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ABSTRACT Electricity price forecasting is essential for all participants of the power consumption market.
However, electricity price series has complex properties such as high volatility and non-stationarity that
make forecasting turn out to be very difficult. In this study, we aim to forecast electricity price series by
the discrete increment model of fractional Brownian motion (fBm). A specific feature of the fBm is that
it represents a typical non-stationary stochastic process with long-range dependent (LRD) characteristics.
Analysis of electricity price series has LRD characteristics, and the Hurst exponent can be calculated. The
Hurst exponent is the key parameter of fBm, and it is a measure of self-similarity. The stochastic differential
equation driven by fBm is discretized into the discrete increment model for electricity price forecasting.
Other parameters of the discrete increment model can be evaluated by the maximum likelihood estimation
(MLE). The performance of the proposed method is demonstrated by using the data from the U.S. Energy
Information Administration. The validity of the proposed model was compared with other methods.

INDEX TERMS Electricity price forecasting, fractional Brownian motion, long-range dependence, discrete

increment model, maximum likelihood estimation.

I. INTRODUCTION

Variations of electricity price can affect economic benefits
of all market participants [1]. From the perspective of mar-
ket managers, the electricity price forecasting provides a
scientific basis for promoting healthy, stable and orderly
development [2]. In the electricity market, electricity price
forecasting has become a very valuable tool for all market
participants. Hence, it is necessary to study the problem of
electricity price forecasting in depth [3].

In recent years, in order to achieve high-precision
electricity price forecasting, some scholars began to put
forward some methods. These methods can be roughly cate-
gorized into three groups: statistical methods, artificial intel-
ligence methods and hybrid methods [4]. Statistical methods
include controlled autoregressive moving average (CARMA)
[5], autoregressive integrated moving average (ARIMA) [6]
and a hybrid of autoregressive moving average (ARMA)
and generalized autoregressive conditional heteroskedasticity
(GARCH) [7]. Statistical methods generally provide good
forecasting results, but its models are limited by linear
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assumptions [8]. Artificial intelligence methods are better
than statistical methods because of the advantage to capture
the nonlinear characteristics and rapid changes. Artificial
intelligence methods include artificial neural network (ANN)
[9], fuzzy neural network (FNN) [10], recurrent neural net-
work (RNN) [11] and long short-term memory (LSTM) [12].
Although these methods can handle with multivariate pro-
cesses and nonlinear problems, the network structure choice
and its parameters mainly depend on the previous data.
A single forecasting model cannot precisely analyze complex
relations in non-stationary electricity price series. As a result,
many researchers proposed hybrid models to improve the
prediction accuracy [13], [14].

Present studies revealed that electricity price series is
consistent with the long-range dependent (LRD) character-
istics [15], which indicates that the past and present state of
this series will have effect on future condition. The fractional
Brownian motion (fBm) model is more applicable for prac-
tical applications when it is compared with a pure stochastic
process [16]. The aim of this paper is to forecast electricity
price series by using the fBm model.

The fBm is a non-stationary continuous stochastic process
with stationary increments, which has well-known LRD
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properties [17] and governed by the Hurst exponent [18]
ranging from O to 1. When H is closer to 1, then the
greater degree of dependence. The fBm can be obtained as
a stochastic integral from the Brownian motion (Bm) [19].
There are many methods to calculate the Hurst exponent.
For example, the Hurst exponent can be calculated by the
variance time method [20], absolute value estimation method
[21] or rescaled range (R/S) analysis method [22]. We use R/S
method in this paper, because this method is easy to apply
when it is compared with the frequency domain algorithm.

We study the stochastic differential equation (SDE) driven
by fBm, and an important example is the fractional version
of the Black-Scholes model proposed by Cutland, Kopp and
Willinger [23]. The discrete increment forecasting model is
established by discretizing the SDE. The other two param-
eters i and o in discrete increment model are estimated by
the maximum likelihood estimation (MLE) [24]. The data of
case study is residential, commercial and industrial electricity
price from U.S. Energy Information Administration. Several
indicators of accuracy show that the proposed model obtains
better accuracy in comparison with other models.

This paper is organized as follows. Section 2 describes
fundamental theories of time series with LRD properties.
Section 3 introduces the characteristics of the fBm and the
generation of the fBm series. In section 4, discrete increment
forecasting model is deduced, and the MLE is used for param-
eter estimation. In section 5, comparisons of error evaluation
indicators in case study are given. Section 6 concludes the

paper.

Il. LONG-RANGE DEPENDENT PROCESS
The autocorrelation function (ACF) for the time series x(7)
has the form

RO =E[X®)X (t+1)] €))

where 1 is the time lag. If ffooo R(t)dt = 00, this time series
can be considered as long-range dependent [16]. When 7 is
large enough, the LRD autocorrelation process takes a form
of the power-law distribution:

R(t) ~ct?, (t > 00) )

where ¢ is the constant and B ranges within the interval
0 < B < 1. The description of LRD can be replaced
by the Hurst exponent, which is related with 8 as follows:
B=2—H.

To determine whether the time series has the LRD
properties, the Hurst exponent [18] must to be calculated.
Time series with exponents larger than 0.5 are shown to be
LRD, exponents smaller than 0.5 are called anti-persistent
time series. In this study we use the R/S analysis method to
calculate the Hurst exponent. It is a method to describe the
degree of self-similarity of a time series. In addition, the algo-
rithm is clear and easy to apply in comparison with the fre-
quency domain algorithm [22]. The basic steps of the R/S
analysis method are the following:

Step 1: The time series {X; :t = 1,2, ..., N} is divided
into integer sub-intervals, the total number of samples
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FIGURE 1. R/S method to calculate the Hurst exponent of electricity price
series sample.

is N, the length of each sub-interval is n(2 <n <N).
Corresponding to the mean P (n) and the standard deviation
S (n) for each sub-interval are calculated, respectively.

Step 2: The corresponding cumulative deviation X (z, i)
between each sub-interval and its range of variation R (n) of
each sub-interval are calculated.

Step 3: The ratio of each range to the standard deviation is
Rs (n) = R(n) /S (n), R (n) with different interval lengths is
obtained by taking different n (2 < n < N) values.

Step 4: Logarithms of n and Ry (n) are taken respectively
lg (Rs (n)) = lgc + Hlgn, c is a statistic constant and the
slope obtained by using least squares fitting is the value of
Hurst parameter.

For example, the R/S analysis method is used to calculate
the Hurst exponent of the electricity price series sample, and
the results are shown in Fig. 1 with H=0.6826.

IIl. SERIES RECONSTRUCTION OF FRACTIONAL
BROWNIAN MOTION

A. CHARACTERISTICS OF FRACTIONAL

BROWNIAN MOTION

The stochastic process {Bf, t > 0} called the fBm with Hurst
exponent H (0 < H < 1) [25] is given by

H H 1 !
Bl = BO +m /;OO K(l — S)dB(S) (3)
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FIGURE 2. The flowchart of generating LRD series.

where B(s) is Brownian motion, and the I'(x) is the Gamma
function:

T (x) = f - e dr 4)
0
The integral kernel in (3) is
I L) O<s<1t)
Ki=9= {(r — 9% — (=), (s <0) ©)

where « = H — 0.5.

The fBm exhibits LRD properties for O<H<1, but for
H= 0.5 this process becomes the Brownian motion, and the
ACEF is defined as follows:

2
o2
EBIBY = T (P + 152 — 1= sP) ()

B. GENERATION OF FRACTIONAL BROWNIAN

MOTION SERIES

By performing the convolution between the Gaussian noise
and the impulse response of a linear system with LRD prop-
erties, the output response is a fractional stochastic series
with LRD properties. On the basis of the Wiener-Khinchine
theorem, the power spectral density of a time series is the
Fourier transformation of ACF:

Sx (@) = F [ry (1)] )

We can further derive the relationship between impulse
response and ACF [17]:

Wy = F~H{F (o' ®)

The white Gaussian noise can be defined by
w(t) =F~ [W ()] ©)
where W (0) = e?@and 6 (w) is a real function with

random distribution. In view of (8) and (9), the expression
for simulation of LRD data y (¢) is given by

YO =wnhn =00 «F {Feo'?] (0
Finally, the flowchart of generating LRD series is depicted
in Fig. 2.

IV. DISCRETE INCREMENT MODEL OF FRACTIONAL
BROWNIAN MOTION
A. THE DISCRETE INCREMENT MODEL

For stochastic process S;, consider the fractional
Black-Scholes [23] SDE driven by fBm is
dS, = uS;dt + o S,dB" (11)
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FIGURE 3. The flowchart of fBm simulation.

where © and o represent the drift coefficient and diffusion
coefficient, respectively, B{i is fBm with Hurst exponent H.

From (11), we should simulate increments first before
simulate this process. A simple approach is taken in this
article, which is to simulate with the Monte Carlo method
using the extended form dBf = w(r)(dt) of the Maruyama
[26]. And use it to represent the increment of fBm, thus
obtaining the SDE

dS; = uSdt + o S;w(t)(d)? (12)

where w (t) is a zero-mean standardized normal distribution.
The time period is segmented into N equal intervals, time
interval is At¢, and the discrete SDE is

AS; = uS; At + o S;o@)(ADT (13)

where AS; = S;+1 — S;. Then, we obtained the discrete
increment model of fBm [27], [28] as follows:

Si41 = S; + uS; At + o S,0(t)(Ar) (14)

The fBm simulation using by the Monte Carlo method.
The idea of this method is to perform many simulations
based on experimental samples, and the average value of all
simulation results obtained at each point is corresponding
approximation. Select the initial value, the fBm simulation
flowchart is presented in Fig. 3. The flowchart of electricity

VOLUME 8, 2020



J. Deng et al.: Discrete Increment Model for Electricity Price Forecasting Based on fBm

IEEE Access

" Pan:ame'ters Simulate the change path
Electricity price Use R/S analysis Discrete increment estimation of the electricity price
time series samples > method to calculate H [ forecasting model of fBm series and obtain the
parameter S, =S, + uS At + o S,w(t)(At)" fBm predicted data
simulation
FIGURE 4. The flowchart of electricity price forecasting.
160 T
150 - Residential B
Commercial
=140 Industrial N
z
S 130 i
< ‘
é 120 A ‘ -
8
2110 \ h
g UL T |
Q
Q
L AL ]
AV
80 o .
70 | | | | |
0 40 80 120 160 200
Time/Month

FIGURE 5. Electricity price series from January 2001

e O Residential

e * Commercial
0.5 Industrial 1
-1 : : : : :
0 0.4 0.8 1.2 1.6 2 2.4
log(n)

FIGURE 6. R/S method to calculate the Hurst exponent of electricity price
time series.

price forecasting by the discrete increment model of fBm is
shown in Fig. 4.

B. PARAMETERS ESTIMATION OF DISCRETE
INCREMENT MODEL

For the completeness, two unknown parameters @ and o in
SDE also are required. The general solution of (11) is

S; = Sp - exp |:— f - (/Ldl +0dBfI)i|

= S - exp(ut +oBH) (15)
By taking the logarithm of (15), one obtains
In(S;) = S(ut + o BH) (16)

Accordingly, the parameter estimation of (15) is actually
equivalent to the parameter estimation:

Y, =ut+oB? >0 17)
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to February 2020.

240

TABLE 1. Hurst exponent of electricity price time series.

Residential Commercial | Industrial
Hurst parameters | 0.5041 0.6586 0.6437
TABLE 2. Evaluation indicators of forecasting results.
Type Time MAE |MAPE |RMSE|Max relative
(%) error (%)
6 months [2.91 |[2.54 3.03 |[345
Residential 12 months | 1.74 |2.75 374 649
electricity price | 18 months | 5.35 |4.59 6.33 |10.21
24 months | 6.54 |5.72 7.73 | 13.01
6 months |1.82 |1.67 191 (235
Commercial 12 months |2.01 |3.00 374 |6.86
electricity price | 18 months | 4.84 |4.40 593 |12.20
24 months |5.68 |5.05 6.68 |12.37
6 months |2.37 [3.05 243 14.03
Industrial 12 months | 2.18 |4.42 3.80 |7.42
electricity price | 18 months |4.24 |5.35 4.83 |11.69
24 months | 6.06 |7.53 7.12 | 1745

In this paper, we use MLE to perform the parameter
estimation of the discrete increment model of fBm with
discrete observations. Given a certain time series, the spe-
cific parameters can be estimated. Assuming interval of the
acquired time series is At, and the observation vector consist

of Y = (Yo, YAz, ..., Y,,At)T, with corresponding time vector
t = (0, Ar, ...,nAt)T for the n + 1 observation data.
Assuming the fBm vector is B{'I = (BH, BZ, e, BffAt)T,
the maximum likelihood estimators of the u and o are [24]
R tTrﬁlin
b= ——— (18)
t FH,i,jt
2
(ritY)
52— — | yTrpl oy~ W T 19
= | (19)
t H,i,jt
where [y ;j = S(ADH (2 + 21 — | —j|2H)l.’j:01,2’__”n.
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FIGURE 7. 24-month residential electricity price forecasting by fBm.
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FIGURE 8. 24-month commercial electricity price forecasting by fBm.

V. CASE STUDY

A. DATA DESCRIPTION

To verify the effectiveness of the developed forecasting
model, the monthly eletricity price datasets collected from
U.S. Energy Information Administration [29], including res-
idential, commercial and industrial monthly electricity price.
The total number of each dataset is 230 from January 2001 to
February 2020, it presents a significant difference between
different datasets according to the collected samples in Fig. 5.
The stochastic nature of the electricity price series can
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be reflected. The forecasting results can better verify the
applicability of the discrete increment model of fBm.

B. FORECASTING PROCESS

This experiment based on the discrete increment model of
fBm to forecast the electricity price series of the next 6, 12,
18 and 24 months for historical data. The R/S analysis method
is used to calculate the Hurst exponent of the electricity
price series, and the results are shown in Fig. 6. Residential,
commercial and industrial data are translated to distinguish
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FIGURE 10. Relative error of forecasting results.

the plots. In addition, Table 1 shows the Hurst exponent of
the electricity price series. The results reveal that electricity
price series fulfill the LRD characteristics.

The simulated forecasting trends are shown in Figs. 7-9,
respectively. Error analysis of forecasting results, such as
MAE (Mean Absolute Error), MAPE (Mean Absolute Per-
centage Error, %) RMSE (Root Mean Squares Error) and max
relative error (%) are shown in Table 2. And the box plots
of the relative error are shown in Fig. 10, which shows the
maximum value of the relative error clearly. As demonstrated
by our results, the longer the forecasting time series, the lager
the forecasting error. Our forecasting results are consistent

VOLUME 8, 2020

with LRD characteristics, correlation and prediction accuracy
gradually reduced as the distance increases. Furthermore,
the purpose of this study is to determine the forecasting time
for residential, commercial, and industrial electricity prices
based on discrete increment model of fBm. To guarantee
the accuracy of forecasting, it is necessary to choose 6 or
12 months as the forecasting time points.

C. COMPARATIVE ANALYSIS OF DIFFERENT MODELS

To verify the proposed forecasting performance, we have
performed electricity price forecasting in comparison with
different models. Comparison results obtained from different
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FIGURE 11. Comparison of different models for residential electricity price forecasting.
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FIGURE 13. Comparison of different models for industrial electricity price forecasting.

forecasting models for test samples, including residential, electricity price series. In addition, error evaluation indica-
commercial, and industrial electricity prices are shown tors comparison of different forecasting models based on the
in Figs. 11-13, respectively. It clearly illustrates that the samples is displayed in Table 3. As shown in table, the max
forecasting curve obtained by the proposed model is in close relative error (%) of the proposed model are smaller than

agreement with the actual values. The results show that other model in all testing samples. Thus, the proposed model
the proposed model can well capture the change trend of can obtain a more accurate forecasting result.
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TABLE 3. Comparison of different models for evaluation indicators of
forecasting results.

Type Model | Time MAE |MAPE |RMSE|Max relative
(%) error (%)
fBm 6 months [2.91 |2.54 3.03 [345
Residential 12 months | 1.74 | 2.75 3.74 1649
LSTM | 6 months |4.98 |4.21 599 |845
12 months | 2.47 |4.99 7.37 |9.47
fBm 6 months | 1.82 | 1.67 1.91 2.35
Commercial 12 months | 2.01 3.00 3.74 16.86
LSTM |6 months |2.36 |[2.18 2.53 |3.49
12 months | 2.70 | 4.03 5.66 |12.61
fBm 6 months |2.37 |3.05 243 [4.03
Industrial 12 months | 2.18 |4.42 3.80 |7.42
LSTM |6 months |2.21 |2.80 2.74 |6.31
12 months |2.34 | 5.06 4.34 |8.78

VI. CONCLUSION

Precise electricity price forecasting can help consumers and
producers in their production plans to maximize benefits of
both sides. Firstly, this paper has verified that the electricity
price series has LRD characteristics by R/S analysis method.
We put forward to forecast electricity price series based on
discrete increment model of fBm from a novel perspective.
The fBm is a non-stationary stochastic process, which is
consistent with the LRD characteristics of the electricity price
series. The validity of the discrete increment model of fBm
was comprehensively verified by using three types of elec-
tricity price data including residential, commercial and indus-
trial sample. Our results agree with the LRD characteristics,
correlation and forecasting accuracy gradually reduced as the
forecasting time increases. In addition, the proposed model
has achieved good forecasting accuracy as a single mathe-
matical model by comparison with another model. Hence,
future work can further improve the accuracy by developing
the hybrid model.
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