
Received July 6, 2020, accepted July 12, 2020, date of publication July 15, 2020, date of current version July 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3009329

Sample Efficient Reinforcement Learning Method
via High Efficient Episodic Memory
DUJIA YANG , XIAOWEI QIN , XIAODONG XU , CHENSHENG LI , AND GUO WEI
CAS Key Laboratory of Wireless-Optical Communications, University of Science and Technology of China, Hefei 230026, China

Corresponding author: Xiaowei Qin (qinxw@ustc.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFA0701603, and in
part by the Natural Science Foundation of Anhui Province under Grant 2008085MF213.

ABSTRACT Reinforcement Learning (RL), especially Deep Reinforcement Learning (DRL), has made
great progress in many areas, such as robots, video games and driving. However, sample inefficiency is
a big obstacle to the widespread practical application of DRL. Inspired by the decision making in human
brain, this problem can be solved by incorporating instance based learning, i.e. episodic memory. Many
episodic memory based RL algorithms have emerged recently. However, these algorithms either only replace
parametric DRL algorithm with episodic control or incorporate episodic memory in a single component
of DRL. In contrast to preview works, this paper proposes a new sample-efficient reinforcement learning
architecture which introduces a new episodic memory module and incorporates episodic thought into some
key components of DRL: exploration, experience replay and loss function. Taking Deep Q-Network (DQN)
algorithm for example, when combined with DQN, our algorithm is called High Efficient Episodic Memory
DQN (HE-EMDQN). In HE-EMDQN, a new non-parametric episodic memory module is introduced to help
calculate the loss and modify the predicted value for exploration. For the sake of accelerating the sample
learning in experience replay, an auxiliary small buffer called percentile best episode replay memory is
designed to compose a mixed mini-batch. We show across the testing environments that our algorithm is
significantly more powerful and sample-efficient than DQN and the recent episodic memory deep q-network
(EMDQN). This work provides a new perspective for other RL algorithms to improve sample efficiency by
utilising episodic memory efficiently.

INDEX TERMS Episodic memory, sample efficiency, reinforcement learning, deep learning.

I. INTRODUCTION
The field of artificial intelligence, especially reinforcement
learning (RL) algorithm, develops rapidly in recent years.
RL algorithms have been successfully applied in many fields,
such as robot control [1], [2], autonomous driving [3], play-
ing video games [4] and navigation [5]. Taking deep rein-
forcement learning (DRL) for example, the algorithm named
Deep Q-Network (DQN) got a superhuman level score in a
range of Atari 2600 video games [6], [7]. There are more
sophistic systems like AlphaGo which defeated international
champion Li with 4:1 [8], AlphaStar that won top human
contestants in StarCraft [9], etc. However, reinforcement
learning algorithms still face many challenges at present.
In addition to the performance problems, like other machine

The associate editor coordinating the review of this manuscript and

approving it for publication was Fuhui Zhou .

learning algorithms, DRL also has complexity problems:
spatial complexity, computational complexity and sample
complexity [10]. The cost of solving spatial, computational,
and sample complexity of these successful cases is huge,
especially for model-free reinforcement learning which is
more practical and focused recently. In Atari 2600 game AI,
the agent needs to train 50 million game frames (equivalent
to 926 hours played by human players) to reach the game
level that human players can get in a fewminutes or dozens of
minutes [7]. In the training of the go program, in addition to
using the battle data and classic chess records of human expert
players, AlphaGo also played 30 million rounds of self-play.
As for the hardware configuration, according to [8], [11],
the hardware for training AlphaGo is amazing: 1,202 CPUs
and 176 GPUs. Therefore, it still needs continuous efforts
from academia and industry to solve these complexity
problems, for the sake of practical applications of DRL.

129274 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-9309-9067
https://orcid.org/0000-0001-7296-3461
https://orcid.org/0000-0001-9041-3826
https://orcid.org/0000-0002-3500-754X
https://orcid.org/0000-0001-6880-6244

D. Yang et al.: Sample Efficient Reinforcement Learning Method via High Efficient Episodic Memory

The two primary sources of sample inefficiency in DRL
are incremental parameter adjustment and weak inductive
bias [12]. Fortunately, according to subsequent research, both
of these factors can be mitigated, allowing DRL to proceed
in a much more sample-efficient manner. There have been
proposed some extensions to improve DQN by modifying
the basic architecture of DQN. Double DQN [13] decouples
action selection and value estimation in target network to
reduce the over-estimate. Authors in [14] propose a dueling
DQN that splits action value into state value and advan-
tage value. Prioritised Replay [15] further improves Double
DQN by optimising the replay strategy of replay buffer in
DQN. Authors in [16] combine the above three improved
algorithms as well as multi steps to form an enhanced
DQN, which is in a similar way to the more powerful Rain-
bow [17]. The return-based off-policy control algorithm [18]
improves reward propagation and the back up mechanism of
Q-learning.

Besides, there are other special insights from psycholo-
gists, psycholinguistics, and neuroscientists that might help
improve RL. One specific technique is fast learning through
episodic memory (EM). Inspired by the rapid complementary
approach of decision making in the brain [19], there have
been various attempts to incorporate external memory mod-
ules recently which improve the quality of decision making
and fasten the learning process. This form of fast learning is
supported by the hippocampus and related medial temporal
lobe structures in our brain [20]. Hippocampal learning is
thought to be instance-based [21], in contrast to the cortical
system which represents generalised statistical summaries of
the input distribution [22]. It is found that human beings
utilize multiple learning, memories and decision making sys-
tems to efficiently implement the task in different situations.
One of these external memories is episodic memory, which
keeps an explicit record of past events and use this record
directly as a point of reference when the agent is going to
make new decisions.

Aiming at the problem of sample complexity commonly
existing inmodel-free reinforcement learning algorithms, this
paper focuses on how to improve the efficiency of samples
and reduce the cost in practical application. Sample efficiency
refers to the amount of data required for a learning system to
attain any target level of performance [12]. There are some
works propose to design new episodic memory module or
incorporate these existing module to build a more efficient
method. Based on episodic control [23], the agent records
highly rewarding experiences and follows a policy which
replays sequences of actions that previously yielded high
returns. For example, MFEC [24] and NEC [25] propose
different episodic memory modules for efficient decision
making, instead of parametric neural networks. Others like
EMDQN [26], EVA [27], EBU [28], etc., involve episodic
memory to their algorithms to make them more powerful as
well as more efficient.

However, the aforementioned methods either only
replace parametric DRL algorithm with episodic control or

incorporate episodic memory in single component of DRL.
In this paper, we introduce a sample-efficient reinforcement
learning architecture that make high efficient use of episodic
memory with both new episodic memory module and incor-
porate episodic thought into some key components of DRL:
exploration, experience replay and loss function. The main
contribution of this paper is described as follows:

1) proposing a new episodic memory module: change the
two episodic buffers in kd-tree of EMDQN (update
in the manner of parameter updating of two networks
in DQN) with just one episodic buffer of hash table;
change the maximum update episodic memory module
in EMDQN to a new module that updates with N-step
learning and small difference monotonic increasing.
These improvements help reduce the storage require-
ments as well as make the learning progress more
stable.

2) introducing an architecture that make high efficient
use of episodic memory: Based on the architecture
of EMDQN who adds extra errors calculated by EM
to the loss function of DQN, we also take advantage
of EM to shift the value predicted by estimation net-
work for exploration to the combined value of both
predicted value and episodic memory-queried value.
By this mean, the policy is closer to the optimal pol-
icy by better exploiting the experience in the replay
memory (RM) and fill the RM with more useful data.
What’s more, we introduce an external small memory
which stores recent top percentile best episodic data.
The mini-batch is sampled between these so called
percentile best episodic memory and the original replay
memory in order to fasten the reward propagation and
total training progress through the learning of more
valuable samples.

The remainder of this article will be organized as follows.
In Section II, the background of reinforcement learning is
introduced. We will give a brief review of related works
recently, which focuses on improving the performance or data
efficiency of RL in Section III. In Section IV, we will propose
a sample-efficient reinforcement learning architecture that
make high efficient use of episodic memory by introducing
a new episodic memory module and incorporating episodic
thought into some key components of DRL. Experiment pro-
cess and result analysis are provided in Section V to demon-
strate the effectiveness of our model. Section VI concludes
the paper with some discussion as well as future works.

II. BACKGROUND
A. REINFORCEMENT LEARNING
In fact, reinforcement learning is considered as a sequential
decision making problem that an agent interacts with an
environment over discrete time steps. Usually, this problem
is modeled as Markov Decision Process (MDP) [29]: M =
(S, A, R, P, s0), where S is the state space, A is the action
space, R is the reward function, P is the transition probability
between states and s0 is the initial state. At the time step t ,

VOLUME 8, 2020 129275

D. Yang et al.: Sample Efficient Reinforcement Learning Method via High Efficient Episodic Memory

the agent observes a state st ∈ S and takes an action at ∈ A
according to the policy π (a|st). Then the environment trans-
fers to a new state st+1 with probability P(st , at) and returns
a scalar reward rt ∈ R to the agent. The goal of the agent
is to learn an optimal policy π∗ that is able to get the
maximum expectation of cumulative discounted return Rt =∑
∞

t ′=t γ
t ′−trt ′ , where γ ∈ (0, 1] is the discount rate.

When it comes to estimating the value of states and actions,
there are value function Vπ (s) and action value function
Qπ (s, a) respectively. Starting from state s and following a
policy π , Vπ (s) is the expected amount of discounted return
over the future. The action value function Qπ (s, a) is the
Vπ (s) when considers the starting action a:

Vπ (s) = Eπ [Rt |st = s] (1)

Qπ (s, a) = Eπ [Rt |st = s, at = a] (2)

For value based RL, the agent tries to learn an approxima-
tion optimal policy by acting greedily on these values. Taking
the classical RL algorithm Q-learning [30] for example, it’s
a table-based method and uses the well-known temporal dif-
ference (TD) to iteratively update Q(s, a) as well as find the
optimal value:

Q(s, a) = Q(s, a)+ α[r + γ max
a′

Q(s′, a′)− Q(s, a)] (3)

B. DEEP Q-NETWORK
Deep Q-Network (DQN) [7] is the first algorithm that com-
bines deep learning with Q-learning to solve the problem of
capacity limitation and sample correlation of the traditional
table-based RL. The DQNmodel is parameterized by weights
and biases denoted as θ and the action value is estimated
by neural networks denoted as Q(s, a|θ). At the iteration i
during training, a mini-batch of experience E = {e1, . . . en}
is sampled uniformly from the replay memory for updating
the networks, where et = (st , at , rt , st+1) and n is constant.
DQN also adopts the idea of TD to calculate the loss function
of the mini-batch:

L(θE) = E((st ,at ,rt ,st+1) D)[(yt − Q(st , at |θE))
2] (4)

where θE is the parameters of evaluation network and target
value yt = rt+γ maxa′ Q(st+1, a′|θT) is computed by the tar-
get network with parameters θT . θE is updated by minimizing
the loss function through gradient descent and θT is the copy
of θE every setting steps.

The main contribution of DQN is: 1) using deep neural net-
work (DNN) to approximate value function; 2) introducing
experience replay from RM to train the RL off-line; 3) using
a separate target network to calculate TD errors.

C. EPISODIC MEMORY
In this paper, the environments we considered are episodic,
in which each episode ends in a special state called the
terminal state and followed by a reset to a standard starting
state or to a sample from a standard distribution of starting
states [29]. So for episodic RL, the expected discounted return

is denoted as Rt =
∑T

t ′=t γ
t ′−trt ′ , where T is the total time

steps at the ending of each episode. Accordingly, the episodic
reward is the sum of total real rewards in each episode, e.g.
total scores in video games: Score =

∑T
t ′=1 rt ′ .

III. RELATED WORKS
In this section, we will review the related works of various
recent reinforcement learning methods which incorporate
episodic memory to improve performance as well as data
efficiency.

A. NEW EPISODIC MODULE
Model Free Episodic Control (MFEC) is one of the first
few works which involved episodic memory in reinforce-
ment learning [24]. The author leverages an episodic control
model: record highly rewarded experiences and follow a pol-
icy that replays sequences of actions that previously yielded
high returns. This model is non-parametric and data-efficient
when compared to traditional gradient-based DRL. [25] pro-
posesNeural Episodic Control (NEC), which consists of three
components: a convolutional neural network that embeds
raw pixel images into slow-changing keys, a differentiable
neural dictionary (DND), and a final network that converts
context-based lookup from the DND to estimate values for
action selection. DND is an episodic memory module with
fast-updating values, and allows estimating the value of a
new state according to the similarities between stored neigh-
bor states which is more reasonable compared to MFEC.
However, these two table-based methods rely on finding
k nearest neighbour (kNN) states which is very time-
consuming and lack generalization when compared to para-
metric DRL. Based on advantage actor critic architecture,
[31] introduces a trainable episodic memory module which
uses a reservoir sampling technique to avoid maintaining all
visited states in memory. States from the memory are drawn
from a distribution over all n-subsets of visited states parame-
terized by weights which requires quite complicated compu-
tation. NEC-RP [32] just reduces the number of parameters
to learn by switching the fully connected layer of NEC to
random projection which is slightly more stable and efficient
than NEC.

B. INCORPORATION OF EPISODIC MEMORY
Recently, there have been growing interests in introducing
episodic thought into some key components of deep rein-
forcement learning algorithms, such as exploration, experi-
ence replay and loss function.
1) exploration: Authors in [33] propose a new exploring

policy that encourages the agents to find states with
curiosity. Computed by EM, this curiosity is a novelty
bonus and is summed up with the real task reward to
provide the combined reward for RL learning. Instead
of trying to find surprising states, Ephemeral Value
Adjustments (EVA) [27] modifies the value for action
selection predicted by neural networkwith an estimated
value function which is found by planning over nearest

129276 VOLUME 8, 2020

D. Yang et al.: Sample Efficient Reinforcement Learning Method via High Efficient Episodic Memory

experience tuples from the replay buffer. However, both
the curiosity computation and memory-based planning
of EVA are quite model-complex and time-consuming.

2) experience replay: EBU [28] performs backward
updating in deep-learning setting by using episodic
memory instead of the random batch-sampling in expe-
rience replay. As for AE-DDPG in [34], the author
designs two memory buffers for experience replay,
namely ‘‘Memory’’ and ‘‘HMemory’’. The former is
the same as the RM in DQN, while the latter stores
data in trajectories. However, ‘‘HMemory’’ only mem-
orizes whole episodic data who gets the highest score
at present, which possibly leads to severe lacking of
sample diversity (see Section IV).

3) loss function: Authors in [35] propose a NEC2DQN
algorithm which simply replaces the target network
with NEC at the beginning of training to form com-
bined target values and to compute loss function fur-
ther. It learns faster than Double DQN or N-step DQN
in the Atari game Pong, but it impairs the advantage
of generalization of DQN and lacks the continuous and
effective use of episodic memory. Recently, the author
in [26] combines parametric module of DQN with
non-parametric module of episodic control with the
purpose of improving both sample efficiency as well
as module generalization. This EMDQN method is
better than DQN and surpasses both MFEC and NEC.
However, the utilization of episodic memory in
EMDQN is single, because it is merely been applied
to the loss function of DQN. Besides, its policy for
updating value with maximum replacement is slightly
aggressive which may cause stability problem in train-
ing. What’s more, EMDQN use kd-tree to construct
the memory table with two same size buffers updated
in the manner of asynchronous updating of two net-
works in DQN, which is time-consuming and memory-
consuming.

In this paper, drawing on the experience of EMDQN,
we propose a new sample-efficient reinforcement learning
method which introduces a new EM module and incorpo-
rates episodic thought into some key components of DRL
efficiently: exploration, experience replay and loss function.
Experiments in Section V show our algorithm is significantly
more sample-efficient than both DQN and the better one —
EMDQN.

IV. METHOD
Our work focuses on proposing a new perspective for other
RL algorithms to high efficiently use episodic memory to
improve sample efficiency. In this section, we take DQN
algorithm for example and introduce the overall architecture
of our High Efficient Episodic Memory DQN (HE-EMDQN)
algorithm in detail, which is illustrated in Fig. 1 and descried
in Algorithm 1 and Algorithm 2. The solid lines in Fig. 1
represent the working flow of traditional DQN,while the dash
lines are the pipeline we designed to make an efficient use

FIGURE 1. High efficient episodic memory DQN (HE-EMDQN).

of episodic memory. At the time step t , the agent observers
state st from the environment and takes action at according
to the episode adjusted exploration (EAE) strategy. Then the
environment transforms to new state st+1 and rewards the
agent with rt . The experience et = (st , at , rt , st+1) is stored
in replay memory (RM). When this episode comes to an end,
episodic memory (EM) is updated in a new episodic control
manner and the whole episodic data (also called trajectory)
E = {e1, . . . eT } will be pumped into the percentile best
episode replay memory (PBE-RM) if its episodic reward
is larger than a dynamic bound. Both replay memories are
sampled to compose a mixed mini-batch which is used to
compute a combined loss and update the DQN networks
further. Below, we will introduce the improvement of each
aspect of the algorithm in detail.

A. NEW EPISODIC MEMORY MODULE
As mentioned in Section I, MFEC and NEC are two famous
episodic control based methods and are both non-parametric.
They are all tabular episodic memory modules with different
ways of updating. We denote the table in episodic memory
as QEC (s, a).
At the end of each episode, MFEC updates the table

QEC (s, a) by changing the value within the table to a bigger
expected discounted return directly:

QEC (st , at) =

{
Rt if (st , at) /∈ QEC

max{QEC (st , at),Rt } otherwise
(5)

This update mode propagates rewards very fast but may cause
some values in QEC (s, a) change too much to keep a stable
learning.

For NEC, values in this module are updated in the similar
way as the classic tabular Q-learning algorithm (Eq. 3) but
with N-step instead. Unlike MFEC, QEC (st , at) is calculated
as a weighted average of its kNN states’ values in DND,
whose weights are given by normalised distance between
the lookup key and the corresponding neighbor key in EM.

VOLUME 8, 2020 129277

D. Yang et al.: Sample Efficient Reinforcement Learning Method via High Efficient Episodic Memory

Algorithm 1 High Efficient Episodic Memory DQN
(HE-EMDQN)
Input: nstep, updatestep1, updatestep2, mini-batch size k , α, η,

λ0, λ1, λ2
1: Initialize tr = [] RM = [], PBE − RM = [], EM = []
2: for each episode do
3: for t = 1, 2, 3, . . .T do
4: Receive observation ot from environment.
5: Let st = φ(ot).
6: With probability ε select a random action at .
7: Otherwise estimate QEVA(st , a) for each action a

via (13) and select at = argmaxa QEVA(st , a).
8: Execute action at , observe reward rt and next

state st+1.
9: Store transition (st , at , rt , st+1) in RM and trajec-

tory tr .
10: if t >= nstep then
11: Update EM via function UPDATE_EM(tr ,

True,nstep).
12: end if
13: if t MOD updatestep1 == 0 then
14: Sample mini-batch according to the sampling

strategy in (11).
15: Calculate mini-batch’s loss via (14) and

importance sampling weights via (10).
16: Update θE in the evaluation network.
17: end if
18: end for
19: Update EM via function UPDATE_EM (tr ,

False,nstep)
20: Calculate Score and score_bound via (9)
21: if Score >= score_bound then
22: Pump tr into PBE − RM
23: end if
24: Let tr = []
25: if t MOD updatestep2 == 0 then
26: Copy θE to θT .
27: end if
28: end for

This update module is more stable and reasonable than
MFEC. However, this weighted average manner decreases
the advantage of the maximum return propagation. What’s
worse, NEC needs to find kNN states and calculate weights
frequently, which is very time-consuming.

In our algorithm, we design a new episodic memory mod-
ule that combines the fast return propagation of MFEC and
the stable learning strength of NEC. Firstly, the observation of
high dimension ot of the environment is mapped to an embed-
ding state st through an embedding function φ. There are
many embedding functions, such as Gaussian function [36],
Convolution neural network [25], simihash [37]. Since the
embedding work is not our focus, we use the Gaussian pro-
jection which approximately preserves relative distances in

Algorithm 2 Update Episodic Memory
Input: tr : sample sequence in one episode, b_N_step:

whether to use N-step learning estimation
function UPDATE_EM(tr, b_N_step, n_step)

2: Get the sequence length T of tr
if b_N_step then

4: seq = tr(T − n_step+ 1 : T), (st , at , rt , st+1) =
tr(T − n_step)

Compute N-step learning estimationQECNnew (st , at)
via (7) and (8)

6: Update QEC (st , at) in EM via (6)
else

8: for t = T,T− 1, . . . , 1 do
(st , at , rt , st+1) = tr(t)

10: QEMnew(st , at) = Rt (st , at)
Update QEC (st , at) in EM via (6)

12: end for
end if

14: end function

the original space according to the Johnson-Lindenstrauss
lemma [36], same as MFEC and EMDQN.

For module updating, we compose fast return propagation,
tabular Q-learning algorithm and N-step learning into our
updating strategy. For the new QEMnew(st , at) = Rt (st , at),
it will be added to episodic memory directly if it is not
in the memory. According to [23], the episodic control is
given as ‘‘each time the subject experiences a reward that
is considered large enough (larger than expected a priori) it
stores the specific sequence of state-action pairs leading up
to this reward, and tries to follow such a sequence whenever
it stumbles upon a state included in it. If multiple successful
sequences are available for the same state, the one that yielded
maximal reward is followed.’’. Hence, QEM (st , at) should be
updated if and only if QEMnew(st , at) > QEM (st , at). Since
EM is used to fasten the learning progress of parametric
DRL, the small step-sizes in learning is needed in case of
‘catastrophic interference’ [12]. To solve the problem, double
buffers are used in kd-tree in EMDQN: one changes every
episode, while the other real EM values are updated following
the updating pace of target network. For our new episodic
memory module, there is only one buffer in EM and it is
updated in the sameway as Eq. 3whose stability is ensured by
the small learning factor α and convergence is shown in [30].
In brief, this new module is calculated as follows:

QEM (st , at) =


QEMnew(st , at) if (st , at) /∈ QEM ,
QEM (st , at)
+α[QEMnew(st , at)− Q

EM (st , at)]
if QEMnew(st , at) > QEM (st , at),

(6)

where the learning rate α ∈ [0, 1].
Specially, for some environments, the agent needs to take

action with far many steps to complete an episode. For
example, the Atari game Pong usually ends with thousands

129278 VOLUME 8, 2020

D. Yang et al.: Sample Efficient Reinforcement Learning Method via High Efficient Episodic Memory

of steps. In this case, episodic memory will get quite few
updating, leading to a large variance. So we introduce N-step
learning in a similar way as NEC.When the past steps in each
episode is no less than hyper-parameter N , the QEMnew(st , at) in
Eq. 6 is replaced by N-step estimated value QECNnew (st , at):

QECNnew (st , at) =
N∑
j=0

γ jrt+j + γ N max
a′

Qmix(st+N , a′), (7)

where Qmix(st+N , a′) is the weighted sum of Q(st+N , a′|θT)
from target network and the QEM (st+N , a′):

Qmix(st+N , a′) =


Q(st+N , a′|θT) if (st+N , a′) /∈ QEM

λ0Q(st+N , a′|θT)
+(1− λ0)QEM (st+N , a′) otherwise,

(8)

λ0 ∈ [0, 1] is a constant parameter. This trick of weighted
sum is used to utilize the episodic memory to reduced the
common overestimation problem of DQN. Details are shown
in Algorithm 2.

B. MIXED EXPERIENCE REPLAY
The experience replay with RM in DQN is biologically
inspired that sequences of experience are replayed, either dur-
ing awake resting or sleep in the hippocampus of rodents [38].
What’s more, the biological study [39] and Peak-End
Rule [40] show that people tend to remember scenes with
high value, the peak returns and the end returns greatly. So the
author in [34] redesigns experience replay by introducing
the idea of episodic control called AE-DDPG. Based on
DDPG algorithm, AE-DDPG uses two experience memory
buffers, namely called ‘‘Memory’’ and ‘‘HMemory’’. The
first one is the same as the RM in DQN, while the latter
‘‘HMemory’’ only stores episodic data whose episodic
reward surpasses the best score at present, i.e. best episode
(BE). Then mini-batches using for updating the networks
of DDPG are sampled with fixed probability between these
two memories respectively. Although AE-DDPG has higher
learning efficiency than DDPG in experiments, this simple
mixed experience replay policy has the following problems:
• Loss of Sample Diversity: The ‘‘HMemory’’ in
AE-DDPG only stores episodic data who gets the max-
imum score at present. This strategy limits the memory
with small subset of the experience samples, in other
word with poor diversity. This lack of diversity will
make the system prone to over-fitting, and may further
lead to an unstable performance [15]. For example,
because of random exploration, one episode of the Atari
game WizardOfWor may get a high point by accident
in the early stage of training, when the network is far
from stabilization. On this occasion, ‘‘HMemory’’ will
store this episodic data and rarely change for a long time,
which is quite sample-monotonous.

• Introduce Bias: In machine learning, the expected value
estimation of random updates depends on the updates

from the same distribution as the expectation. Mixed
experience replay changes the sample distribution with
some parts of samples been replayed more frequently
but uncontrollable and thus introduces bias for the final
convergence.

In light of the existing problems above, we introduce a new
mixed experience replay policy with percentile best episode
replay memory and importance sampling. Details are shown
as follows:

• Percentile Best Episode Replay Memory: Different
stages of training require different diversity of samples.
The usual policy of the decreasing exploring rate in
almost all RL algorithms shows that the requirements of
diversity is decreasing as well. Hence in our storage rule,
when one episode is finished, this trajectory is pumped
into PBE-RM if its Score is no less than a dynamic
value score_bound . After every episode, score_bound
is calculated as:

score_bound = percentile(Past_Rew, dy_per), (9)

where Past_Rew is the lastM episodic rewards and per-
centile value dy_per is changing dynamically according
to the training steps. The higher the percentile, the higher
the value density in PBE-RM, and the samples in it are
less diverse as well. Fig. 2 shows Score of each episode
during training in two games with DQN (‘‘score’’).
Inspired by the well-known ‘‘80/20 Rule’’ that in a
given process, 80% of the impact comes from 20% of
the input, this score_bound should maintain a relatively
stable high level while reflect the overall trend of the
agent’s real-time score during training for the sake of
diversity and stability. Sowe set dy_per stepping upwith
initial value 80 and step increasing, and it is calculated
as the percentile value in a sliding window of the last
200 episodic rewards (Fig. 3). In Fig. 2, we can see that
our dynamic bound (‘‘score_PBE’’) follows the whole
training trend while keeps a relative stable rising (stabil-
ity) and holds a high but not the highest value (diversity)
when compared to the 80 percentile score (‘‘score_80’’)
and best episode score (‘‘score_BE’’).

• Importance Sampling: Importance sampling [41] is a
common technique for estimating an expectation under
one distribution given samples from a different distri-
bution. Refer to [15], we correct this introduced bias
through applying importance-sampling weights

wt = (
1/NRM

1/NPBE−RM ∗ p
)η (10)

to the loss of every sample of mini-batch that sampled
from PBE-RM δi, where NPBE−RM and NRM represent
the two replay memory sizes at present, η ∈ [0, 1] is
increasing with steps, and p is the probability to involve
mixed experience replay rule. These weights can be
folded into the Q-learning update by usingw∗δi, instead
of the usual δi.

VOLUME 8, 2020 129279

D. Yang et al.: Sample Efficient Reinforcement Learning Method via High Efficient Episodic Memory

FIGURE 2. Scores of all training episodes of DQN and 80 percentile score
(‘‘score_80’’), best episode score (‘‘score_BE’’) and our dynamic
score_bound (‘‘score_PBE’’) of these scores.

FIGURE 3. The dynamic percentile of percentile best episode replay
memory.

At the stage of experience replay, two methods of sampling
are combined to form the mini-batch:

B =


Combine[SampleRM ((1− µ) ∗ k),

SamplePBE−RM (µ ∗ k)] if p < ρ,
SampleRM (k) otherwise,

(11)

where k is the mini-batch size, µ ∈ [0, 1] is the combination
ratio that controls the number of samples sampling between
RM and PBE-RM. SampleRM (k) means random sampling k
samples from RM. SamplePBE−RM (k) is a similar definition.
During every experience replay, we use a random variable p to
switch sampling rule between normal experience replay and
mixed experience replay: if and only if p is smaller than a
constant ρ ∈ [0, 1], the mixed experience replay is executed.
By this means, we increase the value density of samples for
learning while keep a good diversity of the mini-batch.

C. EXPLORATION AND LOSS
Exploration and exploitation is a common dilemma in RL,
whose focus is how to take action at every step. The agent
may take many futile actions in the environment if its explo-
ration policy is bad, leading the algorithm sample-inefficient
in the end. EVA modifies the values for action selection
during exploration by planning over experience tuples from
the replay buffer near the current state:

QEVA(st , ·) = λQ(st , ·|θE)+ (1−λ)

∑K
k=1 QNP(sk , ·)

K
, (12)

where sk is one of the K kNN states of the current state st
andQNP(sk , ·) is its planning values of all actions. Since EVA
needs to find kNN states in an extra buffer, it is inevitably
time-consuming. Besides, its trace computation algorithm of
estimating QNP just use the segment information of episode.
We apply the thought of EVA to our method, but take a simple
policy:

QEVA(st , a) =


Q(st , a|θE) if (st , a) /∈ QEM ,
λ1Q(st , a|θE)
+ (1− λ1)QEM (st , a) otherwise,

(13)

where λ1 ∈ [0, 1]. In every action selection of exploitation,
the agent looks up every action of state st in episodic memory
and selects an action according to at = argmaxa QEVA(st , a).
The value adjustment is executed if and only if (st , a) is
contained in episodicmemory. This simple exploration policy
utilise episodic memory to efficiently exploit environment
while it does not cost too much time.

In the light of the research in neuroscience [42], striatum
(i.e. reflex) and hippocampus (i.e. memory) are two learning
systems in human brain, where they compete and cooperate
with each other to constitute a third system that generates
motivational (outcome-predictive) signals in decision mak-
ing. EMDQN mimic this third system in the brain by com-
bining TD errors (Q(s, a|θT) − Q(s, a|θE))2 and EM errors
(QEM (s, a)−Q(s, a|θE))2. We adopt this idea who combines
the two errors from DQN and episodic memory respectively:

L(s, a)=


(Q(s, a|θT)−Q(s, a|θE))2 if (s, a) /∈ QEM ,
(Q(s, a|θT)− Q(s, a|θE))2

+ λ2(QEM (s, a)−Q(s, a|θE))2 otherwise,

(14)

where λ2 ∈ [0, 1]. Note that EM is derived from the
non-parametric EC learning system. Like the target network
in DQN, its output values work as another true values and are
used to calculate EM errors. Similar to optimality tightening
method [43], which has been proven to speed up reward
propagation through tightening strategies, this learning signal
is the special case of the following formula when Lmax =
Umin

= QEM (s, a):

min
θ

∑
(sj,aj,rj,sj+1)∈B

[(qj − yj)2 + λ(Lmaxj − qj))2+

+ λ(qj − Umin
j)2+], (15)

where qj and yj are the output of evaluation network and target
network of (sj, aj) respectively, λ is a penalty coefficient and
(x)+ = max(0, x) is the rectifier function. Lmax and Umin

are the largest lower bound and the smallest upper bound
of (sj, aj) respectively, which are computed as constraints in
a constant number of future and past steps in one episode
according to the Bellman optimality equation. The difference
is that these bonds are episodic rewards from EM in the
modified loss function. By distilling information from EM
to the parametric model, additional constraints who constrain
the output of estimation network to be around QEM are

129280 VOLUME 8, 2020

D. Yang et al.: Sample Efficient Reinforcement Learning Method via High Efficient Episodic Memory

added to DQN. Thus, the fast converging property of episodic
memory is introduced to speed up the reward learning
in DRL.

We will compare our HE-EMDQN with EMDQN in next
section.

V. EXPERIMENTS AND RESULTS
We test our algorithm on the Arcade Learning Environment
provided by OpenAI Gym [44], which is a benchmark suite
of Atari 2600 games. These games have high dimensional
observations and require complex policies to acquire high
expected rewards. They are widely used for performance
comparison in RL at present.

A. EXPERIMENTAL SETUP
Because of the limited computing resources in our lab,
we evaluate HE-EMDQN, EMDQN and DQN over 20 ran-
domly selected games (according to the alphabetical order) of
Atari 2600, which contain the games with good performance
and were shown in EMDQN (’Defender’ is not included in
the recent version of atari in OpenAI Gym). See these games
in Table 1.

TABLE 1. Score comparison of EMDQN, DQN and our algorithm.

The parameters of EMDQN and DQN are all set the
same as [26]. As for HE-EMDQN, the networks and basic
hyper-parameter settings are set as DQN. Like EMDQN,
we also use Gaussian projection to map the observation to
4 dimension state, whose distribution obeys N (0, 1/

√
4).

In contrast, the projection precision is limited to 5 decimal
places to form a string key for storage and query. The rewards
in all games are clipped to [−1,1]. The following hyper
parameters are tuned on StarGunner and Pong. The buffer
size of PBE-RM is 3e4, and the N-step estimation is set
to 200 steps. If EM or PBE-RM is full, the oldest sample
is discarded to store the new one. The score_bound is the
dy_per percentile of the last 200 episodic rewards, where
the dy_per is stepping up from 80 to 97.5 (Fig. 3). The
learning rate α is set to 0.25. At the stage of experience replay,
we set the mini-batch k = 32 with the possibility of mixed

experience replay ρ = 0.9 and combination ratio µ = 0.1.
The adjustment parameter λ0, λ1, λ2 are all set to the same
value 0.1.

We train these three algorithms with 20 million frames and
evaluate them every 250000 frames. During evaluation, every
agent runs for 30 episodes with 30 no-op operations at the
start of each episode [24]. The final result of each evaluation
is the average of these 30 scores. Each game is run 3 times
with different random seeds.

B. RESULTS
1) RESULTS ON GAMES
The highest average testing score of every training for score
comparison among our algorithm, EMDQN and DQN are
reported in Table 1, just as [7]. This score is a common
measure that shows the best performance of an algorithm.
From Table 1, we can find that HE-EMDQN is far better than
DQN on 17 games. For EMDQN, our method scores much
higher on 16 games (80% percent on 20 games), while just
slightly worse than EMDQN in the other 4 games. Follow-
ing [13], we also compute human-normalized scores across
games among these three algorithms to evaluate the overall
performance:

scorenormalized =
scoreagent − scorerandom
scorehuman − scorerandom

. (16)

Note that the ‘random’ and ‘human’ scores of all games are
the same as shown by [7]. Results (mean and median) are
shown in Table 2.

TABLE 2. Performance comparisons on mean and median
human-normalized scores over 20 games.

Besides the final results in the two tables above, we show
the testing curves of 8 games during training in Fig. 4. These
curves indicate the progress of average best performance of
all algorithms as training continues. Obviously, HE-EMDQN
performs far better than DQN as well as EMDQN, especially
in Gravitar, Pong and Qbert. Taking Pong for example,
although the final results in Table 1 are close, their sample
efficiency varies greatly. It takes EMDQN 9.75 million train-
ing frames to get the average testing score of 20 (the highest
score is 21 for Pong), while only 4.75 million training frames
are needed for HE-EMDQN.

Seeing from Table 1, Table 2 and Fig. 4 together,
HE-EMDQN shows a better performance than DQN and
EMDQN. In other words, our improvement measures on
HE-EMDQN do help improve the performance of EMDQN
as well as sample efficiency. In next section, extra experi-
ments are done to analysis the effects of different improve-
ment measures of our architecture in improving sample
efficiency respectively.

VOLUME 8, 2020 129281

D. Yang et al.: Sample Efficient Reinforcement Learning Method via High Efficient Episodic Memory

FIGURE 4. Testing curves of HE-EMDQN (Ours), EMDQN, DQN on representative games. Scores are smoothed using moving average over 4 testing
epochs. Each game is run 3 times with different random seeds.

2) ANALYSES ON OUR ARCHITECTURE
First of all, We replace the maximum update module of
EMDQN with our new EM module and compare it with
EMDQN on 2 games. In order to see the learning ability
further, the real training curves are shown in the left column
of Fig. 5. It is worth noting that the training mean scores
are the mean of scores of last 100 episodes during training.
Results show that our new EM module works as good as
the maximum update module of EMDQN, and even better
than EMDQN. However, EMDQN uses kd-tree who contains
a state buffer and a real tree to construct the memory table.
The buffer updates in real time and is copied to the tree at
the same pace of updating target network for the sake of
stability. Thanks to the small monotonic rise policy of our
episodic module which ensures a stable updating of EM,

FIGURE 5. Training and testing curves of EMDQN with our new EM
module (EMDQN-our EM) and EMDQN on representative games. The
scores are smoothed using moving average over 4 epochs with the same
random seed.

we use hash table with only one buffer in HE-EMDQN.
In the experiments, our EM contains a hash table with buffer
size 107. The EM in EMDQN is a kd-tree table with buffer
size of 5×106 per action, whose total size is double. For some
games with larger action space, such as Jamesbond, which
contains 18 possible actions, the fixed buffer size of EMDQN
is 2×18×5×106. In addition, as the complexity of hash table
isO(1) which is smaller than the complexityO(log2 N) of kd-
tree, the training time of EMDQNwith our newEMmodule is
smaller than the original EMDQN in the experiments as well.

As for experience replay, the whole HE-EMDQN
(Ours) and HE-EMDQN with best episode replay memory
(Ours-BE) are tested (Fig. 6). Best episode replay memory
is the policy proposed by AE-DDPG. HE-EMDQN with
PBE-RM is a little worse than HE-EMDQN with BE-RM
in the early stage, but stably better than the latter in the
later stage. Specially, HE-EMDQN with BE-RM confronts
a continuous performance degradation in WizardOfWor in
the late stage which is not the problem of HE-EMDQN with
PBE-RM. We argue that the strategy of percentile best and
importance sampling help reduce the problem of diversity
in BE-RM which is quite important for the convergence
in the later stage of training. We also analysis the effect
of episode adjusted exploration in the exploration state of
DRL. Obviously, applying episode adjusted exploration to
the original exploration (Ours-No EAE) in RL do help to
improve the performance, either in the early or late stages
of training. Similar to the instance-based decision making of
human beings, this EAE policy utilises experience in episodic
memory to exploit environment efficiently.

All in all, the above experiments and analyses demon-
strate that our EM related improvement measures of new
EM module, experience replay and exploration take effect
in improving the sample efficiency respectively (the effect
of loss function is proved by EMDQN). Although each
improvement measure makes little difference, it makes great

129282 VOLUME 8, 2020

D. Yang et al.: Sample Efficient Reinforcement Learning Method via High Efficient Episodic Memory

FIGURE 6. Training and testing curves of original HE-EMDQN (Ours),
HE-EMDQN with best episode replay memory (Ours-BE) and HE-EMDQN
without episode adjusted exploration (Ours-No EAE) on representative
games. The scores are smoothed using moving average over 4 epochs
with the same random seed.

difference when all of them are incorporated in our
HE-EMDQN (Fig. 4). In other word, bymaking high efficient
use of episodic memory, our algorithm do make difference in
improving same efficiency for DRL.

VI. CONCLUSION
In this paper, we propose a new sample-efficient reinforce-
ment learning architecture which introduces a new EM
module and incorporates episodic thought in some key com-
ponents of DRL efficiently: exploration, experience replay
and loss function. Experiments in Atari games show our
algorithm is significantly more sample-efficient than both
DQN and EMDQN.We also do extra experiments to analysis
how these EM related improvement measures influence the
sample efficiency respectively. In conclusion, bymaking high
efficient use of episodic memory, our algorithm do make
difference in improving same efficiency for DRL. In the
future, we will try to: 1) apply our work to continuous motion
environments and practical applications in communication;
2) extend our EM module with other biologically inspired
technique to update the module and evaluate new states
accurately.

REFERENCES
[1] J. Kober, J. A. Bagnell, and J. Peters, ‘‘Reinforcement learning in robotics:

A survey,’’ Int. J. Robot. Res., vol. 32, no. 11, pp. 1238–1274, Sep. 2013.
[2] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, ‘‘Control of a quadrotor

with reinforcement learning,’’ IEEE Robot. Autom. Lett., vol. 2, no. 4,
pp. 2096–2103, Oct. 2017.

[3] A. Sallab, M. Abdou, E. Perot, and S. Yogamani, ‘‘Deep reinforcement
learning framework for autonomous driving,’’ Electron. Imag., vol. 2017,
no. 19, pp. 70–76, Jan. 2017.

[4] G. N. Yannakakis and J. Togelius, Artificial Intelligence and Games, vol. 2.
New York, NY, USA: Springer, 2018.

[5] L. Lv, S. Zhang, D. Ding, and Y. Wang, ‘‘Path planning via an improved
DQN-based learning policy,’’ IEEEAccess, vol. 7, pp. 67319–67330, 2019.

[6] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, ‘‘The arcade
learning environment: An evaluation platform for general agents,’’ J. Artif.
Intell. Res., vol. 47, pp. 253–279, Jun. 2013.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[8] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, ‘‘Mastering the game of go with deep neural networks and
tree search,’’ Nature, vol. 529, no. 7587, p. 484, 2016.

[9] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg,
W. M. Czarnecki, A. Dudzik, A. Huang, P. Georgiev, R. Powell, and
T. Ewalds, ‘‘Alphastar: Mastering the real-time strategy game starcraft II,’’
DeepMind Blog, p. 2, Jan. 2019.

[10] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman, ‘‘PAC
model-free reinforcement learning,’’ in Proc. 23rd Int. Conf. Mach. Learn.
(ICML), 2006, pp. 881–888.

[11] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
‘‘Mastering the game of go without human knowledge,’’ Nature, vol. 550,
no. 7676, pp. 354–359, Oct. 2017.

[12] M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth-Nelson, C. Blundell, and
D. Hassabis, ‘‘Reinforcement learning, fast and slow,’’ Trends Cognit. Sci.,
vol. 23, no. 5, pp. 408–422, May 2019.

[13] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning with
double Q-learning,’’ in Proc. 30th AAAI Conf. Artif. Intell., 2016, pp. 1–7.

[14] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and
N. de Freitas, ‘‘Dueling network architectures for deep reinforcement
learning,’’ 2015, arXiv:1511.06581. [Online]. Available: http://arxiv.org/
abs/1511.06581

[15] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized experience
replay,’’ 2015, arXiv:1511.05952. [Online]. Available: http://arxiv.org/
abs/1511.05952

[16] J. Liu, X. Tao, and J. Lu, ‘‘QoE-oriented rate adaptation for DASH with
enhanced deep Q-learning,’’ IEEE Access, vol. 7, pp. 8454–8469, 2019.

[17] M.Hessel, J.Modayil, H. VanHasselt, T. Schaul, G. Ostrovski,W. Dabney,
D. Horgan, B. Piot, M. Azar, and D. Silver, ‘‘Rainbow: Combining
improvements in deep reinforcement learning,’’ in Proc. 32nd AAAI Conf.
Artif. Intell., 2017, pp. 1–8.

[18] R. Munos, T. Stepleton, A. Harutyunyan, and M. Bellemare, ‘‘Safe and
efficient off-policy reinforcement learning,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2016, pp. 1054–1062.

[19] S.W. Kennerley andM. E.Walton, ‘‘Decisionmaking and reward in frontal
cortex: Complementary evidence from neurophysiological and neuropsy-
chological studies,’’ Behav. Neurosci., vol. 125, no. 3, p. 297, 2011.

[20] P. Andersen, R. Morris, D. Amaral, T. Bliss, and J. O’Keefe, The Hip-
pocampus Book. London, U.K.: Oxford Univ. Press, 2006.

[21] D.Marr, D.Willshaw, and B.McNaughton, ‘‘Simple memory: A theory for
archicortex,’’ in From the Retina to the Neocortex. New York, NY, USA:
Springer, 1991, pp. 59–128.

[22] J. L. McClelland, B. L. McNaughton, and R. C. O’Reilly, ‘‘Why there
are complementary learning systems in the hippocampus and neocortex:
Insights from the successes and failures of connectionist models of learning
and memory,’’ Psychol. Rev., vol. 102, no. 3, p. 419, 1995.

[23] M. Lengyel and P. Dayan, ‘‘Hippocampal contributions to control:
The third way,’’ inProc. Adv. Neural Inf. Process. Syst., 2008, pp. 889–896.

[24] C. Blundell, B. Uria, A. Pritzel, Y. Li, A. Ruderman, J. Z. Leibo, J. Rae,
D. Wierstra, and D. Hassabis, ‘‘Model-free episodic control,’’ 2016,
arXiv:1606.04460. [Online]. Available: http://arxiv.org/abs/1606.04460

[25] A. Pritzel, B. Uria, S. Srinivasan, A. P. Badia, O. Vinyals, D. Hassabis,
D. Wierstra, and C. Blundell, ‘‘Neural episodic control,’’ in Proc. 34th Int.
Conf. Mach. Learn., vol. 70, 2017, pp. 2827–2836.

[26] Z. Lin, T. Zhao, G. Yang, and L. Zhang, ‘‘Episodic memory deep Q-
networks,’’ 2018, arXiv:1805.07603. [Online]. Available: http://arxiv.org/
abs/1805.07603

[27] S. Hansen, A. Pritzel, P. Sprechmann, A. Barreto, and C. Blundell, ‘‘Fast
deep reinforcement learning using online adjustments from the past,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 10567–10577.

VOLUME 8, 2020 129283

D. Yang et al.: Sample Efficient Reinforcement Learning Method via High Efficient Episodic Memory

[28] S. Y. Lee, C. Sungik, and S.-Y. Chung, ‘‘Sample-efficient deep reinforce-
ment learning via episodic backward update,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2019, pp. 2110–2119.

[29] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[30] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[31] K. J. Young, R. S. Sutton, and S. Yang, ‘‘Integrating episodic memory
into a reinforcement learning agent using reservoir sampling,’’ 2018,
arXiv:1806.00540. [Online]. Available: http://arxiv.org/abs/1806.00540

[32] D. Nishio and S. Yamane, ‘‘Random projection in neural episodic
control,’’ 2019, arXiv:1904.01790. [Online]. Available: http://arxiv.org/
abs/1904.01790

[33] N. Savinov, A. Raichuk, R. Marinier, D. Vincent, M. Pollefeys,
T. Lillicrap, and S. Gelly, ‘‘Episodic curiosity through reachability,’’ 2018,
arXiv:1810.02274. [Online]. Available: http://arxiv.org/abs/1810.02274

[34] Z. Zhang, J. Chen, Z. Chen, andW. Li, ‘‘Asynchronous episodic deep deter-
ministic policy gradient: Toward continuous control in computationally
complex environments,’’ IEEE Trans. Cybern., early access, Dec. 31, 2019,
doi: 10.1109/TCYB.2019.2939174.

[35] D. Nishio and S. Yamane, ‘‘Faster deep Q-learning using neural episodic
control,’’ in Proc. IEEE 42nd Annu. Comput. Softw. Appl. Conf. (COMP-
SAC), vol. 1, Jul. 2018, pp. 486–491.

[36] W. B. Johnson and J. Lindenstrauss, ‘‘Extensions of Lipschitz mappings
into a Hilbert space,’’ Contemp. Math., vol. 26, nos. 189–206, p. 1, 1984.

[37] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. X. Chen, Y. Duan,
J. Schulman, F. DeTurck, and P. Abbeel, ‘‘# exploration: A study of count-
based exploration for deep reinforcement learning,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 2753–2762.

[38] J. O’Neill, B. Pleydell-Bouverie, D. Dupret, and J. Csicsvari, ‘‘Play it
again: Reactivation of waking experience and memory,’’ Trends Neurosci.,
vol. 33, no. 5, pp. 220–229, May 2010.

[39] R. A. Adcock, A. Thangavel, S. Whitfield-Gabrieli, B. Knutson, and
J. D. E. Gabrieli, ‘‘Reward-motivated learning: Mesolimbic activation pre-
cedes memory formation,’’Neuron, vol. 50, no. 3, pp. 507–517, May 2006.

[40] A. M. Do, A. V. Rupert, and G. Wolford, ‘‘Evaluations of pleasurable
experiences: The peak-end rule,’’ Psychonomic Bull. Rev., vol. 15, no. 1,
pp. 96–98, Feb. 2008.

[41] A. R.Mahmood, H. P. vanHasselt, andR. S. Sutton, ‘‘Weighted importance
sampling for off-policy learning with linear function approximation,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 3014–3022.

[42] C. M. A. Pennartz, R. Ito, P. F. M. J. Verschure, F. P. Battaglia, and
T. W. Robbins, ‘‘The hippocampal–striatal axis in learning, prediction and
goal-directed behavior,’’ Trends Neurosci., vol. 34, no. 10, pp. 548–559,
Oct. 2011.

[43] F. S. He, Y. Liu, A. G. Schwing, and J. Peng, ‘‘Learning to play in a
day: Faster deep reinforcement learning by optimality tightening,’’ 2016,
arXiv:1611.01606. [Online]. Available: https://arxiv.org/abs/1611.01606

[44] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, ‘‘OpenAI gym,’’ 2016, arXiv:1606.01540. [Online].
Available: http://arxiv.org/abs/1606.01540

DUJIA YANG received the B.S. degree in
microelectronics from the Hefei University of
Technology, Hefei, China, in 2013. He is cur-
rently pursuing the Ph.D. degree with the Wireless
Information Network Laboratory, University of
Science and Technology of China, Hefei. His cur-
rent research interests are in the areas of wire-
less communications, big data analysis, and deep
learning.

XIAOWEI QIN received the B.S. and Ph.D.
degrees from the Department of Electrical Engi-
neering and Information Science, University of
Science and Technology of China (USTC), Hefei,
China, in 2000 and 2008, respectively. Since 2014,
he has been a member of staff with the Key Lab-
oratory of Wireless Optical Communications of
Chinese Academy of Sciences, USTC. His
research interests include optimization theory, ser-
vice modeling in future heterogeneous networks,
and big data in mobile communication networks.

XIAODONG XU received the B.S. and Ph.D.
degrees from the Department of Electrical Engi-
neering and Information Science, University of
Science and Technology of China (USTC), Hefei,
China, in 2000 and 2007, respectively. He is cur-
rently a member of staff with the Key Laboratory
of Wireless Optical Communications of Chinese
Academy of Sciences, USTC. His current research
interests include communication signal process-
ing, blind signal processing, and machine learning
in wireless communication.

CHENSHENG LI received the B.S. degree from
the Department of Electronic Engineering and
Information Science, University of Science and
Technology of China (USTC), Hefei, in 2015,
where he is currently pursuing the Ph.D. degree
with the Wireless Information Network Labora-
tory. His research interests include deep learning
in non Euclidean domain, graph neutral networks,
and machine learning in mobile networks.

GUO WEI received the B.S. degree in elec-
tronic engineering from the University of Science
and Technology of China (USTC), Hefei, China,
in 1983, and the M.S. and Ph.D. degrees in elec-
tronic engineering from the Chinese Academy
of Sciences, Beijing, China, in 1986 and 1991,
respectively. He is currently a Professor with
the School of Information Science and Techno
logy, USTC. His current research interests include
wireless and mobile communications, wireless

multimedia communications, ultra wideband communication systems, and
wireless information networks.

129284 VOLUME 8, 2020

http://dx.doi.org/10.1109/TCYB.2019.2939174

	INTRODUCTION
	BACKGROUND
	REINFORCEMENT LEARNING
	DEEP Q-NETWORK
	EPISODIC MEMORY

	RELATED WORKS
	NEW EPISODIC MODULE
	INCORPORATION OF EPISODIC MEMORY

	METHOD
	NEW EPISODIC MEMORY MODULE
	MIXED EXPERIENCE REPLAY
	EXPLORATION AND LOSS

	EXPERIMENTS AND RESULTS
	EXPERIMENTAL SETUP
	RESULTS
	RESULTS ON GAMES
	ANALYSES ON OUR ARCHITECTURE

	CONCLUSION
	REFERENCES
	Biographies
	DUJIA YANG
	XIAOWEI QIN
	XIAODONG XU
	CHENSHENG LI
	GUO WEI

