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ABSTRACT Aiming at the problems of poor diversity and slow convergence of ant colony algorithm,
dynamic multi-role adaptive collaborative ant colony optimization (MRCACO) is proposed in this paper,
and it applies to robot path planning. Firstly, an adaptive dynamic complementary algorithm is proposed
to form a heterogeneous multi-colony together with ACS and MMAS, which complement each other in
performance. Secondly, a multi-role adaptive cooperation mechanism is proposed to realize the exchange
and sharing of information. The mechanism includes two strategies: one is an elite attribute learning strategy,
which highlights the role of elite attribute and improves the comprehensive performance of ACS andMMAS;
The second is the pheromone balancing strategy, which is executed when the algorithm is stagnant to make
the algorithm jump out of the local optimal. Further, the effectiveness and superiority in the algorithm are
demonstrated by the experimental analysis of multiple TSP instances. Finally, the algorithm presented in this
paper is applied to the path planning of the robot, two different deadlock rollback strategies are proposed to
solve the deadlock problem and improve the efficiency of the algorithm. The results of a practical application
show that the algorithm is feasible to solve the path planning problem.

INDEX TERMS Multi-colony ant colony optimization, path planning, adaptive dynamic complementary
algorithm, multi-role adaptive collaborative mechanism, deadlock rollback.

I. INTRODUCTION
Traveling Salesman Problem (TSP) is a classical combinato-
rial optimization problem, which refers to the shortest path
problem in which a traveler starts from a certain starting
point, passes through all given demand points, each demand
point only passes once, and finally returns to the starting
point. Path planning refers to finding an appropriate path
from the beginning to the end to avoid all obstacles in the
process of movement according to certain evaluation criteria
in the environment with obstacles. The final result of the
traveling salesman problem is the shortest loop path, while
the final result of the robot path planning is the shortest line
segment path. At present, intelligent algorithms to solve these
two kinds of problems include particle swarm optimization
[1], [2], genetic algorithm [3], ant colony algorithm, etc.

Ant Colony Optimization (ACO) [4] was first proposed
by Italian scholar Marco Dorigo in 1996 as an algorithm
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to solve travel agents and distributed Optimization problems
based on the ant foraging mechanism. In 1997, Dorigo pro-
posed the Ant Colony System (ACS) [5], which added the
global pheromone updating mechanism based on the Ant
System and improved the convergence speed of the algorithm.
In 2000, Stutzle proposed theMax-min Ant System (MMAS)
[6], he proposed that by limiting the range of pheromones,
the gap between pheromones in each path would be reduced
and the diversity of the algorithm would be improved. The
above are classical ant colony algorithms, which have high
efficient searching ability, but there are still some problems
such as easy to fall into local optimization and slow conver-
gence speed.

To solve the problem of poor diversity and slow conver-
gence of the traditional ant colony algorithm, scholars began
to improve the single-colony ant colony algorithm, generally,
the improvement direction is parameter optimization [7] and
the combination with other algorithms [8], [9]. However,
due to the limitation of mechanism, the improvement of
single-colony tends to focus on the optimization of unilateral
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performance, and most of them adopt the method of improv-
ing different characteristics in different periods. It is difficult
to achieve a satisfactory balance between diversity and con-
vergence. On this basis, the researchers set out to discuss the
improvement of the multi-colony algorithm, through the role
assignment of each subpopulation, intraspecies competition
and interspecies cooperation to balance the convergence and
diversity of the algorithm, and improve its performance.

Multi-colony ant colony optimization was originally pro-
posed by Gambardella to solve the time window problem
of vehicle paths. Xu proposed a heterogeneous two-colony
ant colony optimization based on heuristic information for
TSP solution, introduced exchange factors, and carried out
information exchange regularly, balancing the convergence
and diversity of the algorithm in large-scale problems, but the
adaptability of the algorithm still needs to be improved [10].
He proposed a two-colony ant colony algorithm, which
improved the diversity of solutions through heterogeneous
evolution and information exchange, as the alternating cur-
rent frequency was related to the number of iterations,
the algorithm pattern was relatively fixed [11].

To sum up, the multi-colony algorithm is relatively sim-
ple in construction, the communication mode is mostly
pheromone matrix exchange and the communication fre-
quency is also fixed, which fails to fully reflect the role of
each subpopulation, and the self-adaptability of the algorithm
needs to be improved. To solve these problems, scholars have
introduced the principle of information entropy to improve
the adaptability of the algorithm andmake the algorithmmore
rigorous. Reference [12] proposed an improved artificial
bee colony algorithm based on information entropy, which
used the value of information entropy to assess uncertainty,
and the selection process of following peaks was judged
based on information entropy. In reference [13], an adaptive
double-colony ant colony algorithmwith entropy is proposed,
the ant colony is divided into red ant colony and black ant
colony by using information entropy, and the number of red
and black ants is determined by entropy value so that the
algorithm achieves self-adaptability. Reference [14] proposed
a multi-colony ant colony algorithm for virtual machine
deployment, which determined the information exchange
strategy among Ant colonies according to the information
entropy of each colony to ensure the balance between con-
vergence and diversity. In the above improved algorithm,
the application of information entropy provides theoretical
support for the index measurement in the algorithm process,
improves the adaptability of the algorithm, and makes the
algorithm more rigorous.

Ant colony optimization will eventually be applied to
practical problems. This paper will improve the ant colony
algorithm to solve the robot path planning problem. In refer-
ence [15], an application of an ant colony algorithm based on
a negative feedback mechanism in robot path planning is pro-
posed, the negative feedback mechanism is used to improve
the diversity of solutions to obtain the optimal path. In ref-
erence [16], an improved ant colony algorithm was proposed

to solve the path planning problem, and the performance of
the algorithm was improved by combining pheromone diffu-
sion with geometric local optimization. In reference [17] an
improved ant colony algorithm was proposed to be applied to
the planning of multi-scenic spots, this algorithm eliminated
the restrictions of the taboo table of ant colony algorithm,
realized partial point traversal of the connected graph, and
introduced a temporary weight matrix to improve the overall
efficiency of the algorithm. The above algorithm is the appli-
cation of the single-colony algorithm in path planning, lack
of collaboration between multi-colony.

Ant colony optimization is a parallel self-organizing algo-
rithmwith advantages of positive feedback and strong robust-
ness. It was originally used to solve TSP problems, after
years of development, it has gradually penetrated other fields,
such as path planning problems, large-scale integrated circuit
design, routing problems in communication networks, load
balancing problems, and vehicle scheduling problems. Ant
colony algorithm has become a common method to solve
the problem of path planning, therefore, our research group
is studying the use of ant colony optimization to solve the
problem of robot path planning. This paper proposes the
application of dynamic multi-role adaptive collaborative ant
colony optimization in path planning to explore the impact of
multi-colony cooperation.

The main contributions of this paper are as follows:
1. Firstly, an adaptive dynamic compensation algo-

rithm (ADCA) is proposed, in which dynamic grouping
strategy and pheromone diffusion mechanism exist, and
the diversity and convergence of the algorithm can be
adjusted through cooperative communication between differ-
ent groups. Heterogeneousmulti-colony is formed byADCA,
ACS, and MMAS. These three sub-populations have differ-
ent characteristics, and achieve inter-population performance
complementation through the mechanism in contribution 2.

2. Secondly, the multi-role adaptive cooperation mech-
anism is proposed as the communication mode between
heterogeneous populations, to explore the influence of
multi-colony information interaction on the algorithm, this
mechanism contains two learning strategies: elite attribute
learning strategy and pheromone balancing strategy. In the
elite attribute learning strategy, the concept of population
comprehensive performance was proposed to measure popu-
lation performance, the subpopulation with low performance
can communicate with the excellent population through elite
attribute learning strategy so as to improve its comprehensive
performance. In the pheromone balancing strategy, when
the algorithm falls into a stagnant, the pheromone will be
merged and divided among the sub-populations to increase
its diversity, so that the algorithm jumps out of the local
optimum.

3. Finally, theMRCACO algorithm is used to solve the path
planning problem, and it is further improved.We propose two
deadlock fallback strategies to solve the deadlock problem
through adaptive fallback of the path, thereby improving the
accuracy of the algorithm.
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TABLE 1. Analyze the advantages and disadvantages of the metaheuristic algorithm.

The structure of this paper is as follows: Section II briefly
introduces the content of metaheuristic, ACS, MMAS, and
the concepts of information entropy and raster modeling.
Section III introduces the specific contents of MRCACO.
Section IV the MRCACO algorithm is used to solve the TSP
problem and its performance is analyzed. Section V is apply-
ing the MRCACO algorithm to robot path planning. Firstly,
some improvements needed to be done to MRCACO to make
it more suitable; Secondly, the performance ofMRCACO and
improvedMRCACO in path planning is analyzed. Section VI
provides a summary and future work.

II. RELATED WORK
A. METAHEURISTIC ALGORITHM OVERVIEW
Metaheuristic algorithm is the product of the combination
of random algorithm and local search algorithm, today,
metaheuristic algorithms have been successfully applied in
engineering, computer networks, biological system mod-
eling, prediction, pattern recognition, data clustering, fea-
ture selection, and other fields. Fig.1 shows some typical
metaheuristic algorithms, the abbreviations in the figure are
explained in Table.1, which briefly summarizes the advan-
tages and disadvantages of different types of metaheuristic
algorithms. At present, a swarm intelligence algorithm tends
to solve combinatorial optimization problems. In this paper,
ant colony optimization is selected to solve the robot path
planning problem.

B. ANT COLONY SYSTEM
1) PATH CONSTRUCTION
In ACS, the current position of ant k is at i, and the next city
to be visited j is selected according to the pseudo-random
proportion rule, whose rule is shown in (1):

j =

arg max
j∈allowed

{τij · η
β
ij } q ≤ q0

J else
(1)

where q is a random variable uniformly distributed on the
interval [0, 1]; q0 is a parameter whose range is [0, 1]; J is
a variable generated from the probability distribution given

FIGURE 1. Metaheuristic algorithm.

by (2).

Pij(t) =


[τij(t)]α[ηij]β∑

s∈allowed
[τis(t)]α[ηis]β

j ∈ allowed

0 else

(2)

where α is the information heuristic factor; β is the expected
heuristic factor; ηij is the heuristic function, whose expression
is (3):

ηij = 1/dij (3)

2) PHEROMONE UPDATE
Local pheromone update rules: When the ant makes a path
selection, that is, it updates the pheromone immediately after
it goes from the current city i to the next city j. The formula
is shown in (4):

τij = (1− ρ) · τij + ρ · τ0 (4)

where ρ is the evaporation coefficient of local pheromone,
whose range is (0, 1); τ0 is the initial value of the pheromone.
Global pheromone update rule: The pheromone is updated

after one iteration of all ants, and only the ants on the global
optimal path can update the pheromone, thereby speeding up
the convergence speed of the algorithm. Equation(5) is:

τij = (1− ξ ) · τij + ξ ·1τ bsij (5)
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1τ bsij = 1/Cbs (6)

where ξ is the global pheromone evaporation coefficient
and Cbs is the length of the global optimal path; 1τ bsij is
the pheromone added on the global optimal path, calculated
according to (6).

C. MAX-MIN ANT SYSTEM
1) PHEROMONE RANGE LIMITATION
In order to avoid fast convergence of the algorithm,
the MMAS algorithm limits the pheromones of each side to
a certain range [τmin, τmax]. If τij ≤ τmin, we set τij = τmin; If
τij ≥ τmax, we set τij = τmax.

τmax = (1/ρ) · (1
/
T gb) (7)

τmin = τmax
/
2n (8)

where T gb is the global optimal path.

2) PHEROMONE UPDATE
When an iteration is completed, the current optimal path or
the global optimal path is updated with pheromone, so that
the optimal solution can be effectively utilized and the explo-
ration ability of the algorithm is enhanced. Pheromone update
rules are shown in (9) and (10):

τij(t + 1) = (1− ρ) · τij(t)+1τ bestij (9)

1τ bestij = 1/f (sbest ) (10)

where f (sbest ) is the current optimal or global optimal path.

D. INFORMATION ENTROPY
Information Entropy is a word borrowed from thermody-
namics by C. E. Shannon in 1948 to solve the problem of
quantitative measurement of information. It’s also one of
several ways to measure diversity. Entropy can be written
explicitly:

H (X ) = −
n∑
i=1

P(xi)logbP(xi) (11)

where b is the base of the logarithm. P(xi) is the probability
mass function.

The entropy of the unknown result is maximized if each
probability is fair. Therefore, this paper uses information
entropy to measure the diversity of populations.

E. ENVIRONMENTAL MODELING
When the ant colony algorithm solves the problem of path
planning simulation, it needs to rasterize the environment
map. Raster modeling is the use of the same size raster to
divide the plane environment, and the divided raster uniform
number to form a raster map. This method is used to build
a raster map of M*M scale (in Fig.2(a), M=7), where the
white grid represents the free passable grid and the black grid
represents the impassable obstacle grid. There are 8 passable
directions in grid i, and the next feasible grid that can be

FIGURE 2. Grid map.

selected in these 8 directions constitutes the adjacency node
matrix of grid i (Fig.2(b)).

III. DYNAMIC MULTI-ROLE ADAPTIVE COLLABORATIVE
ANT COLONY OPTIMIZATION
A. ADAPTIVE DYNAMIC COMPLEMENTARY ALGORITHM
In this paper, the CACS algorithm in reference [23] is
regarded as an adaptive dynamic complementary algorithm
(ADCA). ADCA, MMAS, and ACS constitute the heteroge-
neous multi-colony proposed in this paper, after ADCA was
added, three sub-populations realized adaptive complemen-
tary in performance. The adaptive dynamic complementary
algorithm uses a dynamic division of labor to improve ACS.
The purpose of the improvement is to enable a single popu-
lation to adaptively balance diversity and convergence.

1) DYNAMIC GROUPING STRATEGY
ADCA introduces a dynamic grouping rate ε to dynamically
divide the m ants into two categories: There are m(1 − ε)
search ants that play a role in maintaining diversity and mε
tracking ants which play a role in ensuring convergence. The
division rules are: the path is taken by the ant after each
iteration is sorted in ascending order, the before mε ants cor-
responding to the sorted path become tracking ants, the rest
are search ants. The formula of ε is (12). According to (12),
each ant may dynamically change its role in each generation,
enabling it to adapt balance diversity and convergence.

ε = iter/maxiter (12)

where iter is the number of current iterations; maxiter is the
maximum number of iterations.

2) PATH CONSTRUCTION RULES BASED ON DYNAMIC
GROUPING
The probability rule that the ants in ADCA choose the next
city is: tracking ants follow the (2) for path construction, and
the search ants follow the (13) for path construction.

pij−sk (t) =

{
pkij (t)× rand, f > µ

pkij (t) , other
(13)

f = 1− ε (14)
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whereµ is the threshold value of environmental fitness factor,
which is a constant between (0, 1).

3) PHEROMONE UPDATE RULES BASED ON DYNAMIC
GROUPING
The local pheromone update rule of ADCA is (15), where
1τ ∗ij (t) is a pheromone reward that is unique to tracking ants,
and that comes from pheromone diffusion. Global pheromone
update rule is (5).

τij (t) = (1− ρ) τij (t)+ ρτ0 +1τ ∗ij (t) (15)

B. MULTI-ROLE ADAPTIVE COLLABORATIVE MECHANISM
1) ELITE ATTRIBUTE LEARNING STRATEGY
In this paper, ACS is used to maintain convergence, MMAS
is used to maintain diversity. The purpose of balancing
the diversity and convergence of the algorithm is achieved
through communication between the two, and the overall
accuracy of the algorithm is ultimately improved. The com-
munication mode is the elite attribute learning strategy, and
learning rules are: when the diversity of ACS subpopulation
is below the threshold, first k sub-populations with high
diversity were selected from the sub-populations of MMAS,
then select the subpopulation with the highest comprehensive
performance among these k sub-populations, finally they
communicate with each other. Based on such a selective com-
munication mode, ACS can not only learn elite attributes in
MMAS, but also improve the comprehensive performance of
the population, and this learning style is adaptive. Similarly,
when the convergence of MMAS subpopulation is below
the threshold, first k subpopulation with high convergence
was selected from the ACS subpopulation, then select the
subpopulation with the highest comprehensive performance
among these k sub-populations, finally they communicate
with each other.

Equation(16) is the measurement standard for the com-
prehensive performance of the population. The comprehen-
sive performance of the population includes three attribute
factors: Divi represents diversity, whose value is the ratio of
the current information entropy of population i to the global
maximum information entropy; Soli represents the strength of
the solution, and its value is the ratio of the standard optimal
solution of the algorithm to the current optimal solution of
population i;Coni represents convergence, and its value is the
ratio of the global optimal convergent iteration number to the
current optimal convergent iteration number of population i.

Peri = Divi × Soli × Coni (16)

Fig.3 is a schematic diagram of the elite attribute learn-
ing strategy. For example, when the convergence of the
MMAS subpopulation is lower than the threshold (red box
in Fig.3), the elite attribute learning strategy is implemented.
In Fig.3, the yellow box is the high-quality attribute in the two
sub-populations, and the population attribute after learning
is composed of all the high-quality attributes of the two
populations (new MMAS in Fig.3).

FIGURE 3. Elite attribute learning strategy.

2) PHEROMONE BALANCING STRATEGY
The pheromone balancing strategy is used between ACS,
MMAS, and ADCA sub-populations. The reasons for using
the pheromone balancing strategy are as follows: 1. The
elite attribute learning strategy can balance the diversity and
convergence by maintaining the characteristics of two sub-
populations, while ADCA can ensure diversity and con-
vergence simultaneously through itself, these two ways of
balancing diversity and convergence may have some short-
comings in performance. 2. The elite attribute learning strat-
egy and the pheromone diffusion strategy in ADCA may
lead to the excessive accumulation of pheromones in some
paths, so that the algorithm falls into the local optimal. The
pheromone balancing strategy combines the pheromones of
three sub-populations to make them complement each other
in performance, and make the algorithm jump out of the local
optimal.

The use time of the pheromone balancing strategy is: when
the subpopulation falls into a local optimum. The use mode
is: the ADCA subpopulation with good diversity and high
comprehensive performance is first selected for performance
complementary, then learn according to (17). The pheromone
balancing strategy is to determine the execution time and the
execution object according to the current environment of the
algorithm, it’s also adaptive.

Pnew =
1
3
(PACS + PMMAS + PADCA) (17)

where Pnew is the new pheromonematrix after the pheromone
balancing of the three populations, PACS , PMMAS , and PADCA
are the original pheromone matrix of ACS, MMAS, and
ADCA respectively.

3) THE FRAMEWORK OF MULTI-ROLE ADAPTIVE
COLLABORATIVE MECHANISM
Fig.4 is the framework diagram of the multi-role adap-
tive collaborative mechanism. Multi-colony are divided into
three sub-populations, ACS, MMAS, and ADCA, which
play different roles: ACS guaranteed population conver-
gence, MMAS guaranteed population diversity, ADCA bal-
anced population diversity and convergence. Among them,
the cooperation between ACS and MMAS achieves the
purpose of balancing the diversity and convergence, and
has the relationship of performance complementary with
ADCA. The communication mechanism is divided into elite
attribute learning strategy and pheromone balancing strat-
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FIGURE 4. Multi-role adaptive collaborative mechanism.

egy. Dynamic adaptive collaborative learning was conducted
among the three sub-populations according to the current
environmental information of the algorithm, and the two
communication strategies are also implemented adaptively
according to the feedback of information.

C. ALGORITHM FRAMEWORK
The execution process of MRCACO algorithm is as follows:

Step1. Initialize the parameters in MRCACO, initialize the
pheromone matrix and the distance between nodes.

Step2. The subpopulation of ACS, MMAS, and ADCA are
respectively constructed according to their path construction
methods, and their local pheromones are updated for each
step of movement.

Step3. After the completion of one iteration for all sub-
populations, update the global pheromone of each subpop-
ulation to retain the current optimal solution of the whole
algorithm at this time. If the current optimal solution is better
than the historical optimal solution, the historical optimal
solution is replaced, otherwise, it is not replaced.

Step4. When the diversity of ACS is lower than the thresh-
old or the convergence of MMAS is lower than the threshold,
implement the elite attribute learning strategy.

Step5. When the global optimal solution remains
unchanged for T consecutive times, that is, the algorithm is
stalled, implement the pheromone balancing strategy.

Step6. Increase the number of iterations and return to
Step2.

Step7. Reach the maximum number of iterations and out-
put the global optimal solution of the algorithm.

Algorithm 1MRCACO Algorithm for TSP
1: Initialize the pheromone and the parameters
2: Calculate the distance between cities
3: while termination condition is not satisfied do
4: Construct ant solutions for ACS,MMAS, and ADCA

with (1),(2), and (2),(13)
5: Update local pheromone for MMAS,ACS, and ADCA

with (4),(9), and (15)
6: Update global pheromones for MMAS,ACS,ADCA

with (5)
7: if subpopulation has a low performance then
8: Executive elite attribute learning strategy
9: end if

10: if sub-populations fall into local optimum then
11: Executive pheromone balancing strategy
12: end if
13: nc = nc+ 1
14: end while
15: Return the global optimal

In this framework, the number of iteration is nc, the num-
ber of subpopulation ant is m, the number of city is n, all
sub-populations run in parallel in the computer.

Through the analysis of the algorithm framework, we know
that the time complexity of MRCACO is O(nc ∗m ∗ (n− 1)),
and themaximum time complexity isO(nc∗m∗n). Aswe have
known, the maximum time complexity of ACS andMMAS is
O(nc∗m∗n), the time complexity of ADCA is also analyzed
in reference [23], which is O(nc ∗ m ∗ n). So, the MRCACO
algorithm does not increase the time complexity.

IV. PERFORMANCE ANALYSIS OF MRCACO ALGORITHM
A. SIMULATION ENVIRONMENT AND PARAMETER
SETTING
To verify the performance ofMRCACO, the experimental test
environment in this paper is as follows: windows10 operating
system, matlab2016a test simulation software. Although the
MRCACO algorithm usesmultiple ACS,MMAS, andADCA
subpopulations, we only carry out interspecific communica-
tion and do not change their internal operation. Therefore,
the parameters of ACS, MMAS, and ADCA can be deter-
mined separately to achieve the best effect respectively. Since
ADCA comes from the algorithm in reference [23], in order
to make a fair comparison with it, the parameter values of
ADCA in this paper are the same as those in reference [23].

For the parameter values of ACS and MMAS, we adopted
the Taguchi’s method [27] to determine the value of each
parameter, the levels are based on pre-experiments, the best
scheme of each parameter is found out by orthogonal exper-
iment. Each combination scheme for parameters was tested
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TABLE 2. Experimental factors and levels of MMAS.

TABLE 3. Taguchi’s test scheme and test results of MMAS.

TABLE 4. Analysis of test results of MMAS.

TABLE 5. Experimental factors and levels of ACS.

10 times, and the average value was taken for analysis, taking
eil51 as an example to determine the parameters. Through the
above experimental analysis, the parameters in this paper are
shown in Table.8.

B. EXPERIMENT ANALYSIS OF MRCACO
1) PERFORMANCE ANALYSIS OF SELECTED COLONY
MRCACO is a hybridization of three different variants of
ACOs including ACS, MMAS, and ADCA, wherein we
claim that ACS guaranteed population convergence, MMAS
guaranteed population diversity, ADCA balanced population

TABLE 6. Taguchi’s test scheme and test results of ACS.

TABLE 7. Analysis of test results of ACS.

TABLE 8. Parameter setting.

diversity and convergence. We provide the following theoret-
ical basis and experimental evidence to support this claim.

ACS and MMAS are recognized as classical ant colony
optimization, as for the claims that ACS can accelerate con-
vergence speed and MMAS can increase diversity, in the
introduction, we give the theoretical basis by introducing the
references [5], [6]. In subsection A of Section III, we give the
theoretical basis for ADCA to balance diversity and conver-
gence, ADCA algorithm comes from reference [23], in which
it is introduced in detail how ADCA balances the diversity
and convergence of the algorithm.

KroA150 and A280 were selected to participate in the
comparative experiment of the diversity and convergence of
the three algorithms. As the diversity in reference [23] is
measured by standard deviation, for comparison, the standard
deviation is also used here to measure diversity, the experi-
mental results are shown in Fig.5 and Fig.6. By comparing
the Fig.5(a), (b), (c) and Fig.6(a), (b), (c), we can see that the
diversity of MMAS and ADCA is relatively good, and it can
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FIGURE 5. Comparison of experimental data of kroA150.

FIGURE 6. Comparison of experimental data of a280.

be seen from Fig.5(d) and Fig.6(d) that ADCA and ACS have
better convergence, thus providing experimental evidence for
our claim.

2) STRATEGY TESTING AND PERFORMANCE ANALYSIS
The multi-role adaptive cooperative mechanism proposed
in this paper includes three sub-populations: ACS, MMAS,
ADCA. Two communication strategies: elite attribute learn-
ing strategy and pheromone balancing strategy. To verify the
performance and effect of the two communication strategies
andADCA, the TSP instances set kroB100 and kroA150were
selected for testing, the selected instances set was tested for
15 times, with 2000 iterations per experiment. This experi-
ment was analyzed from the following aspects: the optimal
solution (Best), the error rate of the optimal solution (Er),
the worst solution (Worst), the average solution (Mean), iter-
ation number of optimal solution (Convergence), statistical
experimental data were obtained in Table.9. The error rate of
the optimal solution is expressed by (18).

First, ACS and MMAS, were selected for the test, without
any communication mechanism, and only the optimal solu-
tion between the two sub-populations was retained, called
AM algorithm, AM is the most basic algorithm. Then,
elite attribute learning strategy is added to AM algorithm
for testing, called AME algorithm, AME is used to test
the performance of elite attribute learning strategy. Further,
the ADCA subpopulation was added to the AME for test-
ing, at this time, only the elite attribute learning strategy
exists in the algorithm, and ADCA does not participate
in communication, the optimal solution between the three
sub-populations is retained, called AMEC algorithm, AMEC

TABLE 9. Performance analysis of algorithms composed of different
strategies.

tests the role of ADCA sub-populations. Finally, the AMEC
algorithm is tested with a pheromone balancing strategy,
called AMECP/MRCACO algorithm, which measures the
performance of the pheromone balancing strategy.

Er =
LACO − Lmin

Lmin
× 100% (18)

where LACO is the optimal solution found for the algorithm,
Lmin is the standard optimal solution for the TSP instances.

Firstly, compare AM and AME algorithms to explore
the effect of the elite attribute learning strategy. As can be
seen from Table.9 and Fig.7, in both kroB100 and kroA150,
the AME algorithm is more accurate at optimal, worst,
average solutions. The Convergence of AME algorithm on
kroB100 is 55, compared with AM algorithm, the solution is
more accurate and the convergence rate is much faster, but
at this point, the AME algorithm falls into the local optimal.
This indicates that the elite attribute learning strategy can
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FIGURE 7. Comparison of convergence rates of different algorithms.

improve the accuracy of the solution, but may fall into the
local optimal.

Then, compare AME and AMEC algorithms to explore
the significance of adding ADCA algorithms. As can be
seen from Table.9, after the addition of ADCA, the opti-
mal solution accuracy of the algorithm is also improved.
In the case of kroB100, AMEC is better than the AME
algorithm in every respect, in kroA150, the optimal solution
of AMEC is better than AME, which indicates that the ADCA
algorithm plays a role of performance compensation for
AME.

Finally, compare AMEC and AMECP algorithms to study
the effect of pheromone balancing strategy. As can be seen
from Table.9 and Fig.7, in both cases of kroB100 and
kroA150, the accuracy of AMECP on the best solution,
worst solution, and the average solution are much improved
than AMEC, especially kroA150, and the algorithm does not
fall into the local optimum. This shows that the pheromone
balancing strategy can make the algorithm jump out of
the local optimum and finally improve the accuracy of the
solution.

To sum up, each strategy proposed in this paper can play a
corresponding role, and link with each other.

3) STATISTICAL TEST OF THE ALGORITHMS
Since ant colony algorithm is a probabilistic algorithm, when
we analyze the performance difference between the algo-
rithms through experimental results, we cannot judgewhether
the difference is due to chance variation or our improvement
work, we need to conduct significance test to detect whether
the improved algorithm in this paper differs from traditional
algorithm and other improved ant colony algorithms and
whether the difference is significant. Since the Friedman test
does not require the assumption of normality and homo-
geneity of variance, this paper uses the Friedman test for
the significance test. We selected the experimental data from
eil51, kroB150, and kroA200 respectively to conduct the
Friedman test in SPSS25 software, JCACO [28], PCCACO
[29], EDHACO [30], andDACS [31] are published ant colony
optimization.

First, we give the null hypothesisH0: there is no significant
difference in the performance of the seven algorithms. Then,
input the data into SPSS25 software, and the final result is
given in Fig.8. The significance level in Fig.8 is p = 0 < 0.5,

FIGURE 8. Hypothesis Test Summary.

so decision-makers reject the null hypothesis, which means
that the performance of the seven algorithms is significantly
different. It can be seen from Fig.9 that the average ranks
of MRCACO, JCACO, ACS, MMAS, PCCACO, EDHACO,
and DACS are 1.71, 3.14, 3.88, 6.1, 3.12, 5.26, 4.79,
respectively. As the response rates of different frequen-
cies are different, the pairwise comparison is needed,
the pairwise comparison results are shown in Fig.10. From
Fig.10, we can see that the adjustment significance of
MRCACO and the other six algorithms is less than 0.05.
In summary, MRCACO is different from JCACO, ACS,
MMAS, PCCACO, EDHACO, and DACS. In other words,
the performance comparison between MRCACO and other
algorithms has statistical significance in the subsequent
experiments.

4) COMPARATIVE ANALYSIS OF MRCACO AND
TRADITIONAL ANT COLONY ALGORITHM
To compare the performance ofMRCACO,ADCA,ACS, and
MMAS algorithms and better verify the effect of MRCACO,
this paper selects 8 TSP instances of different scales for
experiments. This experiment was analyzed from the follow-
ing aspects: the optimal solution (Best), the worst solution
(Worst), the average solution (Mean), iteration number of
optimal solution (Convergence), the error rate of the optimal
solution (Er), and Standard deviation (dev). Experimental
data are shown in Table.10. In this paper, the standard devi-
ation is used to measure the stability of the algorithm, and
the (19).

dev =

√√√√ 1
N

N∑
i=1

(
li − lavg

)2 (19)

whereN is the number of times each TSP instance is tested (in
this paper N = 15), li is the current optimal solution for each
experiment, lavg is the average solution of N experiments.

As can be seen from Table.10, the MRCACO algorithm
was tested in the 8 TSP instances selected, and the accu-
racy of the optimal solution, the worst solution, and the
average solution were better than that of ADCA, ACS, and
MMAS, and the stability of MRCACO algorithm is better.
In the small-scale TSP instance set within 150,MRCACO can
find the optimal solution, and the convergence speed of the
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FIGURE 9. Related-Samples Friendman’s Two-Way Analysis of Variance.

FIGURE 10. Pairwise comparison.

algorithm is also good. In the medium-scale TSP instance
between 150 and 300, although MRCACO could not find the
standard optimal solution, the accuracy of the solution was
improved compared with the other three algorithms, and the
error rate of the optimal solution was kept within 1%. In the
large-scale TSP instance above 300, although MRCACO
could not find the standard optimal solution, the accuracy and
stability of MRCACO algorithm still had certain advantages
over the other three algorithms.

To sum up: The MRCACO algorithm proposed in this
paper can improve the accuracy and stability of the solution,
and the algorithm can jump out of the local optimum.

This paper uses the standard deviation (Equation(19)) to
measure the stability of the algorithm, and Fig.11 shows the
standard deviation of the TSP participating in the experiment.
It can be seen from Fig.11 that the standard deviation of
MRCACO is lower than the other three algorithms, which

FIGURE 11. Comparison of stability of different algorithms.

indicate that the stability of MRCACO is better than that of
ADCA, ACS, and MMAS.

Fig.12 shows the path diagram of the optimal solution
obtained by using the MRCACO algorithm in the 8 TSP
instances participating in the experiment.

5) COMPARATIVE ANALYSIS OF MRCACO AND OTHER
OPTIMIZATION ALGORITHMS
MRCACO is also compared with other optimization algo-
rithms to verify its performance, as shown in Table.11. The
fairness of the comparison between intelligent algorithms is
usually considered. The fairness of the algorithm selected
in this paper can be explained from the determination of
parameters. The parameter value of the intelligent algorithm
is closely related to the actual problem and the scale of
the problem. The authors usually use experimental tests
(including orthogonal test, Taguchi’s Design, Contour Plot,
and so on) to find the best set of parameters to achieve the
optimal effect. Moreover, the optional range of parameters
among similar algorithms is the same. Therefore, the com-
parison between the optimization algorithms in this paper is
fair.
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TABLE 10. Performance comparison of MRCACO, ADCA, ACS, MMAS in different TSP instances.

It can be seen from Table.11, compared with other bionic
algorithms, the MRCACO algorithm can find better solutions
in most TSP instances.

According to the comparison and analysis of the above
experimental data, it can be seen that the MRCACO algo-
rithm has certain advantages over traditional ant colony opti-
mization, improved ant colony optimization, other intelligent
algorithms, and the solution quality and convergence speed
are improved to some extent.

V. APPLICATION RESEARCH OF MRCACO ON PATH
PLANNING
The MRCACO algorithm proposed in section III is suitable
for solving TSP. When the MRCACO algorithm is used to
solve the robot path planning problem, the following prob-
lems need to be given attention to: 1. Whether heuristic func-
tions are applicable. 2.When using ant colony optimization to

solve the path planning problem, the actual map environment
is usually converted to a raster map for simulation. In the
raster map, path planning inevitably leads to path deadlock,
so the deadlock problem has to be solved. 3. Pheromones
are stored in the grid. 4. The result of path planning is a
line segment from the start point to the terminal point and
the grid in the environment does not have to go through it
all.

A. IMPROVED HEURISTIC FUNCTION
In solving the TSP problems, the value of the heuristic func-
tion ηij is (3). However, when solving the path planning prob-
lem, the distance between the current grid i and the next grid j
is 1 or 1.414, and the path length is not significantly different,
so the effect is not obvious. Therefore, (20) is adopted in
this paper to define the heuristic function, Where dij is the
distance from the current grid i to the next grid j, djG is the
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TABLE 11. Comparison of MRCACO and other algorithms in TSP instances.

distance from the next grid j to the terminal grid G.

η =
1

dij + djG
(20)

B. DEADLOCK ROLLBACK STRATEGY
Deadlock refers to the phenomenon that the ant is forced to
terminate the path search after it transfers to a non-terminal
grid and cannot find the next grid that meets the transfer
conditions. The deadlocked ant does not reach the terminal
point, and its search path is invalid, which is equivalent to
reducing the number of effective ants in the algorithm, which
is not conducive to the convergence speed and accuracy of the
algorithm.

Path deadlock is generally divided into two cases (Fig.13):
1. Obstacle deadlock caused by getting into the obstacle con-
cave zone. 2. Self-deadlock due to self-path planning. This
paper proposes two different deadlock rollback strategies to
make them jump out of the current deadlock quickly, improve
the algorithm efficiency, and to some extent, make use of part
of the path that the ant has searched.

1) ROLLBACK STRATEGY FOR OBSTACLE DEADLOCK
Any ant that moves to a concave obstacle zone is bound
to have an obstacle deadlock. The rollback strategy for the
obstacle deadlock is as follows: Step1, set up a global taboo
table, which has an effect on all ants in all iterations. Step2,
when the ant is trapped in an obstacle deadlock, find the grid
node closest to the occurrence of deadlock, and there is at

least one feasible node in the adjacency matrix of this grid
node. Step3, add all nodes between the deadlock node and
the rollback node (including the deadlock node but not the
rollback node) into the global taboo table to prevent other ants
from entering these nodes again.

For example, in Fig.13(a), grid 1 is the starting point, grid
49 is the terminal point, the ant passes through the path
1-2-3-4-11-18-25-32-39 which occurs an obstacle deadlock,
according to the rollback strategy, grid 11 is the rollback node,
grid 18,25,32,39 are placed into the global taboo table. After
the rollback strategy is executed, the next node selected is
grid 5, as shown in Fig.14(a).

2) ROLLBACK STRATEGY FOR SELF-DEADLOCK
The main reason for the deadlock in Fig.13(b) is that it is sur-
rounded by its path. The rollback strategy for self-deadlock
is as follows: Step1, bind a local taboo table to each ant in
each iteration, the local taboo table only affects the bound
ants to prevent the ants from entering these grids again in
the next path planning. Step2, when the ant is trapped in a
self-deadlock, find the grid node closest to the occurrence
of deadlock, and there is at least one feasible node in the
adjacency matrix of this grid node. Step3, add all nodes
between the deadlock node and the rollback node (including
the deadlock node but not the rollback node) to the local taboo
table of the ant, and these nodes are punished by pheromone
to prevent the offspring ants from following the path and
falling into a self-deadlock. The pheromone penalty rule is
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FIGURE 12. Optimal solution path for each TSP instance found by
MRCACO.

that in a local pheromone update, the node only volatiles, and
no pheromone is added.

For example, in Fig.13(b), grid 1 is the starting point,
grid 49 is the terminal point, the ant passes through the path
1-2-10-11-12-13-14-21-28-27-26-25-24-17-18-19-20 which
occurs self-deadlock, according to the rollback strategy, grid
17 is the rollback node, and grid 18,19,20 are placed into
the local taboo table and punish the pheromones on grid
18,19,20. After the rollback strategy is executed, the next
node selected is generated in grid 9, 16, 23, as shown
in Fig.14(b).

C. CASE APPLICATION AND RESULT ANALYSIS
1) THE APPLICATION OF MRCACO IN SIMULATION MAP
The MRCACO algorithm is applied to the path planning of
the robot, to simplify the procedure, this paper considers

FIGURE 13. Figure of deadlock types.

FIGURE 14. Deadlock rollback strategies.

the robot as a particle during the experimental simulation.
When the robot conducts oblique line transfer to the upper
left, lower left, upper right, and lower right grids, it is not
necessary to require free grids on both sides of the oblique
line.

To verify the effectiveness of the MRCACO algorithm in
path planning and the effectiveness of the deadlock rollback
strategy, MRCACO without a deadlock rollback strategy is
regarded as anMRC algorithm, andMRCACOwith deadlock
rollback strategy is regarded as DLMRC algorithm. MRC
and DLMRC were used to carry out repeated path planning
for 15 times in map 1(scale 40*40), map 2(scale 50*50),
and map 3(scale 60*60), the optimal path, convergence rate
and the number of invalid ants of the two algorithms are
compared. The simulation results are shown in Fig.15,16,
and 17 respectively.

Fig.15(a), 16(a), and 17(a) are the route maps of the opti-
mal paths found by the two algorithms, where blue repre-
sents DLMRC and red represents MRC. Fig.15(b), 16(b),
and 17(b) are the path iteration diagram of the two algorithms.
Fig.15(c), 16(c), and 17(c) are scatter plots of number of
invalid ants compared between the two algorithms. As can
be seen from these figures, DLMRC can find a better path
thanMRC, and the convergence speed of the algorithm is also
greatly improved. Fig,15(c) shows that when DLMRC algo-
rithm is used, the number of invalid ants is basically stable at
0. In Fig.16(c), the number of invalid ants is mostly at 1, 2,
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FIGURE 15. Performance comparison between MRC and DLMRC algorithms.

FIGURE 16. Performance comparison between MRC and DLMRC algorithms.

FIGURE 17. Performance comparison between MRC and DLMRC algorithms.

and 3 when the DLMRC algorithm is used, and the number
of invalid ants is mostly at 4, 5 when the MRC algorithm is
used. This is also the case with Fig.17(c). This shows that the
use of the deadlock rollback strategy proposed in this paper is
effective.

The simulation results of the two algorithms show that
the DLMRC algorithm can significantly reduce the number
of invalid ants in these three maps, find better paths and
converge faster. DLMRC algorithm has higher accuracy, effi-
ciency, and a faster convergence rate than theMRC algorithm.

The path planning of the two algorithms was repeated
for 15 times in the three kinds of maps, and the
feasibility and effectiveness of the proposed algorithm
were discussed by comparing the optimal path length,
the worst path length, the average path length, and the
stability of the algorithm (standard deviation, calculated
as (19)).

It can be seen from Table.12 that both algorithms can find
better solutions in maps. In map 1, both algorithms are easy
to find the optimal solution, but the two algorithms differ
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TABLE 12. Comparison of the performances of the two algorithms in three maps.

FIGURE 18. Scanning map 1.

greatly in the worst path length, average path length, and
stability. In map 2 andmap 3, the four performance indexes of
the DLMRC algorithm are better than MRC algorithm. With

FIGURE 19. Scanning map 2.

the expansion of the map scale, the ability of the DLMRC
algorithm to search the optimal path is getting better and
better, the DLMRC algorithm has higher stability. Thus, with
the increase of the map scale, the performance advantages of
the DLMRC algorithm gradually emerge.
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2) PRACTICAL APPLICATION OF MRCACO IN PATH
PLANNING
According to the simulation experiment, the MRC algorithm
and the DLMRC algorithm are feasible in the path planning
problem, next we will use the robot to scan two real maps.
Fig.18(a) and 19(a) are the actual built environment diagrams.
Fig.18(b) and 19(b) are a PGM version of the reality map
scanned by the turtlebot2 robot, white is the feasible area,
black is the obstacle area, gray is the unfeasible unknown
area, some slender white protrusions are errors caused by
radar scanning. Fig.18(c) and 19(c) shows the converted grid
diagram, using two algorithms to find the optimal path on the
grid diagram, blue is the path sought by DLMRC, and red is
the path sought by MRC.

In Fig.18(c), the optimal path found by MRC is 154.1543,
and the optimal path found by DLMRC is 152.1543.
In Fig.19(c), the optimal paths found by MRC and DLMRC
are both 109.7107, although the paths have the same length,
they are different. This shows that both MRC and DLMRC
can better solve the problem of path planning, and DLMRC
is more effective than MRC.

Based on the above experiments, it can be seen that the
MRCACO algorithm and the improved algorithm can be used
in the path planning problem, and have certain effects, with
feasibility and effectiveness.

VI. CONCLUSION
This paper presents dynamic multi-role adaptive collabora-
tive ant colony optimization (MRCACO). Firstly, an adap-
tive dynamic complementary algorithm (ADCA) is proposed,
there is a dynamic grouping mechanism in ADCA, so that
it can balance diversity and convergence, and the three sub-
populations ACS, MMAS, and ADCA form heterogeneous
multi-colony. Then, a multi-role adaptive collaborative mech-
anism is proposed, there are two communication strategies
under this mechanism: elite attribute learning strategy and
pheromone balancing strategy. Elite attribute learning strat-
egy is used to highlight the role of elite attributes and
improve the comprehensive performance of the population.
Pheromone balancing strategy is used to make the algorithm
jump out of the locally optimal. Finally, by selecting several
TSP instances for simulation, it is found that the algorithm
proposed in this paper can provide higher accuracy of the
solution.

The proposed algorithm MRCACO is applied to the path
planning problem, making it useful and meaningful. In the
study of path planning, it is necessary to improve the existing
algorithm to make it applicable, so the DLMRC algorithm
is proposed. Firstly, the improvement of heuristic function in
this paper is the same as that in most literature, highlighting
the role of the shorter path. Besides, this paper gives solu-
tions to two kinds of deadlock problems, and puts forward
two slightly different deadlock rollback strategies to reduce
the generation of ineffective ants. Through the simulation
of maps with obstacles of different sizes, it is found that
the MRC and DLMRC algorithms proposed in this paper

are feasible to solve the path planning, and the DLMRC
algorithm can improve the path optimization efficiency and
accuracy.

The MRCACO algorithm proposed in this paper also
has certain limitations: when dealing with large-scale TSP
problems, the accuracy of the solution needs to be further
improved. For example, TSP instances in the thousands or
even tens of thousands are better handled by the current
popular clustering algorithm.

Future research directions are as follows: 1. When the ant
colony algorithm is applied to the path planning problem,
the dynamic obstacles are added to the actual map to study.
2. Apply the improved ant colony algorithm to more practical
problems than just path planning. For example, the rout-
ing problem of communication network, vehicle scheduling
problem, and so on.
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