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ABSTRACT Hierarchy and centrality are two popular notions used to characterize the importance of entities
in complex systems. Indeed, many complex systems exhibit a natural hierarchical structure, and centrality
is a fundamental characteristic allowing to identify key constituents. Several measures based on various
aspects of network topology have been proposed in order to quantify these concepts. While numerous
studies have investigated whether centrality measures convey redundant information, how centrality and
hierarchy measures are related is still an open issue. In this paper, we investigate the association between
centrality and hierarchy using several correlation and similarity evaluation measures. A series of experiments
is performed in order to evaluate the combinations of 6 centrality measures with 4 hierarchy measures across
28 diverse real-world networks with varying topological characteristics. Results show that network density
and transitivity play a key role in shaping the redundancy between centrality and hierarchy measures.

INDEX TERMS Hierarchy, centrality, complex networks, influential nodes.

I. INTRODUCTION
Networks offer a powerful representation of complex systems
in which nodes represent the elementary units of the system
and links represent their interactions. They arewell adapted to
investigate the relationships between structure and dynamics
in such systems from the macroscopic to the microscopic
level. At the microscopic level, the various roles of the nodes
are induced by their specific pattern of connectivity. These
interactions among nodes can cause them to exhibit varying
levels of complexity. In turn, arising levels of complexity
hinder the process of identifying the most influential nodes
in a complex network [1]. Studying these interactions and
quantifying the importance of the nodes have attracted a
great number of researchers. Indeed, identifying key nodes
is of prime interest in a wide range of strategic applica-
tions. Such applications span on fundamental fields such as
prevention of epidemic spreading and vaccination strategies,
prediction of genes using biomolecular interaction networks,
maximizing information diffusion of marketing campaigns,
ensuring robust power grids, identification of climate change
and ocean currents, finding key heads in terrorist networks,
and many more [2]. Although, characterizing the importance
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of the nodes in a network can be apprehended from various
perspectives, the vast majority of works concern centrality
and hierarchy.

Centrality is one of the main research topics in network
science literature. Centrality measures quantify the ability of
a node to influence the other nodes of the network based
on the topological properties that are driving the network
dynamics [3]. Early work has identified the key aspects of
centrality. First, the number of local connections of a node
and its ability to spread locally the information. Second,
the position of a node in the network and its importance in
the global exchange of information. A multitude of central-
ity measures have been proposed to date [4]. They can be
classified into different groups. Indeed, they can be seen as
global/path-based or local/neighborhood-based [5], [6]. They
can be based on iterative-refinement process [6]. They can
even be multidimensional by combining different measures
together [7] or by incorporating the influence of the commu-
nity structure [8]–[10].

Hierarchy is one of the foundations to understand com-
plex networks, as they often take the form of hierarchical
structure [11]. Indeed, hierarchy is ubiquitous throughout
numerous natural or man-made complex networks. It can be
observed in animal complex systems such as leader-follower
network of pigeon flocks, biological complex networks such
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as neural networks, transportation networks such as road
networks, within organizations and between organizations,
in social networks, and even the way we speak [12], [13]. One
may ask why does hierarchy exist after all? Simon [11] tried
to answer by his famous ‘‘watchmaker parable’’. It is having
structure within systems such that each subsystem depends on
another, and it results in more efficiency and resiliency than
a random structure.

Several hierarchical measures based on different defini-
tions of hierarchy have been developed [14]–[20]. Gener-
ally, they are used to quantify the hierarchical level of the
whole network. Here, the focus is on the hierarchical level of
individual nodes. One can distinguish two types of hierarchy
measures in this case: nested and flow hierarchy. In nested
hierarchy higher-level elements are contained in lower-level
elements while in flow hierarchy nodes are arranged in dif-
ferent levels such that influential nodes are at a higher level
and they are connected to the nodes they influence. Main
nested hierarchy measures (k-core and k-truss) are based
on hierarchical decomposition of nodes [19]–[21]. To our
knowledge, Local Reaching Centrality’’ (LRC) is the only
flow hierarchy measure used to quantify node hierarchy [14].

Although the notions of hierarchy and centrality are quite
different from a sociological point of view [22], the dis-
tinction seems more subtle when it comes to the associated
measures. Indeed, both try to quantify the ‘‘importance’’ of
a node based on topological information. One can consider
that the most influential node is the one with the highest
number of connections, or that connects two communities
with each other, or the one allowing to reach all neighbors
the fastest. This may be the case in some networks, but
high centrality nodes aren’t necessarily the most strategically
located in terms of hierarchy [23]. In theory, these measures
should capture different roles in the network. There have been
some works on centrality measures incorporating some hier-
archical aspects, such as social centrality, control centrality,
and improved betweenness centrality [24]–[26].

Although there has been plenty of work [27]–[30] in order
to study the interactions of the various centrality measures,
this study is to our knowledge the first attempt to conduct a
systematic empirical investigation about how centrality and
hierarchy measures are related and what is the impact of the
network topology on this relationship.

Centrality and hierarchy are two facets of influence. There-
fore, whether the measures derived to quantify these two
concepts reflect this duality is a fundamental issue. Indeed,
despite conceptual differences between these two types of
measures they may behave similarly on real-world networks.
Moreover, it is of prime interest to know which measures can
be associated in order to capture different aspects of network
topology in a practical situation.

To investigate this issue, a set of six measures spanning
the three main types of centrality (neighborhood-based,
path-based and iterative refinement-based) together with
a set of four hierarchy measures representing three cate-
gories (nestedness-based, flow-based, and mixed-based) are

compared across a large set of real-world networks originat-
ing from various fields. Networks are chosen in order to span
a wide range of basic topological property values such as
density, transitivity and assortativity. A systematic evaluation
of the various combinations of centrality and hierarchy mea-
sures is performed using three correlation measures (Pearson,
Spearman, Kendall Tau and two similarity measures
(Jaccard, RBO) for every network in order to explore to which
extent the various combinations convey different information.
Variations of these relations across networks are studied
in order to clarify the relationship between hierarchy and
centrality of nodes, and network topology.

The main contributions of this work are threefold:
1) A systematic investigation of how centrality measures

are related to the main hierarchy measures in a number
of real-world networks is performed.

2) The interplay between hierarchy and centrality
measures is related to the basic network topological
properties.

3) The most orthogonal hierarchy and centrality mea-
sures, whatever the network topological characteristics,
are specified.

The rest of the paper is organized as follows. Section II
introduces the hierarchy measures under study. Section III
presents the centrality measures. The evaluation measures
used to investigate the relationship between hierarchy and
centrality are presented in section IV. Section V provides
an overview of the datasets used and describes the methods
applied. Section VI is devoted to the results and section VII
develops the discussion. Finally, section VIII concludes the
article.

II. HIERARCHY
We can distinguish two types of hierarchies when it comes to
network structure:

i Nested hierarchy: Hierarchy imposed by a system
considered on a higher level being composed of sub-
systems on a lower level that also are composed of
subsystems, until we reach the lowest level (can also
be called inclusive hierarchy) [31].

ii Flow hierarchy: Hierarchy imposed by the flow of
resources that are essential for the system to be main-
tained. Entities on a higher level influence the ones
at a lower level (can also be called control hierarchy)
[14], [15], [31].

Flow hierarchy is related to the flow of resources essential
to the network. It is typical of systems where resources are
shared between entities to produce and maintain, such as
food webs, software networks, and production and supply
chain networks. Nested hierarchy is linked to the notion of
organization through an inclusion process. The elementary
parts of the system are divided into groups that are further
divided into groups and so on until the core of the system is
reached. The level of hierarchy is linked to the final group the
parts belong to [32].
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In network science literature, hierarchy is often used to
quantify the macroscopic network organization [14]–[20].
In the following, we restrict our attention to the hierarchy
measures linked to the microscopic network organization, i.e.
at the node level. It can be defined as follows:

Hierarchy of nodes: Assume thatG(V ,E) is an undirected
and unweighted graph where V is the set of nodes of size
N = |V | nodes and E ⊆ V × V is the set of edges. The
hierarchy of a node vi ∈ V is given by α(vi). The function
α(vi) is a discrete measure when based on nestedness or
mixed hierarchy (α(vi) → Z+) and a real measure when
based on flow hierarchy (α(vi)→ R+).

A. NESTED HIERARCHY
Nested hierarchymeasures are based on the decomposition of
the original network resulting in a number of nested entities
such that each entity contains or is part of another. The net-
work decomposition forms a hierarchy of induced subgraphs
Gfk (V

f
k ,E

f
k ) ⊆ G(V ,E) where f is the property characterizing

the hierarchy and k is its value shared by the nodes.
Core and truss are the two main decomposition methods

used to build nested hierarchy. For more information about
hierarchical decomposition, one can refer to [21].

1) K-CORE NESTED HIERARCHY
The k-core of a graph G is the maximal subgraph Gck such
that every node has at least k neighbors within the subgraph.
The k-core subgraphs Gck are nested. Formally:

G ⊇ Gckmin ⊇ Gckmin+1 ⊇ . . . ⊇ Gckmin+n . . . ⊇ Gckmax

where:
• kmin is the minimum degree value of the nodes in G
• Gckmax is called the maximal k-core subgraph of G
A node vi has a core number c(vi) = k , if it belongs to a

k-core Gck but not to the (k + 1)-core Gck+1.
The k-core subgraphs can be extracted through a peeling

process. Starting from the nodes with the minimum degree
k = kmin, nodes that do not have a degree value of kmin+1 are
removed from the graph and their core number is set to their
degree value kmin. This process is iterated by computing the
k + j-core. It ends when the maximum value kmax is reached
such that the graph Gckmax contains a non-empty k-core sub-
graph. The nested structure of k-cores reveals a hierarchy by
containment. The level of hierarchy of a node vi is given by:

αc(vi) = kmax − (c(vi)− 1) (1)

Figure 1 represents a toy example to illustrate the hier-
archical decomposition of a network according to the vari-
ous hierarchy measures introduced in this section and their
associated level of hierarchy. The k-core hierarchical decom-
position of the given example is reported on the left side
of the figure. The minimum degree of the nodes is one,
so to extract the 1-core decomposition of the network Gc1,
nodes with a degree smaller than 2 are pruned. A core
number c(vi) = 1 is assigned to the set of removed nodes

V c
1 = {2, 3, 4, 12, 14, 15, 16, 19}. Then all the nodes with a

degree value smaller than 3 are removed from the remaining
network Gc2. The core number of the set of removed nodes
V c
2 = {5, 6, 7, 8, 9, 10, 11, 13, 17, 26} is set to c(vi) = 2.

The process continues by removing from Gc3 all the nodes
with a degree value smaller than 4 and assigning to these
nodes a core number c(vi) = 3. Removing this set V c

3 =

{1, 18, 20, 21, 22, 23, 24, 25} of nodes, the maximum degree
value of the original network is reached, and the remaining
network Gc4 is empty.
The hierarchy level (αc) of the nodes in the set V c

k is
given by kmax − (j-core −1). We have kmax = 3, therefore,
V c
3 contains the nodes of hierarchy level 1 and so on.

2) K-TRUSS NESTED HIERARCHY
The truss decomposition is inspired by k-core. However,
it considers the edges rather than the nodes, and the triangles
they participate in. The k-truss of a graph G is the maximal
subgraphGtk such that every link is contained in at least k−2
triangles within the subgraph. The k-truss subgraphs Gtk are
nested. Formally:

G ⊇ Gtkmin ⊇ Gtkmin+1 ⊇ . . . ⊇ Gtkmin+n . . . ⊇ Gtkmax

where:
• kmin is the minimum number of triangles an edge
engages in G such that kmin ≥ 2

• Gtkmax is called the maximal k-truss subgraph of G
An edge eij has a truss number t(eij) = k , if it belongs to a

k-truss Gck but not to the (k + 1)-truss Gck+1.
The k-truss hierarchical decomposition can also be

obtained through a peeling process. Starting from k = kmin,
edges that are contained in at least kmin triangles but not
in kmin + 1, are removed and their truss number is set
to kmin. Note that kmin starts from 2. The set of result-
ing isolated nodes V t

kmin−2
are also removed and assigned

a truss value kmin − 2. The process is iterated by com-
puting the kmin + 1-truss. It ends when the maximum
value kmax such that the graph Gtkmax contains a non-empty
k-truss subgraph is reached. k-truss also reveals a hierarchy
by containment. The level of hierarchy of a node vi is given
by:

αt (vi) = kmax − kmin − (t(vi)− 1) (2)

In the example of figure 1, the k-truss hierarchical
decomposition is shown in the middle. Some edges are not
engaging in any triangle, kmin is set to 2. This results in
the 0-truss decomposition of the network Gt0, where edges
which do not participate in any triangle are removed. Accord-
ingly, an edge truss number t(eij) = 0 is assigned to
removed edges. The set of nodes isolated by the removal
of the edges are also removed and assigned the same
truss number V t

0 = {2, 3, 4, 12, 13, 14, 15, 16, 17, 19, 26}.
Then, k is incremented to 3. All edges that engage in
one triangle (3 − kmin) but not in two triangles are
removed. They are assigned an edge trussness te(eij) = 1.

VOLUME 8, 2020 129719



S. Rajeh et al.: Interplay Between Hierarchy and Centrality in Complex Networks

FIGURE 1. Obtaining hierarchy ranking of nodes for graph G with N = 26 and E = 38. (A) Example of tree-based view of G with irregularities and
(B) radial-based view of G with irregularities. The irregularities are shown in different colors. The blue links indicate ‘‘shortcut’’ connections. The orange
links indicate in-layer connections. The green links indicate fully connected trees at a specific rank. Hierarchical decomposition based on k-core
(on the left) and k-truss (in the middle) and triangle participation (on the right) are illustrated.

The set of associated isolated nodes are also removed V t
1 =

{5, 6, 7, 8, 9, 10, 11, 22, 23, 24, 25} resulting in the 1-truss
network Gt1. The process continues by removing all edges
that participate in two triangles and not three triangles are
removed. The set of removed edges are assigned a truss
number t(eij) = 2 together with the set of nodes isolated by
this operation V t

2 = {1, 18, 20, 21}. The maximum trussness
is reached atGt2 because there is no edge participating inmore
than two triangles. The truss values range from 0 to 2.

The hierarchy level (αt ) of the nodes in the set V t
k is given

by kmax − kmin − (j-truss −1). We have kmin = 2, kmax = 4
and t(vi) = 2, therefore, V c

2 contains the nodes of hierarchy
level 1 and so on.

B. FLOW HIERARCHY
Many real-world networks such as information networks and
production networks are better characterized by the flows of

resources rather than a containment ordering. In such systems
the entities are organized into a flow of hierarchy.

A hierarchymeasure based on flow assigns a real hierarchy
value to each node (α(vi) → R+). The hierarchical level is
based on this value. Indeed, if |α(vi)| < |α(vj)| : ∀vi, vj ∈ V
then node vj is more important (higher hierarchically) than
node vi.

There have been a handful of work on flow
hierarchy [15]–[17], but most of the work quantifies the
hierarchy of the whole graph, which is not our focus. To our
knowledge, Local Reaching Centrality (LRC) is one of
the flow hierarchy measures quantifying the hierarchy of
nodes.

1) LOCAL REACHING CENTRALITY FLOW HIERARCHY
LRC was originally developed for directed and weighted
graphs, considered as a generalization of the m-reach

129720 VOLUME 8, 2020



S. Rajeh et al.: Interplay Between Hierarchy and Centrality in Complex Networks

centrality that takes into consideration nodes that are withinm
distance of a given node [14]. The authors consider (m = N )
where N is the number of nodes in G and define LRC as
follows:

αl(vi) =
1

(N − 1)

N∑
j=1

∑dout(vi,vj)

k=1 ω
(k)
vi (vj)

dout (vi, vj)

 (3)

where:
• dout (vi, vj) is the length of the directed path that goes
from node vi to vj via an outgoing edge such that
dout (vi, vj) <∞

• ωkvi is the weight of the k-th edge on its given path
• N is the total number of nodes in the network
However, LRC can be used for unweighted and undirected

graphs. In this case, it reduces to closeness centrality for
disconnected graphs:

αl(vi) =
1

(N − 1)

N∑
j=1

1
d(vi, vj)

(4)

where:
• d(vi, vj) is the distance between nodes vi and vj such that
d(vi, vj) <∞

• N is the total number of nodes in the network
From equation 3 and 4, we can see that the hierarchy is

a continuous number between [0,1]. The higher the value,
themore the node is able to impact other nodes, and the higher
it is in terms of hierarchy.

C. MIXED HIERARCHY
We propose to consider ‘‘Triangle Participation’’ as a mixed
hierarchy measure for nodes [22]. Indeed, it has the essence
of both nested and flow hierarchy. Note that this measure is
generally not used to quantify hierarchy but rather as a ratio in
community detection problems [33]–[36]. This proposition is
based on three main reasons:

i It can be considered as a flow hierarchy measure as it
conveys flow of information probability according to
how many times a node participates in a triangle. The
higher the number of triangles’ participation, the more
the node is able to diffuse and acquire information.

ii Simultaneously, it can be viewed as a nested hierarchy
measure as it allows to categorize the nodes according
to the number of triangles they participate in. The hier-
archy level of a node is therefore based on the density
of the motifs that emerge as for k-core and k-truss.

iii k-core and k-truss are based on a more complex extrac-
tion process that may be prohibitive on large scale
networks.

The hierarchy measure (α(vi)→ Z+) divides the nodes V
into groups V f

k ∈ G where f is the property function defined
on the network and k is the property value shared by the
nodes. Groups are not subgraphs since they are not based on
higher levels containing lower levels as k-core and k-truss.
If nodes vi, vj share the same property value k , then they share

the same mixed hierarchy level α(vi) → Z+. Hence, both
nodes belong to the same group (set) where vi, vj ∈ V

f
k .

1) TRIANGLE PARTICIPATION MIXED HIERARCHY
To represent the mixed hierarchy measure, we need to first go
on a couple of definitions. Considering graph G(V ,E):
• Let the adjacency matrix A = (ai,j) describe the connec-
tivity of the graph G such that:

ai,j =

{
1, if node vi is connected to node vj
0, otherwise

(5)

• Let the neighborhood of any node vi be defined as the
set Np(vi) = {vj ∈ V : (vi, vj) ∈ E} at length p, where
p = 1, 2, . . . ,D. D is the diameter of G. Accordingly,
two nodes are neighbors of order Ap if there’s a minimal
path connecting them at p steps.

Let nodes u, v,w be three nodes forming a closed
triangle 1uvw. Triangle participation of a node vi is simply
the number of triangles it is in. It is defined as:

Tp(vi) =
∑
|1uvw| (6)

where |1uvw| is the number of times node vi exists in triangle
1uvw, ∀u, v,w ∈ V . The level of hierarchy of a node vi is
given by:

αtp(vi) = kmax + 1− Tp(vi) (7)

Referring to the example in figure 1, the triangle par-
ticipation hierarchical computation is shown on the right.
Starting from kmin = 0, that is nodes not participating
in any triangle, we obtain the first group of nodes V tp

0 =

{2, 3, 4, 12, 13, 14, 15, 16, 17, 18, 19}. kmin is now incre-
mented by 1, obtaining the second group of nodes, which par-
ticipate in 1 triangle only V tp

1 = {5, 6, 8, 9, 10, 11, 22, 24}.
Nodes in one group do not belong to another group as the
kmin value is the highest number of triangles they are in.
The process continues until we reach the highest number of
triangles kmax = 5 with V tp

5 = {21}. As it can be seen, there is
no a priori in this approach. The number of triangles for each
node is counted only once (there’s only one blue downward
flash, unlike with k-core and k-truss decomposition). More-
over, there are more levels in mixed hierarchy. In other words,
more heterogeneity among the nodes.

The hierarchy level (αtp) of the nodes in the set V
tp
k is given

by kmax +1−Tp(vi). There are kmax = 5 triangles, therefore,
V tp
5 contains the nodes of hierarchy level 1 and so on.

III. CENTRALITY
Identifying the most influential nodes in a network using cen-
trality measures is one of the main research issues in network
science. For a complete overview about the various measures,
the reader can refer to the surveys [2], [37]. The vast majority
of centrality measures can be classified as neighborhood-
based, path-based or iterative refinement-based measures [6].
While these measures are usually linked to a single
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topological property of the network, recent works turn to
multidimensional definitions [7]–[10], [38]–[40].

Complexity is an important issue of centrality measure-
ment. Measures can be classified as local or global. Global
measures assume the knowledge of the overall network to
compute the centrality of a node, while local measures need
only information in the neighborhood of the node [5], [41].
Of course, global measures are generally more effective, but
at the expense of a higher complexity that can be prohibitive,
especially for large networks [42].

In order to explore the relations between centrality
and hierarchy we choose to restrict our attention to the
most influential centrality measures. According to the
taxonomy adopted in [6], they belong to three main
groupings: neighborhood-based, path-based, and iterative
refinement-based centrality measures.

A. NEIGHBORHOOD-BASED CENTRALITY
Neighborhood-based centrality quantifies the importance of
a node according to the influence it can exert on its local sur-
roundings. Those local and semi-local measures are generally
easy to compute, but they are totally agnostic about the overall
network structure.

1) DEGREE CENTRALITY
The degree centrality of a node is one of the simplest central-
ity measures. It is proportional to the number of neighbors
directly linked to the node. The more connections, the higher
its influence on neighboring nodes. It requires low computa-
tion for identifying important nodes. It is defined as follows:

βd (vi) =
1

(N − 1)

N∑
j=1

aij (8)

where:
• aij is obtained from A1, 1-step neighborhood (p = 1)
• N is the total number of nodes in the network

2) LOCAL CENTRALITY
Local centrality extends degree centrality by increasing the
size of the neighborhood of a node. While degree centrality
consider direct neighbors, local centrality takes into consid-
eration not only direct neighbors, but the neighbors of the
neighbors. This is because the direct neighborhood alonemay
not be fully informative regarding a node’s importance. It is
defined as follows:

βl(vi) =
1

(N − 1)

N∑
j=1

a
′

ij (9)

where:
• a′ij is obtained from A2, 2-step neighborhood (p = 2)
• N is the total number of nodes in the network

B. PATH-BASED CENTRALITY
Path-based centrality measures quantify the ability of a node
to spread information throughout the entire network. As they

consider the paths going through each node, those global
measures are difficult to compute in large-scale networks.

1) BETWEENNESS CENTRALITY
Betweenness centrality quantifies the importance of a node
based on the fraction of shortest paths between any two nodes
that pass through it. It is defined as follows:

βb(vi) =
2

(N − 1)(N − 2)

∑
s,t 6=i

σvi (vs, vt )
σ (vs, vt )

 (10)

where:
• σ (vs, vt ) is the number of shortest paths between nodes
vs and vt

• σvi (vs, vt ) is the number of shortest paths between nodes
vs and vt that pass through node vi

• N is the total number of nodes in the network

2) CURRENT-FLOW CLOSENESS CENTRALITY
Current-flow closeness centrality (also called information
centrality) quantifies the node’s importance according to the
information transmitted along paths [43]. It is defined as
follows:

βc(vi) =
N∑

j=1 rii + rjj − 2rij
(11)

where:
• rij is the amount of information that can be transmitted
from node vi to vj throughout all possible paths

• N is the total number of nodes in the network
rij is an element of the matrix R defined as follows: R = [D−
A+F]−1 where D is a N−dimensional diagonal matrix with
the degree of the nodes along its diagonal and 0 everywhere
else, A is the adjacency matrix of the network, and F is a
matrix with all its elements equal to 1.

C. ITERATIVE REFINEMENT-BASED CENTRALITY
As path-based centrality measures, iterative refinement cen-
trality measures make use of the topology of the overall
network structure. Therefore, they are global centrality mea-
sures. However, in this case, a node’s importance is linked to
the importance of each of its neighbors.

1) KATZ CENTRALITY
Katz centrality quantifies the importance of a node in such a
way that it takes into consideration the influence of all nodes
and their paths with respect to it. However, as nodes become
more distant from the node under study, their influence is
attenuated. It is defined as follows:

βk (vi) =
∑
p=1

∑
j=1

spapij (12)

where:
• apij is the connectivity of node vi with respect to all the
other nodes at Ap

• sp is the attenuation parameter where s ∈ [0,1]
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As the distance between nodes p increases, the attenuation
factor sp decreases the influence of the other nodes vj con-
nected to vi. Note that the attenuation parameter s should be
strictly less than the inverse of the largest eigenvalue (λmax) of
the adjacencymatrixA into have a solution for Katz centrality.

2) PageRank CENTRALITY
PageRank centrality works in a similar way that Katz central-
ity. It also takes into consideration the quantity and quality
of nodes. However, PageRank is based on the probability of
random walks. The adjacency matrix A is transformed to a
stochastic matrix P representing the probability of visiting a
node. Then, the centrality works iteratively using the power
iteration till reaching a steady state. Originally, it is defined on
directed graphs. The undirected version is defined as follows:

βp(vi) =
1− d
N
+ d

∑
vj∈Mi

βp(vj)
kj

(13)

where:
• βp(vi) is the PageRank centrality of node vi
• βp(vj) is the PageRank centrality of node vj
• Mi is the set of nodes linked to node vi
• kj is the number of links from node vj to node vi
• d is the damping parameter where d ∈ [0,1] ensuring
convergence in case kj = 0

• N is the total number of nodes in the network
Note that the damping parameter value d is fixed at 0.85 in
the subsequent experiments.

IV. EVALUATION MEASURES
In this section, the various correlation and similarity mea-
sures used to investigate the relationship between hierarchy
and centrality measures are presented. In order to give more
weight to our findings, we choose not to rely on a single
evaluation measure but to use multiple ones. Indeed, doing
so allows us to see if the various measures are in agreement.
In addition to these measures, the k-means algorithm and
the Schulze voting method used for deeper investigation are
briefly presented.

A. CORRELATION
Three correlation measures are used to compare the set
of hierarchy values with the set of centrality values for a
given triplet (network, hierarchy measure, centrality mea-
sure). Pearson correlation is based on the values to compare,
while Spearman correlation and Kendall Tau are rank-based
comparisons.

1) PEARSON CORRELATION
Pearson’s correlation coefficient is a popular measurement
for the linear strength and direction between two variables.
Its value ranges between [−1, +1]. The value −1 indicates
a high negative correlation while the value +1 indicates a
high positive correlation. A value of 0 means that there is no
correlation at all.

Assume that the set of hierarchy measures αi and that the
set of centrality measures βi for a network of size N is given,
Pearson’s correlation coefficient between the two measures is
computed as follows:

ρp(α, β) =

∑N
i=1 (αi − ᾱ)

(
βi − β̄

)√∑N
i=1 (αi − ᾱ)

2∑N
i=1

(
βi − β̄

)2 (14)

where:

• ᾱ =

∑N
i αi
N is the average of the hierarchy measure

values
• β̄ =

∑N
i βi
N is the average of the centrality measure

values
• N is the number of nodes in the network

2) SPEARMAN CORRELATION
Spearman’s correlation coefficient is a modified version of
Pearson’s. Considering the ranks of the variables instead of
their raw value, it measures their monotonic relationship.
Monotonic relationships are less restrictive than linear rela-
tionships in case there is large variance but a relationship
between variables still exists. Spearman’s correlation values
range also between [−1, +1]. Assume that the set of hierar-
chymeasures αi and that the set of centrality measures βi for a
network of sizeN is given, Spearman’s correlation coefficient
between the two measures is:

ρs(α, β) =

∑N
i=1(R(αi)− R(α))(R(βi)− R(β))√∑N

i=1(R(αi)− R(α))2
∑N

i=1(R(βi)− R(β))2

(15)

where:

• R(αi) and R(βi) represent the rank of the i-th hierarchy
measure and centrality measures respectively

• R(α) and R(β) are the average value of the ranks of the
hierarchy and centrality measures respectively

• N is the number of nodes in the network

3) KENDALL TAU’S CORRELATION
Kendall Tau’s correlation is a modified version of Spear-
man’s. It also considers ranks and its values ranges between
[−1, 1]. Furthermore, it takes into consideration the order of
ranks as well. Suppose thatR(α) andR(β) are the ranking lists
of the hierarchymeasure and centrality measure, respectively.
Kendall Tau’s correlation determines the strength of the ordi-
nal association based on the concordance (ordered in the same
way) and discordance (ordered differently) between the pairs
in the ranking lists R(α) and R(β). A pair of nodes vi and vj
is concordant if R(α(vi)) > R(α(vj)) and R(β(vi)) > R(β(vj))
or if R(α(vi)) < R(α(vj)) and R(β(vi)) < R(β(vj)). While
the pair is discordant if R(α(vi))) > R(α(vj)) and R(β(vi)) <
R(β(vj)) or if R(α(vi)) < R(α(vj)) and R(β(vi)) > R(β(vj)).
Kendall Tau’s version that takes into consideration ties as
well is used. It is denoted by τb, where the pair is tied if
R(α(vi)) = R(α(vj)) and/or R(β(vi)) = R(β(vj)). Kendall
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Tau’s correlation coefficient is defined as follows:

τb(α, β) =
nc − nd

√
(nc + nd + x)(nc + nd + y)

(16)

where:
• nc is the number of concordant pairs
• nd is the number of disconcordant pairs
• x is number of tied pairs on the hierarchy α variable
• y is number of tied pairs on the centrality β variable

B. SIMILARITY
Two similarity measures are used to compare the set of
hierarchy values with the set of centrality values for a given
triplet (network, hierarchy measure, centrality measure). Jac-
card similarity is used to measure the proportion of common
nodes in the top-k values in the two sets, while Rank-Biased
Overlap (RBO) allows to compare the top-k values and also
the entire sets.

1) JACCARD’S SIMILARITY
Jaccard’s similarity index measures the similarity between
two finite sets of data. Suppose that α and β are two sets
containing the labels of a group of nodes extracted using
a hierarchy measure and a centrality measure, respectively
from a given network. The Jaccard index is defined as the
size of the intersection divided by the size of the union of the
sample sets. Formally it is given by:

J (α, β) =
|α ∩ β|

|α ∪ β|
(17)

Jaccard’s similarity index values range between [0,1].
If there are no common nodes in the two sets J = 0, and
J = 1 if all the members of the first set exist in the second
set.

2) RANK-BIASED OVERLAP SIMILARITY
Rank-Biased Overlap (RBO) [44] measures the similarity of
two ordered sets. It is based on Jaccard’s similarity index
but with indefinite sets at specific depth d . It allows giving
more weight to differences at the top of the ranked sets than
differences further down.

Assuming α and β are two infinite ordered sets of the hier-
archy and centrality measures respectively, the RBO between
those two sets is defined as follows:

RBO(α, β) = (1− p)
∞∑
d=1

p(d−1)
|αd ∩ βd |

d
(18)

where:
• p is the probability of continuing to the next rank, while
(1− p) is the probability of stopping at a specific rank

• d is the depth reached on sets α, β from position 1
• |αd ∩ βd |/d is the proportion of the similarity overlap
between hierarchy and centrality sets at depth d

RBO values range between [0,1]. There is no similarity
between the two ranked sets if its value is null. A value
of 1 indicates that the two ranked sets are identical.

C. K-MEANS CLUSTERING ALGORITHM
k-means is an unsupervised clustering algorithm that catego-
rizes objects based on their feature values. The k parameter
specifies the number of clusters, it is an input of the algo-
rithm. Given a set of m samples (m1, m2, . . . , mo) where
each sample is composed of a d-dimensional feature vector,
k-means divides the m observations into disjoint clusters
C = {C1,C2, . . . ,Ck} by minimizing the within-cluster
criterion:

o∑
i=1

min
µj∈C

(||mi − µj||2) (19)

where:

• mi is the d-dimensional feature vector of sample i
• µj is the mean of the samples m in cluster C

The k-means algorithm is used to cluster networks accord-
ing to the various evaluation measures (correlation and sim-
ilarity) across all possible combinations of the hierarchy and
centrality measures used.

D. THE SCHULZE METHOD
The Schulze method [45] is a voting scheme that gives a
single-winner or a sorted list of winners according to votes
as indicated by user preferences. It transforms the lists of
ordered preferences (ties being allowed) into a matrix of
pairwise preferences �. From this matrix, another matrix is
extracted, expressing the strength between pairwise prefer-
encesϒ . Strength extraction is defined on directed paths. The
weakest link from all possible strongest paths between two
candidates determines the strength of the winning candidate.
The Schulze method is given in Algorithm 1. It uses a variant
of the Floyd-Warshall algorithm to compute the strength of
the strongest paths.

The Schulze voting scheme is used to rank the strength of
occurrence among the hierarchy and centrality combinations.
The ranking depends on the combinations’ correlation and
similarity magnitude across the networks used.

V. DATA AND METHODS
This section presents briefly the data used in the experiments
and the experimental process. Note that unweighted and
undirected networks are used. In case the original network
is made of multiple components, only the largest connected
component is retained.

A. DATA
To investigate extensively the relationship between hierarchy
and centrality, 28 real-world networks originating from var-
ious domains such as social, biological, ecological, infras-
tructure networks have been selected. Their sizes range
from tens to thousands of nodes. A brief description of
these networks is provided. Table 1 reports their basic topo-
logical properties. Note that all the datasets are available
online [46]–[49].
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TABLE 1. Basic topological properties of real-world networks under investigation. N is the network size. |E | is the number of edges. kmin,kmax are the
minimum and maximum degree, respectively. < k > is the average degree. < d > is the average shortest path. ν is the density. ζ is the transitivity (also
called global clustering coefficient). knn(k) is the assortativity (also called degree correlation coefficient). γmax is the maximum coreness. ϕmax is the
maximum trussness. * indicates the topological properties of the largest connected component of the network in case it is disconnected.

1) ANIMAL SOCIAL NETWORKS
• Mammals (mammalia-sheep-dominance): The nodes
represent sheep. They are connected if they have a dom-
inance fight against each other. Interactions convey the
need for superiority within a group [46].

• Insects (insecta-ant-colony1-day01): The nodes repre-
sent ants. They are connected in case they are enclosed
within the same trapezoidal regions. Interactions convey
group membership [46].

• Birds (aves-weaver-social): The nodes represent
weaver birds. They are connected if they use the same
bird nest for roosting or building within a year. Interac-
tions convey social projection bipartite [46].

• Reptiles (reptilia-tortoise-network-fi): The nodes rep-
resent tortoises. They are connected if they use the same
hole in the ground for refuge. Interactions convey social
projection bipartite [46].

2) BIOLOGICAL NETWORKS
• Mouse Visual Cortex (bn-mouse-visual-cortex-2):
Nodes are neurons in the visual cortex of the brain that
is responsible for processing visual information. Inter-
actions represent fiber tracts that connect one neuron to
another [46].

• E. coli Transcription: Nodes are Escherichia coli
bacteria regulating the conversion of DNA to RNA,
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Algorithm 1 Schulze Voting Method
Require: C candidates list and �(i, j) matrix consisting of

the number of voters who prefer candidate i over candidate
j
// Step 1: Initialization of Strength Matrix
for i, j = 0 in C where i 6= j do
if �(i, j) > �(j, i) then
ϒ(i, j)← �(i, j)

else
ϒ(i, j)← 0

end if
end for
// Step 2: Strongest Paths Calculation
for i, j = 0 in C where i 6= j do
for k = 0 in C do
if i 6= k and j 6= k then
ϒ(j, k)← max[ϒ(j, k),min(ϒ(j, i), ϒ(i, k))]

end if
end for

end for
// Step 3: Ranking Final Set
for i, j = 0 in C where i 6= j do
if ϒ(i, j) > ϒ(j, i) then
L[i]← L[i]+ 1

end if
sort(L[i])

end for
return L

responding to various biological signals. Interactions
represent transcriptions and regulations of genes [47].

• Yeast Protein (bio-yeast-protein-inter): A protein-
protein interaction network where a protein is connected
to another in case a direct interchange takes place. Inter-
actions represent physical reactions [46].

• Human Protein (maayan-figeys): A protein-protein
interaction of human cells, obtained from a first
large-scale study on humans. Interactions represent
physical reactions [49].

3) HUMAN SOCIAL NETWORKS
• Zachary Karate Club: Members of a karate club
in a university are connected in case they interact
with each other outside the club. Interactions represent
friendship [47].

• Madrid Train Bombings: Nodes are terrorists of the
Madrid train bombing on March 11, 2004. Interactions
represent contact among two terrorists [49].

• Physicians: Nodes are physicians in U.S. towns. Inter-
actions between two physicians represent trust. There is
a link between two physicians if one of them asks for
advice from another, wants to discuss a given topic, or is
his friend [49].

• Adolescent Health:Nodes are students asked to list 5 of
their best female friends and 5 of their best male friends.
Interactions represent friendship ties [49].

4) MISCELLANEOUS NETWORKS
• Les Misérables: Actors in Victor Hugo’s novel ‘Les
Misérables’ connected if they appear in the same chapter
of the novel. Interactions represent co-appearances [47].

• World Metal Trade (world_trade): World metal trade
in 1994. Nodes represent countries involving heavy
metal or high-technology metal product manufactures.
Interactions represent trades from one country to
another [48].

• Adjective Noun (adjnoun): Nodes are the most com-
mon occurring adjectives and nouns in ‘‘David Copper-
field’’ novel of Charles Dickens. Interactions represent
adjacent positions of any pair of words in the novel [46].

• Internet Autonomous Systems (AS-20000102):Nodes
are autonomous systems (AS). Interactions represent
connections for exchanging information between two
AS. The network is a snapshot of the Internet on the 2nd

of January, 2000 [47].

5) INFRASTRUCTURE NETWORKS
• U.S. States (contiguous-usa): Nodes are the states of
America. An edge represents border sharing between
any two states. Hawaii and Alaska are excluded because
they aren’t adjacent to the rest of the states [46].

• U.S. Airports: Nodes represent airports in America.
They are connected if there is a direct flight between two
corresponding airports. Interactions represent a direct
transport connection among the airports [49].

• EuroRoads (inf-euroroad):Nodes are European cities.
Roads across the European continent are the links con-
necting cities that may be within the same country or
not. Interactions represent a direct transport connection
among cities [46].

• U.S. Power Grid: Nodes are either a generator, trans-
former, or substation in the western states of America.
Interactions between nodes represent a power supply
line [49].

6) COLLABORATION NETWORKS
• NetScience Collaboration (ca-netscience): Nodes are
researchers in Network Science. Interactions represent
co-authorship of scientific papers [46].

• GrQcCollaboration (ca-GrQc):Nodes are researchers
co-authoring in General Relativity and Quantum Cos-
mology. Interactions represent co-authorship of scien-
tific papers [46].

• CS Ph.D. Collaboration (ca-CSphd): Nodes are Ph.D.
students and their supervisors specializing in Com-
puter Science. Interactions represent passing scientific
knowledge [46].

• AstroPh Collaboration (ca-AstroPh): Nodes are
researchers co-authoring in Astrophysics, obtained from
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e-print arXiv. Interactions represent co-authorship of
scientific papers [46].

7) ONLINE SOCIAL NETWORKS
• Facebook Ego Network (ego-facebook): Nodes are
users on Facebook, collected by a survey of participants
using the Facebook application. Interactions represent
online friendships [46].

• Twitter Retweets Copenhagen (rt-twitter-copen):
Nodes are Twitter users with their retweets gathered in a
United Nations conference in Copenhagen about climate
change. Interactions represent retweets [46].

• Facebook Politician Pages (fb-pages-politician):
Nodes represent politician pages on Facebook from
different countries. Interactions represent mutual likes
among the politicians’ pages [46].

• PGP-based Social Network: Nodes are users of the
web of trust, sharing information under the Pretty Good
Privacy (PGP) algorithm. Interactions represent mutual
secure information sharing among users [49].

B. METHODS
A series of experiments are conducted in order to charac-
terize the relations between the set of hierarchy measures
A = {αc, αt , αl, αtp} and the set of centrality measures B =
{βd , βl, βb, βc, βk , βp} using a set of real-world networks
S = {S1, S2, . . . , S10, . . . , S28}, a set of correlation evaluation
measures ρ = {ρp, ρs, τb} and a set of similarity evaluation
measures Sim = {J ,RBO}. In the following study, for the
four hierarchy measures αi (i = 1 → 4) used, notation is as
following: αc is α1, αt is α2, αl is α3, and αtp is α4. For the
six centrality measures βj (j = 1 → 6) used, notation is as
following: βd is β1, βl is β2, βb is β3, βc is β4, βk is β5, and
βp is β6.

1) COMPARING THE VARIOUS COMBINATIONS OF
CENTRALITY AND HIERARCHY MEASURES FOR EACH
NETWORK
In the first set of experiments, the aim is to compare the
hierarchy measures to the centrality measures two-by-two
for a given network. These experiments allow us to answer
the main question of this study, that is, do hierarchy mea-
sures convey complementary information as compared to
centrality measures given the topology of the network?
Figure 2 illustrates the experimental process. In order to
compare a hierarchy measure αi to a centrality measure βj
for a given network Si of size N , the sample set of hierar-
chy {αi(v1), αi(v2), . . . , αi(vl), . . . , αi(vn)} and the sample set
of the centrality {βj(v1), βj(v2), . . . , βj(vl), . . . , βj(vn)} mea-
sures are computed for all the nodes of the network. Then
a comparison measure γ (α, β) is computed. This process
is performed for the 28 networks under investigation using
all the centrality (Degree, Local, Current-Flow Closeness,
Betweenness, Katz, and PageRank) and hierarchy (k-core,
k-truss, LRC, and triangle participation) measures two-by-
two. So, for each network, 24 combinations of hierarchy and

FIGURE 2. Comparing a hierarchy αi and centrality βj measure using an
evaluation measure γ (αi , βj ) for a given network Si . k-core αc and
k-truss αt are nested hierarchy measures. LRC αl is a flow hierarchy
measure. Triangle participation αtp is a mixed hierarchy measure.
Degree βd , and Local βl are neighborhood-based centrality measures.
Betweenness βb and Current-flow closeness βc are path-based centrality
measures. Katz βk and PageRank βp are iterative refinement-based
centrality measures. The evaluation measure γ (αi , βj ) can be a
correlation or a similarity measure.

centrality measures are evaluated using Pearson, Spearman,
and Kendall Tau correlation measures. Results of these exper-
iments allow investigating if there are significant patterns that
appear in terms of correlation. Additionally, the consistency
of the pairwise correlation measures across networks can be
evaluated. Finally, one can check if the results given by the
various correlation measures are consistent.

Similarly, hierarchy measures are compared with central-
ity measures two-by-two using the two similarity measures
(Jaccard and RBO) for a given network. Jaccard index checks
the similarity across two finite sets regardless of rank. The
sample set of centrality and the sample set of the hierarchy
measures are computed for the top 10 nodes in small networks
(N<150). For bigger networks, the top 10% are considered.
RBO is designed for infinite sets taking into consideration
the ranking of the nodes and their ties. Furthermore, it allows
assigning a higher weight to top nodes using a tuning param-
eter p. Two values of the tuning parameter are used (p = 0.5
and p = 0.9). In order to compare with the results based
on the Jaccard index, the similarity of the top 10 nodes for
small networks or the top 10% for bigger networks are com-
puted using RBO. Additionally, comparisons are performed
considering all the nodes (the entire set of nodes) of the
network for either small or big networks. Hence, there are
4 versions of RBO (at different p and on top-k and on
the entire set of nodes). Results of these experiments allow
checking the consistency across the similarity measures. Fur-
thermore, comparisons can be performed with the results
obtained using the correlation measures.

2) COMPARING THE NETWORKS ACCORDING TO THE
EVALUATION MEASURES SAMPLE SETS
The second set of experiments are based on the previous
results. The goal is to deepen the understanding of the inter-
play between centrality, hierarchy, and network topology.
In other words, the following questions are raised: are there
clusters of networks that can be discovered based on the
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correlation between centrality and hierarchy measures? That
is, do networks show similar behavior based on their values
of correlation and similarity between hierarchy and centrality
combinations? And do the networks in these clusters share
some specific topological properties? This investigation is
based on three experiments.

In the first experiment, the goal is to check if the net-
works exhibit a similar behavior based on the various cen-
trality and hierarchy combination. For a given evaluation
measure γ , a network Si is associated with the sample set
0i = {γ (α1, β1), γ (α1, β2), . . . , γ (αi, βj)}. For all the pairs
of networks Si, Sj, the Pearson correlation between their sam-
ple sets ρp(0i, 0j) is computed. Only Pearson correlation is
used because, in this case, ranking is not our preference.
This experiment is performed for all the evaluation measures
under test. Figure 3 illustrates the experimental process. The
corresponding correlation matrices are represented using a
heatmap.

FIGURE 3. Comparing two networks Si ,Sj in terms of correlation after
the computation of their hierarchy αi and centrality βj measure using an
evaluation measure γ (αi , βj ). ai is a nested hierarchy measure (k-core αc
and k-truss αt ) or a flow hierarchy measure (LRC) αl or a mixed hierarchy
measure (Triangle participation αtp). βj is a neighborhood-based
centrality measure (Degree βd , and Local βl ) or a path-based centrality
measure (Betweenness βb and Current-flow closeness βc ) or an iterative
refinement-based centrality measure (Katz βk and PageRank βp). The
evaluation measure γ (αi , βj ) can be a correlation or a similarity measure.

The second experiment aims to extract common topologi-
cal characteristics from the networks based on their ranking.
In this case, the evaluation measure between a centrality mea-
sure and a hierarchy measure is binarized. More precisely,
γ (αi, βj) is set to one if the evaluation measure is above a
threshold value µ and set to zero otherwise. Then, a score is
assigned to each network according to the number of times
the evaluation measure of the various combinations between
centrality and hierarchy have been assigned a value of one.
Finally, the networks are ranked according to this score.

Figure 4 illustrates this process. The same process is used
for all the evaluation measures. In all the experiments the
threshold valueµ is set to 0.7. Indeed, it is generally admitted
as a high value for similarity and correlation.

Finally, the third experiment aims at categorizing the
sample set of networks Si according to their multidimen-
sional feature set 0i = {γ (α1, β1), γ (α1, β2), . . . , γ (αi, βj)}.
The process based on the k-means algorithm is depicted
in figure 5.

FIGURE 4. Ranking all networks S = {S1,S2, . . . ,S10, . . . ,S28} in
descending order after comparing the values of their evaluation measure
γ (αi , βj ) to a threshold f (x). Starting from matrix 0p,q a binary matrix
Bp,q is formed. Summing all the elements of its columns, the final
ranking for each network is obtained. ai is a nested hierarchy measure,
and it includes k-core αc and k-truss. αt . LRC αl as flow hierarchy
measure. Triangle participation αtp is a mixed hierarchy measure. βj is a
neighborhood-based centrality measure, and it includes Degree βd , and
Local centrality βl . Betweenness βb and Current-flow closeness βc are
path-based centrality measures. Katz βk and PageRank βp are iterative
refinement-based centrality measures. The evaluation measure γ (αi , βj )
can be either a correlation or a similarity measure.

FIGURE 5. Clustering all networks S = {S1,S2, . . . ,S10, . . . ,S28} using
k-means algorithm according to their evaluation measure values γ (αi , βj )
as features set. ai is a nested hierarchy measure (k-core αc and k-truss
αt ) or a flow hierarchy measure (LRC αl ) or a mixed hierarchy measure
(Triangle participation αtp). βj is a neighborhood-based centrality (Degree
βd and Local βl ) or a path-based centrality measure (Betweenness βb
and Current-flow closeness βc ) or an iterative refinement-based
centrality measure (Katz βk and PageRank βp). γ (αi , βj ) can be a
correlation or a similarity measure.

3) COMPARING THE COMBINATIONS OF HIERARCHY AND
CENTRALITY MEASURES USING THE SCHULZE VOTING
METHOD
The third set of experiments aims to answer the question:
what are the hierarchy measures which are the most distant
from the centrality measures independently of the network
topology? In order to explore this question, the Schulze
voting method is used to rank the different combina-
tions. The 28 networks Si are considered as the vot-
ers. Given an evaluation measure γ , the 24 combinations
between hierarchy and centrality measures are the candi-
dates. Each network expresses a set of preferences about
the 24 candidate combinations of centrality and hierarchy
based on the magnitude of an evaluation measure 0i =
{γ (α1, β1), γ (α1, β2), . . . , γ (αi, βj)}. The couple of central-
ity and hierarchy measures are then ranked according to the
preference of all the voters. Note that, if a specific com-
bination with high preference occurs frequently among the
networks, it is highly ranked. Additionally, if a combina-
tion with lower preference also occurs frequently, it is also

129728 VOLUME 8, 2020



S. Rajeh et al.: Interplay Between Hierarchy and Centrality in Complex Networks

highly ranked, but at a lower rank that the one with higher
preference and comparable frequency. The Schulze analysis
is performed for all the correlation and similarity measures.
A general view of the Schulze method using networks as
voters is given in figure 6.

FIGURE 6. Ranking all possible combinations between hierarchy αi and
centrality βj based on their evaluation measure values γ (αi , βj ) using the
Schulze Method. Networks are the voters and the evaluation of the
combinations of the various centrality and hierarchy measures γ (αi , βj )
are the candidates. ai is a nested hierarchy measure (k-core αc and
k-truss αt ) or a flow hierarchy measure (LRC αl ) or a mixed hierarchy
measure (Triangle participation αtp ). βj is a neighborhood-based
centrality measure (Degree βd and Local βl ) or a path-based centrality
measure (Betweenness βb and Current-flow closeness βc ) or an iterative
refinement-based centrality measure (Katz βk and PageRank βp). The
evaluation measures γ (αi , βj ) can be a correlation or a similarity
measure.

VI. EXPERIMENTAL RESULTS
In this section, we report the results of the empirical eval-
uation about the relations between hierarchy, centrality and
network topology based on the several experiments con-
ducted. In order to improve reading fluency typical results
are presented in this section, and complementary results are
reported in supplementary materials.

A. COMPARING THE VARIOUS COMBINATIONS OF
CENTRALITY AND HIERARCHY MEASURES FOR EACH
NETWORK
In this series of experiments, the evaluation measures
(3 correlation measures and 5 similarity measures) between
the 6 centrality measures and the 4 hierarchy measures have
been computed for each of the 28 networks. Heatmaps are
used to present the results.

1) CORRELATION ANALYSIS
The correlation analysis is conducted using Pearson, Spear-
man, and Kendall Tau for the 24 combinations of the 6 cen-
trality and the 4 hierarchy measures. Figure 7 reports the
results for 6 networks illustrating the typical behavior of the
28 networks under investigation. The heatmap values range
from the minimum correlation value (−0.007) observed in
the entire dataset to 1. The color spectrum ranges from dark
blue to yellow. In the following, three categories in terms
of correlation range are considered. Low correlation in the
range −0.007 to 0.4 is associated with blue colors in the
heatmaps. Medium correlation values ranging from 0.4 to
0.8 are represented by green colors. Finally, high correlation

values above 0.8 are colored in yellow. Let’s look at Spearman
correlation results presented in the left-hand side of figure 7.
The heatmaps of 6 typical networks illustrating the results of
this experiment are arranged from overall low correlation to
overall high correlation.

The first typical behavior is illustrated by the heatmap
of the CS Ph.D. collaboration network. It is also observed
in the EuroRoads network. In this case, a large majority of
correlation values are in the low and medium range. This
translates into a heatmap where blue and dark green colors
dominate. For these networks, we can conclude that there
is no correlation between hierarchy and centrality measures.
The second typical case is illustrated by the heatmap of E.
coli Transcription network. It concerns also all the biolog-
ical networks (Yeast Protein, Human protein, Mouse Visual
Cortex), the U.S. Power Grids, and the Retweets Copenhagen
networks. In this case, LRC and k-core are more or less
well-correlated with the centrality measures. This translates
into the heatmap with dominant colors ranging from light
green to yellow. By contrast, low correlation values prevail for
k-truss and triangle participation hierarchy measures. That is
why dark green predominates in the heatmap.

The third case is illustrated by the heatmap of the Insects
network. Mammals exhibit similar behavior. In this case,
LRC and triangle participation are highly correlated with all
the centrality measures. The dominant color of the heatmap
is yellow for both hierarchy measures. k-core or k-truss
show a quite different behavior with correlation values in the
lower middle range. Indeed, dark green predominates in the
heatmap.

The fourth case is shown in the heatmap of the Physicians
network. It is also observed in the U.S. States and Adolescent
Health networks. In this case, correlation values range from
0.53 to 0.94. Light green and yellow are the predominant
colors of the heatmap. k-truss is the less correlated hierar-
chy measure, with its dark green color. It is followed by
triangle participation and k-core with their light green colors.
Finally, LRC, mostly yellow on the heatmap appears to be
well-correlated with other centrality measures.

The fifth case is presented using the heatmap of the Birds
network. GrQc and Reptiles networks share the same behav-
ior. In this case, all the hierarchy measures exhibit high
correlation values with the centrality measures. The dominant
colors of the heatmap are light green and yellow. However,
betweenness centrality does not correlate well with the hierar-
chymeasures. Indeed, the predominant color for the between-
ness line of the heatmap is dark green with correlation values
ranging from 0.35 to 0.54.

The sixth and final case is represented by the heatmap of
the World Metal Trade network. Zachary Karate Club, and
Adjective Noun networks have quite similar heatmaps. In this
case, almost all hierarchy and centrality measures are highly
correlated. Dominant colors of the heatmaps are light green
and yellow.

Turning to the heatmaps of Pearson and Kendall Tau’s cor-
relation, the results are presented respectively in the middle
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FIGURE 7. Heatmaps of the correlation evaluation measures for the various combinations of hierarchy αi and centrality βj measures of six real-world
networks (from top to bottom). The hierarchy measures are αc = k-core, αt = k-truss, αl = LRC, and αtp = triangle participation. The centrality measures
are βd = Degree, βl = Local, βb = Betweenness, βc = Current-flow Closeness, βk = Katz, and βp = PageRank. The correlation measure are Spearman (ρs),
Pearson (ρp), and Kendall Tau (τb) from left to right.
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and the right-hand columns of figure 7. Globally, it appears
that Pearson correlation is closer to Spearman correlation val-
ues as compared to Kendall Tau. However, similar behavior
is observed for both measures even if the correlation mag-
nitudes are different. Note that the correlation magnitude of
the Kendall Tau measure is systematically lower than Pearson
and Spearman correlation corresponding values. This is not
the case if Pearson is compared to Spearman. Indeed, Pearson
correlation values can be higher or smaller than the corre-
sponding Spearman correlation values. Consider for example
the Insects network and the correlation between the degree
centrality (βd ) and k-core (αc) hierarchy measure. Spearman
correlation is equal to 0.50. It is equal to 0.51 for Pearson and
it decreases 0.42 for Kendall Tau.

Summing up the correlation analysis, one can say that
6 different correlation trends are observed between hierarchy
and centrality measures across the 28 networks. Furthermore,
the three correlation measures lead to quite consistent results.

2) SIMILARITY ANALYSIS
Results of similarity measures between the various hierarchy
and centrality measures using the Jaccard index and RBO
with its 4 versions have been computed. For the Jaccard
index, top 10% nodes are used if the size of the network is
N ≥ 150 nodes while top 10 nodes are used ifN < 150. RBO
is computed on the same datasets for comparative purposes.
Two values of the parameter p are used in RBO. A high value
to give more weight to the top nodes (p= 0.5) and a medium
value accounting for equal importance of the nodes (p= 0.5).
Furthermore, RBO is computed using the top-k nodes and
also the entire sample set.

Figure 8 reports the results for the 6 networks (from top
to bottom) representative of the various behavior observed in
the experiments and 3 out of 5 similarity measures (Jaccard,
RBO top-k nodes with p = 0.5 and RBO top-k nodes with
p = 0.9). The colors of the heatmaps vary from dark blue to
yellow with similarity increasing from 0 to 1. The color range
can be divided into 3 intervals. Blue indicates low similarity
(0 to 0.4), green indicates medium similarity (0.4 to 0.8), and
yellow indicates high similarity (0.8 to 1). Jaccard similarity
is reported in the left-hand side of figure 8 to illustrate the
various situations observed when evaluating the similarity
of the 4 hierarchy measures with the 6 centrality measures.
Networks are also arranged in increasing order between the
two extreme cases (low similarity and high similarity).

E. coli Transcription is a typical example chosen to illus-
trate the first category. Reptiles, Yeast, EuroRoads, U.S.
Power Grids, NetSci, GrQc, and AstroPh exhibit a quite
similar behavior. In this case, low to medium similarity is
observed among almost all hierarchy and centrality combi-
nations. In the heatmap blue and dark green predominates.

The second category is represented by the Internet
Autonomous Systems network heatmap. Mouse Visual Cor-
tex, U.S. States and Retweets Copenhagen networks belong
also to this category. In this case, similarity of LRC with
centrality measures is high. It ranges from low to medium for

the other hierarchy measures (k-core, k-truss, triangle partic-
ipation). Except for LRC, blue and dark green predominate
in the heatmap.

The third category is illustrated by the heatmap of LesMis-
érables. The heatmaps of AdjectiveNoun, PGP, and Facebook
Politician Pages networks are quite comparable. In this case,
the hierarchymeasures show low similarity with a majority of
centrality measures. However, LRC and triangle participation
can exhibit high similarity with the few centrality measures.
Blue and green predominate in the heatmap with few yellow
patches.

The fourth category is represented by the heatmap of
the Insects network. Mammals and Physicians networks are
the other networks belonging to this category. In this case,
k-core and k-truss have low similarity with all the cen-
trality measures while LRC and triangle participation
have high similarity. Blue and yellow predominate in the
heatmaps.

The fifth category is illustrated by the Zachary Karate Club
heatmap. It includes also Birds, World Metal Trade, Human
Protein, and Facebook Ego networks. In this case, most com-
binations between centrality and hierarchy measures exhibit
similarity in a medium range. Green predominates in the
heatmaps.

The sixth category contains a single network, the U.S. Air-
ports network. It shows significant similarity across almost all
possible combinations between hierarchy and centrality mea-
sures. Yet, betweenness centrality departs from this behavior.
In this heatmap light green to yellow predominates except for
the betweenness line.

Results of the similarity evaluation using RBO top-k with
p= 0.5 and p= 0.9 are reported in the middle and right-hand
side of figure 8 respectively. The same networks illustrating
the 6 categories uncovered using the Jaccard similarity mea-
sure are used for comparative purposes. Remember that Jac-
card doesn’t take into account the rank and ties to measure the
similarity between two sets, while RBO does. Indeed, a high
RBO value means that the two sets share a high proportion
of common nodes with similar rankings. Globally, results are
lessmixed as compared to Jaccard similaritymeasure. The six
categories observed while using Jaccard similarity measure
reduce to 3 categories using RBO top-k with p = 0.5 (the
middle column of figure 8).
The first category is characterized by a very low similar-

ity of k-core and k-truss with all the centrality measures.
In contrast, LRC and triangle participation exhibit a medium
to high similarity with all the centrality measures except
some rare exceptions. This category regroups a high number
of the networks under study. It is illustrated in figure 8 by
the heatmaps of E. coli Transcription, Internet Autonomous
Systems, Insects, and U.S. Airports networks. Other net-
works that belong to this category are U.S. Power Grids,
GrQc, Astroph, U.S. States, Retweets Copenhagen, Physi-
cians, Birds, PGP, World Metal Trade, Madrid Train Bomb-
ings, and Mammals. Dark green predominates in the first
two columns of the heatmap (k-core and k-truss), while light
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FIGURE 8. Heatmaps of the similarity evaluation measures for the various combinations of hierarchy αi and centrality βj measures of six real-world
networks (from top to bottom). The hierarchy measures are αc = k-core, αt = k-truss, αl = LRC, and αtp = triangle participation. The centrality measures
are βd = Degree, βl = Local, βb = Betweenness, βc = Current-flow Closeness, βk = Katz, and βp = PageRank. The similarity measures are Jaccard top-k
nodes and RBO top-k nodes with p = 0.5 and p = 0.9 from left to right.
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green and yellow predominate in the third and fourth column
(LRC and triangle participation).

In the second category, LRC shows a high similarity with
the centrality measures, while similarity with almost all cen-
trality measures is low for k-core, k-truss, and triangle par-
ticipation. Les Misérables, reported in figure 8, is a typical
example of this behavior. Facebook Ego, Human Protein, and
Mouse Visual Cortex are the other networks that belong to
this category. Dark blue predominates in the heatmaps except
on the third column (LRC).

In the third category, one can observe low to medium
similarity among all hierarchy and centrality measures. It is
illustrated in figure 9 by the heatmap of the Adolescent
Health network. Other networks that fall into this category
are Reptiles, Yeast Protein, EuroRoads, NetSci, CS Ph.D.,
and Facebook Politician Pages. Dark blue predominates the
whole heatmap.

FIGURE 9. Heatmaps of RBO top-k and RBO of the entire set (top to
bottom) with p = 0.5 and p = 0.9 (left to right) for the various
combinations of hierarchy αi and centrality βj measures of the
Adolescent Health Network. The hierarchy measures are αc = k-core,
αt = k-truss, αl = LRC, and αtp = triangle participation. The centrality
measures are βd = Degree, βl = Local, βb = Betweenness,
βc = Current-flow Closeness, βk = Katz, and βp = PageRank.

Let’s now compare RBO top-k at p = 0.5 to RBO top-k at
p = 0.9. Globally the results are quite comparable. However,
a closer look allows distinguishing three cases for a given
hierarchy and centrality combination.

In the first case, increasing the p value increases the
similarity value. Indeed, top nodes are given more impor-
tance and as they are identical and with the same rank,
the similarity of the two sets increases. The combination
of LRC hierarchy and PageRank centrality of the U.S.
Airports network shown in figure 8 is a typical example.
One can notice that RBOp=0.5(αl, βp) = 0.15 increases to
RBOp=0.9(αl, βp) = 0.68.
In the second case, the similarity value decreases

if p increases. Therefore, there are fewer top nodes iden-
tical in the two sets or their ranking differs. This results
in a lower similarity for high p value. The combination
between triangle participation hierarchy and degree centrality
for the E. coli Transcription network shown in figure 8 illus-
trates this situation. Indeed, RBO decreases as p increases
(RBOp=0.5(αtp, βd ) = 0.7, RBOp=0.9(αtp, βd ) = 0.55).
In the third case, similarity values at p = 0.5 and

at p= 0.9 are identical. In this case, the overlap of nodes and

their rankings do not significantly differ. Hence, increasing
p does not have a notable effect on the similarity value.
Such cases are observed for extreme values. An exam-
ple of this case is the combination of k-core hierarchy
and degree centrality in the Insects network in figure 8,
where RBOp=0.5(αc, βd )= 0 whereas RBOp=0.9(αc, βd )= 0.
Another extreme case in the same network concerns the sim-
ilarity between LRC hierarchy and degree centrality, where
RBOp=0.5(αl, βd ) = 1 whereas RBOp=0.9(αl, βd ) = 1. Note
that the numbers are rounded so there may be a very small
difference in the values. Yet, this is the characteristic of the
third case, where we almost have the same similarity value
regardless of the value of p.

Finally, let’s compare RBO top-k nodes to RBO on the
entire set of nodes. The results are quite similar. In other
words, comparing the top-k nodes or all the nodes in the
network does not provide much more information regarding
the similarity of the hierarchy and centrality combinations.
Figure 9 illustrates this observation with the Adolescent
Health network. The complementary results of RBO using
the entire dataset using the other networks are provided in
supplementary materials.

Summing up the similarity analysis, using the Jaccard sim-
ilarity one can classify the 28 networks used into 6 categories.
This reduces to 3 categories when RBO is used. The first
set of experiments does not allow getting a full picture of
the relations between centrality and hierarchy measures. First
of all, there is no clear relationship between correlation and
similarity measures. One can notice that variations can be
observed across networks. Nevertheless, some general trends
seems to be emerging. Differences between the various cen-
trality measures are not clear-cut, except for betweenness that
sometimes behaves quite differently than the others. Another
remark is that k-core and k-truss exhibit more often low
similarity as compared to LRC and triangle participation.
Finally, it appears that for all the correlation measures and
the Jaccard similarity the results are more mixed as compared
to RBO.

B. COMPARING THE NETWORKS ACCORDING TO THE
EVALUATION MEASURES SAMPLE SETS
In order to relate the interactions between centrality and
hierarchymeasures to the network structure, we conduct three
experiments based on the results of the previous one. In the
first experiment, given an evaluation measure (correlation or
similarity), the Pearson correlation is computed between the
sample sets of the various combinations between centrality
and hierarchy. The second experiment ranks the networks and
the third one categorizes the networks based on the k-means
algorithm.

1) CORRELATION ANALYSIS OF THE EVALUATION
MEASURES SAMPLE SETS
For a given evaluation measure γ , a network Si is char-
acterized by the sample set of the evaluation measures’
values between all the centrality and hierarchy measures
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FIGURE 10. Heatmap of the Pearson correlation between the network evaluation measures sample sets ρp(0i , 0j ) for all the pairs of the
28 networks Si ,Sj . In the sample set 0i = {γ (α1, β1), γ (α1, β2), . . . , γ (αi , βj )}, the hierarchy measures are αc = k-core, αt = k-truss, αl = LRC, and
αtp = triangle participation. The centrality measures are βd = Degree, βl = Local, βb = Betweenness, βc = Current-flow Closeness, βk = Katz, and
βp = PageRank. The evaluation measure 0 is the Spearman correlation measure.

0i = {γ (α1, β1), γ (α1, β2), . . . , γ (αi, βj)}. In order to
compare the networks two-by-two, the Pearson correlation
between the sample sets ρp(0i, 0j) is computed. Experiments
are performed using the three correlation measures and the
two similarity measures. Results are reported for the Spear-
man correlation used as the evaluation measure in figure 10.
One can observe that the heatmap is very patchy. It does
not contain any clear pattern. Few yellow spots emerge now
and then in a high proportion of green and blue. In other
words, the vast majority of correlations are in the low and
medium range. Nevertheless, some networks show a strong
correlation. Results using the alternative correlation evalu-
ation measures (Pearson and Kendall Tau) are reported in
supplementary materials. Indeed, they are in the same vein
and do not convey much more information.
Let’s now turn to the similarity measures. Results

using the Jaccard evaluation measure are reported in the

supplementary material. Indeed, globally, they do not depart
from the previous ones. However, the values of the correlation
are much smaller and some patterns appear more clearly.
For example, Facebook Ego, CS Ph.D., and Human Protein
networks appear quite uncorrelated with a vast majority of
the other networks. A less patchy matrix is observed using
RBO as an evaluation measure. Especially when considering
a high value of p (p = 0.9) as shown in figure 11. This
confirms that the results are more consistent when RBO is
used as an evaluation measure. The results for the other
configurations of RBO are quite convergent. They are given
in supplementary materials.

2) GROUPING THE NETWORKS BASED ON THE BINARIZED
EVALUATION MEASURES SAMPLE SETS
In order to get a clearer picture about the relations between the
network topology and the evaluation measures, the values of
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FIGURE 11. Heatmap of the Pearson correlation between the network evaluation measures sample sets ρp(0i , 0j ) for all the pairs of the 28 networks
Si ,Sj . In the sample set 0i = {γ (α1, β1), γ (α1, β2), . . . , γ (αi , βj )}, the hierarchy measures are αc = k-core, αt = k-truss, αl = LRC, and αtp = triangle
participation. The centrality measures are βd = Degree, βl = Local, βb = Betweenness, βc = Current-flow Closeness, βk = Katz, and βp = PageRank.
The evaluation measure 0 is the RBO similarity measure of the entire set of nodes with p = 0.9.

the evaluation measures γ (αi, βj) are binarized for each net-
work. In other words, rather than using the continuous values
of the evaluation measures, two cases are considered. Based
on a threshold (µ = 0.7), the evaluation measure for a given
combination of centrality and hierarchy is set to 1 (meaning-
ful) or 0 (not meaningful). Then the proportion of meaningful
values out of the 24 combinations between centrality and
hierarchy is computed for each network. Networks are then
ranked according to the proportion of meaningful values, and
topological properties of the networks are explored in order
to check if an order relation is also uncovered. Finally, based
on these relations the networks are categorized. This set of
experiments is performed for both the correlation and the
similarity measures.

Table 2 shows the networks ranked according to the mean-
ingful values of the three correlation measures together with
their basic topological properties (density (ν), transitivity (ζ )

and assortativity (knn(k))). The rankings based on each of the
correlation measures (Spearman, Pearson, and Kendall Tau)
are provided in the supplementary materials. Overall those
values are well correlated (see table 3) and consequently,
the rankings of the networks are quite similar except for few
exceptions.

Looking at this table, we can clearly divide the networks
into 3 groups based on their topological characteristics. The
first group is made of the 8 networks with the higher ranks
(From Adjective Noun to Mammals). One can notice that
these networks exhibit in general high density (ν), high tran-
sitivity (ζ ), and negative or near-zero assortativity (knn(k)).
The second group contains 10 networks ranked in the middle
range (Physicians to PGP). It is characterized in general by
low density (ν), high transitivity (ζ ), and positive assortativity
(knn(k)). Finally, the third group is made of the 10 networks
with the lowest ranks. Its typical features are low density (ν),
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TABLE 2. Real-world networks sorted in decreasing order according to
the proportion of meaningful correlation measures (|λρs +λρp +λτb | ≥
0.7) denoted as λc . The network’s basic topological properties are
reported (ν is the density, ζ is the transitivity and knn(k) is the
assortativity).

TABLE 3. Pearson correlation between the rankings of the networks
based on their meaningful evaluation measures.Correlation measures are
Spearman (|ρs(α, β)| ≥ 0.7) denoted as λρs , Pearson (|ρp(α, β)| ≥ 0.7)
denoted as λρp , Kendall Tau (|τb(α, β)| ≥ 0.7) denoted as λτb . Similarity
measures are Jaccard (|J(α, β)| ≥ 0.7) denoted as λJ , RBO at p = 0.5
(|RBOp=0.5(α, β)| ≥ 0.7) denoted as λp=0.5

RBO , and finally RBO at p = 0.9

(|RBOp=0.9(α, β)| ≥ 0.7) denoted as λp=0.9
RBO .

low transitivity (ζ ), and negative or near-zero assortativity
(knn(k)).

The process for relating the topological properties of the
networks to their ranking according to the proportion of
meaningful similarity values is slightly different than what
has been done with the correlation evaluation measures.
Table 3 reports the correlation between the various versions
of RBO and Jaccard similarity measure. One can see that
correlation is very low. Indeed, rankings according to Jaccard

similarity are quite different than the rankings based on RBO.
This is the reason whywe prefer to consider Jaccard and RBO
separately. Consequently, we do not aggregate the ranking of
Jaccard and RBO to get an overall rank for each network.

Results for the ranked networks according to the proportion
of meaningful Jaccard values together with their respective
topological characteristics are given in table 4. One can see
that the networks can be divided into 2 groups based on their
topological characteristics. The first group of 7 top-ranked
networks (from U.S. Airports to World Metal Trade) is char-
acterized by high density (ν) and high transitivity (ζ ), with
negative or near-zero assortativity (knn(k)). The second group
is made of the 21 remaining networks. They exhibit low or
even zero proportion of meaningful Jaccard similarity, and
are characterized by low density (ν). The other properties do
not show clear trends. Indeed, transitivity (ζ ) and assortativity
(knn(k)) fluctuate in a wide range.

TABLE 4. Real-world networks sorted in decreasing order according to
the proportion of meaningful Jaccard similarity measures |J(α, β)| ≥
0.7 denoted as λJ . The network’s basic topological properties are reported
(ν is the density, ζ is the transitivity and knn(k) is the assortativity).

For RBO, the proportion of meaningful similarities accord-
ing to RBO top-k for the two p values (RBOp=0.5 and
RBOp=0.9) are averaged. Indeed, both rankings are well-
correlated. The detailed rankings of each evaluation measure
considered individually are provided in the supplementary
materials. The rankings of the networks with their topological
properties are given in table 5. In this case, the networks
can also be divided into 2 groups based on their topological
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TABLE 5. Real-world networks sorted in decreasing order according to
the proportion of meaningful RBO similarity (|λRBOp=0.5

+λRBOp=0.9
| ≥

0.7) denoted as λRBO. The network’s basic topological properties are
reported (ν is the density, ζ is the transitivity and knn(k) is the
assortativity).

characteristics. The first group is composed of the 12 top-
ranked networks (from Adjective Noun to Mammals). These
networks exhibit high transitivity (ζ ). Their density and tran-
sitivity values fluctuate in a wide range, with no particular
visible trend. The 16 remaining networks forming the second
category are characterized by low density (ν). No particular
pattern is observed in their transitivity and assortativity values
which vary in a wide range. Note that the rankings obtained
with RBO using the entire node set provides very similar
rankings to RBO top-k. That is the reason why they are
presented in supplementary materials.

Table 6 summarizes the common properties shared by the
various groups uncovered using the various type of eval-
uation measures. The density of the networks seem to be
the most discriminating feature allowing to categorize the
networks. Indeed, if one relies only on this parameter two
categories emerge (high density, low density). This behavior
is well-pronounced for correlation and Jaccard evaluation
measures. The high density category made of the highly
ranked networks is made of the same 6 networks out of 8
for correlation and 7 out of 8 for Jaccard. Comparing the
16 networks belonging to the low density category according
to RBO to the corresponding category based on Jaccard and
correlation evaluation measures, show that the results are

TABLE 6. Aggregation of basic topological characteristics of real-world
networks after grouping them according to their meaningful correlation
proportion from table 2, meaningful Jaccard similarity from table 4 and
meaningful RBO similarity from table 5. The basic topological
characteristics are: ν is the density, ζ is the transitivity, and knn(k) is the
assortativity. Two states can be given to the density and transitivity, either
high denoted as H or low denoted as L. Two states can be given for
assortativity, either positive denoted as P or negative denoted as N.
If fluctuations occur within a group, they are denoted as X.

also quite consistent. Fifteen out of sixteen belong to the
low density category uncovered by the correlation evaluation
measure and all of them belong to the low density category
uncovered by the Jaccard evaluation measure. Transitivity
is also an important feature influencing the classification.
One can notice that, whatever the evaluation measure used,
the category made of the top-ranked networks always group
networks with high transitivity. Finally, the groupings are less
sensitive to assortativity except for the correlation evaluation
measures. It is worth noticing that whatever the evaluation
measure, the networks belonging to the groups made of the
top-ranked networks exhibit high transitivity. Furthermore,
the networks belonging to the groups made of the low-ranked
networks are sharing a low density. Hence, these two char-
acteristics may be good predictors for two different groups.
To sum up, these results allow us to conclude that the global
topological characteristics of a network affect the relationship
between hierarchy and centrality. Correlation is the most
sensitive evaluation measures to highlight these relations,
followed by Jaccard and RBO.

3) CLUSTERING THE NETWORKS BASED ON THE
EVALUATION MEASURES SAMPLE SETS USING THE
K -MEANS ALGORITHM
For a given evaluation measure γ , a network Si is represented
by amultidimensional vector0i = {γ (α1, β1), γ (α1, β2), . . . ,
γ (αi, βj)}made of the various combinations between the cen-
trality and hierarchy measures. Therefore, these features can
be used in order to categorize the networks using the k-means
clustering algorithm. The main advantage as compared to the
previous experiment is that no threshold is used to cluster the
networks. Furthermore, comparisons can be performed with
the results of the grouping based on the binarized evaluation
measure. The main goal of these experiments is to check if
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the grouping made previously are consistent. This is why the
value of the number of clusters k in the k-means algorithm
is not based on an optimization criterion, but on the results
of the previous experiment. Accordingly, k is set to 3 for the
correlation evaluation measures, and k = 2 for the similarity
evaluation measures (Jaccard and RBO).

Table 7 reports the content of the three clusters based
on the Spearman correlation evaluation measure. It must be
compared to the ranked networks based on the binarized
evaluation measures reported in table 2. The first cluster
regroups 10 networks. It has a big overlap with the first group
based on the binarized evaluation measures that contains
8 networks. Both groups have 6 common networks (Zachary
Karate Club, Madrid Train Bombings, LesMisérables, World
Metal Trade, and Adjective Noun). The 4 remaining net-
works belong to the second group based on the binarized
evaluation measures. The third cluster is made of 8 networks.
Among these networks, 7 are common with the third group
of table 2. The common networks are Mouse Visual Cortex,
E. coli Transcription, Yeast Protein, EuroRoads, U.S. Power
Grids, CS Ph.D., Retweets Copenhagen, and Human Protein.
Globally, the three clusters uncovered by k-means have a
high overlap with the grouping based on the ranking of the
meaningful correlation evaluation measures. These results
confirm our previous findings.

TABLE 7. Clusters of the networks Si ,Sj using k-means according to
their Spearman correlation (ρs) values across all hierarchy and centrality
combinations.

Let’s now turn to the comparison of the two clusters
uncovered by the k-means algorithm with the two clusters
of table 4. Cluster 1 in table 8 contains 7 networks while
the corresponding cluster in table 4 contains 9 networks.
They have 7 networks in common (Mammals, Insects, Birds,
Zachary Karate Club, Madrid Train Bombing, World Metal
Trade, and U.S. Airports). Those networks are characterized
by high density and high transitivity. The second cluster in
table 8 contains 19 networks while the corresponding group
in table 4 contains 16 networks. They have 16 networks in
common. This further illustrates the proximity of the two
clustering methods.

Finally, let’s compare the two k-means clusters reported
in table 9 to the two groups of table 5. Those clusters are
based on the RBOp=0.9 of top-k nodes evaluation measures.
There is a complete overlap between the clusters except for
two networks which are AstroPh and Retweets Copenhagen.

TABLE 8. Clusters of the networks using k-means according to their
Jaccard Similarity (J) values across all hierarchy and centrality
combinations.

TABLE 9. Clusters of the networks using k-means according to their RBO
top-k Similarity (RBOp=0.9) values across all hierarchy and centrality
combinations.

To summarize, clusters based on the k-means algorithm are
very similar to the various groups identified by looking at the
relations between the topological properties of the networks
and the rankings based on the proportion of meaningful eval-
uation measures. These results strengthen our understanding
of the relationship between the topology of networks and the
interaction of centrality and hierarchy measures.

C. COMPARING THE COMBINATIONS OF HIERARCHY
AND CENTRALITY MEASURES USING THE SCHULZE
VOTING METHOD
In this section, the Schulze voting method is used in order to
rank the output of the evaluations-measures for the various
combinations of hierarchy and centrality measures. For a
given evaluation measure γ , each of the 28 networks under
test is considered as a voter Si, and the evaluation measure
γ (αi, βj) of hierarchy αi and centrality measures βj are the
candidates. Voters rank the candidates in the descending order
of the value of each of the 24 evaluation measures 0i =
{γ (α1, β1), γ (α1, β2), . . . , γ (αi, βj)}. As voters rank the can-
didates in the order from the one that they most want to win
to the one they least want to win, the outcome of the voting
process is the set of evaluationmeasures ranked from themost
correlated/similar to the least correlated/similar according to
the population of voters. This experiment is performed using
the three correlation measures (Pearson, Spearman, Kendall
Tau) and the 5 similarity measures (Jaccard, RBO top-k at
p = 0.5 and p = 0.9 and RBO of the entire set of nodes at
p = 0.5 and p = 0.9).
Table 11 reports the rankings based on the 3 correlation

measures. The Kendall Tau correlation between the ranking
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TABLE 10. Kendall Tau correlation between the rankings of hierarchy and
centrality combinations according to the Schulze Method for the various
evaluation measures. Correlation evaluation measures are Spearman (ρs),
Pearson (ρp), and Kendall Tau (τb). Similarity evaluation measures are
Jaccard (J), RBO top-k at p = 0.5 and p = 0.9 (Rtop

0.5 and Rtop
0.9 ), RBO of the

entire set of nodes at p = 0.5 and p = 0.9 (Rall
0.5 and Rall

0.9). The
28 real-world Networks are considered as voters.

TABLE 11. Ranking of the Schulze Method for all possible combinations
between hierarchy α and centrality measures β. The ranks are sorted
based on the average (SCc ) of all correlation evaluation measures γ used:
Spearman (ρs), Pearson (ρp), and Kendall Tau (τb). The 28 real-world
networks are considered as voters. The hierarchy measures are αc =
k-core, αt = k-truss, αl = LRC, and αtp = triangle participation. The
centrality measures are βd = Degree, βl = Local, βb = Betweenness, βc =
Current-flow Closeness, βk = Katz, and βp = PageRank. Note that ties in
the output can exist with the Schulze method. In case of ties in the sum
of rankings, ranks are broken randomly.

samples is provided in table 10. It can be seen that Pearson is
the least correlated with values around 0.6 while Spearman
and Kendall Tau rankings are well correlated with a value
of 0.8. As the correlation between the rankings of the 3 corre-
lationmeasures is not so low, a final rank is provided based on
their average ranking. If we refer to this final rank, the most
correlated combinations of centrality and hierarchy are LRC

αl and closeness centrality βc. It is followed by LRC αl and
local centrality βl . The third combination is triangle partici-
pation αtp and degree centrality βd . Those combinations have
been voted as the most correlated across the 28 real-world
networks. For the least correlated combinations, the lowest
ranks happen to involve betweenness centrality βb with the
nested hierarchies k-truss αt and k-core αc and then comes
PageRank βp with k-truss αt .

Table 12 reports the Schulze rankings according to the sim-
ilarity evaluation measures. Kendall Tau correlation between
these rankings is provided in table 10. It can be seen that
on average the Kendall Tau correlation of the similarity
evaluation measures are more correlated than the correlation
evaluation measure. Therefore, the rankings based on the five
different similarity evaluation measures are averaged in order
to obtain a final ranking in table 12. According to this ranking,
the top 3 combinations are LRC αl and closeness central-
ity βc. Then comes the combination of triangle participation
αl and Katz centrality βk followed by LRC αl and degree
centrality βd . The least similar combinations also involve
betweenness centrality βb with k-core αc and k-truss αt , and
then comes PageRank βp with k-core αc.

TABLE 12. Ranking of the Schulze method For all possible combinations
between hierarchy α and Centrality measures β. The ranks are sorted
based on the average (SCs) of all correlation evaluation measures γ used:
Jaccard (J), RBO top-k at p = 0.5 and p = 0.9 (Rtop

0.5 . Rtop
0.9 ), and RBO of the

entire set of nodes at p = 0.5 and p = 0.9 (Rall
0.5 and Rall

0.9). The
28 real-world networks are considered as voters. The hierarchy measures
are αc = k-core, αt = k-truss, αl = LRC, and αtp = triangle participation.
The centrality measures are βd = Degree, βl = Local, βb = Betweenness,
βc = Current-flow Closeness, βk = Katz, and βp = PageRank. Note that
ties in the output can exist with the Schulze method. In case of ties in the
sum of rankings, ranks are broken randomly.
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Moreover, in Schulze’s similarity rankings, it can be seen
in table 12 that flow hierarchy and mixed hierarchy combina-
tions are ranked as top combinations. From rank 1 till rank 11,
all combinations involve either LRC flow hierarchy (αl) or
mixed hierarchy triangle participation (αtp). On the other
hand, low-ranked combinations involve nested hierarchies k-
core (αc) and k-truss (αt ). This is not the case with correlation
where ranks are mixed throughout all different hierarchy
types. Nevertheless, comparing the Schulze rankings between
both correlation and similarity, there are important common
characteristics. Both share the same top combination between
LRC flow hierarchy and current-flow closeness centrality.
Both don’t include any nested hierarchy combination in the
top 3. Finally, both share commonmeasures with low ranking
(k-core, k-truss, and betweenness centrality). In addition,
neither k-core nor k-truss appears in the top 10 combinations
in similarity rankings.

In summary, according to the vast majority of rankings,
k-core and k-truss are the hierarchy measures which are
the less similar/correlated with the centrality measures while
LRC and triangle participation appears more frequently as the
most similar/correlated with centrality measures. Among the
centralities, betweenness and PageRank happen to be the least
ones occurring in top rankings as well.

VII. DISCUSSION
The main goal of this study is to disentangle the relationship
between hierarchy and centrality measures in complex net-
works. To do so, multiple evaluationmeasures have been used
in order to evaluate the interplay between various prominent
centrality measures and hierarchy measures in a representa-
tive sample of real-world networks originating from different
fields. In the first set of experiments, for each network Si,
an evaluation measure γ (αi, βj) is calculated for each hier-
archy αi and centrality βj measure combinations. The eval-
uation measures include 3 correlation measures (ρp, ρs, τb)
and 2 similarity measures (J ,RBO). Heatmaps representing
the values of the evaluation measures for all the combina-
tions associated with each network showed a wide variability
between the hierarchy-centrality combinations on one hand
and between the networks on the other hand. Nevertheless,
typical behaviors have emerged. First of all, the heatmaps
of the correlation and the Jaccard evaluation measures are
more patchy as compared to RBO. Additionally, a number
of network categories appear where the interactions between
centrality and hierarchy measures are quite comparable.
One can also notice already that betweenness centrality and
k-core with k-truss hierarchy measures stand out from their
competitors. At this stage, it appears that there is an under-
lying organization yet the inner workings between hierarchy,
centrality, and network topology need further investigations.

This leads to the second set of experiments in order to
further understand the interplay between hierarchy, centrality,
and network topology. The goal of these experiments is to
cluster the networks according to a given evaluation measure
and to investigate if some topological properties are shared

by networks belonging to the same cluster. First of all, each
network is represented by the sample set of a given evaluation
measure, and the Pearson correlation between the sample
sets of the networks two-by-two is computed. Hence, if two
networks exhibit a similar behavior, the Pearson correla-
tion between their sample sets is high. Results show that
some networks share similar behavior. This appears more
frequently using the RBO evaluation measure compared to
correlation and Jaccard. Indeed, the heatmap representing the
Pearson correlation of the networks is less patchy in this
case. At this step, more processing is needed in order to
cluster the networks. Two strategies are used. First of all,
a threshold is used on the correlation matrix in order to dis-
tinguish meaningful with non-meaningful correlation values
for each evaluation measure. Then, the number of meaningful
correlation values is used to rank the networks. Once the
networks are ranked, patterns are searched in the topological
properties allowing to cluster the networks. Results clearly
demonstrate that the driving force explaining the behavior
of the various centrality and hierarchy combinations is the
density, followed by the transitivity and to a lesser extent
assortativity. More specifically, the proportion of meaningful
correlation/similarity between hierarchy and centrality com-
binations is high when both density and transitivity are high.
Second, k-means clustering algorithm is used where each
network is represented by the sample set of a given evaluation
measure. The number of clusters is fixed according to the
previous experiment. Overall, it appears that the clusters are
quite similar. This consistency strengthens our findings.

The goal of the third set of experiments is to investigate
the orthogonality of the various hierarchy and centrality mea-
sures under test. Indeed, if centrality and hierarchy measures
convey the same information their correlation or similar-
ity is pretty high. The Schulze method allows to rank the
various combinations from most correlated/similar to least
correlated/similar. Results of these experiments according to
the various evaluation measures are quite consistent. LRC
and current-flow closeness followed by triangle participation
and degree centrality are at the top of the ranking. At the
other extreme, k-core and k-truss appear to be the least corre-
lated/similar to betweenness and PageRank centrality. There-
fore, the latter should be favored in order to take advantage
of the joint information provided by centrality and hierarchy
measures.

Now let’s relate the values of the evaluation measures
to the topological properties of the networks. Considering
correlation as an evaluation measure three clusters emerge
while there are only two when similarity is used. The top
clusters are characterized by a high number of meaningful
correlation/similarity between the various combinations of
hierarchy and centrality measures. Furthermore, the networks
exhibit high density and high transitivity. In this case, cen-
trality and hierarchy exhibit comparable behavior. In other
words, high density and transitivity seem to induce that both
centrality and hierarchy measures carry the same type of
information about the network structure. This is particularly
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true for LRC and triangle participation that are always well
correlated with the centrality measures. In contrast, in the
clusters characterized by low density and/or low transitivity
k-truss and to a lesser extent k-core behave quite differently
than the centrality measures. Indeed, in this situation, very
low values of similarity/correlation with the vast majority
of centrality measures are commonly observed. The k-truss
nested hierarchy is based on the existence of triangles in
the network. In case a network has low transitivity and/or
density, it is the first measure to account for this feature. Con-
sequently, this results in a greater divergence with centrality
measures.

To summarize, k-core and k-truss hierarchy and between-
ness and PageRank centrality measures tend to be the least
correlated and the least similar as compared to the alternative
hierarchies and centrality measures under test. This trend is
more pronounced with networks characterized by low density
and low transitivity. In networks having high density and high
transitivity, it is more difficult to observe a different behavior
of hierarchy measures as compared to centrality measures.

VIII. CONCLUSION
The aim of this paper is to identify the relationship between
hierarchy and centrality, as bothmeasures are used to quantify
the importance of a node. Several experiments have been per-
formed using different correlation and similarity evaluation
measures on real-world networks originating from various
fields. Results of these investigations reveal precious infor-
mation about the interactions between centrality measures,
hierarchy measures, and macroscopic topological properties
of the network. They give a clear guide about which centrality
measures and which hierarchy measures should be used in
practical applications.

First of all, these investigations demonstrate that centrality
and hierarchy measures exhibit a different view of the influ-
ence of the nodes.

Second, they show that there is a strong relationship
between the hierarchy measures, the centrality measures,
and the topological properties of a network. High density
and high transitivity tend to bring closer centrality and hier-
archy measures in terms of correlation or similarity. Con-
versely, low values of density and/or transitivity translate into
low correlation/similarity between hierarchy and centrality
measures.

Third, it appears that the most orthogonal combinations
(least similar and least correlated) involve the nested hier-
archy measures (k-core and k-truss) and betweenness and
PageRank centrality measures. On the opposite, the flow
hierarchy and mixed hierarchy measures (LRC and trian-
gle participation) exhibit a comparable behavior than degree
centrality and current-flow closeness centrality measures as
measured by correlation and similarity measures.

These results of this study have multiple implications.
First, it shows that one can substitute a centrality measure
to a hierarchy measure in case they are highly correlated
and similar. In contrast, combining both measures can also

be a good option in order to take into consideration the
complementary information carried by each measure when
they are not correlated. All of this must be done, taking
into consideration the density and transitivity of the given
network.

Second, they open new perspectives in the design of effec-
tivemeasures of influence based on these two complementary
dimensions. Indeed, they give clear indications about which
hierarchy and centrality measures should be combined in a
multidimensional scheme in order to design effective influ-
ence measures.

Finally, they pave the way for further investigation about
the relationship between centrality and hierarchy measures
considering complementary information on the network
topology such as the community structure.

REFERENCES
[1] A. Baker, ‘‘Complexity, networks, and non-uniqueness,’’ Found. Sci.,

vol. 18, no. 4, pp. 687–705, Nov. 2013.
[2] F. A. Rodrigues, ‘‘Network centrality: An introduction,’’ in A Mathemat-

ical Modeling Approach from Nonlinear Dynamics to Complex Systems.
Cham, Switzerland: Springer, 2019, pp. 177–196.

[3] M. Ghanem, C. Magnien, and F. Tarissan, ‘‘Centrality metrics in dynamic
networks: A comparison study,’’ IEEE Trans. Netw. Sci. Eng., vol. 6, no. 4,
pp. 940–951, Oct. 2019.

[4] M. Jalili, A. Salehzadeh-Yazdi, Y. Asgari, S. S. Arab, M. Yaghmaie,
A. Ghavamzadeh, andK. Alimoghaddam, ‘‘CentiServer: A comprehensive
resource, Web-based application and R package for centrality analysis,’’
PLoS ONE, vol. 10, no. 11, Nov. 2015, Art. no. e0143111.

[5] S. Das, ‘‘On local and global centrality in large scale networks,’’ 2014,
arXiv:1405.5512. [Online]. Available: http://arxiv.org/abs/1405.5512

[6] L. Lü, D. Chen, X.-L. Ren, Q.-M. Zhang, Y.-C. Zhang, and T. Zhou, ‘‘Vital
nodes identification in complex networks,’’ Phys. Rep., vol. 650, pp. 1–63,
Sep. 2016.

[7] C. Sciarra, G. Chiarotti, F. Laio, and L. Ridolfi, ‘‘A change of perspective
in network centrality,’’ Sci. Rep., vol. 8, no. 1, Dec. 2018, Art. no. 15269.

[8] Z. Ghalmane, M. El Hassouni, C. Cherifi, and H. Cherifi, ‘‘Centrality in
modular networks,’’ EPJ Data Sci., vol. 8, no. 1, p. 15, Dec. 2019.

[9] Z. Ghalmane, C. Cherifi, H. Cherifi, and M. E. Hassouni, ‘‘Centrality
in complex networks with overlapping community structure,’’ Sci. Rep.,
vol. 9, no. 1, pp. 1–29, Dec. 2019.

[10] H. Cherifi, G. Palla, B. K. Szymanski, andX. Lu, ‘‘On community structure
in complex networks: Challenges and opportunities,’’ Appl. Netw. Sci.,
vol. 4, no. 1, pp. 1–35, Dec. 2019.

[11] H. A. Simon, ‘‘The architecture of complexity’’ Proc. Amer. Philos. Soc.,
vol. 106, no. 6, pp. 467–482, 1962.

[12] A. Zafeiris and T. Vicsek, Why We Live in Hierarchies? A Quantitative
Treatise. New York, NY, USA: Springer, 2017.

[13] A. Clark, C. Fox, and S. Lappin, The Handbook of Computational Linguis-
tics and Natural Language Processing. Hoboken, NJ, USA: Wiley, 2013.

[14] E. Mones, L. Vicsek, and T. Vicsek, ‘‘Hierarchy measure for complex
networks,’’ PLoS ONE, vol. 7, no. 3, Mar. 2012, Art. no. e33799.

[15] J. Luo and C. L. Magee, ‘‘Detecting evolving patterns of self-organizing
networks by flow hierarchy measurement,’’ Complexity, vol. 16, no. 6,
pp. 53–61, Jul. 2011.

[16] D. Czégel and G. Palla, ‘‘Random walk hierarchy measure: What is more
hierarchical, a chain, a tree or a star?’’ Sci. Rep., vol. 5, no. 1, Nov. 2016,
Art. no. 17994.

[17] A. Trusina, S. Maslov, P. Minnhagen, and K. Sneppen, ‘‘Hierarchy mea-
sures in complex networks,’’ Phys. Rev. Lett., vol. 92, no. 17, Apr. 2004,
Art. no. 178702.

[18] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Willinger,
‘‘Network topologies, power laws, and hierarchy,’’ ACM SIGCOMMCom-
put. Commun. Rev., vol. 32, no. 1, p. 76, 2002.

[19] J. García-Algarra, J. M. Pastor, J. M. Iriondo, and J. Galeano, ‘‘Ranking of
critical species to preserve the functionality of mutualistic networks using
the k-core decomposition,’’ PeerJ, vol. 5, p. e3321, May 2017.

VOLUME 8, 2020 129741



S. Rajeh et al.: Interplay Between Hierarchy and Centrality in Complex Networks

[20] J. Wang and J. Cheng, ‘‘Truss decomposition in massive networks,’’ 2012,
arXiv:1205.6693. [Online]. Available: http://arxiv.org/abs/1205.6693

[21] F. D. Malliaros, C. Giatsidis, A. N. Papadopoulos, and M. Vazirgiannis,
‘‘The core decomposition of networks: Theory, algorithms and applica-
tions,’’ VLDB J., vol. 29, no. 1, pp. 61–92, Jan. 2020.

[22] M. E. J. Newman, Networks: An Introduction. New York, NY,
USA: Oxford Univ. Press, 2010.

[23] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley,
and H. A. Makse, ‘‘Identification of influential spreaders in complex
networks,’’ Nature Phys., vol. 6, no. 11, pp. 888–893, Nov. 2010.

[24] R. Saxena, S. Kaur, and V. Bhatnagar, ‘‘Social centrality using network
hierarchy and community structure,’’ Data Mining Knowl. Discovery,
vol. 32, no. 5, pp. 1421–1443, Sep. 2018.

[25] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, ‘‘Control centrality and hierar-
chical structure in complex networks,’’ PLoS ONE, vol. 7, no. 9, Sep. 2012,
Art. no. e44459.

[26] Y. Li, W. Li, Y. Tan, F. Liu, Y. Cao, and K. Y. Lee, ‘‘Hierarchical decompo-
sition for betweenness centrality measure of complex networks,’’ Sci. Rep.,
vol. 7, no. 1, Jun. 2017, Art. no. 46491.

[27] C. Li, Q. Li, P. Van Mieghem, H. E. Stanley, and H. Wang, ‘‘Correlation
between centralitymetrics and their application to the opinionmodel,’’Eur.
Phys. J. B, vol. 88, no. 3, pp. 1–13, Mar. 2015.

[28] J. R. F. Ronqui and G. Travieso, ‘‘Analyzing complex networks through
correlations in centrality measurements,’’ J. Stat. Mech., Theory Exp.,
vol. 2015, no. 5, May 2015, Art. no. P05030.

[29] D. Schoch, T. W. Valente, and U. Brandes, ‘‘Correlations among centrality
indices and a class of uniquely ranked graphs,’’ Social Netw., vol. 50,
pp. 46–54, Jul. 2017.

[30] S. Oldham, B. Fulcher, L. Parkes, A. Arnatkevic̆iūtė, C. Suo, and
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