
Received July 2, 2020, accepted July 12, 2020, date of publication July 15, 2020, date of current version July 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3009377

An Improved Forward Regression Variable
Selection Algorithm for High-Dimensional
Linear Regression Models
YANXI XIE , YUEWEN LI , ZHIJIE XIA, AND RUIXIA YAN
School of Management Studies, Shanghai University of Engineering Science, Shanghai 201620, China

Corresponding author: Yuewen Li (sueslyw@gmail.com)

This work was supported by the Ministry of Education of Humanities and Social Science Project under Grant 17YJCZH199.

ABSTRACT Variable selection plays an important role in various fields, such as process modeling and
process monitoring. It generally involves a large number of predictor variables, usually with the number
of predictor variables d much larger than the sample size n. Therefore, how to filter useful variables and
extract useful information in high-dimensional setup is a critical issue in the era of big data. This paper
proposes an improved Forward Regression algorithm for variable selection under the high-dimensional setup.
The proposed improved Forward Regression method demonstrates good performance in relevant-variable
selection by introducing a predefined stopping rule. The stopping rule links the residual sum of squares to
the noise ratio so that the relevant predictors can be distinguished from the random noises. Throughout
theoretical analysis and simulations, it is confirmed that the improved Forward Regression algorithm
can identify relevant predictors to ensure selection consistency in variable selection. Compared with the
traditional Forward Regression method, the proposed Forward Regression algorithm can improve prediction
accuracy and reduce computational cost by selecting only the relevant variables.

INDEX TERMS Improved forward regression, high-dimensional setup, variable selection, selection consis-
tency, big data.

I. INTRODUCTION
With the rapid development in information technology, con-
temporary data from various fields such as finance and gene
expressions tend to be extremely large in terms of the number
of variables. Sometimes the number of variables or parame-
ters d can be much larger than the sample size n. For this kind
of high dimensional problems, it is challenging to identify
important variables out of thousands of predictors, with a
number of observations usually in tens or hundreds. In other
words, it becomes critical to investigate the existence of
complex relationships and dependencies in high-dimensional
data, in the aim of building a relevant model for future pre-
diction.

Statistically, a traditional method is to conduct variable
selection, which is a technique of selecting a subset of rele-
vant features for building robust learning models, under small
n and large d situation. By removing most irrelevant and
redundant variables from the data, variable selection helps
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improve the performance of learning models in terms of
obtaining higher estimation accuracy.

A. BACKGROUND
In regression analysis, a linear model is commonly used to
link a response variable to explanatory variables. The result-
ing the ordinary Least Squares Estimates (LSE) have a closed
form, which is easy to compute. However, the LSE fails
when the number of linear predictors d is greater than the
sample size n. The Best Subset Selection is one of the stan-
dard techniques for improving the performance of the LSE.
A Best Subset Selection algorithm usually uses criteria such
as the Akaike’s information criterion (AIC) and the Byesian
information criterion (BIC), to perform either forward or
backward stepwise selection procedures to select variables.
Among all the subset selection procedures,the Orthogonal
Matching Pursuit (OMP), of which the selection consistency
property was investigated in Zhang (2009), is of great interest
to us. In fact, the OMP is an iteratively greedy algorithm that
selects at each step the column which is most correlated with
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the current residuals. In addition, various shrinkage methods
have gained a lot of popularity during the past decades and the
Least Absolute Shrinkage and Selection Operator (Lasso) in
Tibshirani (1996) has been the most popularly used method.
The fundamental explanation of these shrinkagemethods is to
make the bias-variance tradeoff, to overcome the limitations
of the LSE and the Best Subset Selection methods. In the
context of variable selection, screening approaches have also
gained a lot of attention besides the Lasso. The Sure Inde-
pendence Screening (SIS) proposed in Fan and Lv (2008)
and the Forward Regression (FR) in Wang (2009) are the
popular ones. When the predictor dimension is much larger
than the sample size, the story changes drastically in the sense
that the conditions for most of the Lasso type algorithms
can not be satisfied. Therefore, to conduct model selection
in high dimensional setup, variable screening is a reasonable
solution.Wang (2009) proposed the Forward Regression (FR)
method for ultrahigh dimensional variable screening. As one
type of important greedy algorithms, the FR’s theoretical
properties have been studied in the previous literature.

B. MOTIVATION
There are two fundamental goals in statistical learning: iden-
tifying relevant predictors and ensuring high prediction accu-
racy. The first goal, by means of variable selection, is of
particular importance when the true underlying model has
a sparse representation. Discovering relevant predictors can
enhance the performance of the prediction from the fitted
model. Usually an estimate β̂ is considered desirable if it
is consistent in terms of both the coefficient estimate and
the variable selection. Hence, before we try to estimate the
regression coefficients βjs, it is preferable that we have a
set of useful predictors in hand. Our task in this paper is to
propose novel methods, in the aim of identifying relevant
predictors to ensure consistency in variable selection.

Motivated by the current studies on variable selection,
we are interested in showing the consistency property of
the FR under certain conditions. We would like to restrict
the technical conditions stated in Wang (2009) and hence
select one relevant predictor at each step until all the relevant
predictors are selected. A key component here is the stopping
rule which depends on the noise structure.

The rest of this paper is organized as follows. Section 2 pro-
vides the literature review on current variable selection meth-
ods. Section 3 explains a variable selection technique based
on the FR. In Section 4, the asymptotic results of the esti-
mators are studied. Section 5 demonstrates via simulation
that our proposed technique exhibits desired sample prop-
erties and can be useful in practical applications. Finally,
Section 5 concludes the paper and some future research
direction.

II. LITERATURE REVIEW OF VARIABLE SELECTION
Let (xi,Yi) be the observation collected from the ith subject
(1 ≤ i ≤ n), where Yi ∈ R1 is the response variable and
xi = (xi1, . . . , xid )T ∈ Rd is a vector of high dimensional

predictors with d > n and cov(Y ) = 6. Moreover,
β = (β1, . . . , βd )T is the regression coefficient. Without loss
of generality, we assume that the data are centered, that is,
the columns of X are orthonormal and Yi’s are conditionally
independent given the design matrix X .In matrix representa-
tion, the design matrix is X ∈ Rn×d and the response vector
is Y ∈ Rn. Consider the linear regression model

y = Xβ + ε. (1)

Moreover, the error terms ε are independently and identically
distributed with mean zero and finite variance σ 2. A model
fitting procedure produces the vector of estimated coeffi-
cients β̂ = (β̂1, . . . , β̂d )T .
The ordinary LSE are obtained by minimizing the residual

sum of squared errors

β̂LSE = min
β
{(Y − Xβ)T (Y − Xβ)}. (2)

Though the LSE are easy to compute, there are two main
disadvantages pointed out in Tibshirani (1996). Firstly, all the
LSE are non-zero but only a subset of predictors is relevant to
exhibit the strongest effects on response variable Y . Secondly,
since the LSE often have low bias and large variance, the
prediction accuracy is low. In fact, we can sacrifice a little
bias to reduce the variance of the predicted values, and hence
the overall prediction accuracy can be improved substantially.
On top of the disadvantages, the LSE completely fail when
the number of linear predictors d is greater than the sample
size n.
The Best Subset Selection is one of the standard techniques

for improving the performance of the LSE. The Best Sub-
set Selection, such as Akaike’s information criterion (AIC)
and Bayesian information criterion (BIC), following either
forward or backward stepwise selection procedures to select
variables. Nevertheless, the stepwise best subset selection
procedure has been identified as extremely variable since it
usually results in very different models.

To overcome the limitations of the LSE and the Best Subset
Selection, various penalization methods were proposed. They
usually shrink estimates to make trade-off between bias and
variance.The penalized estimates are obtained by minimizing
the residual sum of squared errors plus a penalty term, i.e.

β̂penalized = min
β
{(Y − Xβ)T (Y − Xβ)+ λ

d∑
j=1

pλ(| βj |)},

(3)

where λ ≥ 0 is a tuning parameter and pλ represents a penalty
function.

Fan(1997) and Antoniadis(1997) both introduced the hard
thresholding penalty function

pλ(| β |) = λ2 − (| β | −λ)2I(| β |< λ). (4)

The resulting thresholding estimator is given by

β̂HT = β̂LSEI(| β̂LSE |> λ). (5)
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Frank and Friedman (1993) mentioned the Bridge Regres-
sion with Lq penalty function λ | β |q, where q is a positive
constant. There are two cases in this Bridge Regression.
When q ≤ 1, the Lq penalty functions lead to sparse solu-
tions with relatively large biases. On the other hand, when
q > 1, the resulting penalized estimates shrink the solution to
reduce variability without sparsity. Ridge regression, which is
a special case of bridge regression, uses the penalty function
λ | β |2. It gives the estimates

β̂ridge =
β̂LSE

1+ γ
, (6)

under the condition that the design matrix is orthonormal, and
γ being a positive number. One point to note is that ridge
regression does not set any coefficients to 0 and therefore
does not give an easily interpretable model.

The most frequently employed method is the Lasso Algo-
rithm, which was proposed in Tibshirani (1996). Under the
linear regression model (1), for a given λ, the Lasso estimator
of β is

β̂ = min
β
{(Y − Xβ)T (Y − Xβ)+ λ‖β‖1}, (7)

where λ = 0 corresponds to the LSE β̂LSE and‖β‖1 =∑
j |βj| is the L1 norm of β. This L1 penalty leads to a solution

β̂Lasso = sgn(β̂LSE )(| β̂LSE | −
λ

2
)+, (8)

for XTX = Iwhere (π )+ = π, π > 0; 0, π ≤ 0, and π is an
arbitrage number.The Lasso does both continuous shrinkage
and automatic variable selection simultaneously based on the
nature of the L1 penalty. Osbornel et al (2000) detected the
conditions for the existence, uniqueness and the number of
non-zero coefficients of the Lasso estimator and developed
efficient algorithms for calculating the Lasso estimates and its
covariance matrix. Consider the optimization problem men-
tioned: the objective function f = (Y−Xβ)T (Y−Xβ) is con-
tinuous and convex and the feasible region {β : ‖β‖1 ≤ λ}
is compact, which ensures the existence of β̂;the assumption
λ < λ0 implies any solution must lie on the boundary of the
feasible region; the strict convexity leads to the uniqueness
of β̂.

There are some good properties of the Lasso. First, as an
estimator of β, the Lasso’s consistency was investigated in
Knight and Fu (2000), stating that the Lasso is consistent
for estimating β under appropriate conditions. In addition,
as variable selection becomes increasingly important in mod-
ern data analysis, the Lasso is much more appealing because
of its sparse representation. Last but not least, the entire Lasso
solution paths can be computed by LARS algorithm, which
was proposed by Efron et al (2004), when the design matrix
X is given.

However, when the Lasso enjoys great computational
advantages and excellent performances, it has three main
disadvantages at the same time. First of all, the Lasso can not
handle collinearity problem. When the pairwise correlations

among a group of variables are very high, the Lasso tends to
select only one variable from the group and ignore the rest
of the variables in that group. In addition, the Lasso is not
suitable for general factor selection since it can only select
individual input variables. Thirdly, the Lasso lacks the oracle
property stated in Fan and Li (2001).

In fact, Fan and Li (2001) defined that a good penalty
function should return an estimator with three properties.
The first property is unbiasedness, which means the resulting
estimator has no over penalization for large parameters to
avoid unnecessary modeling bias. Furthermore, sparsity is
another property that an estimator enjoys. In other words, the
resulting estimator automatically set insignificant parameters
to 0. Last, continuity is the third property, meaning that the
resulting estimator is continuous in data in order to avoid
instability in model prediction.

Together with the idea of oracle property, Fan and Li
(2001)proposed the Smoothly Clipped Absolute Deviation
Penalty (SCAD)

p′λ(β) = λ{I (β ≤ λ)+
aλ− β
(a− 1)λ

I (β > λ)}, (9)

for some a > 2 and β > 0. The penalty function above is
continuous and symmetric, leaving large values of the param-
eter λ not excessively penalized. Under the condition that
the design matrix X is orthonormal, the resulting estimator
is given by

β̂SCAD

=


sgn(β̂LSE )(| β̂LSE | −λ)+,when | β̂LSE |≤ 2λ
{(a−1)β̂LSE−sgn(β̂LSE )aλ}

a− 2
,when 2λ <| β̂LSE |<aλ

β̂LSE ,when | β̂LSE |≥ aλ

(10)

This solution actually reduces the least significant vari-
ables to zero and hence produces less complex and easier
to implement models. Moreover, Fan and Li (2001) showed
that the SCAD penalty can result in estimates with the ora-
cle property. In other word, the non-zero coefficients are
estimated as well as they would have been if the correct
model were known in advance. In addition, when a true
parameter is 0, it is estimated as 0 with probability tending
to one. In terms of the two tuning parameters (λ, a), they can
be searched by some criteria, such as the cross validation,
the generalized cross validation, and the BIC. Fan and Li
(2001) suggested that choosing a = 3.7 works reasonably
well. Furthermore, using the language of Fan and Li (2001),
we call δ an oracle procedure if β̂(δ) has the following oracle
properties:
• It can identify the right subset model, {j : β̂j 6= 0} = A;
• It has the optimal estimation rate,

√
n(β̂(δ)A − βA)→d

N (0, 6∗), where 6∗ is the covariance matrix knowing
the true subset model.

It has been shown that hard thresholding and the Lq
penalty functions do not satisfy the three properties defined in
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Fan and Li (2001). Therefore, the SCAD actually improves
these non-concave penalties in terms of the oracle properties.
Fan and Li (2001) established oracle properties of the SCAD
for only finite parameter cases. Fan and Peng (2004) gener-
alized the situations to diverge number of parameters, where
oracle properties can still be incorporated.

Zou (2006) proposed an improved version of the Lasso
for simultaneous estimation and variable selection, called the
Adaptive Lasso, where adaptive weights are used for penaliz-
ing different coefficients in the L1 penalty. The adaptive Lasso
estimators of βjs are

β̂AdapLasso=min
β

(Y − Xβ)T (Y − Xβ)+λ
d∑
j=1

wj|βj|, (11)

where w = {w1,w2, . . . ,wd } is a known weights vector.
It has been shown if the weights are data-dependent and
cleverly chosen, the weighted Lasso can achieve the oracle
properties, or in other words, it performs as well as if the
true underlying model were known in advance. Furthermore,
the adaptive Lasso solution is continuous from its definition,
which makes the oracle procedure to be optimal. Finally, the
Adaptive Lasso shrinkage results in a near-minimax-optimal
estimator.

Zou and Hastie (2005) introduced the elastic net method,
which is a regularization technique. The naive elastic net
estimator can be obtained by minimizing (Y−Xβ)T (Y−Xβ)
subject to

(1− α)
d∑
j=1

| βj | +α

d∑
j=1

β2j ≤ t, (12)

where α = λ2
λ1+λ2

, λ1andλ2 were defined in Zou and Hastie
(2005). From its definition, it is obvious that the Elastic Net is
a convex combination of the Lasso and the ridge regression.
In fact, we have three scenarios to consider. The first case
is when α = 0. Then the naive elastic net becomes the
Lasso. The second case is when α ∈ (0, 1). We need to
consider a two-stage procedure for this case: for each fixed
λ2, we find the ridge regression coefficients in the first step,
and then perform the Lasso in the following step. In conse-
quence, a double amount of shrinkage happens, and it brings
unnecessary additional bias compared with the pure Lasso
or the ridge regression. To compromise the extra shrinkage,
the naive elastic net coefficients are rescaled by a constant
(1 + λ2). The third case is when α = 1, and then the naive
elastic net is equivalent to the ridge regression. In all, the
elastic net estimator for β is given

β̂Enet = sgn(β̂LSE )(| β̂LSE | −
λ1

2
)+. (13)

In a similar way to the Lasso, the Elastic Net does auto-
matic variable selection and continuous shrinkage at the same
time. Moreover, the Elastic Net tends to potentially select all
d variables and groups of correlated predictors. This solves
the collinearity problem for the Lasso. However, the Elastic
Net lacks one oracle property in terms of variable selection

consistency even though it has high prediction accuracy. This
was pointed out and discussed in various papers(Meinshausen
and Buhlmann (2006); Leng et al (2006); Zou (2006)).

Zou and Zhang (2009) pointed out that the adaptive Lasso
outperforms the Lasso in terms of achieving the oracle prop-
erty even though the collinearity problem for the Lasso
remains. Although, as discussed in the previous paragraphs,
the Elastic Net can handle the collinearity problem for the
Lasso but does not have the oracle property. These two penal-
ties advance the Lasso in two different ways. Hence, Zou and
Zhang (2009) combined the adaptive lasso and elastic net and
introduced a better estimator that can handle the collinearity
problem while enjoying the oracle property at the same time.
This improved estimator is called the adaptive elastic-net, and
has the following representation:

β̂AdapEnet = (1+
λ2

n
){min

β
(Y − Xβ)T (Y − Xβ)

+λ1

d∑
j=1

wj|βj| + λ2‖β‖2}. (14)

To handle high-dimensional and highly correlated data,
Wold (1966) introduced partial least squares (PLS), which
was among the most popular data-driven soft-sensor develop-
ment methods. For batch processes, Nomikos and Macgrego
(1995) proposed the multiway PLS (MPLS) that unfolds
the three-way data. However, there are several drawbacks
of classical MPLS method, which may degrade the predic-
tion performance. For example, not all predictor variables
are beneficial for predicting the final quality. The exis-
tence of irrelevant variables may damage useful informa-
tion and degrade prediction performance. Therefore, it is
important to select the relevant variables and eliminate
the irrelevant variables in PLS-based modeling. To over-
come the above-mentioned drawbacks in MPLS, Jiang et al
(2020) proposed an optimized sparse PLS (OSPLS) model-
ing approach for efficient batch-end quality prediction and
relevant-variable selection. The OSPLS achieved simulta-
neous quality prediction and relevant-variable selection by
optimizing the variable resolution before SPLS modeling
through a stochastic optimization approach. To make process
monitoring more purposeful and more accurate, Song (2019)
proposed a novel performance-indicator-oriented concurrent
subspace (PIOCS) process monitoring method containing
three subspaces with different degrees of importance. More-
over, Song et al (2019) proposed a novel multimode qual-
ity related process monitoring method called multi-subspace
elastic network (MSEN), which is a novel clustering algo-
rithm based on the neighborhood information and subtractive
clustering algorithm.

III. SELECTION CONSISTENCY OF THE IMPROVED FR
Donoho and Stodden (2006) and Barron and Cohen (2008)
both investigated the theoretical properties of Forward
Regression, which is a very popular yet classical variable
screening method in the literature. As one type of important
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greedy algorithms, the screening consistency of Forward
Regression, under an ultra-high dimensional setup, was not
established by those pioneer researches. Wang (2009) inves-
tigated Forward Regression’s screening consistency property
under some technical conditions. Motivated by the idea of the
Forward Regression in ultrahigh dimensional setup proposed
by Wang (2009), we are interested in investigating the selec-
tion consistency of the improved FR, we try to impose some
technical conditions on the linear regression model to derive
the theoretical selection consistency property of the FR.A key
point here is the stopping rule which links the residual sum
of squares to the noise ratio so that the relevant predictors can
be distinguished from the random noises.

A. MODEL SETUP AND TECHNICAL CONDITIONS
We now consider model (1). Without loss of generality,
we assume that the data are centered, that is, the columns of X
are orthonormal and Yi’s are conditionally independent given
the design matrix X . Moreover, we assume E(εij) = 0 and
Var(εij) = σ 2, i.e. the error terms ε are independently and
identically distributed with mean zero and finite variance σ 2.
To show the selection consistency of the improved FR, four

technical conditions are imposed:
Technical Conditions
(C1) Normality assumption. Assume that ε follow the

normal distribution.
(C2) Eigenvalues of 1

nX
T
T XT need to be properly bounded

with λmin and λmax .Moreover, λmin needs to be bounded away
from zero. Here, XT is the sub-matrix of X .
(C3) max

j/∈T
‖ XTT (X

T
T XT )

−1XT xj ‖2< c for some proper

c ∈ (0, 1).
(C4) Divergence speed of d and d0. We assume log(d) =

O(nξ ) and d0 = O(nξ0 ). In other words, there exists constants
ξ , ξmin, and ν, such that log(d) ≤ νnξ , d0 ≤ νnξ0 , and
ξ + 6ξ0 + 12ξmin < 1.

Therefore, C1 is the normality assumption. C2 provides
lower and upper bounds for the eigenvalues of 1

nX
T
T XT . C3

gives a bound for the projection of irrelevant predictors on
the space spanned by the true set T . To be more specific,
norm of the projection of irrelevant predictors on the space
spanned by the true set T needs to be within a pre-set value.
C4 allows the predictor dimension d to diverge to infinity at
an exponentially fast speed, which implies that the predictor
dimension can be substantially larger than the sample size n
mentioned in Fan and Lv (2008).

B. IMPROVED FR ALGORITHM
In fact, under the assumption that the true model T exists,
our Proposed FR algorithm, which is an improved version
of Wang (2009), aims of discovering all relevant predictors
consistently in a stepwise manner.

The first two steps are identical to those in Wang (2009).
In fact, the only difference between our improved FR algo-
rithm and the counterpart in Wang (2009) is that we set a
stopping rule instead of screening the variables by repeating

Algorithm 1 The Improved FR Algorithm

Step 1(Initialization). Set S(0) = ∅.
Step 2(Forward Regression).
• (2.1) Evaluation. In the kth step (k ≥ 1), we are given
S(k−1). Then, for every j ∈ F \ S(k−1), we construct a
candidate modelM (k−1)

j = S(k−1) ∪{j}. We then com-

pute RSS(k−1)j = Y T {In− H̃
(k−1)
j }Y ,where H̃ (k−1)

j =

X(M (k−1)
j ){X

T
(M (k−1)

j )
X(M (k−1)

j )}
−1XT

(M (k−1)
j )

is a projection

matrix and In ∈ Rn×n is the identity matrix.
• (2.2) Selection. We then find

ak = arg min
j∈F\S(k−1)

RSS(k−1)j

and update S(k) = S(k−1) ∪ {ak} accordingly.
In addition, we update residual sum of squares
RSS(k)j = Y T {In − HS(k)}Y , where HS(k) =

X(S(k)){X
T
(S(k))

X(S(k))}
−1XT

(S(k))
.

Step 3 (Solution Path). Iterating Step 2 until we come to
the stopping rule with RSS(k)j ≤ σ

2(n+ 2
√
nlog(n)).

Step 2 n times. By following this stopping rule, computational
time can be shortened since the algorithm stops as soon as all
the relevant predictors are selected from the full model.

In fact, with probability tending to one, the improved
FR algorithm can detect all relevant predictors within O
(nξ0+4ξmin ) steps. This number of steps is much smaller than
the sample size n under condition (C4). In particular, if the
dimension of the true model is finite with ξ0 = ξmin = 0,
only a finite number of steps are needed to discover the entire
relevant variable set.

C. MAIN RESULT
To prove Theorem 1, the following lemma is needed.
Lemma 1: Consider S(k) ⊂ T ⊂ {1, 2, . . . , d}. Let β(S

(k))

be the parameter estimate of the coefficient β such that

β(S
(k))
= min
β∈Rd

1
n
‖ Xβ − y ‖22

subject to that we have k relevant variables. Then

inf
α∈R,j∈T−S(k)

‖ Xβ + αxj − y ‖22

≤‖ Xβ − y ‖22 −
λmin

| T − S(k) |
‖ Xβ(S

(k))
− Xβ ‖22 .

Proof of Lemma 1 For all j ∈ S(k), we have ‖ Xβ +
αxj − y ‖22 achieves the minimum at α = 0. This implies
that(Xβ(S

(k))
− y)xj = 0 for j ∈ S(k). Therefore, we have

(Xβ(S
(k))
− y)T

∑
j∈T−S(k)

(βj − β
(S(k))
j ) xj

= (Xβ(S
(k))
− y)T

∑
j∈T∪S(k)

(βj − β
(S(k))
j ) xj
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= (Xβ(S
(k))
− y)T (Xβ − Xβ(S

(k)))

= − ‖ Xβ(S
(k))
− Xβ ‖22

+(Xβ − y)T (Xβ − Xβ(S
(k)))

= − ‖ Xβ(S
(k))
− Xβ ‖22 .

The last quality follows from the definition of β and S(k) ⊂ T ,
which implies (Xβ − y)T (Xβ − Xβ(S

(k))) = 0. Now let
s =| T −S(k) |, then the above equality leads to the following
derivation for all η > 0:

s inf
j∈T−S(k)

‖ Xβ(S
(k))
+ η(βj − β

(S(k))
j ) xj − y ‖22

≤

∑
j∈T−S(k)

‖ Xβ(S
(k))

+η(βj − β
(S(k))
j ) xj − y ‖22

= s ‖ Xβ(S
(k))
− y ‖22

+η2
∑

j∈T−S(k)

(βj − β
(S(k))
j )2 ‖ xj ‖22

+2η (Xβ(S
(k))
− y)T

∑
j∈T−S(k)

(βj − β
(S(k))
j ) xj

= s ‖ Xβ(S
(k))
− y ‖22

+η2
∑

j∈T−S(k)

(βj − β
(S(k))
j )2

−2η ‖ Xβ(S
(k))
− Xβ ‖22 .

Note that in the last equation, we have used ‖ xj ‖22= 1.
By optimizing over η, we obtain

s inf
j∈T−S(k)

‖ Xβ(S
(k))
+ η(βj − β

(S(k))
j ) xj − y ‖22

≤ s ‖ Xβ(S
(k))
− y ‖22 −

‖ Xβ(S
(k))
− Xβ ‖42∑

j∈T
(βj − β

(S(k))
j )2

≤ s ‖ Xβ(S
(k))
− y ‖22

− λmin ‖ Xβ(S
(k))
− Xβ ‖22 .

This completes the proof for the Lemma 1.
Besides Lemma 1, the following result shown in Cai et

al (2009) is useful in deriving the proof for Theorem 1. We
define a bound set

B∞(η) = {ε : ‖ XT ε ‖∞≤ σ
√
2(1+ η)log d},

where ε is the noise vector, which follows a Gaussian dis-
tribution ε ∼ N (0, σ 2In) and η ≥ 0. The following result,
which follows from standard probability calculations, shows
that the Gaussian noise is essentially bounded with

P(ε ∈ B∞(η)) ≥ 1−
1

2dη
√
π log d

.

Theorem 1: Let µ = max
j/∈T
| XTT (X

T
T XT )

−1XT xj |. Suppose

all the nonzero coefficients βj satisfy

| βj |≥
2σ

√
n−1(1+ 2

√
logn/n)

(1− µ)λmin
,

then the Forward Regression algorithm with the stopping rule
‖ ri ‖≤ σ

√
n+ 2

√
n logn selects a correct variable at each

step until all the variables in T are selected.
In fact, since σ

√
n−1(1+ 2

√
logn/n) is the noise level,

if there exists a target coefficient βj that is smaller than
O(σn−1/2) in absolute value, then we can not distinguish such
a small coefficient from zero or noise with large probability.

In other words, under the assumption of Theorem 1, it is
possible to identify all features correctly using the improved
FR algorithm as long as the target coefficients βj are larger
than O(σn−1/2).
The emphasis of Theorem 1 is to let the improved FR

identify all the relevant variables before it stops, i.e. to recover
exactly.

Proof of Theorem 1:
Step 1 Let µ(T ) = max

j/∈T
‖ XTT (X

T
T XT )

−1XT xj ‖1< 1.

This condition ensures that the algorithm chooses a relevant
variable at the first step, i.e. S(1) ⊂ T . By definition of µ(T ),
there exists ν = XTT XT u ∈ R

|T | such that

µ(T ) = max
j/∈T
‖ XTT (X

T
T XT )

−1XT xj ‖1

= max
j/∈T

| νT (XTT XT )
−1XT xj |

‖ ν ‖∞

= max
j/∈T

| uTXT xj |

‖ (XTT XT ) u ‖∞

=

max
j/∈T
| xTj XT u |

max
i∈T
| xTi XT u |

.

Therefore, if µ(T ) < 1, we can find u ∈ R|T | such that

max
j/∈T
| xTj XT u |< max

i∈T
| xTi XT u | .

Consider an arbitrary δn > 0, and βT such that

max
j/∈T
| xTj XT βT |< max

i∈T
| xTi XT βT | −2δn. (15)

Moreover, with probability larger than 1− η,

max
j
| xTj (y− XTβT ) | ≤ δn = σ

√
2n ln(2d/η).

Therefore, equation 15 implies

max
j/∈T
| xTj y | ≤ max

j/∈T
| xTj XTβT | + max

j/∈T
| xTj (y− XTβT ) |

< max
i∈T
| xTi XTβT | − max

i∈T
| xTi (y− XTβT ) |

≤ max
i∈T
| xTi y | .

Therefore, we have proven

max
j/∈T
| xTj y | < max

i∈T
| xTi y | .
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It guarantees that the algorithm chooses a relevant variable at
the first step, i.e. S(1) ⊂ T .
Step 2 We now proceed by induction on k to show that

S(k+1) ⊂ T before the process stops. Assume the claim is
true after k steps for k ≥ 2. By induction hypothesis, we have
S(k) ⊂ T at the end of step k . Define

�(k) = RSS(S(k))− RSS(S(k+1))

=
| xTj {In − H(S(k))}Y |

2

‖ x(k)j ‖
2

,

where H(S(k)) = X(S(k)){X
T
(S(k))

X(S(k))}
−1XT

(S(k))
is a projection

matrix, X (k)
j = {In − H(S(k))}Xj and RSS(S

(k)) = Y T {In −
H(S(k))}Y .

Aim: max
j∈T

�(k) > max
j/∈T

�(k)

max
j∈T

�(k) = max
j∈T

| xTj {In − H(S(k))}Y |
2

‖ x(k)j ‖
2

≥

max
j∈T
| xTj {In − H(S(k))}Y |

2

max
j∈T
‖ x(k)j ‖

2

≥

max
j∈T
| xTj {In − H(S(k))}Y |

2

max
j∈T
‖ xj ‖2

= max
j∈T
| xTj {In − H(S(k))}Y |

2 .

On the other hand,

max
j/∈T

�(k) = max
j/∈T

| xTj {In − H(S(k))}Y |
2

‖ x(k)j ‖
2

≤

max
j/∈T
| xTj {In − H(S(k))}Y |

2

min
j/∈T
‖ x(k)j ‖

2

≤

max
j/∈T
| xTj {In − H(S(k))}Y |

2

1− c
,

because max
j/∈T
‖ XTT (X

T
T XT )

−1XT xj ‖2< c < 1 implies min
j/∈T
‖

x(k)j ‖
2> 1− c. From Lemma 1, it implies

min
α,i∈T
‖ Xβ(S

(k))
+ αxi − y ‖22

≤ ‖ Xβ(S
(k))
− y ‖22 −

λmin

| T − S(k) |
‖ Xβ(S

(k))
− Xβ ‖22 .

Therefore,

max
j∈T

| xTj {In − H(S(k))}Y |
2

≥ (max
j∈T
| (Xβ(S

(k))
− y)T xj |)2

= ‖ Xβ(S
(k))
− y ‖22 − min

α,j∈T
‖ Xβ(S

(k))
+ αxj − y ‖22

≥
λmin

| T − S(k) |
‖ Xβ(S

(k))
− Xβ ‖22

≥
λ2min

| T − S(k) |
‖ β(S

(k))
− β ‖22

≥
λ2min

| T − S(k) |
‖ βT\S(k) ‖

2
2

> λ2min | βmin |
2

> λ2min
4σ 2 (n+ 2

√
n log n)

(1− µ)2 λ2min

=
4σ 2 (n+ 2

√
n log n)

(1− µ)2
. (16)

On the other hand,

max
j/∈T
| (Xβ(S

(k))
− y)T xj |

= max
j/∈T
| (Xβ(S

(k))
− Xβ + Xβ − y)T xj |

≤ max
j/∈T
| (Xβ(S

(k))
− Xβ)T xj | + max

j/∈T
| (Xβ − y)T xj |

(17)

Part 1 of right hand side of equation 17:

max
j/∈T
| (Xβ(S

(k))
− Xβ)T xj |

≤ µ max
j∈T
| (Xβ(S

(k))
− Xβ)T xj |

= µ max
j∈T
| (Xβ(S

(k))
− y)T xj |

≤ µ max
j∈T

| xTj {In − H(S(k))}Y |

≤ µ max
j∈T

‖ xj ‖2‖ X ‖2‖ β(S
(k))
− β ‖2

≤ µ λmax ‖ β
(S(k))
− β ‖∞

≤ µ λmaxσ
√
2log (2d0/η0)/λmin,

with probability larger than 1− η0 for η0 ≥ 0.
Part 2 of right hand side of equation 17:

max
j/∈T
| (Xβ − y)T xj | ≤ σ

√
2(1+ η)log d with probability

larger than 1 − 1
2dη
√
π log d

for η ≥ 0. (Please refer to Cai,
Xu and Zhang (2009), see details in Appendix of the above
mentioned paper.)

Hence, with probability larger than min(1 − 1
2dη
√
π log d

,

1− η0), we have

max
j/∈T

| xTj {In − H(S(k))}Y |
2

≤ (µ λmaxσ
√
2log (2d0/η0)/λmin + σ

√
2(1+ η)log d)2

< (1− c)(2σ
√
2(1+ η)log d)2

= 4σ 22(1+ η) log d (1− c).

Now we have,

max
j/∈T

�(k) ≤ 4σ 22(1+ η) log d

<
4σ 2 (n+ 2

√
n log n)

(1− µ)2

< max
j∈T

�(k),
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with probability tending to 1 as n→∞. This completes the
proof for the induction part. Therefore, the algorithm selects
a relevant variable at each step until the algorithm stops.

Step 3 Stopping Rule: σ 2(n + 2
√
n log n). Consider the

Gaussian error ε ∼ N (0, σ 2In), it satisfies

P(‖ ε ‖2≤ σ
√
n+ 2

√
n log n) ≥ 1−

1
n
.

Suppose X =
‖ε‖22
σ 2

is a χ2
n random variable. Then for any

λ > 0,

P(X > (1+ λ)n) ≤
1

λ
√
πn

exp {−
n
2
(λ− log (1+ λ))}.

Please refer to Cai (2002), lemma 4 for a detailed proof.
Hence,

P(‖ ε ‖2 ≤ σ
√
n+ 2

√
n log n)

= 1− P(X > (1+ λ)n)

≥ 1−
1

λ
√
πn

exp {−
n
2
(λ− log (1+ λ))},

where λ = 2
√
n−1log n. It follows from the fact that

log(1+ λ) ≤ λ− 1
2λ

2
+

1
3λ

3. Therefore,

P(‖ ε ‖2 ≤ σ
√
n+ 2

√
n log n)

≥ 1−
1
n

1
2
√
π log n

exp {
4(log n)

3
2

3
√
n
}

≥ 1−
1
n
,

since 1
2
√
π log n

exp { 4(log n)
3
2

3
√
n } ≤ 1 for all n ≥ 2.

Let b2 = σ
√
n+ 2

√
n log n. We have | βi |>

2 b2
(1−µ)λmin

. Suppose the algorithm has run k steps for some
k < d0 =| T |. We will verify that ‖ rk ‖2> b2 where ‖ rk ‖2
is the square root of the residual sum of squares RSS, and so
Forward Regression does not stop at the current step. Again
let XT\S(k) denote the set of unselected but correct variables
and βT\S(k) be the corresponding coefficients. Note that

‖ rk ‖2 = ‖ (I − H(S(k)))Xβ + (I − H(S(k)))ε ‖2
≥ ‖ (I − H(S(k)))Xβ ‖2 − ‖ (I − H(S(k)))ε ‖2
≥ ‖ (I − H(S(k)))XT\S(k)βT\S(k) ‖2 − ‖ ε ‖2
≥ λmin ‖ βT\S(k) ‖2 − ‖ ε ‖2

>
2 b2
1− µ

− b2.

> b2.

Therefore, by all the three steps, the theorem is proved.
In all, we have also provided the theoretical proof that

the improved FR is variable selection consistent under some
proper conditions. In other words, by the time stopping rule
is satisfied, all the relevant predictors are included in the
selected model with probability tending to one. Then estima-
tion accuracy can be improved a lot based on the reduced and
correctly selected model.

IV. NUMERICAL ANALYSIS
A. SIMULATION SETUP
For reliable numerical comparison, we present the following
three simulation examples on both the improved FR proposed
in this paper and the FR algorithm inWang(2009), to examine
the performances of the selection consistency property of the
improved FR. For each parameter setup, a total of N = 100
simulation replications are conducted.

Let Ŝ(k) = {j : β̂j(k) 6= 0} be the model selected in
the kth simulation replications and the corresponding Aver-
age Model size = 100−1

∑
k | Ŝ

(k)
|. Recall T represents

the true model, we evaluate the Coverage Probability =
100−1

∑
k I (Ŝ

(k)
⊃ T ), which measures how likely all rele-

vant variables will be discovered by one particular method.
This defined Coverage probability characterizes the screen-
ing property of a particular method.

To characterize the capability of a method in producing
sparse solutions, we define

Percentage of Correct Zeros(%)

=
1

d − d0
{
1

100

100∑
k=1

d∑
j=1

I (β̂j(k) = 0)× I (βj = 0)} (18)

To characterize the method’s underfitting effect, we further
define

Percentage of Incorrect Zeros(%)

=
1
d0
{
1

100

100∑
k=1

d∑
j=1

I (β̂j(k) = 0)× I (βj 6= 0)} (19)

If all sparse solutions are correctly identified for all
irrelevant predictors and no sparse solution is mistakenly
produced for all relevant variables, the true model is per-
fectly identified, that is Ŝ(k) = T . To measure the perfor-
mance, we define the Percentage of Correctly Fitted (%)
= 100−1

∑
k I (Ŝ

(k)
= T ), which characterizes the selection

consistency property of a particular method.
As we need to know which variables are truly relevant

or irrelevant, we create sparse regression vectors by setting
βi = 0 for all i = 1, . . . , d , except for a chosen set T
of coefficients, where βi are defined in advance for every
1 ≤ i ≤ d0. Moreover, the noise vector (ε1, . . . , εn) is chosen
i.i.d. N (0, 1). Note that all the simulation runs are conducted
in Matlab.
Example 1 (Independent Predictors): This is an example

borrowed from Fan and Lv (2008). Xi is generated inde-
pendently according to a standard multivariate normal distri-
bution. Thus, different predictors are mutually independent.
(n, d, d0) = (100, 5000, 8) with βj = (−1)Uj (4 logn

√
n+ |

Zj |), where Uj is a binary random variable with P(Uj) = 0.4
and Zj is a standard normal random variable.
Example 2 (Autoregressive Correlation): Xi is generated

from a multivariate normal distribution with mean 0 and
Cov(Xij1 ,Xij2 ) = 0.5|j1−j2|. This is called an autoregressive
type correlation structure. Such a correlation structure might
be useful if a natural order exists among the predictors. As a
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consequence, the predictors with large distances in order are
expected to be approximately mutually independent. This
is an example from Tibshrani (1996) with (n, d, d0) =
(100, 5000, 3). In addition, the first, fourth, and seventh
components of β are set to be 3, 1.5 and 2, respectively.
Example 3 (Grouped Variables): Xi is generated by the

following rule. Xij =
√
3/20Z1 +

√
17/20εx,j for j ∈

{1, . . . , d0}, Xij =
√
19/20Z2 +

√
1/20εx,j for j ∈ {d0 +

1, . . . , d0+5}, and Xij = εx,j otherwise, where Z1 ∼ N (0, 1),
Z2 ∼ N (0, 1), and εx,j ∼ N (0, 1) are independent. This
creates within-group correlations of ρij = 0.15 for i, j ∈
{1, . . . , d0} and ρij = 0.95 for i, j ∈ {d0+1, . . . , d0+5}. This
example presents an interesting scenario where a group of
significant variables are mildly correlated and simultaneously
a group of insignificant variables are strongly correlated.
The settings are similar to those in Example 2. (n, d, d0) =
(100, 5000, 3). In addition, the three nonzero components of
β are set to be 3, 1.5 and 2, respectively.

B. SIMULATION RESULTS OF THE IMPROVED FR
SELECTION CONSISTENT PROPERTY
Sample performances of the improved FR and the traditional
FR selection consistency property are investigated based on
the three examples described above. Simulation results are
presented in Table 1 and Table 2. In addition, the stopping rule
is set to be ‖ ri ‖≤ σ

√
n+ 2

√
n logn for the improved FR.

TABLE 1. Simulation results of the improved FR with (n,d)=(100,5000).

TABLE 2. Simulation results of the FR algorithm with (n,d)=(100,5000).

First of all, the simulation results shown in Table 1 for the
Independent Predictor Example demonstrate a good perfor-
mance in terms of variable selection consistency for improved
FR. Specifically, we have 100% Coverage Probability, which
means all relevant variables can be discovered by improved
FR method with the prescribed stopping rule. In addition,
97% of correctly fitted means that with the prescribed stop-
ping rule, FR recovers all the relevant variables exactly and
correctly 97 times out of 100 simulation replications. Fur-
ther more, the percentages of correct and incorrect zeros are
99.9% and 0%, respectively, meaning that a few irrelevant
predictors are selected into the final model. Last but not least,
the averagemodel size is 8.04, which is slightly above d0 = 8.
The simulation results shown in Table 2 for the Indepen-

dent Predictor Example demonstrate a good performance in

terms of variable selection consistency for FR as well. Specif-
ically, we have 99.9% Coverage Probability, which means
99.9% of the relevant variables can be discovered by the FR
method. In addition, 97.5% of correctly fitted means that
FR recovers all the relevant variables exactly and correctly
97.5 times out of 100 simulation replications. Further more,
the percentages of correct and incorrect zeros are 100% and
0.1%, respectively, meaning that a few irrelevant predictors
are selected into the final model. Last but not least, the
average model size is 8.0, which is the same as d0 = 8.
Second, the simulation results shown in Table 1 for

Autoregressive Correlation Example demonstrate an excel-
lent performance in terms of variable selection consistency
for improved FR. Both of the Coverage Probability and the
Percentage of Correctly Fitted are 100 %. Especially, 100%
of correctly fitted means improved FR selects the true set of
variables exactly and correctly 100 times out of 100 simu-
lation replications. This is good news since the number of
nonzero βj d0 is 3, which is a very sparse representation given
d = 5000. On top of that, the percentages of correct and
incorrect zeros are 100% and 0%, respectively. Last but not
least, the average model size is 3. Therefore, it can be con-
cluded that our improved FR algorithm works well under this
Autoregressive Correlation setup with a sparse representation
of β.
The simulation results shown in Table 2 for Autoregressive

Correlation Example demonstrate good performance in terms
of variable selection consistency for the FR algorithm. The
Coverage Probability is 94.2% and the Percentage of Cor-
rectly Fitted is 82.5 %. Especially, 82.5% of correctly fitted
means the FR selects the true set of variables exactly and cor-
rectly 82.5 times out of 100 simulation replications. On top of
that, the percentages of correct and incorrect zeros are 100%
and 5.8%, respectively. Last but not least, the average model
size is 2.8, which is slightly smaller than d0 = 3.
Third, the simulation results shown in Table 1 for Grouped

Variables Example show the worst performance among all
the three examples in terms of variable selection consistency
for improved FR. However, the performance itself is still
acceptable. Coverage Probability is 94%, meaning that not
all the relevant predictors can be discovered by the improved
FR algorithm with the prescribed stopping rule, in some of
the simulation replications. In addition, 61% of correctly
fitted means that FR selects the true set of variables cor-
rectly 61 times out of 100 simulation replications. The per-
centages of correct and incorrect zeros are 97.4% and 1.8%,
respectively. Moreover, the average model size is 3.25.

The simulation results shown in Table 2 for Grouped
Variables Example show the performance in terms of vari-
able selection consistency for the FR. The performance is
not as great as that in Example 3 but is still acceptable.
Coverage Probability is 94.3%, meaning that not all the
relevant predictors can be discovered by the FR algorithm,
in some of the simulation replications. In addition, 76% of
correctly fitted means that FR selects the true set of vari-
ables correctly 76 times out of 100 simulation replications.
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The percentages of correct and incorrect zeros are 100% and
5.7%, respectively. Moreover, the average model size is 3.3,
which is slightly larger than d0 = 3.
In conclusion, simulation performances in terms of

variable selection consistency for the improved FR are
good under all the three examples. This means that our
theories proposed earlier are supported. Moreover, the over-
all performances of the FR algorithm are good as well.
Similarly, both the FR and the improved FR demon-
strate good performances in Example 1 and 3. However,
the improved FR performs better than the algorithm in
Example 2.

As a cautionary note, we should not claim the improved
FR as the only good method for variable selection. However,
our extensive simulation studies do confirm that the improved
FR is a very promising method, as compared with the tradi-
tional FR.

V. CONCLUDING REMARKS
In this paper, we show the theoretical result that the improved
FR algorithm is variable selection consistent under some
proper conditions. In particular, if the time stopping rule
is satisfied, all the relevant predictors are included in the
selected model with probability close to one. Then estimation
accuracy can be greatly improved based on the reduced and
correctly selected model. In addition, our simulation results
confirm the theoretical result. The computational cost in vari-
able selection has been reduced due to the simplified steps
compared to the FR in Wang (2009).

On the other hand, we have only discussed the improved
FR algorithm in the linear model setup. It is possible to
investigate the improved FR in multi-linear models, such
as partial linear models. Moreover, there is a normal-
ity assumption (technical condition C1) discussed in the
improved FR algorithm. This normality assumption may
not be proper sometimes since not all real-life dataset are
normally distributed. It might be interesting to investigate
the property of the improved FR under other distributional
setup.

As for future research, it would be interesting to investi-
gate the improved FR algorithm under multi-linear regres-
sion setup or in partial linear models. For the partial
linear models, it is possible to introduce the penalized
h-likelihood approach, which can be extended for more com-
plicated circumstances. The model is assumed to be a simple
one-component structure for the random effects, such that
only a random intercept is considered. For possible future
research, we may consider a Partial Linear Model for model-
ing the conditional mean with more than one random effects.
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