36), (37), and (39) hold so that
f (x; ν,A) is included in the setF . Suppose that Assumption 1
holds, that the true drift term f tr(x) in (11) is C

1 continu-
ous, and that the state x(t) obeys the true feedback system
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in (11) with the controller u∗(x; ν, p) applied and zero noise
ω(t) = 0. For any set X̃ ⊆ X, the following relation holds
with a probability of at least 1− δ:

W (x) < 0, ∀x ∈ X̃ ⇒
dV
dt

(x(t); ν, p) < 0, ∀x(t) ∈ X̃,

(63)

where the function W : Rnx → R is given as follows:

W (x) := pζ (x; ν)T1f (x; ν,A)+βp
nx∑
s=1

∣∣∣[ζ (x; ν)]s[σ f (x)]s∣∣∣
− ζ (x; ν)T

(p2
2

(
BR−1BT

+
1
γ 2BdBT

d

)
+Q

)
ζ (x; ν),

(64)

and

ζ (x; ν) := (νT ⊗ Inx )8(x)kvec(x). (65)

Proof: The proof is given in Section F of Appendix.
Remark 10: Theorem 4 indicates that the Lyapunov

inequality for the true feedback system can be estimated using
the proposed function W (x) in a probabilistic sense. Such a
probabilistic approach is based on [42]. If there exists a set
X̃ wherein W (x) < 0 holds and V (x; ν, p) is positive definite,
a region of attraction and small invariant set near the origin
can be estimated [43]. For the stability notion in this study,
any state in the region of attraction arrives in the invariant
set asymptotically. Section VI-D demonstrates evaluation of
the proposed inequality W (x) < 0 along with estimation of a
region of attraction and small invariant set.
Remark 11: The function W (x) consists of first- and

second-order terms with respect to ‖ζ (x; ν)‖. If Q is
positive definite, the second-order terms are negative for
‖ζ (x; ν)‖ 6= 0. Thus, it is expected that W (x) < 0 holds at
least for states x for which ‖ζ (x; ν)‖ is sufficiently large.
Remark 12: Because of Assumption 1, a large value of β

ensures a high probability 1−δ for the stability. Reducing the
value of ‖1f (x; ν,A)‖ increases an upper bound of admissi-
ble β to satisfy the inequality W (x) < 0. In this sense, deter-
mining the values of the parameters in accordance with (54)
is appropriate to enhance the probability 1− δ.

In Section V, we have found the best drift term model
f (x; ν∗,A∗) in the set F and the corresponding H∞ or opti-
mal controller u∗(x; ν∗, p∗) along with the analysis of the
probabilistic stability, as summarized in Algorithm 1. Recall
that when solving the optimal control problem, optimality of
the proposed controller can be guaranteed under technical
assumptions, because an exact solution V (x) to the HJB
equation (10) can be obtained. While this optimality refers to
control of the model f (x; ν∗,A∗) instead of the true system
f tr(x), it also corresponds to a general limitation due to treat-
ing unknown systems. The proposed H∞ controller focuses
on robustness to the error between the model and true system.

VI. NUMERICAL EXAMPLES
In this section, the utility of the proposed method is demon-
strated by performing numerical simulations. Section VI-A
introduces the settings of the simulation. At the beginning
of subsequent Sections VI-B and VI-C, we describe how
to evaluate the effectiveness of the proposed method asso-
ciated with performance measures. Section VI-B describes
results obtained by using the proposed optimal controller.
The robustness of the proposed H∞ controller is evaluated
in Section VI-C. Stability analysis of the true feedback sys-
tem is described in Section VI-D. Section VI-E describes
a practical implementation of the proposed method on an
inverted pendulum subjected to a nonlinear torque. In addi-
tion, in Sections VI-B, VI-C, and VI-E, the proposed method
is compared with other standard methods and the effect of the
randomness of the simulation is evaluated.

A. PLANT SYSTEM AND SIMULATION SETTINGS
Let us consider the true system (11) with the drift term:

f tr(x) :=
[

−[x]1 + 0.5[x]2
0.5[x]2 + 0.2[x]1[x]2 + 0.3([x]2)3

]
. (66)

The input matrix is given by B := [0, 1]T. The equation
(66) is not used for controller design but only serves as the
ground truth to evaluate the proposed method. The parameter
in the performance output z(t) is set to Rsqr = 1, and thus,
R = RT

sqrRsqr = 1 holds. The training data set (xd , f tr,d )
D
d=1

withD = 49 is given as follows. The states xd within the data
set are sampled at regular intervals on [−3, 3]× [−3, 3]. The
drift terms f tr,d within the data set are given by (12), wherein
each noise ωd independently obeys the normal distribution
with mean zero and covariance 0.04I2. The L2 gain parameter
is set to γ = 3.

Settings of the proposed method with Algorithm 1 is
described as follows. In Line 1 of Algorithm 1, we define
ψd (x) := [([x]1)2, ([x]2)2, [x]1[x]2]. In Line 2, the GP
modeling is implemented using the GPML package [44].
The squared-exponential kernel defined in (26) is applied,
where 0 is a diagonal matrix. To optimize the hyper-
parameter vector θ := (0, αf , αn), we define θ̃ :=

(1/2)[ln[0]1,1, ln[0]2,2, lnαf , lnαn]T ∈ R4. The conjugate
gradient method [41] solves (50) with respect to θ̃ , where the
initial value of θ̃ is [0, 0, 0, ln(0.1)]T. In Line 3, the coef-
ficients in the objective function g(ν,A, p) in (55) are set
to ηV = 0, ηQ = 5, and ηreg = 0.5. The predefined
states x́d with D́ = 121 are sampled at regular intervals
on [−3, 3] × [−3, 3]. The optimization problem described
in (59) is solved via the quasi-Newton (BFGS) method [41].
The values of the initial parameters are set as p = γ and
A = (pS(γ )− I2)/2, such that the positive definiteness of Q
in (39) holds.

Performance of the proposed optimal and H∞ controllers
are compared against those of existing optimal and H∞
controllers developed for a linear model f (x) := ALinearx
identified from the training data set (termed Linear) and a lin-
earized model f (x) := (∂µf (x)/∂xT)|x=0x around the origin
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TABLE 1. Average values of the cost function (67) for optimal control.

FIGURE 1. Control results for optimal control. The markers • and ◦
indicate the initial and terminal states, respectively, with thin contour
lines representing the designed state cost function q(x).

(termed Jacobi). The optimal and H∞ controllers for Linear
and Jacobi models can be readily calculated, because the state
cost function q(x) in (37) reduces to a quadratic function
of x; i.e., q(x) = ζ (x)TQζ (x), where ζ (x) = A−1f (x) is
linear in x. The control simulation is performed using the
Dormand–Prince method [45] with a sampling time of 0.005.

B. RESULTS FOR OPTIMAL CONTROL
This subsection evaluates control performance of the optimal
controller designed using the proposed method, where the
disturbance matrix is set to Bd = 0. There is no system noise
(ω(t) = 0) in the true system considered in this evaluation.
The control performance is evaluated in terms of the cost
function over the time horizon [0, 20]:∫ 20

0

(
q(x(t))+

1
2
u(t)TRu(t)

)
dt. (67)

The true system in (11) is controlled from the initial states
x(0) := [2.9 cos(2π l/6), 2.9 sin(2π l/6)]T for l = 1, . . . , 6.

Table 1 lists the average values of the cost function (67)
with respect to the six initial states. Using the proposed
method, the average cost was successfully reduced from that
of the existing methods. Figure 1 depicts control results and
the state cost function q(x) that was obtained using the pro-
posed method. The proposed controller confirmed that for all
the initial states, the state trajectories terminated at the origin.

FIGURE 2. State cost function q(x) and value function V (x) designed using
the proposed method.

In Fig. 1 (b), we consider that the divergence (while using
Jacobi controller) was caused by the initial states far from the
origin. Although Jacobi controller may stabilize the system
in a small neighborhood of the origin, the stability in a large
region is not guaranteed.

The effect of the randomness of the numerical simulation
is evaluated. The variation in the system model is caused
by the random noise included in the training data set. The
control performance depends on this variation because the
proposed controller is based on the system model. Let us
define the performance ratio as the ratio of the average cost of
the proposed controller divided by that of Linear controller.
The value of this ratio was calculated as 0.690 in the case of
Table 1.We evaluated the ratios for 20 different random seeds
to investigate statistical results of the control performance.
The values of the mean and sample standard deviation of the
ratio were 0.682 and 0.035, respectively.

We also evaluated the positive definiteness of the state cost
function q(x) and value function V (x), which is assumed in
Theorems 1, 2, and 4. The values of V (x) and q(x) were
evaluated for states x sampled at regular intervals of 0.01
on [−3, 3] × [−3, 3]. The positive definiteness was numeri-
cally (approximately) confirmed because, the values of V (x)
and q(x) were observed to be positive for all the sampled
states except the origin, as described in Fig. 2.

C. RESULTS FOR H∞ CONTROL
Control performance associated with the robustness of the
proposed H∞ controller is evaluated in this subsection. The
disturbancematrix is set toBd = I2. The control performance
is evaluated in terms of the L2 gain from the disturbance to the
performance output over the time horizon [0, 20]:( ∫ 20

0
‖z(t)‖2dt

) 1
2
/(∫ 20

0
‖ω(t)‖2dt

) 1
2
. (68)

The system noise ω(t) in the true system (11) is regarded
as the disturbance. The true system is controlled from the
initial state at the origin x(0) = [0, 0]T, where six evalua-
tions under deterministic disturbances are performed along
with one hundred evaluations under stochastic disturbances.
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FIGURE 3. Control results for H∞ control under the deterministic
disturbance for the six evaluations with the initial state x(0) = [0,0]T. The
markers ◦ indicate the terminal states. The thin contour lines represent
the designed state cost function q(x).

TABLE 2. Average values of the L2 gain (68) for H∞ control under the
deterministic disturbance with respect to the six evaluations.

TABLE 3. Average values of the L2 gain (68) for H∞ control under the
stochastic disturbance with respect to the one hundred evaluations.

The deterministic disturbance for the l-th evaluation
(l = 1, . . . , 6) is defined as the exponentially decay-
ing function ω(t) = [cos(2π l/6), sin(2π l/6)]T ×
50 exp(−20t). The stochastic disturbance ω(t) for each
t ∈ {0, 0.02, 0.04, . . . , 4.98} and l ∈ {1, . . . , 100} inde-
pendently obeys the uniform distribution on [−10, 10] ×
[−10, 10], and ω(t) is zero for t ∈ {5, 5.02, . . . , 20}, where
ω(t) for t /∈ {0, 0.02, 0.04, . . . } is interpolated using spline
functions. Examples of ω(t) are depicted in Fig. 3 (d) and
Fig. 4 (d).

The average values of the L2 gain (68) with respect to
all the evaluations under the deterministic and stochastic
disturbances are listed in Tables 2 and 3, respectively. For
both disturbances, using the proposed method reduced the
average L2 gains from those obtained using the existing
methods. Figures 3 and 4 depict control results and the state
cost functions q(x) under the deterministic and stochastic
disturbances, respectively. In Fig. 3, the state trajectories
converged to the origin when the proposed controller was
applied. Figure 4 indicates that the state was maintained

FIGURE 4. Control results for H∞ control under the stochastic
disturbance for the first twenty evaluations with the initial state
x(0) = [0,0]T. The markers ◦ indicate the terminal states. The thin contour
lines represent the designed state cost function q(x).

when using the proposed controller without divergence even
though the true system was subjected to the stochastic distur-
bance. The performance ratios were evaluated for 20 different
random seeds to investigate statistical results of the control
performance. Let us redefine the performance ratio as the
ratio of the average L2 gain of the proposed controller divided
by that of Linear controller. The mean and sample standard
deviation of the ratio under the deterministic disturbances
were 0.849 and 0.020, respectively. Under the stochastic
disturbances, the corresponding values were 0.813 and 0.012,
respectively.

The positive definiteness of the state cost function q(x)
and value function V (x) was evaluated in a manner similar
to that described for optimal control in Section VI-B. The
positive definiteness was numerically (approximately) con-
firmed, because the proposed H∞ control method obtained
results similar to those depicted in Fig. 2.

D. RESULTS PERTAINING TO STABILITY OF THE TRUE
FEEDBACK SYSTEM
Based on Theorem 4, the probabilistic stability of the true
feedback system is evaluated under the condition of no dis-
turbance (ω(t) = 0) when the proposed optimal controller
is employed. The inequality W (x) < 0 in (63) is evaluated
for states x sampled at regular intervals of 0.01 on X :=
[−3, 3]×[−3, 3]. Such grid evaluations provided an estimate
of the region X̃ wherein W (x) < 0 holds in Fig. 5. A
region of attraction and small invariant set near the origin
were estimated using the obtained X̃, as depicted in Fig. 5.
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FIGURE 5. Stability evaluation with β = 3. The black region depicts an
estimate of the region X̃ wherein W (x) < 0. The dashed outer line and
inner line indicate estimates of a region of attraction and small invariant
set near the origin, respectively.

Recall that any state in the region of attraction arrives in the
invariant set (see Remark 10). The drift term f tr(x) in (66) was
included in Ftr(x;β) for β = 3 at the sampled states. This
result numerically (approximately) confirmed that the true
feedback system with the proposed controller is practically
stable. Note that the stability is ensured for drift terms f tr(x)
included in Ftr(x;β); however, the drift term f tr(x) in (66) is
not always included in Ftr(x;β). The training data set involv-
ing random noise affects whether a target f tr(x) is included or
not. The proposed H∞ controller obtained results similar to
those obtained for the optimal controller.

E. PRACTICAL EXAMPLE
This subsection describes the application of the proposed
method to a practical example. Consider an inverted pendu-
lum subjected to a nonlinear torque, as illustrated in Fig. 6.
The corresponding equation of motion is given by

ML2ρ̈ = MGL sin ρ + T (ρ, ρ̇)+ κuu, (69)

where τ , M , L, G, ρ [rad], κu, and u denote the time,
mass, length, gravity acceleration, angle, torque coefficient,
and control input of the pendulum, respectively. Let ρ̇ and
ρ̈ denote dρ/dτ and d2ρ/dτ 2, respectively. The nonlinear
torque T (ρ, ρ̇) depends on ρ and ρ̇ as follows:

T (ρ, ρ̇) = κ1ρ̇ + κ2ρ2ρ̇ + κ3ρρ̇2 + κ4ρ̇3. (70)

By defining t := τ/κτ and x := [ρ/κρ, ρ̇κτ /κρ]T with
constants κτ and κρ , the true drift term is expressed by

f tr(x) =

[
[x]2

κ2τG
κρL

sin(κρ[x]1)+
κ2τ

κρML2
T (κρ[x]1,

κρ
κτ
[x]2)

]
.

(71)

During evaluation, the parameters are set as follows:
M = 1.0 [kg], L = 20.0 [m], G = 9.80665 [m/s2],
κ1 = 400 [N·m·s], κ2 = 400 [N·m·s], κ3 = 400 [N·m·s2],
κ4 = 200 [N·m·s3], κτ = 1.0 [s], κρ = 0.3, and
κu = κρML2/κ2τ . The other parameters, functions such
as ψd (x), and settings are equivalent to those described in
Sections VI-A and VI-B.

The proposed controller was evaluated in terms of con-
trol performance of the optimal controller with Bd = 0

FIGURE 6. Practical example: an inverted pendulum subjected to a
nonlinear torque T (ρ, ρ̇).

TABLE 4. Average values of the cost function (67) for optimal control
with the practical system (71).

and ω(t) = 0. Table 4 lists the average values of the cost
function (67) with respect to the six initial states defined in
Section VI-B. With the proposed method, the average cost
was substantially reduced from that of the existing methods.
We also evaluated the performance ratios for 50 different
random seeds to investigate the control performance statis-
tically. The performance ratio is redefined as the ratio of
the average cost of the proposed controller divided by that
of Linear controller. The values of the mean and sample
standard deviation of the ratio were 0.791 and 0.018, respec-
tively. For the ratio of the average cost of the proposed con-
troller divided by that of Jacobi controller, the corresponding
values were 0.702 and 0.095, respectively. We confirmed
the effectiveness of the proposed method via the practical
example.

VII. COMPARISON AGAINST EXISTING METHODS
The proposed method offers several advantages compared to
the existing methods [11], [14]–[24]. The following advan-
tages constitute the major contributions of this study.

(i) Exact solutions to optimal control and H∞ control
problems can be obtained for kernel-based system
models, whereas the existing methods only yield
approximate solutions.

(ii) Once a system model is obtained, the control prob-
lems can be automatically solved without the need
for huge computation, whereas the existing methods
involve huge computations. This advantage makes
it easy to (re)tune the values of parameters (e.g.,
Q,R, γ ) that affect the control policies.

(iii) Stability of a feedback system model with the pro-
posed controllers is automatically guaranteed under
certain assumptions. In contrast, the existing meth-
ods, except those in [16], [22]–[24], do not guarantee
stability.

(iv) The numerical example described in Section VI
demonstrates that the proposed controllers are supe-
rior to the other existing controllers (termed Linear
and Jacobi) in terms of control performance.
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VIII. CONCLUSION
This paper has presented a method to design nonlinear opti-
mal and H∞ controllers for partially unknown nonlinear
systems described by kernel-based functions. Major contri-
butions of this study towards solving Problems 1 and 2 are
summarized as follows. First, Theorems 1 and 2 reduce HJI
equations to algebraic matrix equations for a class of kernel-
based system models. The algebraic matrix equations can be
solved via analytical and/or numerical approaches, because
complex nonlinear functions of the state are not included
in the equations. Solving the matrix equations gives exact
solutions to the HJI equations, and thus, optimal and H∞
controllers are obtained. Secondly, the true drift term is
identified as a kernel-based model. Data-driven optimal and
H∞ controllers are designed based on the model. For a true
feedback system with the designed controllers, probabilistic
stability is analyzed using GPs and Theorem 4. Compared to
existing methods, the proposed method offers several advan-
tages, as described in Section VII.

In future work, the proposed method should be extended
for applications involving the control of unknown nonlinear
systems, e.g., autonomous vehicles involving human inter-
actions [1]. The realization of effective control requires the
development of mathematical models of such unknown sys-
tems, regarding which only limited information is available.
Data-driven approaches are important for overcoming this
difficulty owing to their ability to design appropriate con-
trollers using a data set. Additionally, we focus on a theoret-
ical extension of the proposed method to find other classes
of kernel-based models for which exact solutions to HJI
equations can be obtained. Other extensions involve output
feedback control problems associated with state estimations.

APPENDIX
PROOFS
A. PROOF OF LEMMA 1
From the definition of V (x) in (17), the partial derivative
∂xV (x) is calculated as follows under the condition given
in (20):

∂xV (x) =
D∑
d=1

(
ψd (x)p̃d∂xk(x, xd )+ ∂xψd (x)p̃dk(x, xd )

)
=

D∑
d=1

(
cV (x, xd )ψd (x)p̃d + ∂xψd (x)p̃d

)
k(x, xd )

=

D∑
d=1

8′d (x)p̃dk(x, xd ). (72)

Using the property of vec(AaAbAc) = (AT
c ⊗ Aa)vec(Ab) for

given matrices Aa, Ab, and Ac [46, (3.76)], the term 8′d (x)p̃d
in (72) becomes

8′d (x)p̃d = vec(8′d (x)p̃d ) = vec(Inx8
′
d (x)p̃d )

= (p̃Td ⊗ Inx )vec(8
′
d (x)). (73)

Because p̃T = [p̃T1 , . . . , p̃
T
D] in (22) is the row vector,

[p̃T1 ⊗ Inx , . . . , p̃
T
D ⊗ Inx ] = p̃T ⊗ Inx (74)

holds. Substituting (24), (73), and (74) into (21) yields (72).
This completes the proof. �

B. PROOF OF THEOREM 1
Substituting ∂xV (x) in (21), f (x) in (30), and q(x) in (31) into
the HJI equation (6) yields the relation described in (15) as
follows:

HHJI(x) = kvec(x)T8(x)T(p̃T ⊗ Inx )
TÃ8(x)kvec(x)

−
1
2
kvec(x)T8(x)T(p̃T ⊗ Inx )

T

×S(γ )(p̃T ⊗ Inx )8(x)kvec(x)

+ kvec(x)T8(x)TQ̃8(x)kvec(x)

=
1
2
kvec(x)T8(x)TMHJI8(x)kvec(x). (75)

Because of (75), MHJI = 0 is a sufficient condition for
HHJI(x) = 0 to be satisfied for all x ∈ Rnx .
Next, substituting (18) and (19) into 8(x)kvec(x) yields

8(0)kvec(0) = 0. Note that 8(x)kvec(x) is a linear combi-
nation of ∂xk(x, xd )ψd (x) and k(x, xd )∂xψd (x). This relation
leads to the local Lipschitz continuity of8(x)kvec(x), because
k(x, xd ) and ψd (x) are C

2 continuous. Therefore, f (0) = 0
holds, and f (x) is locally Lipschitz continuous. This com-
pletes the proof. �

C. PROOF OF THEOREM 2
The statement can be proved in a manner similar to The-
orem 1. We replace Ã, p̃, and Q̃ � 0 in Theorem 1 with
A(νT ⊗ Inx ), pν, and (νT ⊗ Inx )

TQ(νT ⊗ Inx ) � 0, respec-
tively. Performing these replacements in (30), (17), (31),
and (32) satisfies (35)–(38). Therefore, the algebraic matrix
equation (38) corresponds to a special case of (32), and
thus, a sufficient condition that the HJI equation (6) holds
because of Theorem 1. The proof of f (0) = 0 and the local
Lipschitz continuity of f (x) are equivalent to those described
for Theorem 1. This completes the proof. �

D. PROOF OF THEOREM 3
Let cd ∈ R be a parameter. We consider the setting of
νd = cdαf ∈ R and p = 1. Using the relations (44) and (45),
we represent ψd (x)νd in (36) as follows:

ψd (x)νd = cdαf xTdx = cdk(x, xd ). (76)

Let us define a symmetric matrix P̂ tr as

P̂ tr := 2
D∑
d=1

cdα2f xdx
T
d . (77)

From (36) and (77), V (x) is given as

V (x) =
D∑
d=1

cdk(x, xd )2 = xT
( D∑
d=1

cdα2f xdx
T
d

)
x

=
1
2
xTP̂ trx. (78)
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For any symmetric matrix P̂ tr, the definition (77) is equivalent
to the following vectorized form:

vech(P̂ tr) = 2
D∑
d=1

cdα2f vech(xdx
T
d ) ∈ Rnx (nx+1)/2. (79)

From the condition (41), for any symmetric matrix P̂ tr, there
exist [c1, c2, . . . , cD] such that (79) and (77) hold. Therefore,
we choose P̂ tr = P tr that satisfies the positive definiteness
of V (x). In addition, the partial derivative of V (x) calculated
in (78) is equivalent to the relation (21) with p = 1 as follows:

∂xV (x) = P trx = (νT ⊗ Inx )8(x)kvec(x). (80)

Substituting this relation into (35) and (37) yields

f (x) = AP trx, (81)

q(x) = xTPT
trQP trx. (82)

We obtain the positive definite Q = P−Ttr QtrP
−1
tr � 0 to

satisfy (43) and (82), where q(x) is positive definite. Choosing
A = AtrP−1tr satisfies f (x) = f tr(x). Using these parameters
with p = 1 along with the condition (40), the algebraic matrix
equation (38) holds owing to the following relation:

(pA+ pAT
− p2S(γ )+ 2Q)

= AtrP−1tr + P
−T
tr AT

tr − S(γ )+ 2P−Ttr QtrP
−1
tr

= P−Ttr (PT
trAtr + AT

trP tr − PT
trS(γ )P tr + 2Qtr)P

−1
tr

= 0. (83)

This completes the proof. �

E. PROOF OF PROPOSITION 1
Using the relation between (21) and (73), f (x) in (35) can be
represented as follows:

f (x; ν, p) = A(νT ⊗ Inx )8(x)kvec(x)

= A
D∑
d=1

8′d (x)νdk(x, xd )

= [Ak(x, x1)8′1(x), . . . ,Ak(x, xD)8
′
D(x)]ν. (84)

The value function V (x) defined in (36) is expressed as

V (x; ν, p) =
D∑
d=1

ψd (x)pνdk(x, xd )

= [pk(x, x1)ψ1(x), . . . , pk(x, xD)ψD(x)]ν. (85)

By substituting (84) and (85) into the expression for g(ν,A, p)
described in (55), g(ν,A, p) is given as the following
quadratic function of ν:

g(ν,A, p) = ‖Y (A, p)ν − y‖2 + ηreg‖ν‖2 + gc(A, p), (86)

where gc(A, p) is a function of A and p and is independent
of ν. Therefore, for each fixedA and p, (54) represents a regu-
larized least-squares minimization problem with respect to ν.
The solution to the problem is explicitly obtained as described
in (56), where the matrix (Y (A, p)TY (A, p) + ηregInpD) is
nonsingular because ηreg > 0 holds. This completes the
proof. �

F. PROOF OF THEOREM 4
In this proof, the parameters (ν,A, p) included in functions
are omitted for the sake of brevity. For example, V (x; ν,A) is
simply denoted by V (x). For the value function V (x) in (36)
and true system (11) with u∗(x) applied and ω(t) = 0,
Assumption 1 leads to the following relation with a proba-
bility of at least 1− δ:
dV
dt

(x(t)) = ∂xV (x(t))T(f tr(x(t))+ Bu∗(x(t)))

≤ ∂xV (x(t))T(µf (x(t))+ Bu∗(x(t)))

+β

nx∑
s=1

∣∣∣[∂xV (x(t))]s[σ f (x(t))]s∣∣∣, ∀x(t) ∈ X.

(87)

Using the definition of 1f (x; ν,A) in (53) yields

∂xV (x)Tµf (x) = ∂xV (x)
T(f (x)+1f (x)). (88)

Because the HJI equation (6) holds, using the definition of
u∗(x) in (8), the following relation can be obtained:

∂xV (x)T(f (x)+ Bu∗(x))

=

(1
2
∂xV (x)TS(γ )∂xV (x)− q(x)

)
+ ∂xV (x)TBu∗(x)

=
−1
2
∂xV (x)T

(
BR−1BT

+
1
γ 2BdBT

d

)
∂xV (x)

− q(x). (89)

Substituting (88) and (89) into (87) yields
dV
dt

(x(t))

≤ ∂xV (x(t))T1f (x(t))

+β

nx∑
s=1

∣∣∣[∂xV (x(t))]s[σ f (x(t))]s∣∣∣
−

1
2
∂xV (x(t))T

(
BR−1BT

+
1
γ 2BdBT

d

)
∂xV (x(t))

− q(x(t)), ∀x(t) ∈ X, (90)

with a probability of at least 1 − δ. Here, the relation
q(x) = ζ (x)TQζ (x) holds because of (37) and (65). Addition-
ally, the relation ∂xV (x) = pζ (x) is obtained from Lemma 1.
Substituting these relations replaces (90) with the following
inequality:

dV
dt

(x(t)) ≤ W (x(t)), ∀x(t) ∈ X. (91)

Therefore, the statement (63) holds with a probability of at
least 1− δ owing to (91). This completes the proof. �
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