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ABSTRACT Glaucoma is a chronic eye disease that can cause permanent visual loss and is difficult to detect
early. Retinal nerve fiber layer defect (RNFLD) is clinical evidence for the diagnosis of glaucoma. Classical
deep learning based methods can be used to segment RNFLD from fundus images. However, the segmenta-
tion results of these methods do not have the specific geometry of RNFLD, and the segmentation errors of
fundus images with special styles are large. In this paper, we present a novel conditional adversarial shuffle
U-shaped network (CASU-Net) to segment RNFLD, which consists of a generator and a discriminator. For
the generator, a mixed loss is designed, which consists of an adaptive weighted segmentation loss and an
adversarial loss. This adaptive weighted segmentation loss can balance the segmentation accuracy of the
target and background region, and assign more attention to the hard samples, thus ensuring the consistent
improvement of the segmentation accuracy of all fundus images. The adversarial loss not only helps to
improve the pixel-wise segmentation accuracy but also makes the geometry of the RNFLD segmentation
closer to the ground truth. In addition, in the generator, a shuffle module was designed to fully mine
the information of all channels to improve the feature extraction capability of the model. The proposed
CASU-Net is verified on a RNFLD dataset from Beijing Tongren Hospital. The experiments show that the
CASU-Net achieves state-of-the-art results on this dataset.

INDEX TERMS Glaucoma, retinal nerve fiber layer defect segmentation, deep learning.

I. INTRODUCTION
Glaucoma is the second causing blindness disease in the
world, and it will cause irreversible visual loss to patients.
By 2040, the number of glaucoma patients will reach 110Mil-
lion [1]. Patients usually have no obvious symptoms at the
beginning of glaucoma until the visual loss appears [2].
If initial glaucoma patients can be found in the glaucoma
screening, prompt treatments can be adopted to decrease
the vision loss effectively. Therefore, early diagnosis and
treatment of glaucoma are important to protect the vision of
the patients. Generally, the diagnosis of glaucoma requires
rich clinical experience. However, a small number of glau-
coma professional physicians cannot meet the needs of
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large-scale glaucoma screening. Therefore, there is an urgent
need for automatic and accurate diagnosis methods for
glaucoma.

Optical coherence tomography (OCT) and color fundus
images are two methods of glaucoma screening [3]–[6].
Because OCT is expensive, and color fundus images are
highly efficient and economical, color fundus images are
more suitable for large-scale initial screening work [6]. If the
retinal nerve fiber layer defect (RNFLD) is detected in the
color fundus image, it can be used as an indicator for glau-
coma diagnosis. In the color fundus image, the optic disc is a
bright yellow oval region, and the RNFLD is a wedge-shaped
dark region close to the optic disc [7], as shown in Figure. 1.

A number of works have been proposed to segment the
RNFLD. These methods mainly include image segmentation
methods based on traditional techniques and segmentation
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FIGURE 1. An example of a color fundus image with retinal nerve fiber
layer defect (RNFLD). The green arrow points to the optic disc region,
the white arrow points to the RNFLD, and the blue arrow points to the
blood vessels in the fundus image.

methods based on deep learning. However, traditional tech-
niques are mainly based on hand-crafted features, which lack
effective representations and are susceptible to low contrast
quality. Although existing deep learning methods of RNFLD
segmentation can automatically extract features, they also
have three main problems:

1) The RNFLD segmentation obtained by the classic
CNNs cannot be trusted by doctors, because the seg-
mentation results neither have a specific morphology
nor conform to the intuitive perception of the doctor.
In contrast, RNFLD marked by the doctor generally
has a wedge-shaped geometry and smooth boundaries.
Therefore, a method that meets themorphological char-
acteristics of true RNFLD needs to be proposed.

2) The prediction accuracy of a few fundus images with
special styles is not high enough. In the case in which
there are multiple pieces of RNFLD or the contrast
between the inner and outer areas of the RNFLDoutline
is not obvious, the RNFLD extracted by the above deep
learning methods have large errors compared to the
RNFLD marked by glaucoma experts.

3) The information in red and blue channels of color
fundus images is not fully exploited, since the RNFLD
information is mainly distributed in the green channel
of the color fundus images, and the green channel is
easy to completely dominate the training of the CNN.
Amethod that can fully mine feature information needs
to be proposed.

To solve the above three problems in segmenting RNFLD
in fundus images, we proposed a novel method based on
adversarial learning. The main contributions of this work
include:

1) We designed a novel conditional adversarial shuffle
U-shaped network (CASU-Net), which consists of a
generator and a discriminator. The discriminator is used
to supervise the segmentation results of the generator.
This design not only improves the pixel-wise segmenta-
tion accuracy, but also makes the geometry of the target
area obtained by the generator closer to the ground
truth, which helps to strengthen the doctor’s trust in the
segmentation result.

2) In the CASU-Net, an adaptive weighted (AW) segmen-
tation loss was designed for the generator. This AW
loss can adaptively adjust the weight of each fundus

image, so that the fundus image with large segmen-
tation error gets more attention in the training. The
AW loss tends to improve the segmentation accuracy
of all fundus images simultaneously during the entire
training process, instead of improving the majority in
the early stage and then improving the remaining few
in the later stage, so as to avoid overfitting for fundus
images with special styles.

3) In the CASU-Net, a channel shuffle module was
designed for the generator. Through feature rearrange-
ment and random inactivation of connections between
feature channels, the shuffle module can not only focus
on the information of the green channel, but also fully
explores the information of the red and blue channels,
thus enhancing the feature extraction capability of the
model.

4) We evaluate the effectiveness and generalization capa-
bility of the proposed CASU-Net and existing methods
on a RNFLD dataset from Beijing Tongren Hospital.
The proposed CASU-Net achieves state-of-the-art seg-
mentation performance.

The rest of this paper is organized as follows. We first
review techniques related to the RNFLD segmentation in
the second part. The framework of CASU-Net is described
in the third part, and the experimental setup and results are
presented in the fourth part. We further obtain the conclusion
in the fifth part.

II. RELATED WORK
Some traditional methods have been proposed for the detec-
tion of RNFLD in the fundus image. Muramatsu et al. applied
the Gabor filters to the enhancement of RNFLDs after the
removal of the major blood vessels. By using LDA and ANN
classifier, true RNFLDs were identified from the darker ban-
dlike regions [8]. In [9], Oh et al. applied Hough transfor-
mation to detect the candidates after illumination correction
and polar transformation. Knowledge-based rules were used
to reduce false detection candidates for RNFLD. Lamani et al.
proposed a method based on texture and fractal description
for glaucomatous retina detection and used a support vector
machine classifier for classification [10]. In [11], Panda et al.
classified RNFLD boundary pixels using random forest with
cost-effective red-free fundus images. However, there is a
large gap between the RNFLDs predicted by these methods
and those marked by ophthalmologists.

In recent years, deep learning has developed rapidly in
the field of computer vision. It has made great progress in
image classification [12]–[18], object detection [19], [20] and
image segmentation [22]–[27]. Compared with traditional
methods, deep neural networks can automatically extract
features from the input data and achieve higher accuracy.
There have also been breakthroughs in the detection of
RNFLDs. Panda et al. [28] proposed a deep learning method
to detect RNFLD boundaries. In this method, the visibility
of the RNFLD region was further enhanced by contrast-
limited adaptive histogram equalization after the removal of
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FIGURE 2. Structure of the proposed CASU-Net. G represents generator, D represents discriminator, x represents a retinal fundus image, y represents
ground truth, and D(x, y ) and D(x, G(x)) represent the probability of true samples and false samples predicted as ground truth by the discriminator,
respectively. LossD represents the discriminator loss, Lossadv represents the adversarial loss of the generator, and Lossseg represents the segmentation
loss of the generator.

blood vessels. The RNFLD boundary pixels were selected
for training and testing. A patch-based deep convolutional
neural network (DCNN) was initially used to detect RNFLD
boundaries. The detected RNFLDboundary pixels were fitted
into lines by the random sample consensus algorithm. In [29],
Watanabe et al. proposed a DCNN with deconvolutional
layers to detect RNFLD. DCNN training was carried out
using different input image sets, such as original images of
abnormal cases, original images of both normal and abnormal
cases, and transformed half images.

III. METHODS
We propose a novel CASU-Net framework for the segmen-
tation of RNFLD in fundus images. The CASU-Net consists
of a generator and a discriminator, as shown in Figure. 2. The
generator is a U-shaped convolutional neural network whose
input is the fundus image (x) with three channels, and the
output is the probability map (y) of the RNFLD segmentation.

The overall loss function of the generator LossG includes
an AW segmentation loss Lossseg and an adversarial loss
Lossadv.The parameters of the generator network are opti-
mized by minimizing LossG. The discriminator is a convolu-
tional classification network. The input of the discriminator
network consists of the fundus image (x) and the RNFLD seg-
mentation probability map (y or G(x)). Herein, the RNFLD
segmentation probability map is divided into ground truth
(y) annotated by glaucoma experts and the probability map
(ŷ = G(x)) generated by the generator network. The output
of the discriminator is the probability of the network clas-
sifying the input as ground truth. The loss function of the
discriminator LossD can be calculated based on the output,
and parameters of the discriminator network are optimized by
minimizing LossD.
During training, the optimization and update of parameters

of generator and discriminator are implemented alternately.
Optimizing the parameters of the generator network can
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FIGURE 3. Examples of the pixel intensity distribution in the three channels of RGB. Image represents the color fundus image, GT represents the RNFLD
area marked by the doctor, and R, G, and B represent the pixel intensity distribution of the fundus image on the three channels of red, green, and blue,
respectively.

obtain segmentation with higher accuracy, and it makes the
discriminator difficult to distinguish the source of the RNFLD
segmentation probability map. Optimizing the parameters
of the discriminator network can improve the discrimina-
tor’s ability to distinguish between the ground truth and the
RNFLD segmentation generated by the generator network.
In the process of alternate optimization and update of genera-
tor parameters and discriminator parameters, the performance
of the discriminator network and the generator network are
both enhanced. Finally, RNFLD segmentation results with
high segmentation accuracy and highly consistent with the
geometry of ground truth is obtained.

A. DISCRIMINATIVE NETWORK
The discriminator network of the proposed CASU-Net is a
classification network, which consists of ten convolutional
layers, four pooling layers, and a global pooling layer. The
convolutional layers are composed of 3 × 3 convolution
kernels. Each convolution layer is followed by a rectified
linear unit (ReLU) activation function. By using the padding
operation, the convolutional operation does not change the
size of the feature map. After the feature map goes through
the pooling layer, the height and width of the feature map
are reduced to half of the original size. In addition, we use
the global pooling layer instead of the conventional fully-
connected layer. The network structure is shown in Figure. 2.
The input of the discriminator network is a four-channel
structure composed of the fundus image (x) and the RNFLD
segmentation probability map (y orG(x)). Herein, the sample
labeled by the glaucoma expert is represented as (x, y), and
the sample generated by the generator is represented as (x,
G (x)). The sizes of x, y, and G(x) are (H , W , 3), (H , W ,
1), and (H ,W , 1), respectively. Here, H andW represent the

height and width of the feature, respectively. The output of
discriminator is a real value mapped by Sigmoid function to
[0, 1], which means that the discriminator network judges the
input as the probability of ground truth. The loss function of
the discriminator is:

LossD = −Ex,y∼pdata(x,y) [logD (x, y)]

−Ex∼pdata(x) [log (1− D (x,G (x)))] (1)

During discriminator training, the parameters of generator G
remain unchanged, and the parameters of discriminatorD are
optimized and updated byminimizing the loss function LossD
of discriminator. The optimization objective of the discrimi-
nator is to distinguish between the RNFLD probability map
generated by the generator and the ground truth of RNFLD.

B. GENERATIVE NETWORK
The generator of the proposed CASU-Net is an end-to-end
shuffle U-shaped network (SU-Net), which consists of three
components, as shown in Figure. 2. The first part is the shuffle
module, which is mainly used to enhance the generalization
ability of the network. The second part is an encoder network
and a decoder network, which are used to generate multi-level
representations and the final prediction. The third part is a
mixed loss, which is used to optimize the generator.

1) SHUFFLE MODULE
Figure. 3. shows two fundus images and their pixel intensity
distribution in the three channels of RGB. As can be seen
from Figure. 3, the pixel intensity distribution of the three
channels of RGB in an image has strong consistency and
certain difference. For most fundus images, the RNFLD is
more obvious on the green channel, as shown in Figure. 3
(a); for a few fundus images, the RNFLD is more obvious

VOLUME 8, 2020 132351



S. Lu et al.: Novel Adaptive Weighted Loss Design in Adversarial Learning for RNFLD Segmentation

on the blue or red channel, as shown in Figure. 3 (b). Due
to the higher correlation between the green channel and the
RNFLD, the parameter update of the traditional CNN will
be dominated by the information of the green channel and
ignore the information of the blue and red channels. In order
to avoid the network from over-reliance on green channels,
we designed a shuffle module to mine the overall correlation
information and detail difference information of the three
channels at the same time.

In the shuffle module, the order of three channels in
RGB is randomly changed to achieve reordering. Let
X = [x1, x2, x3] be the original feature map of a fundus
image. X is transformed into X̃ by a feature rearrange-
ment with a probability of 0.5. Here, X̃ is defined as X̃ =[
x̃1, x̃2, x̃3

]
=

(∑
i ei1xi,

∑
i ei2xi,

∑
i ei3xi

)
, where eij ∈

{0, 1} is a random binary weight and satisfies the follow-
ing condition:

∑
i eij = 1,

∑
j eij = 1(i = 1, 2, 3; j = 1, 2, 3).

At the same time, we are inspired by dropout [30], con-
nections between feature channels of the shuffle module
and feature channels of the encoder network are randomly
deactivated according to a certain probability. Let Y =

[y1, y2, . . . , yn−1, yn] represent a feature vector of the first
layer in the encoder network and n represent the number of
features of this layer. Here, the formula of yj is expressed as
follows: yj = f

(∑
i (wijx̃ iri + bj)

)
, where wij is the weight of

the convolution kernel, ri satisfies the Bernoulli distribution,
bj is the bias of the j-th feature, and f is the ReLU activation
function. When there holds

∑
i ri ≥ 2(i = 1, 2, 3), ri can be

used for network training, otherwise ri is generated randomly
again. The shuffle module only works during the training
process and not during the prediction process.

2) FEATURE ENCODER AND DECODER MODULE
In our work, we modify the U-shape convolutional network
(U-Net) in [31] as the main part of the proposed SU-Net.
The modified U-Net serves as the base model in our paper.
Baseline contains an encoder network and a decoder net-
work similar to U-Net. The last features of the decoder are
processed by 1 × 1 convolution and sigmoid function oper-
ations to obtain the prediction of the RNFLD. Compared
with U-Net, we make the following improvements in the
feature encoder network and decoder network. Our baseline
replaces conventional convolutions and pooling layers with
deep separable convolutions [32] and strided convolutions,
respectively. Each separable convolution is followed by a
ReLU activation function and a batch normalization. Skip
connections are introduced between two adjacent separable
convolutions for residual correction. Second, multiple layers
of information are combined for the final feature prediction.

3) ADVERSARIAL LOSS AND ADAPTIVE WEIGHTED LOSS
In order to balance the background and target area, and opti-
mize the network from both the pixel level and the picture
level, we propose the mixed loss function of the generator
(LossG), which consists of an adversarial loss and a novel

adaptive weighted segmentation loss:

LossG = Lossadv + λLseg (G) (2)

In the above expression, λ is a parameter used to balance
Lossadv and Lseg, and the adversarial loss is defined based on
predictions by the discriminator:

Lossadv = Ex∼pdata(x)
[
log (1− D (x,G (x)))

]
(3)

And, the adaptive weighted segmentation loss Lseg is defined
based on the difference in pixel level between the prob-
ability map generated by the generator and ground truth.
In the expression of adversarial loss Lossadv, 1−D (x,G (x))
represents the probability that discriminator judges G (x)
as a fake sample. The network parameters of the gener-
ator are adjusted by minimizing Lossadv. The segmenta-
tion loss Lseg (G) is composed of a RNFLD segmentation
loss and a background segmentation loss. The background
and the RNFLD is defined as class 1 and 2, respectively.
First of all, the true positive, false negative and false pos-
itive of the two classes are defined for a fundus image:
TPik =

∑N
j=1 p

i
j (k)g

i
j (k), FN

i
k =

∑N
j=1 (1− p

i
j (k))g

i

j
(k),

and FPik =
∑N

j=1 p
i
j (k) (1− g

i
j (k)). Here, k represents the

label of the object (k = 1, 2), i represents the sequence
number of the fundus image, j is the sequence number of
the pixel, and N represents the total number of pixels in a
fundus image. And, pij (k) ∈ [0, 1] represents the proba-
bility that the j-th pixel of the i-th fundus image predicted
by the generator network belongs to the objective region of
the k-th class feature; gij (k) ∈ {0, 1} represents the true
label of the j-th pixel of the i-th fundus image of the k-th
class feature. Based on the above definitions, the Dice
value of the k-th class feature of the i-th fundus image is
defined as:

DEik =
2TPik

2TPik + αkFN
i
k + βkFP

i
k + ε1

. (4)

Considering that there is no RNFLD in some fundus images,
it is likely to appear that TPi2, FN

i
2 and FPi2 are all 0.

In order to avoid the situation where the denominator is
0 in the expression of DEik , we add a small value ε1
to its denominator. Herein, αk and βk are penalties for
false negatives and false positives for class k. The pro-
posed DEik is an improved Dice coefficient index, which
is used to describe the similarity between the predic-
tion result of the k-th feature of the i-th fundus images
and the corresponding ground truth. Furthermore, we can
define the adaptive weighted segmentation loss of the
generator:

Lseg = −
1
m

∑m

i=1

∑2

k=1
wik
(
1+ θ

(
1− DEik

)γ )
× ln

(
DEik + ε2

)
(5)

where wik represents the weight of the k-th class feature of the
i-th sample. When there is no true RNFLD in a fundus image,
set wi1 = 1,wi2 = 0, otherwise set wi1 = wi2 =

1
2 . In the
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expression of Lseg (G), (1+ θ (1− DEik )
γ
) is a novel adaptive

weighted method for sample weights. Here, θ and γ are
parameters for balancing weights of hard and easy samples.
In the training process of traditional deep neural networks,
simple samples dominate the updating of network parame-
ters, while hard samples cannot receive enough attention. The
adaptive weighted loss can automatically increase the weight
of hard samples while reducing the weight of easy samples,
thereby uniformly improving the prediction accuracy of all
samples.

4) COMPARISON WITH RELATED WORKS
a: COMPARISON WITH CONDITIONAL ADVERSARIAL
NETWORK
The proposed method has the general architecture of a condi-
tional adversarial network. The loss functions of the discrim-
inator and generator can be unified as the following objective
function:

G∗ = arg minGmaxD
[
Ex,y∼pdata(x,y)

[
logD (x, y)

]
+Ex∼pdata(x) [log (1−D (x,G (x)))]+λLseg (G)

]
(6)

In this objective function, the objective of discriminator D is
to maximize the objective function to accurately distinguish
the RNFLD probability map generated by the generator and
ground truth, and the objective of generator G is to minimize
the objective function to generate RNFLD probability map
that is indistinguishable by the discriminator and reduce the
pixel-level deviation between the RNFLD probability map
and ground truth. The training of discriminator and generator
is performed alternately. The optimization process of the
model is as follows: first, the parameters in the discriminator
network and generator network are assigned using a random
initialization method. Then, the network parameters of the
discriminator and the generator alternately perform n rounds
of optimization. In each round of optimization, the network
parameters of the discriminator are optimized k1 times, and
then the network parameters of the generator are optimized
k2 times. The detailed optimization process is shown in Algo-
rithm 1.

Compared with the classic conditional adversarial
network [33], the proposed CASU-Net has the following
advantages: 1) The objective function contains not only the
objective function of conditional GAN, but also the segmen-
tation loss of the RNFLD. It pays attention to the difference
between the prediction result of RNFLD and ground truth
in the overall geometry and pixel level. 2) A strategy is
designed to adaptively adjust the sample weight based on the
segmentation accuracy of samples. As a result, the fundus
image difficult to segment is focused more by the model. The
final model is effectively improved in predicting both the hard
and easy samples. 3) The segmentation loss Lseg (G) takes
the segmentation performances of the RNFLD region and the
background region as two optimization objectives to solve
the absence of RNFLD and the imbalance data of pixel-wise
segmentation.

b: COMPARISON WITH FOCAL LOSS
The focal loss is a loss function designed to prevent easy sam-
ples from dominating CNN training [34]. It can be applied
in the field of target detection and image segmentation.
For image segmentation, the formula for focal loss can be
described as follows:

LFocal = −
1
mN

∑m

i=1

∑N

j
[(1− pij)

γ
gij log

(
pij
)

+

(
pij
)γ

(1− gij)log(1− p
i
j)] (7)

where γ represents the focusing parameter, i represents
the sequence number of the fundus image, j represents the
sequence number of the pixel, N represents the total number
of pixels in a fundus image, m represents the number of
fundus images used in one iteration, pij (k) ∈ [0, 1] represents
the probability that the j-th pixel of the i-th fundus image
predicted by the CNN to the RNFLD region, and gij ∈ {0, 1}
represents the RNFLD label of the j-th pixel of the i-th fundus
image.

The basic design idea of focal loss and the proposed AW
loss are the same: both give more attention to difficult objects
in the process of training the network. However, there are
obvious differences between the two loss functions. First of
all, in the calculation of the focal loss, the weight is given
to pixels, and more attention is paid to pixels with large
prediction deviations during the training process; but in the
calculation of the AW loss, the weight is given to images,
and more attention to is paid to images with large prediction
deviations. In addition, in order to overcome the problem
of unbalanced pixel distribution in the target area and the
background area, we designed a weighting strategy for the
segmentation accuracy of the two types of areas in AW loss.

IV. EXPERIMENTS
A. DATASETS AND EVALUATION METHOD
In the experiment of this paper, we evaluated the proposed
and compared algorithms in a dataset from Beijing Tongren
hospital, which included 474 fundus images with a resolution
of 1924 × 1924. A glaucoma expert judged whether there
was RNFLD in the fundus image, and manually marks the
boundary line of RNFLD for the fundus image with RNFLD.
We subtract the fundus image from the labeled fundus image
according to the pixel position to obtain the RNFLD bound-
ary. The boundary line divides a fundus image into multiple
areas, the largest one is marked as the background, and the
remaining areas are marked as RNFLD. There were 223 fun-
dus images with RNFLD and 251 fundus images without
RNFLD.

In order to comprehensively evaluate performances of the
proposed and compared methods, we used the following
evaluation metrics to compare different methods, includ-
ing F-score, sensitivity, specificity, the Receiver Operat-
ing Characteristic (ROC) curves and the area under ROC
curve (AUC). Here, F-score, sensitivity, and specificity are
defined as Fscore = 2TP

2TP+FN+FP , sensitivity =
TP

TP+FN ,

VOLUME 8, 2020 132353



S. Lu et al.: Novel Adaptive Weighted Loss Design in Adversarial Learning for RNFLD Segmentation

Algorithm1Training of CASU-Net. k1, k2 Are theNumber of Optimization Steps inDiscriminator andGenerator, Respectively,
λ Is Used to Balance the Two Parts of Loss, n Is the Number of Training Iterations

Randomly initialize critic parameter θd and generator’s parameter θg
for n in training iterations do
for k1 steps do
• Sample minibatch of m retinal images samples {(x1, y1), . . . , (xm, ym)) from retinal images and corresponding ground
truth dataset

• Sample minibatch of m retinal images samples {x1, . . . , xm} from retinal images dataset
• Optimize the convolution kernel parameter in the discriminator by ascending its gradient:

∇θd

1
m

m∑
i=1

[
logD (xi, yi)+ log (1− D (xi,G (xi)))

]
end for
for k2 steps do
• Sample minibatch of m retinal images samples {(x1, y1), . . . , (xm, ym)) from retinal images and corresponding ground
truth dataset

• Optimize the convolution kernel parameter in the generator by descending its gradient:

∇θg

1
m

m∑
i=1

[
log (1− D (xi,G (xi)))+ λLseg (G (xi) , yi)

]
end for

end for

specificity = TN
TN+FP , where TP, FN, and FP are the true

positives, false negatives, and false positives. In addition,
considering that the area of the objective segmentation is
much smaller than that of the background area, we also used
Mean Intersection over Union (MIoU) and Mean Average
Precision (MAP) [35] to evaluate different methods. Herein,
MAP andMIoU are defined as:MAP = 1

K

∑K
i=1

pii∑K
j=1 pij

, and

MIoU = 1
K

∑K
i=1

pii∑K
j=1 pij+

∑K
j=1 pji−pii

. Here, pij represents the

number of pixels that belong to the i-th class and are predicted
into the j-th class, and pii represents the number of pixels that
belong to the i-th class and are predicted into the i-th class.

We used the two-fold cross-validation method to evaluate
the performance of the proposed method and the compared
methods. The fundus image dataset was randomly divided
into two folds. One fold contained 237 fundus images, which
included 111 fundus images with RNFLD. The other fold
contained 237 fundus images, which included 112 fundus
images with RNFLD. The average value of the two-fold
cross-validation was used as the evaluation metric. Five repli-
cate experiments were performed on the two-fold cross-
validation. Finally, the average value of five repeated experi-
ments was used as the metric evaluation value.

B. EXPERIMENTAL SETUP
In the experiments, both the original fundus image and
the RNFLD segmentation image marked by the doctor
were compressed to a resolution of 256 × 256 pixels.
Standard techniques were used to perform data enhance-
ment on the training set, such as random rotation, flipping,

FIGURE 4. The ROC curves of different methods on the RNFLD dataset.

and translation. The proposed CASU-Net model was imple-
mented based on the Keras framework with Tensorflow back-
end. During the network training process, Adam optimization
method was used to optimize the model parameters. The
initial learning rate was set to 10−4. For the parameters
of the shuffle module, p was set to be 0.8. The param-
eters in the loss function were set as follows: α1 = 4,
α2 = 1, β1 = 1, β2 = 1, ε1 = 10−7, ε2 = 10−7, λ =
10, θ = 20, and γ = 2. When the parameters are set
as α1 = α2 = β1 = β2 = 1, the generalized DICE is
the standard Dice: Dice coefficient = 2TP

2TP+FN+FP . In order
to emphasize the false positives of the defect area, we set
α1 to be slightly higher than the other three parameters:
α1 = 4 and α2 = β1 = β2 = 1. The parameters ε1 and ε2 are
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TABLE 1. Performance comparisons of the different methods.

FIGURE 5. Boxplot of MAP and Dice on fundus images with RNFLD predicted by the proposed and compared methods.

two infinite quantities set to avoid meaningless expressions
(the denominator is zero and ln0). We refer to the default
infinitesimal value recommended in the Keras deep learning
framework and set these two parameters to 10−7. The param-
eters θ and γ are parameters in the proposed AWLoss, which
are used to reflect the importance of the sample with large
prediction error. When θ = 20 is satisfied, for the sample
with DICE = 0, the value of the loss is roughly as 10 times
of the original value. Therefore, in this study, we set θ = 20.
We refer to the γ parameter setting of focal loss in [34]. The
parameter λ is the weight used to balance the adversarial loss
and the AW loss in the total loss function. The parameter λ is
set to 10 according to the weighted ratio of the multiple losses
in the reference network [27]. In the comparative experi-
ments in this paper, the hyperparameters of three methods
(FCN, SegNet, and U-Net) are consistent with the literature
[21], [22], and [29]. In this paper, 0.5 was used as the thresh-
old to convert the probability map predicted by the network
into a binary image.

C. EXPERIMENTAL RESULTS
In the experiments, we compared the proposed CASU-Net
with the following methods: FCN [29], SegNet [21], U-Net
[22], M-Net [6], and CE-Net [37]. Experimental results are
presented in Table. 1. As shown in Table.1, on four met-
rics of F-score, MAP, MIoU, and sensitivity, the proposed

CASU-Net achieved the highest value. For specificity, the
proposed CASU-Net is slightly lower than FCN and CE-Net.
Additionally, compared with the three classical image seg-
mentation methods (FCN, SegNet, and U-Net), the proposed
CASU-Net obtains obvious prediction advantages. Receiver
Operating Characteristic (ROC) curves predicted by different
methods in the first experiment of the first-fold dataset is
shown in Figure. 4.

As can be seen from Table.1, the sensitivity differences
of various methods are more obvious than the specificity.
In other words, compared with the background region, dif-
ferent methods have a more significant difference in the
segmentation accuracy of the objective region (RNFLD).
In order to show more details of the prediction accuracy of
different methods for fundus images with RNFLD, we made
boxplots of MAP and Dice predicted by different methods
in the first experiment of the first-fold dataset. As can be
seen in Figure.5, the 0.25, 0.5, and 0.75 quantiles of MAP
for CASU-Net reach 0.7968, 0.8771, and 0.9303. The 0.25,
0.5, and 0.75 quantiles of Dice for CASU-Net reach 0.6009,
0.7492, and 0.8314, which are significantly higher than other
methods.

Further, we showed visualization examples of methods
proposed in this paper and other methods to predict the
RNFLD in the first experiment of the first-fold dataset,
as shown in Figure.6. For fundus images with RNFLD
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FIGURE 6. Visualization examples of different segmentation methods. The white area represents the prediction of the RNFLD, and the black represents
the background. The pictures from left to right present fundus image, ground truth (GT), FCN, SegNet, U-Net, M-Net, CE-Net, and CASU-Net in this paper.

(fundus images labeled A-D), the segmentation
of CASU-Net for the objective area is themost complete com-
pared with those of other methods. The FCN, SegNet, and
U-Net have obvious problems in incomplete segmentation
for the objective area. The M-Net and CE-Net are improved
compared with the above three methods, but still have an
obvious gap compared with the ground truth. Additionally,
the RNFLD region predicted by the proposed CASU-Net
is closer to ground truth in morphology: on the one hand,
the outline of the RNFLD region segmented by CASU-Net
is smoother; on the other hand, the shape also conforms to
the wedge structure. Especially for a few fundus images with
special styles, the comparison methods have poor prediction
performance. In the case in which there are multiple pieces of
RNFLD or the contrast between the inner and outer areas of
the RNFLD outline is not obvious, CASU-Net has a more

obvious improvement, as shown in fundus images labeled
A and D. For the fundus images without RNFLD (fundus
images labeled E-G), the proposed CASU-Net has slightly
wrong predictions, but predicts almost the entire fundus
image as the background area.

In order to verify the effectiveness of the proposed shuf-
fle module, AW loss, and GAN framework, we conducted
further comparative experiments. The experimental results
are presented in Table.2. The baseline (BL) is a modified
U-shaped network with separable convolutions. Four BLs
use four images of red channel (R), green channel (G), blue
channel (B), and color fundus image (RGB) as their input
for training. The experimental results show that when the
green channel is used as the input, the BL can obtain better
performance than when the red channel or the blue channel
is used as the input. When the color fundus image is used
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TABLE 2. Performance comparisons of different components.

TABLE 3. Performance comparisons of loss functions on BL model.

as the input of BL, compared with when the green channel
is used as the input, the prediction results are improved in
all the five metrics, but the improvement is not obvious.
This is consistent with the results reported in [29]. When
the proposed shuffle module is combined with the BL, the
SU-Net has achieved significant improvements on four met-
rics: F-score, MAP, MIoU, and sensitivity. The effectiveness
of the proposed GAN framework and AW loss is further
verified. After SU-Net is combined with the AW loss, the per-
formance of SU-Net has been improved. When the GAN
with SU-Net is combined with the AW loss, the proposed
CASU-Net (SU-Net + GAN + AW) has achieved the
best prediction performance on four metrics: F-score, MAP,
MIoU, and sensitivity. Additionally, the improvement on
F-score is obvious.

We further compare the impact of different loss functions
on the BL model, and the results are shown in Table.3. From
Table.3, we can see that the BL model with the proposed
AW loss achieves the best prediction results on four metrics:
F-score, MAP, MIoU, and sensitivity, and the advantages
are obvious. On the specificity metric, the BL model with
the focal loss achieves the best prediction result, but the
advantage is slight.

V. CONCLUSION
Wedesigned a novel conditional adversarial shuffleU-shaped
network to segment RNFLD from fundus images. The pro-
posed CASU-Net consists of a generator and a discrimina-
tor. The SU-Net was first proposed as a generator, which
employed a U-shape network with separable convolutions as
the main structure. To achieve more efficient feature extrac-
tion, a shuffle module is constructed in SU-Net to make full
use of the feature information in RGB three channels. For
obtaining prediction results that are closer to the doctor’s

annotation morphologically, a discriminator was employed to
supervise the spatial structure and geometry of the RNFLD
predicted by the SU-Net. Furthermore, an adaptive weighted
segmentation loss was designed to deal with the imbalance
data of pixel-wise segmentation. Besides, the loss adaptively
adjusts the weight of each fundus image in training, so that
fundus images with large segmentation errors get more atten-
tion in training and generalization performance of the model
can be enhanced. In the experiment, the proposed method
obtained the state-of-the-art result, which can promote the
automatic positioning of the RNFLD for glaucoma screen-
ing and alleviate the urgent need for professional glaucoma
physicians.
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