
Received June 18, 2020, accepted July 10, 2020, date of publication July 15, 2020, date of current version July 27, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3009387

Coal Mine Rescue Robots Based on Binocular
Vision: A Review of the State of the Art
GUODONG ZHAI , WENTAO ZHANG , WENYUAN HU , AND ZHENDONG JI
School of Mechanical Electronic & Information Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China

Corresponding author: Guodong Zhai (zgd@cumtb.edu.cn)

This work was supported in part by the National Training Program of Innovation and Entrepreneurship for Undergraduates under Grant
201911413045, in part by the Fundamental Research Funds for the Central Universities under Grant 2020YJSJD06, and in part by the
Graduation Project (Entrepreneurship) of Practical Training Plan for Cross-Cultivation of High-Level Talents in Beijing Colleges and
Universities under Grant 2019110750145 and Grant 2019110750146.

ABSTRACT Rescue work after a coal mine accident is fraught with challenges and dangers. Considering
the safety of rescue workers and the urgency of a rescue mission, it is necessary to use coal mine rescue
robots to perform the tasks of environmental detection and rescue. As a key part of the robot sensing system,
a visual sensor can provide much information about a scene. Among vision sensor types, binocular vision
has the advantages of being noncontact and passive, and it is the key technology for a robot to acquire
obstacle information and reconstruct a three-dimensional scene. Therefore, coal mine rescue robots based on
binocular vision have become a popular research topic in the field of mine safety. First, the research status of
camera calibration and stereo vision matching for binocular vision is systematically introduced in this paper.
Second, the latest research progress on coal mine rescue robots based on binocular vision is reviewed from
the perspective of technological applications and development. Finally, the technical challenges and future
development trends of binocular vision in coal mine rescue robots are described.

INDEX TERMS Coal mine rescue robots, binocular vision, camera calibration, stereo vision matching.

I. INTRODUCTION
Coal’s share of primary energy is 27.2% according to the
British Petroleum (BP) Statistical Review of World Energy
released in 2019 [1]. Coal is still an extremely vital part of
global energy patterns, and its mining methods are generally
divided into open-pit mining and undergroundmining, the lat-
ter of which is considered one of the most dangerous jobs
in the world [2]–[4]. Taking China as an example, according
to statistics from the National Coal Mine Safety Adminis-
tration, there were 198 coal mine accidents in 2018, with
303 deaths [5]. Emergency rescue must be carried out after
a mine accident. However, compared with ground rescue,
underground coal mine rescue faces particular challenges [6].
As shown in Fig. 1, according to the relevant research of
Zhang et al. [7], the top three major or especially major types
of coal mine accidents in China from 2001 to 2018 were gas
accidents, fire accidents and flooding accidents. Additionally,
there are many secondary disasters, including the above types
of hazards, at accident sites. Therefore, to reduce the risk of
secondary disasters, a variety of protective measures must
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be taken before rescuers can first enter a mine to carry out
rescue work. Considering the existence of an optimal rescue
window, an accident scene is in urgent need of robots that
can replace the rescuers to explore the mine environment and
carry out rescue work. A coal mine rescue robot (CMRR) can
bring an appropriate amount of emergency supplies and var-
ious sensors to the accident scene, and the rescue command
center can then formulate an efficient rescue strategy based
on the information provided by the robot; this guarantees
the smooth progress of various rescue operations as well as
possible. The application of CMRRs not only reduces the
threat to rescue worker safety but also improves the rescue
efficiency [8], [9].

At present, most CMRRs are in the experimental research
stage, and only a fewCMRRs are involved inmine rescue. For
instance, a CMRR from the Western Australia Water Service
Company was allowed to participate in a search-and-rescue
after a mine accident at New Zealand’s Pike River coal mine
on November 19, 2010 [10]. As shown in Fig. 2 (a), this robot
was equipped with cameras, gas detection sensors, and other
equipment and was remotely controlled by fiber optics. Sim-
ilarly, on February 25, 2016, a coal mine accident occurred in
the Northland Coal Mine near the city of Vorkuta in the Komi
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FIGURE 1. Statistics on the causes of major or especially major coal mine
accidents in China from 2001 to 2018.

FIGURE 2. The application of CMRRs after mine accidents. (a) Robot from
the Western Australia Water Service Company. (b) The Leader
robot [10], [11].

Republic of Russia. The Leader robot was transported to the
scene of the accident and entered the mine to explore in place
of rescuers [11]; the robot is shown in Fig. 2 (b). This robot
was loaded with cameras and other detection equipment that
can operate in the unstructured environment of a coal mine.

In the unstructured environment of a coal mine, a robot
must have the ability to perform autonomous obstacle avoid-
ance when carrying out environmental detection and rescue,
so it is necessary to conduct accurate three-dimensional (3D)
reconstruction of the field environment. In general, vision
provides most of the information about the environment;
especially for industrial robots in harsh conditions, vision
sensors are critical [12], [13]. In the field of robot vision,
binocular vision has the two advantages of being noncon-
tact and passive, and great progress has been made in its
theory and practice. Binocular vision have become the main
component of the vision modules of robot sensing systems;
Fig. 3 shows the 3D model of a CMRR with vision sensors,
named MSRBOTS, developed by a research team at the
Beijing Institute of Technology, and it obtains information
on the scene of a coal mine through two cameras to achieve
the correct positioning [6]. Although binocular vision has
been preliminarily applied to the sensing system of CMRRs,
the existing technical level still needs to be improved, espe-
cially in the areas of camera calibration accuracy, image
correction algorithms, stereo vision matching effects and 3D
reconstruction models. This paper is founded on the research
on CMRRs based on binocular vision over the past ten years,
and it not only enables relevant researchers to understand the
current research status but also provides references for future
investigation.

FIGURE 3. MSRBOTS, a CMRR equipped with vision sensors [6].

FIGURE 4. Binocular cameras or systems [18]–[23].

The remainder of the paper is organized as follows:
Section 2 introduces the research progress on the key tech-
nologies of binocular vision, including camera calibration
and stereo vision matching. Section 3 reviews the spe-
cific application of binocular vision in CMRRs. Section
4 describes the technical challenges and development trends
of binocular vision in CMRRs. Finally, the conclusion is
given in section 5.

II. OVERVIEW OF THE KEY TECHNOLOGIES OF
BINOCULAR VISION
At the scene of an accident, the binocular vision module
of a robot sensing system collects image information, con-
ducts image analysis and processing, and performs obstacle
recognition and 3D reconstruction. The concept of binocular
vision originated from the basic vision theory established by
Marr and Poggio [14]. Subsequently, Grimson [15] further
supplemented and modified the theory.

A. THE PRINCIPLE OF BINOCULAR VISION
The basic principle of binocular vision can be expressed as
follows: An object in a certain area is first imaged by two
cameras, then the parallax map is obtained after a series
of image processing steps, and finally, the depth informa-
tion is recovered by triangulation and a 3D image is con-
structed [16]–[18]. Fig. 4 shows a series of common binocular
cameras or systems, which can be used to perceive the exter-
nal environment and perform the 3D reconstruction.

The principle of binocular ranging is shown in Fig. 5,
in which part (a) is a linear model and P is a target point in a
3D space. Due to errors in camera manufacturing and instal-
lation, the two optical axes are generally not parallel, and
their optical parameters are also different in actual use. The
ranging principle in the actual process is shown in part (b).
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FIGURE 5. The principle of binocular vision ranging. (a) Linear model.
(b) Nonlinear model.

FIGURE 6. Binocular vision implementation process.

By obtaining the mapping relationship between the camera
coordinate system Oc, image plane coordinate system Oi,
image pixel coordinate system Op and world coordinate sys-
tem Ow, a nonlinear model can be transformed into a linear
model.

The key to performing 3D reconstruction is to obtain depth
information. The depth expression obtained from an analysis
of Fig. 5 (a) is as follows [24]:

D =
fb
d

, (1)

d = x1 − x2, (2)

where D is the depth from the camera to the target point, f
is the focal length of the camera, b is the baseline distance
between the two cameras, d is the binocular parallax, and x1
and x2 are the abscissa values of the target point P correspond-
ing to camera 1 and camera 2 on the image plane, respectively.

The camera lens causes distortion, including centrifugal
distortion, radial distortion and thin prism distortion [25].
Therefore, to improve the accuracy of binocular vision, dis-
tortion correction is required. The general implementation of
binocular vision is shown in Fig. 6. According to Eq. (1),
the prerequisite of calculating depth D is obtaining f , b, and
d in advance. The values of f and b can be obtained by
camera calibration, and d can be obtained by stereo vision
matching. In summary, camera calibration and stereo vision
matching are the key steps to achieve binocular vision, and
the calibration accuracy and matching effect have a decisive
influence on 3D reconstruction [26], [27].

B. OVERVIEW OF CAMERA CALIBRATION
The purpose of camera calibration is to obtain the intrinsic
and extrinsic parameters of the camera by using the features
of a specific object or scene and to thereby create a mapping
from the stereo space to a plane image. The intrinsic param-
eters include the focal length, principal point position, scale

factor, lens distortion, etc. The extrinsic parameters include
the translation matrix and rotation matrix [28]. Generally,
calibration methods are divided into the three types below.

1) TRADITIONAL CALIBRATION METHODS
A reference object with a known shape and size is used as the
target of the camera; after image processing andmathematical
transformation, the intrinsic and external parameters of the
camera can be obtained. For instance, Zhang [29] proposed
a flexible calibration method. The camera needed only to
shoot a printed checkerboard from multiple angles, and the
parameters could then be obtained by linear calculations. The
results showed that the mean value and sample deviation of
the calibration parameters were 0.334 and 0.04, respectively,
so the algorithm was reliable. However, this method consid-
ered only the radial distortion of the lens; if a lens has a
large distortion, the internal parameters need to be initialized
manually. Abdel-Aziz and Karara [30] proposed a calibra-
tion method using a direct linear transformation. Based on
the linear constraint equation, the camera coordinate system
and the spatial coordinate system were transformed linearly,
and the camera parameters could be obtained by solving the
linear equation. The operation time of this method was only
22.64% of that of the traditional collinearity method, so it was
faster. However, this study neglected the nonlinear distortions
of the camera, so the calibration precision was not ideal.
Additionally, there are Weng’s iteration method [31], Tsai’s
two-step method [32] and so on. It should be emphasized that
the reference objects required by this calibration method are
generally easy to identify and extract the features, and the
image distortion amplitude is small.

2) CALIBRATION METHODS BASED ON ACTIVE VISION
By precisely controlling themotion of the cameraworkbench,
including pure translations, pure rotations and so on, the cam-
era can capture images from many different angles, and then
the camera parameters can be obtained by using the constraint
relationships between the camera motion parameters and the
image captured. For instance, a calibration method based on
plane motion was proposed by Zhu et al. [33]. This method
considered the radial distortion, tangential distortion, and thin
lens distortion of the camera. Experiments showed that after
distortion correction and global optimization, the standard
deviations of the image point error in the x and z direc-
tions were 0.002761 mm and 0.004012 mm, respectively,
and the calibration accuracy reached 0.005 mm. This method
provides an effective solution for camera calibration after
distortion. Furthermore, camera calibration methods based
on pure rotational motion and projective reconstruction also
have a certain range of applications [34], [35].

3) SELF-CALIBRATION METHODS
Camera parameters can be obtained under the condition that
the scene is unknown from only the constraint relationships
obtained in an image sequence. For instance, Deng et al. [36]
proposed a calibration method based on differential
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TABLE 1. Ave and Std of the results of three calibration algorithms.

TABLE 2. Advantages and disadvantages of camera calibration methods.

evolution and particle swarm optimization (DEPSO).
As shown in Table 1 [36], the results of 10, 80 and 800 groups
showed that, compared with other algorithms, the proposed
algorithm had the smallest average value (Ave) and stan-
dard deviation (Std), so the proposed calibration method
performed best.

Moreover, a calibration method based on image quality
assessment was proposed by Fayyaz and Joo [37]. Its main
characteristic was that the quality of the image was evaluated
in advance before calibration, and the number of frames with
high quality was obtained. The experimental results showed
that the self-calibration accuracy reached 93.2%, and the
image had almost no distortion, while the traditional self-
calibration method only had 7.7% of the image to obtain a
good perspective effect. It is worth noting that camera self-
calibration is a nonlinear method, which requires a nonlinear
optimization solution, so it relies heavily on the initial value.

To summarize, the advantages and disadvantages of the
three calibration methods are shown in Table 2.

C. OVERVIEW OF STEREO VISION MATCHING
Stereo vision matching is based on a matching algorithm,
the purpose of which is to search for a point in the captured
image corresponding to a certain point on the target in the
3D space. Scharstein and Szeliski [38] first proposed the four
classical steps of the matching algorithm, as shown in Fig. 7.
It should be noted that not all matching algorithms need to go
through these four steps, and some do not follow the diagram
sequence. The purpose of the matching cost calculation is
to measure the correlation between the pixel to be matched
and a candidate pixel; generally, the smaller the cost, the
greater the correlation. The purpose of cost aggregation is
to establish a connection between adjacent pixels so that the
cost can accurately reflect the correlation between pixels. The
aim of the parallax calculation is to determine the optimal
parallax value of each pixel. The aim of parallax optimization
is to improve the quality of the parallax map [39]. It should
be emphasized that cost aggregation is the most significant
step in this process, and it directly affects the accuracy of

FIGURE 7. Stereo vision matching implementation process.

matching. The selection of a matching algorithm is based on
the following steps: First the matching model is constructed,
second, the matching primitive is selected, and finally, the
most suitable algorithm is selected in accordance with the
characteristics of the matching primitive. Generally, the com-
monly used matching algorithms can be roughly divided into
the three types below.

A global matching algorithm comprehensively consid-
ers the information of the entire region to be matched and
then calculates the parallax by establishing and solving a
global energy function. At present, the commonly used global
matching algorithms include algorithms based on image seg-
mentation, algorithms based on confidence, and algorithms
based on partial differential equations.Many researchers have
conducted extensive and in-depth research on these algo-
rithms. For instance, Ma et al. [40] proposed an algorithm
based on image segmentation in which the image was seg-
mented by simple linear iterative clusters. An image test with
the Middlebury dataset showed that the mismatch rate of
the whole region was 5.275%, the mismatch rate of shaded
regions was 7.370%, and the mismatch rate of unshaded
regions was 2.315%; the comprehensive average mismatch
rate was 4.990%. Thus, the matching precision of the algo-
rithm was high, and the matching effect in occluded areas
was better. Kim et al. [41] proposed a deep network structure
for estimating confidence that can significantly improve the
application of a matching algorithm. Experimental results
showed that the averagemismatch score with one/three on the
KITTI 2015 dataset was 9.67/7.09, so this method had strong
robustness. Kim and Hilton [42] proposed a parallax estima-
tion method based on partial differential equations. With this
method, a relatively smooth parallax map could be obtained
by using a new energy function. Experiments showed that the
average depth error of 3D scene reconstruction was 0.2 cm
and the standard deviation was 15.2 cm, so this method could
effectively perform smooth reconstruction of the depth map.

A local matching algorithm relies on the constraint infor-
mation of the local window to determine matches by compar-
ing local features. First, the support area of the pixel needs
to be calculated, and the size, shape, and weight of the area
should meet certain requirements. Second, the parallax value
in the support area needs to be a weighted average. Finally,
a parallax map can be obtained with high accuracy. Accord-
ing to the characteristics of the matched primitives, local
matching algorithms are mainly divided into region-based
algorithms, feature-based algorithms, and phase-based
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TABLE 3. Results of region matching.

TABLE 4. Relative pose errors between the two algorithms.

algorithms. Many scholars have carried out in-depth research
on these algorithms. For instance, a region-based matching
algorithm was proposed by Ansari et al. [43]. As shown
in Table 3 [43], a matching experiment with two regions
was conducted to compare this algorithm with the traditional
matching method based on a grayscale image (GI); the pro-
posed algorithm improved the proportion of regions matched
by 13% and 5% in matching the house and office pairs,
respectively. The region-based matching algorithm usually
yields a dense parallax map; it is easy to implement, but it is
greatly affected by radioactive distortion.

Krombach et al. [44] integrated a feature-based matching
algorithm into the visual odometer method and proposed a
feature-based visual odometer method to achieve real-time
tracking of a target. As shown in Table 4 [44], compared
with the direct visual odometer method, the translation and
rotation errors were small, so this method had a strong ability
to perform map reconstruction.

Moreover, an absolute-difference census algorithm based
on phase was proposed by Zhang et al. [45], which can
balance the goals of efficiency and accuracy. Phase-based
matching can reduce the influence of radiation distortion and
geometric distortion to some extent, but it has some defects,
such as phase singularity and phase winding.

A semiglobal matching algorithm is improved based on
the dynamic programming method and it is first proposed by
Hirschmüller [46]. In this algorithm, mutual information is
used to calculate the initial matching cost, and the problem
of mismatches caused by illumination variation is solved.
The global energy function used in this algorithm can be
used to penalize different depth changes and achieves the
effect of smoothing constraints. To ensure uniqueness con-
straints, the algorithm performs consistency checks on the
left and right parallax maps. However, the algorithm cannot
make full use of the pixels around the matching point to
carry out effective matching for cost aggregation. Currently,
many improved semiglobal matching algorithms have been
developed by researchers. For instance, Chai and Yang [47]
added a minimum spanning tree to the cost aggregation step,
which satisfactorily addressed the pixel matching problem
around the points to be matched. A matching experiment
on the Middlebury dataset showed that the matching error
rate of the traditional semiglobal matching algorithm was
8.56%, while that of the proposed semiglobal matching algo-
rithm was 8.44%, so the matching accuracy was improved.

TABLE 5. Advantages and disadvantages of the matching algorithms.

FIGURE 8. CMRRs. (a) The ANDROS Wolverine robot. (b) The Ratler robot.
(c) The Groundhog robot. (d) The Cave Crawler robot. (e) The Numbat
robot. (f) The CUMT-V (A) robot. (g) The CUMT-V (B) robot. (h) The KRZ-I
robot [49], [50], [51], [52], [53], [56], [58].

Ni et al. [48] used a semiglobal matching algorithm based on
a second-order smoothing constraint to reduce the influence
of weak texture regions on matching. Weak texture image
tests on the KITTI dataset and Middlebury dataset showed
that the average mismatch rate of the algorithm was 4.39%
and 23.24%, respectively, indicating that the algorithm had a
good application effect in weak texture regions.

The advantages and disadvantages of the three types of
matching algorithms are shown in Table 5.

III. RESEARCH STATUS OF CMRRs BASED ON
BINOCULAR VISION
Extensive research on different types of CMRRs has been
performed by many scholars from different countries.
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The ANDROS Wolverine robot was developed by the
Remotec Company in conjunction with the Mine Safety and
Health Administration (MSHA). As shown in Fig. 8 (a) [49],
this robot used a motor-driven crawler to walk and was
equipped with a sensing system, a navigation system, a voice
system, a communication system, etc.; the site information
was transmitted to the rescue center through optical cables.
However, it weighed more than 544 kilograms, so it was
not very flexible [10]. The Ratler robot was designed by the
Sandia National Laboratory and the MSHA in the United
States. As shown in Fig. 8 (b) [50], this robot was equipped
with an infrared camera and gas inspection sensors, which
can be used for coal mine environment detection. Moreover,
it was remote-controlled, with a distance of approximately
76m. The Groundhog robot was designed at CarnegieMellon
University for search tasks in underground mines. As shown
in Fig. 8 (c) [51], it used an electrohydraulic drive to control
the movement and steering of four wheels, and it carried a
variety of sensing equipment such as a laser scanner and night
vision camera, which can reconstruct 3D maps of abandoned
coal mines. The Cave Crawler robot was also developed at
Carnegie Mellon University. As shown in Fig. 8 (d) [52], this
robot was equipped with four wheels to achieve independent
steering. Compared with the Groundhog robot performance,
the flexibility and stability were better. TheNumbat robot was
developed by the Australian Commonwealth Scientific and
Industrial Research Organization. As shown in Fig. 8 (e) [53],
this robot was loaded with differential eight-wheel walking
mechanisms on both sides of the fuselage, its maximum speed
can reach 2 kilometers per hour, and its power was provided
by a chrome-nickel battery with an endurance time of 8 hours.
Furthermore, it was controlled remotely by ground personnel
via fiberoptic cables [54]. Although this robot is not yet oper-
ational, it has long been an option in coal mine rescue. Within
the framework of a project at the European Union to develop
a mine emergency rescue and transportation system, a team
at Universidad Carlos III de Madrid in Spain designed the
TeleRescuer robot. Its vision system was equipped with ordi-
nary cameras and a thermal camera. The ordinary cameras
were used to obtain environmental information and perceive
the depth of the scene; the thermal camera was used to detect
the temperature information of the equipment and check for
equipment failure. Moreover, this robot could carry multiple
gas sensors to detect CO2, CH4, CO, etc. [55]. The CMRR
series CUMT-I, CUMT-II, CUMT-III, and CUMT-IV were
developed by China University of Mining and Technology.
This series of robots carried a variety of sensors to collect
environmental information and could carry emergency sup-
plies to the scene of an accident; they had good application
potential, but there were still some problems. Subsequently,
the upgraded CUMT-V (A) and CUMT-V (B) crawler
robots were developed, as shown in Fig. 8(f) and (g) [56].
In these robots, an explosion-proof multidrive crawler device
and slide-block low-speed clutch were used for the motion
system, an environment perception module with good inter-
action was used for the perception system, an optical fiber

FIGURE 9. Four stages of robot development.

release device and relay release device were used for the
communication system, and a distributed Ethernet structure
was used for the control system [56]. A multicrawler snake-
shaped CMRR was developed by the Harbin Institute of
Technology, and the principle of lightness was used in the
design of the robot. Compared with a typical snake robot,
it was lighter in weight and smaller in size, and it could
achieve 45◦ pitch and yaw motion [57]. Notably, CITIC
Heavy Industry Kaicheng Intelligent Equipment Co., Ltd.
is the only specialized robot manufacturing enterprise in
China that has obtained a mining safety certification and
an explosion-proof safety certification. The company has
developed several safety-certified robots for mine detection
and rescue, such as ZRXJ127, KRXJ38, KRZ-I, and KQR48.
KRZ-I, shown in Fig. 8 (h) [58], carried a camera and a
variety of gas sensors. The camerawas equippedwith infrared
lighting, which enabled it to capture clear images under zero
illumination. In addition, the robot had an advanced embed-
ded design, with posture alarm and obstacle avoidance alarm
functions, and it could carry an appropriate amount of rescue
materials to an accident scene while ensuring its own safety.

Robotics has experienced four milestone revolutions,
shown in Fig. 9. Among them, vision is the basis of the
information acquisition and autonomous navigation that sup-
port a robot’s intelligent perception behavior. In particular,
in the unstructured environment of a coal mine, a visual
sensor provides most of the information about the environ-
ment. Thus, the vision of a CMRR has become the main
actor in environmental detection, and it is essential. Common
visual sensing techniques include light coding, time of flight,
structured light, and binocular vision. Light coding is suitable
for close measurement only. Time of flight and structured
light are active vision methods. The former has a wide range
of applications but a low resolution and high-power consump-
tion. The latter has a higher resolution and lower power con-
sumption but is greatly affected by nonsystem errors and has
a greater software complexity. In contrast, binocular vision
can restore depth information and enable 3D reconstruction
with only one pair of cameras. Although the operative range
of binocular vision is limited by the baseline distance, it has
high ranging accuracy and low power consumption. In con-
sequence, a CMRR equipped with a binocular camera is the
focus of current coal mine safety and intelligence fields, and
research mainly focuses on explosion-proof designs, obstacle
recognition, stereo vision matching, intelligent algorithms,
ultrasonic-assisted ranging, virtual reality simulation, and
other topics.

A. EXPLOSION-PROOF DESIGN
After a coal mine accident, explosive gas in the coal seam
will continue to emerge and mix with coal dust. To avoid
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FIGURE 10. CMRRs. (a) MINBOT-II robot. (b) Test in a coal mine [59], [60].

secondary explosion accidents, CMRRsmust have explosion-
proof performance and need to pass a standard certification.
Most countries have strict regulations governing electrical
explosion-proof standards, such as the NEC500 electrical
specification in the United States and the GB3836 series of
standards in China. At present, commonly used explosion-
proof technologies include flameproof and intrinsically safe
technologies. The former puts the electrical equipment in
an explosion-proof box to isolate it from the environment,
and the latter prevents explosions by limiting the maximum
amount of energy released by electrical equipment. A binoc-
ular camera is part of the electrical equipment and is exposed
to the coal mine environment, so it must be designed based on
the intrinsically safe strategy. For instance, Wang et al. [59]
developed an explosion-proof CMRR called MINBOT-II,
as shown in Fig. 10 (a) [59]. The size of the robot was
1500× 589× 747 mm (arm deployed), the mass was 130 kg,
and the distance controlled by the optical fiber was 1000 m.
The robot was composed of a mechanical system, a com-
munication system, a power supply system, a human-robot
interaction system, and a sensing system; the sensing system
was used to monitor the environment. The electric explosion-
proof design is shown in Fig. 11 [59], the cameras were
an integral part of the sensing system, and their electrical
design was based on the principle of intrinsic safety; they
were mainly used to collect information on the coal mine
and the attitude of the robot. It was notable that four cam-
eras were able to provide a full detection range. Moreover,
the intrinsically safe devices realized physical isolation with
the devices in an explosion-proof box through the isolation
circuit. In addition, the signal transmission and energy supply
between the two devices were realized by the intrinsically
safe CPU and intrinsically safe power in the isolation circuit.
Similarly, Lu et al. [60] also designed cameras in the sensing
system of a CMRR based on the principle of intrinsic safety;
a test in a coal mine is shown in Fig. 10 (b) [60]. The
cameras used to obtain real-time images of the coal minewere
lightweight and small in size, and were powered by a 12 volt
intrinsically safe power supply.

B. OBSTACLE RECOGNITION AND FEATURE EXTRACTION
A CMRR relies on binocular vision to recognize obsta-
cles. First, it needs to extract the features of the obstacles,

FIGURE 11. Principles of electrical explosion protection design [59].

including the features of the edge and the shape. Common
feature extraction algorithms include Moravec extraction,
Harris extraction, the features from accelerated segment test
(FAST) [61], scale-invariant feature transform (SIFT) [62],
and speeded-up robust features (SURF) [63].Moravec extrac-
tion is too direction-dependent, and its edge feature extrac-
tion effect is poor. Harris extraction achieves corner point
extraction at the pixel level and is rotation invariant, but
it is not scale-invariant. The computational efficiency and
repeatability of FAST are high, but it is greatly affected by
the threshold value and by noise, and it is also not scale-
invariant. SIFT’s scalability and discrimination are strong,
but its computational complexity is high and its runtime is
long. SURF is an optimization of SIFT, and its computing
speed is better. After obtaining the information of feature
points, the robot can identify obstacles by analyzing the
topological relationships among feature points. For instance,
Niu et al. [64] developed a coal mine detection robot for
search and rescue, as shown in Fig. 12 [64]. As a part of
the information perception and interaction module, the binoc-
ular vision system was mainly composed of a Sony cam-
era and a midinfrared (MIR) camera, and it was used for
obstacle recognition. The feature points of the image were
extracted by the Harris method, where the corner was judged
by the response function F (x, y). F (x, y) can be expressed
as [64]:

F(x, y) = Det(M)− k× Trace2(M) (3)

M =
[
I2x Ixy
Ixy I2y

]
, (4)

whereM is the partial derivative matrix, I is the grayscale of
the image, and k is an empirical constant.

According to Eqs. (3) and (4), since the corner response
function adopted involves only the first derivative and
mixed second partial derivative in the x and y directions,
a Gaussian smoothing filter must be used for noise reduction
when the image has much noise.
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FIGURE 12. Coal mine detection robot [64].

FIGURE 13. Process of a stereo matching algorithm based on census
transformation.

C. IMPROVEMENT OF STEREO VISION MATCHING
The core problem of binocular vision is how to improve the
positioning accuracy and obtain the target position correctly.
The key is to find the homonymic point on the consistent
spatial position of the two images obtained by the cameras,
that is, to perform stereo vision matching. The traditional
matching algorithm is not effective in solving problems such
as weak texture regions, depth discontinuity regions and
occluded regions. Thus, a more intelligent and adaptable
matching algorithm is needed in special environments. Gen-
erally, the robustness, accuracy, and real-time performance
of the stereo vision matching algorithm affect the operational
effect of the vision system. Many scholars have done much
work in this area.

He et al. [65] investigated an improved census algorithm
and applied it to the stereo matching process of a vision
system for a CMRR. The census algorithm was a nonpara-
metric transformation, as shown in Fig. 13. Before stereo
matching, the original image needed to be converted into
a census image; i.e., the grayscale was defined as a string
element. In the experimental stage, the improved census
algorithm and the matching algorithm based on the sum
of absolute differences (SAD) were tested on the Cyclone
IV EP4CE115F23C7/FPGA platform, and the resource con-
sumption, real-time performance and accuracy were com-
pared. Partial results are shown in Table 6 [65]; clearly,
the improved census algorithm was superior to the SAD
algorithm in terms of resource consumption and matching
accuracy. Therefore, the proposed improved census algorithm
had better performance and was able to adapt to complex
coal mine scenes in order to carry out more accurate 3D
reconstruction.

Furthermore, He and Ma [66] proposed an improved SIFT
algorithm considering the real-time performance and accu-
racy of the matching. First, the SIFT operator was sim-
plified and the initial matching was performed. Then, the

TABLE 6. Comparison results of two matching algorithms.

TABLE 7. Comparison results of two matching algorithms.

FIGURE 14. Stereo matching effect for a roadway image [66].

random-sample consensus algorithm and line constraints
were used for quadratic matching to eliminate mismatched
pairs. The experimental data are shown in Table 7 [66]; com-
pared with the traditional SIFT algorithm, the improved SIFT
algorithm has a greater advantage in terms of the number
of misplaced points, the correct match rate and the match
time. Fig. 14 shows the effect of using the improved SIFT
algorithm for binocular matching [66]. The algorithm has the
disadvantage of matching fewer feature points, and it may
ignore some of the texture information of the target.

D. VISUAL PERCEPTION BASED ON INTELLIGENT
ALGORITHMS
The vision sensor of a CMRR has a certain lag and uncer-
tainty in obstacle recognition, while intelligent algorithms
such as neural networks and fuzzy logic have a strong ability
of deep learning, image understanding, and generalization in
obstacle recognition and tracking, which can make up for
the shortcomings of traditional binocular vision. At present,
binocular vision technology based on an intelligent algorithm
is a research hotspot in the field of robot vision. For instance,
Shang et al. [67] designed a binocular vision system for a
CMRR based on a fuzzy neural network. As shown in Fig. 15,
first, the CMRR used binocular vision to collect images of the
roadway and obstacles and extracted the associated features.
Then, the feature informationwas quantized as inputs, and the
weights of a neural network were iterated until convergence.
Finally, obstacle avoidance decisions were made based on the
identification results. Note that the fuzzy neural network was
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FIGURE 15. Process of binocular vision recognition based on a fuzzy
neural network.

a five-layer forward structure based on a back propagation
algorithm and was based on a heuristic process. By building
a test platform for binocular vision, 200 types of obstacle
images were simulated in MATLAB; the results showed
that the accuracy of navigation decision making could reach
99.28% and the square root error of the algorithm was
7.20 × 10−4. This revealed that the robot could recognize
obstacles in the roadway relatively accurately.

E. INTEGRATED POSITIONING
In the unstructured environment with strong interference and
high dynamic, it is difficult for a single navigation source to
meet the application requirements, and integrated position-
ing is an effective navigation strategy. Specifically, in the
coal mine roadway, visual positioning is greatly affected by
lighting changes, while ultrasonic positioning is not affected
and has no cumulative error. Thus, a binocular camera assists
ultrasonic ranging when acquiring obstacle features, and this
can effectively reduce the positioning error divergence caused
by a single vision sensor. For instance, He and Ma [25] pro-
posed an obstacle avoidance strategy combining ultrasonic
ranging and binocular vision ranging for path planning in a
CMRR. The robot consisted of amechanical system, a control
system, and a visual system. As shown in Fig. 16 [25], at the
heart of the vision system was Point Gray’s BumbleBee2
binocular camera. The main feature of this camera is that dis-
tortion and position deviation can be automatically corrected;
a high-speed 1394 interface was grafted to it, and the internal
data conversion rate reached one million 3D points per sec-
ond. An HC-SR04 ultrasonic module was adopted with a
working voltage of 5 volts and a frequency of 40,000 Hertz.
In the integrated positioning strategy, the long-distance infor-
mation was measured by an ultrasonic module, and the height
and width characteristics of the obstacle was acquired by
a binocular vision image processing module. After the two

FIGURE 16. Underground inspection intelligent robot [25].

FIGURE 17. Simulation result in virtual reality. (a) Roadway with
moisture. (b) Roadway with coal dust distribution [68].

FIGURE 18. Simulation process of the visual enhancement algorithm
based on Unity 3D platform.

parts of information were analyzed, an obstacle avoidance
strategy was formed, which in turn controlled the robot to
execute obstacle avoidance actions. Ultrasonic ranging has
a lower cost and more stable functionality, but its accuracy
is generally at the centimeter level; moreover, it is easily
disturbed by coal dust migration, so the probability of error
reporting is relatively high.

F. VISUAL ALGORITHM SIMULATION BASED ON
VIRTUAL REALITY
An algorithm used in the vision of a CMRR must be tested
and debugged many times before it can meet the application
requirements. However, field testing for a coal mine requires
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FIGURE 19. The unstructured environment of a coal mine after an
accident [52], [59].

a great deal of technical support and funding, and the testing
cycle is very long. The development of virtual reality technol-
ogy provides support for solving this problem. Virtual reality
has the characteristics of immersion and interactivity, which
can be used to test robot vision algorithms. Current popular
virtual reality platforms include Virtools, Unreal Engine, and
Unity3D, etc. Unity3D is a professional game engine that
uses C# as the scripting language, and it can render a virtual
reality world that includes roadways, obstacles, tools, railway
tracks, coal dust, water vapor, and trapped people. Moreover,
the Unity3D platform can also simulate the motion control of
a robot from the perspective of virtual cameras. For instance,
Wang et al. [68] established an algorithm test platform for the
vision system of a CMRR by using virtual reality technology.
The Unity3D platform was used for environment modeling.
The virtual environment consisted of virtual objects and a vir-
tual robot; Fig. 17 (a) and (b) show a simulated roadway scene
with moisture and coal dust distribution, respectively [68].
Additionally, OpenCV was encapsulated into the Unity3D
platform so that the vision algorithm in OpenCV could be
called directly. As shown in Fig. 18, the virtual cameras were
used to collect images of the virtual world. To eliminate
the influence of coal dust and other interference factors, the
histogram equalization algorithm in OpenCV was used to
enhance the image after format conversion. As determined
by the processing results, the command was sent to the sim-
ulator by the operator to control a virtual robot movement.
The results showed that the gray distribution of the image
acquired by the virtual cameras was more uniform after pro-
cessingwith the histogram equalization algorithm. Therefore,
the visual function of a CMRR can be tested by virtual reality
technology.

IV. TECHNICAL CHALLENGES AND DEVELOPMENT
TRENDS OF BINOCULAR VISION FOR CMRRs
A. TECHNICAL CHALLENGES
A coal mine environment after an accident is shown in Fig. 19
[52], [59]. Its nonstructural features bring challenges to the
binocular vision perception of the CMRR, which are primar-
ily manifested as described below.

1) THE BALANCE BETWEEN THE SPATIAL CONSTRAINTS OF
THE ROADWAY AND THE BASELINE DISTANCE OF THE
BINOCULAR CAMERA
A wider roadway is less favorable for the support, so the
feasible area of a coal mine is very narrow. To enable a CMRR

to pass along the roadway smoothly, its structure should be
compact and its size should be reduced as much as possible.
For instance, the ANDROS Wolverine robot is large, and
it is inconvenient to move along a roadway, so its rescue
ability is not good [10]. Consequently, in the installation
of the binocular camera, space limitations must be consid-
ered. From Eq. (1), we can see that the baseline distance b
directly affects the target depth D. Generally, the accuracy
of the depth measurement increases with the increase in the
baseline distance, but the accuracy of the binocular parallax
decreases with the increase in the baseline distance, so deter-
mining the appropriate baseline distance is critical for the
quality of the depth map. Therefore, the difficulty lies in bal-
ancing the relationship between spatial installation require-
ments and the baseline distance according to the coal mine
environment.

2) THE EFFECTS OF MOTION BLUR ON THE ROBUSTNESS
OF THE BINOCULAR VISION SYSTEM
After a coal mine accident, supporting equipment, trans-
portation equipment, water supply and drainage equip-
ment, etc. are typically severely damaged. In addition, scat-
tered mechanical parts, stones, coal, etc. are distributed
on the ground, so the terrain of the coal mine becomes
extremely complicated [56]. In the process of moving for-
ward, the binocular camera of a CMRR will vibrate and
shake, resulting in different degrees of motion blur in the
images collected by the camera. Motion blur reduces the
feature information of the image, increases the difficulty
of feature extraction, reduces the matching rate, and causes
algorithm failure in serious cases, which greatly restricts the
robustness of the binocular vision system. Therefore, it is a
technical challenge to improve the image stabilization and
vibration reduction to reduce the impact of motion blur on
the robustness of the binocular vision system.

3) THE CALIBRATION AND COORDINATION OF THE
MULTI-DEGREE-OF-FREEDOM BINOCULAR CAMERA
Generally, after a camera is calibrated, its position is fixed,
which improves the imaging stability but limits the visual
range of the CMRR. Given the urgency of a rescue mis-
sion, a binocular camera needs to look at different areas.
By increasing the number of rotational and pitch degrees of
freedom of the camera, it can explore multiple areas. How-
ever, when the camera position changes, its external param-
eters also change, and multiple calibrations will cause a lag
in the acquired information. Consequently, the difficulty lies
in calibrating a multi-degree-of-freedom binocular camera
online in real time. Additionally, a multi-degree-of-freedom
binocular camera can achieve independent motion, so there
is a technical bottleneck in effectively coordinating the scene
information acquired by the binocular camera, completing the
automatic splicing and fusion of 3D point clouds in multiple
fields of view, and ultimately meeting the requirements of
convergence control.
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4) THE UTILIZATION OF THE AUXILIARY MATCHING
CRITERION AND THE REDUCTION OF MATCHING DIFFICULTY
Stereo vision matching is the most important and difficult
step in the process of binocular vision perception of the
environment for a CMRR [65]. Low illumination and moving
obstacles in the roadway seriously affect the effectiveness of
stereo vision matching, leading to the nonlinear distortion
and gray distortion of the image. Therefore, in a coal mine
environment, using the environmental features as auxiliary
matching criteria to provide additional constraint information
for stereo vision matching and to reduce the matching diffi-
culty is a technical problem that restricts the efficient visual
exploration of CMRRs.

B. DEVELOPMENT TRENDS
Future research is moving towards high precision, large
depth, a wide field of vision, high reliability, and self-
learning. This can mainly be seen in the topics described
below.

1) MULTISENSOR INFORMATION FUSION
In the face of the complexity and uncertainty of the unstruc-
tured environment of a coal mine, a single binocular cam-
era has the problems of a low target signal-to-noise ratio
and a low ranging accuracy, which make it difficult to fully
meet the working needs of CMRRs. One way to solve these
problems is to carry multiple ranging sensors at the same
time and achieve information complementarity through sen-
sor information fusion technology. In engineering applica-
tions, sensor information fusion refers to the integration and
processing of sensor information from different sources and
modes according to certain algorithms and strategies in order
to describe the sensed objects accurately and reasonably [69].
Information fusion can enhance the availability of data and
reduce fuzziness; additionally, it can increase the coverage of
time and space [70].Therefore, based on a binocular camera,
CMRRs can be equipped with auxiliary sensors such as lidar
sensors, infrared sensors or inertial measurement units [71]–
[75]. Then, the multidimensional information can be inte-
grated, which can effectively improve the robustness, adapt-
ability, and fault tolerance of the robot’s perception system,
more accurately obtain the key information of the accident
site, and provide a good foundation for the path planning
and autonomous decision-making of the robot. The concep-
tual framework of multisensor information fusion is shown
in Fig. 20; after preprocessing and parameterization of the
image information acquired by multiple sensors, information
fusion can be performed. Typical information fusion methods
include neural networks, Bayesian estimation, Kalman filter-
ing, etc.

In addition, downhole light is relatively dim, and there
is a large amount of coal dust in the air during migration
movements, so a single image feature acquired by a binoc-
ular camera cannot completely describe the entire scene in
the field of view. Image fusion technology can combine the

FIGURE 20. Multisensor information fusion framework.

features of multiple images describing the same scene into
a composite image with more information [76]. The use of
image fusion technology can significantly reduce the output
redundancy and greatly improve the effective information.

2) EXPAND THE FIELD OF VIEW WITH A FISHEYE LENS
A CMRR needs to construct an environmental reference
in a large area in the shortest possible time through the
perception of visual sensors. An ordinary binocular camera
uses a conventional lens, and its field-of-view angle is small.
A fisheye lens is a type of ultrawide-angle lens, which has a
wide perspective and can obtain the information of a whole
airspace and time domain, so it is widely used in many fields
such as autonomous navigation, augmented reality, engineer-
ing measurement, and real-time monitoring [77], [78]. For
instance, Cao et al. [79] proposed a wide-range scene recon-
struction method based on fisheye lens imaging. It was used
to reconstruct a lunar terrain, and simulation experiments
showed that the fisheye camera could recover 3D scene infor-
mation over a larger range than an ordinary camera. Similarly,
if a fisheye lens is mounted on a binocular vision system,
a downhole image with a large field of view can be acquired,
which can provide more visual information for the robot’s
autonomous obstacle avoidance and navigation process. The
imaging model of a fisheye lens is shown in Fig. 21. Its
imaging surface is spherical, and the mapping between the
object point and the projected point is nonlinear, so it has the
inherent defect of a large distortion [80], [81]. Therefore, it is
necessary to use a more intelligent algorithm to correct the
distortion and compensate for the inclination of the image
when using a fisheye lens than when using a regular lens.
Many scholars have done in-depth research in this area. For
instance, Lee et al. [82] proposed an image-based distortion
parameter estimation algorithm. This method is relatively
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FIGURE 21. Fisheye lens imaging model.

intelligent and has a wide application range. Zhang et al. [83]
proposed a correction method based on an ellipsoid function
model. This method can obtain satisfactory correction results
by adjusting the variables in the function model.

Additionally, it is worth mentioning that a fisheye lens
and an ordinary lens can be used in combination to achieve
complementary advantages. A binocular fisheye camera can
obtain a wide range of scene information, while an ordinary
binocular camera can obtain clear image features. If the depth
information obtained from the two is integrated into a unified
scene, large-scale and high-precision 3D reconstruction can
be achieved.

3) DEPTH ESTIMATION BASED ON BINOCULAR DISPARITY
AND MOTION DISPARITY
When our line of sight moves laterally, the difference in the
speed and direction of an object in our field of vision will
cause motion parallax in the retina. As a kind of depth clue,
motion parallax has a higher intensity than other monocular
clues [84]. Binocular parallax and motion parallax have their
own advantages. The research findings of Mansour et al. [85]
indicate that the motion parallax of robots outperforms binoc-
ular parallax for distant features of a target and absolute depth
estimation error, while binocular parallax is more accurate for
near ranges. Therefore, a perception system can use binocular
parallax clues and motion parallax clues at the same time.
A robot with both types of clue perception can perform depth
estimation in a wide range; additionally, when binocular par-
allax clues are unavailable, motion parallax clues can provide
depth information alone, which can greatly improve the relia-
bility of the perception system. Furthermore, according to the
research findings of Bradshaw and Rogers [86], in calculating
the depth information of the binocular disparity and motion
disparity, they are not simply linear superimpositions but
interact nonlinearly. Therefore, future research in this area
should focus on two points. One is eliminating the parallax
compression and interference caused by the joint action of
the two clues and then combining them organically for under-
ground exploration. The other is intelligently adjusting the
primary and secondary effect of the two clues according to
the scene features.

4) SELF-PERCEPTION AND SELF-LEARNING BASED
ON ACTIVE VISION
Biological studies indicate that human eye movements can be
divided into autokinetic and forced movements. The former
is controlled by human consciousness, and the latter is not
controlled [87]. The research findings of Lonini et al. [88]
revealed that active vision can guide the flow of visual infor-
mation in the cycle of perception and movement, thereby
guiding efficient self-learning activities. Lelais et al. [89] pro-
posed a perception model based on active binocular-motion
vision. Through the application of active coding techniques,
this model can effectively encode the visual signals generated
by the motion of objects and can improve the coding effi-
ciency autonomously. Ramakrishnan et al. [90] emphasized
that robots must adapt to a changing environment and actively
collect information in search-and-rescue missions. To sum-
marize, an active binocular vision control system based on
bionics principles should be constructed by simulating the
biological control network of human eye movement. This
could effectively solve the problem of the poor real-time
performance of the perception system and ensure that the
rescue robot can quickly and accurately direct its sight at
a target; additionally, when an obstacle or camera produces
unpredictable motion, such a system could perform active
tracking and motion compensation, enhancing the interactiv-
ity between the robot and the environment. Fuzzy logic can
combine human fuzzy consciousness with machine vision for
active perception, so active binocular vision based on fuzzy
logic control should be the focus of the visual field of CMRRs
in the future.

V. CONCLUSION
The use of CMRRs to carry out the task of detection and
rescue in mines is very important. Binocular vision can
help robots to perform obstacle recognition and 3D scene
reconstruction, so the development of its key technologies
is closely related to CMRRs. This paper primarily does the
following: First, the research status of camera calibration and
stereo vision matching in binocular vision is introduced. Sec-
ond, the latest research progress for CMRRs based on binoc-
ular vision is reviewed, including explosion-proof designs,
obstacle recognition, stereo vision matching, intelligent algo-
rithms, ultrasonic-assisted ranging, virtual reality simulation.
Finally, several technical challenges and future development
trends in binocular vision applied to future CMRRs are
proposed.
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