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ABSTRACT Accurate localization is critical in the internet of things (IOT), especially for wireless sensor
networks (WSNs). Location estimation can be affected by factors such as node density, topological diversity,
and sensor coverage. As such, we propose a hybrid approach using multistage collaborative calibration for
wireless sensor network localization, specifically in 3D environments. This technique integrates a Modified
version of Light Gradient Boosting Model (MLGB), which is based on a regression scheme, a cooperative
methodology, and a fine calibration model for collaborative fusion. These techniques were combined with
quadrilateral shrunk centroid (QSC) and distance vector hop algorithms, using a multi-communication
radius and an improved frog-leaping algorithm (DVMFL). In the first step, MLGB was used to correct for
inhomogeneous localization estimation errors and RSSI data sparsity. As a result, the model is capable of
adapting to high topological diversity (i.e., C-shape, H-shape, S-shape, andO-shape).Successive steps further
improved prediction accuracy by using a screening cooperative anchor node strategy to increase node density
and enhance the QSC-DVMFL fusion framework for fine position estimation. The proposed methodology
was assessed in a series of validation, comparing it to other techniques. The results demonstrated a clear
effectiveness and adaptability across a variety of factors that typically affect WSN localization.

INDEX TERMS Wireless sensor network, localization, multistage collaborative calibration technique,
modified version of light GBM, quadrilateral shrunk centroid.

I. INTRODUCTION
Wireless sensor networks (WSNs) have attracted increased
attention in recent years, due to unprecedented technological
progress in multiple engineering disciplines.WSNs are a type
of wireless network consisting of hundreds or even thousands
of sensors in a self-organizing, multi-hop structure. Informa-
tion transmission between nodes relies on a wireless network
technology, such as, Zigbee, and WIFI.

This architecture is often used to monitor, acquire, process,
and transmit perceptual object information within the cov-
erage range. WSNs are a critical component in the internet
of things (IOT) and have a variety of military and industrial
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applications [1]. They have been used for environmental
monitoring [2], medical procedures [3], precision agricul-
ture [4], animal tracking [5], remote sensing (during natu-
ral disasters) [6], explosives detection [7], and earthquake
studies [8]. Although these application environments differ
significantly, each requires accurate location information.
As such, accurate localization techniques are critical for
location-basedWSN services. This study focuses specifically
on node localization in 3D environments.

A. MOTIVATION
The primary goal of localization is to precisely identify
node positions at any given time. Existing localization tech-
niques can be classified as either range-based [9], [10] or
range-free [11], [12] models. Range-based algorithms are
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typically more accurate as they estimate the distances
between unknown and known (anchor) nodes. Several tech-
niques have been developed to estimate node locations
through direct measurements. These include the received
signal strength indicator (RSSI), angle of arrival (AOA), time
of arrival (TOA), and time difference of arrival (TDOA) algo-
rithms. RSSI data are available in most of wireless network
technologies, such as, Zigbee, and are often preferred for
identifying radio connectivity information among neighbor-
ing nodes. As such, it is often used to estimate approximate
locations for unknown nodes using proximity information
(e.g., coordinates) based on a dynamic signal propagation
model which is introduced in Section III, without additional
hardware.

Machine learning (ML) has recently been applied to posi-
tion estimation for sensor nodes [13], [14]. WSN localization
techniques utilize various ML models, such as k-means or
fuzzy c-means [15], random forests [16], artificial neural
networks (ANN) [17], fuzzy logic (FL) [18], support vec-
tor machines (SVMs) [19], Bayesian models [20], principal
component analysis (PCA) [21], and semi-supervised learn-
ing [22]. Most ML-based techniques consider localization to
be a multi-classification problem. However, position estima-
tion for target nodes requires exact coordinate values.

ML-based localization cannot eliminate absolute posi-
tion estimation errors. In addition, accumulative estimation
errors can increase along the edges of a cell. For example,
FIGURE 1 shows an unknown node that appears to be posi-
tioned at the centroid o in the cell. However, it is actually
located at point c. The accumulative error in this case is√
2
/
2D/M , where D represents the size of the network cov-

erage range and M is the number of categories. Position-
ing errors for the majority of algorithms primarily focus on
marginal areas in the range of sensing coverage, as shown
in FIGURE 2. Known (anchor) nodes are often distributed
non-uniformly, causing positioning errors to be lower in the
center and higher along the edges. This type of irregular
network topology is the most significant factor affecting esti-
mation precision (see FIGURE 3). RSSI-based positioning
algorithms suffer from uncertainty and nonlinearity, induced
by multipath attenuation or non-line-of-sight propagation in
the surrounding environment. As such, RSSI data are typi-
cally sparse and can include missing values near the edges of

FIGURE 1. Maximum positioning errors for the classification algorithm.

FIGURE 2. Sample positioning errors, which are more concentrated in
marginal areas.

FIGURE 3. Positioning results for different network topologies
(e.g., C-shape and S-shape).

a coverage range. However, conventional machine learning
methods are sensitive to sparse data, which can be prob-
lematic in remote sensing applications. Therefore, a new
machine learning technique is required, to address the prob-
lems caused by non-uniform estimation errors and irregular
network topologies in WSN localization.

B. CONTRIBUTIONS
This study investigates key factors affecting WSN loca-
tion precision in 3D space, including non-uniform errors in

130206 VOLUME 8, 2020



L. Xu et al.: Hybrid Approach Using Multistage Collaborative Calibration for WSN Localization in 3D Environments

position estimation, irregular network topologies, and
RSSI data sparsity.

A novel hybrid localization technique is proposed using
multistage collaborative calibration to overcome inhomoge-
neous estimation errors and adapt to sparse or topologi-
cally diverse networks (i.e., C-shape, H-shape, S-shape, and
O-shape). The contributions of this work can be summarized
as follows:
• A hybrid localization technique is presented, using
multistage collaborative calibration, for wireless sensor
networks in 3D environments.

• Rough localization is performed using a modified light
gradient boosting model (MLGB) with a novel loss
function, designed to address non-uniform position esti-
mation errors, RSSI data sparsity, and irregular network
topology.

• A new collaborative node screening strategy is devel-
oped and a selection preference is introduced to reduce
positioning errors by increasing cooperative anchor
nodes.

• A new cooperative fusion calibration framework is
proposed, which combines quadrilateral shrunk cen-
troid and distance vector hop algorithms with a multi-
communication radius and an improved frog-leaping
algorithm, to estimate the fine positions of target nodes.

The remainder of this paper is organized as follows.
Section II introduces related work on WSN localization.
Section III provides a detailed description of our hybrid
methodology. Experimental results and a detailed perfor-
mance analysis are included in Section IV. Section V con-
cludes the paper.

II. THE RELATED WORK
Localization is a critical component in a variety of WSN
applications. Conventional techniques often focus on esti-
mation optimization [23], [24]. However, machine-learning
models have recently been included to improve localization
accuracy [25]. These integrated techniques include k-means
clustering [26], artificial neural networks (ANNs) [17], [27],
fuzzy logic (FL) [18], [28], [29], support vector machines
(SVMs) [15], [19], Bayesian optimization [20], principle
component analysis (PCA) [21], and semi-supervised [30] or
deep learning [31].

Bernas and Płaczek [26] improved localization accu-
racy using k-means and fuzzy c-means techniques.
Banihashemian et al. [27] introduced a PSO-based neu-
ral network for WSN calibration. This approach uti-
lized hop counts to reduce error rates during localization.
Gharghan et al. [17] used an artificial neural network (ANN)
to locate mobile sensor nodes and improve localization
performance with a PSO. This algorithm produced higher
accuracy than comparable methods.

Yun et al. [28] proposed a fuzzy logic (FL) system
to derive additional weights for centroid-based algorithms,
using a resultant force vector to adjust locations during the
fuzzy process. Phoemphon et al. [18] later proposed a fuzzy

centroid method to adjust centroid estimation precision. This
approach utilized the Takagi-Sugeno-Kang model, in which
a weighted average was used to determine the output given
five predefined rules. Fuzzy localization algorithms, based
on centroid algorithms with fuzzy Mamdani and Sugeno
inference systems, have been shown to increase accuracy by
using flow measurements through a wireless channel [29].

Wang et al. [19] developed a range-free localization algo-
rithm using SVM classification. In this process, the WSN
region was divided into multiple grids, with each node
assigned to one of the grids by an SVM. A fast SVM-based
localization algorithmwas also reported by Zhu andWei [15].
The algorithm used similarities to divide feature spaces into
support vector groups. In a study by Guo et al. [20], local-
ization techniques were based on an iterative variational
Bayesian interface, which was used to reduce off-grid faults
caused by inaccurate approximations. Li et al. [21] intro-
duced a non-convex robust PCA algorithm to eliminate out-
liers. Kumar et al. [30] presented a localization technique
that used a semi-supervised hidden Markov model (HMM)
for mobile WSN nodes. The algorithm worked well in
both indoor and outdoor environments, while requiring
fewer training data than some models. Chang [31] pro-
posed a new deep learning-based localization technique for
high-speed mobile objects such as autonomous vehicles.
The algorithm included rough localization, which employs
a modified Kalman filter to produce rough location esti-
mates and fine localization, based on a deep learning
technique.

These machine learning-based localization techniques
classify unknown nodes into an appropriate grid to estimate
node positions in a network. As such, these techniques depend
on the classification performance of machine learning mod-
els. However, WSN localization is not solely a classification
problem and location estimation using machine learning has
inherent limitations.

The majority of localization techniques depend on
known (anchor) nodes to estimate unknown node positions.
However, unknown nodes can also be used to improve preci-
sion in a process called cooperative localization [32], [33].
In this process, approximate node positions are itera-
tively updated using maximum likelihood estimation [33].
Hu et al. [34] proposed a new cooperative positioning algo-
rithm, applicable to the internet of things, which included
factor graphing based on Fisher information matrix theory.
However, the key problem in cooperative localization is
choosing the most appropriate unknown nodes for a given
cooperative (known) node.

Several recent studies have investigated the location of
unknown WSN nodes in 3D environments. In [35], two
models: hybrid particle swarm optimization (HPSO) and
biogeography optimization for range-based models. These
algorithms consider transmission range and anisotropicWSN
properties in 3D environments. Kumar et al. [36] extended
this model into a range-free HPSO for 3D node localiza-
tion. However, the algorithm does not consider computational
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cost or runtime, which reduces the network life expectancy.
To address this problem, Raguraman et al. [37] proposed two
dimensionality-based 3D node localization algorithms using
the particle swarm optimization framework. Both algorithms
exhibited a lower computational cost and minimized the error
rate in location estimations.

The limitations of single methods for improving
localization precision have popularized hybrid local-
ization approaches, integrating a variety of models.
Phoemphon et al. [18] proposed a hybrid technique using
fuzzy logic and an extreme learning machine, with vec-
tor particle swarm optimization for WSN localization.
A similar model was developed by Zhu and Wei [38],
using SVM and fuzzy c-means. The algorithm provided a
tradeoff between localization accuracy and training time.
Phoemphon et al. [39] further improved node localization
in areas with obstructions. This integrated technique, which
combined node segmentation with improved particle swarm
optimization (NS-IPSO), increased the accuracy of estimated
distances.

This study proposes a new hybrid technique for WSN
localization, specifically in 3D environments. This multi-
stage collaborative calibration strategy was used to iteratively
enhance localization accuracy. First, an MLGB model was
used for a rough estimation of node positions. A cooperative
localization technique was then used to improve anchor node
density. A fusion calibration framework was further applied
for fine localization.

III. THE HYBRID APPROACH
FIGURE 4 provides an overview of the proposed
hybrid technique, which includes three primary
components:
• Rough localization (see Section A) – A rough localiza-
tion of target nodes was calculated using a modified
version of the light gradient boosting model (MLGB),
in which anew loss function was developed for WSN
localization. After acquiring RSSI information, a rough
localization estimation for x, y, and z is performed using
an MLGB.

• Screening collaborative nodes with selected prefer-
ence accuracy (see Section B) – This stage includes
three steps. First, nodes with high positioning accuracy
were selected from a set of unknown nodes based on
RSSI thresholds. Second, unknown nodes that were less
affected by the environment were chosen as candidate
collaboration nodes, using a subset judgment strategy.
Third, high-precision nodes were selected as collabora-
tion nodes using an anchor node replacement strategy.

• Cooperative fusion calibration framework (see
Section C) – This stage utilizes quadrilateral shrunk
centroid and distance vector hop algorithms, based on
a multi-communication radius and an improved frog
leaping algorithm, for localization estimation of target
nodes.

FIGURE 4. A flowchart for the proposed hybrid approach.

A. ROUGH LOCALIZATION BASED ON MLGB
Unlike conventional ML-based localization algorithms,
based on a classification model, rough localization estimates
approximate positions using regression MLGB. The purpose
of this stage is to eliminate inhomogeneous errors and resolve
RSSI data sparsity, as well as predict positions for unknown
nodes (by considering different network topologies in 3D).

The MLGB model is based on the light gradient boosting
model (Light GBM) [40], which is an improved version of a
gradient-boosting decision tree (GBDT) [41]. Light GBM is
a widely used machine-learning algorithm featuring a deci-
sion tree as its base classifier, which addresses limitations in
large-scale sparse datasets. Two new models, gradient-based
one-sided sampling (GOSS) and exclusive feature bundling
(EFB) [40], are proposed to improve the light GBM perfor-
mance by reducing runtime and increasing accuracy.
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1) LIGHT GBM
This section provides a detailed overview of two new tech-
niques (GOSS and EFB) adopted in the light GBM model.

(1) GOSS was used to pre-process sample data during the
training process. The negative gradient of the loss function
for each sample i can be expressed as:

Ti = −
∂L(yi, ft−1(xi))
∂ft−1(xi)

, i = 1, . . .m, (1)

where L is the loss function, y is the value of each sample, and
f is the boosting tree function. The working theory for GOSS
is that all samples with large gradient values are preserved,
but only samples with small gradient values are randomly
sampled. In FIGURE 5, Ta and Tb are respectively the large
and small gradient values. After sampling, na large gradients
and nb small gradients were combined to form a new training
set. The sampled data were then amended to preserve the
data distribution. In other words, small gradient values were
multiplied by a weighting coefficient 1−a

b , where a and b
represent sampling ratios for large and small gradient data,
respectively.

FIGURE 5. Gradient-based one-sided sampling (GOSS).

(2) The exclusive feature bundling (EFB) technique was
applied to sparse data features. Ten RSSI samples, in which
0 or null is the missed value, are shown in FIGURE 6. The
GOSS algorithm was applied to the data in the nth iteration.
The features RSSI_1 (sparse data) and RSSI_3 in Table A
are mutually exclusive, meaning they never take nonzero
values simultaneously. The problem of data sparsity can be
solved by bundling two features into one. In this process,
RSSI_3 must be distinguishable from the new bundling fea-
ture (RSSI_1&3), as shown in Table B. This can be achieved
by adding an offset value (for example, 95) to RSSI_3.
The EFB algorithm can then be used to compensate for

FIGURE 6. Exclusive feature bundling (EFB).

RSSI data sparsity by bundling exclusive features into fewer
dense features.

Divided node gains can then be calculated in the decision
tree using:

(d) =
1
n


(∑

xi∈Al gi +
1−a
b

∑
xi∈Bl gi

)2
njl(d)

+

(∑
xi∈Ar gi +

1−a
b

∑
xi∈Br gi

)2
njr (d)

, (2)

where Al = {xi ∈ A : xij ≤ d,Ar = {xi ∈ A : xij > d,Bl =
{xi ∈ B : xij ≤ d,Ar = {xi ∈ B : xij > d .

During node splitting, the leaf node with the largest divided
gain is selected for growth. This process is a leaf-wise growth
strategy, designed to produce the smallest error. Trees were
grown with deep constraints in order to decrease the com-
plexity of the model.

2) A LOCALIZATION ALGORITHM BASED ON MLGB
RSSI data are often sparse and noisy. As such, they exhibit
both uncertain and nonlinear characteristics and may contain
missing values, due to the non-uniform deployment ofWSNs.
As such, EFB and histogram equalization algorithms were
used to overcome sparsity and noise, respectively. In the
training process, GOSS was used for data pre-processing to
achieve a tradeoff between the number of samples and the
accuracy of the learning decision tree.

The loss function for the light GBM regression task can be
expressed as:

L(t) =
∑n

i=1
(yi − (ft−1(xi)+ ht (xi)))2 (3)

where h represents a decision tree function.
The first stage, rough localization, implements an approxi-

mate position estimation. A loss functionwas used tomeasure
the difference between an estimated result and the actual
position. Positioning error in WSNs are closely related to the
communication radius and location accuracy will vary greatly
with different radii. Thus, a set communication radius was
introduced into the model for localization estimation. The
number of leaf nodes (T ) and the 2-norm of the parameter
ϕT were concurrently added to the function to control the
complexity of the model and prevent model overfitting. This
new model is a Modified Light GBM (MLGB) algorithm.
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FIGURE 7. A flowchart for the rough localization algorithm.

The new loss function can then be written as:

L(t) =

∑n
i=1 (yi − (ft−1(xi)+ ν · ht (xi)))2

n · R

+ γT +
λ

2
‖ϕT ‖

2
2 , (4)

where R is the node signal radius and ν is the learning
velocity (0 < ν ≤ 1). The terms γ and λ are regularization
parameters, T is the number of leaf nodes, ϕT is a decision
tree parameter vector, ft−1(xi) is a strong classifier acquired
from the previous iteration, and ht (xi) is a weak classifier in
the t th iteration. The MLGB algorithm can compensate for
inhomogeneous localization estimation errors and RSSI data
sparsity. In addition, regression allows it to adapt to different
network topologies.

A flowchart of these five rough localization steps is shown
in FIGURE 7. The detailed procedure can be described as
follows.
Step 1: Acquiring RSSI data
Assuming anchor nodes Si(i = 1, . . . , k) were deployed

in the WSN coverage range. RSSI values were collected
from every unknown node and anchor node Si. The dataset
[RSSI1, . . . ,RSSIk , xj, yj, zj] was then established by recod-
ing the coordinates (x j, yj, zj) of every node and the RSSI
values corresponding to sets of unknown and anchor nodes.
In this notation, the subscript j denotes the jth node (j =
1, . . . ,m), where m is the total number of training samples.
Step 2: Data pre-processing
RSSI errors caused by noise interference were reduced by

collecting multiple groups of data for each unknown node.
The data were then processed using a Gaussian filter model.
Themean value (µ) and variance (σ ) of the RSSI dataset were
calculated using:

µ =
1
n

∑n

i=1
RSSIi

σ 2
=

1
n

∑n

i=1
(RSSIi − µ)2.

(5)

Abnormal data will inevitably be included as RSSI signals
suffer from environmental interference. As such, a local out-
lier detection algorithm was used to eliminate these abnormal
data.

The local outlier factor (LOF) can be expressed as:

LOFk (q) =
1

|Nk (q)|

∑
p∈Nk (q)

lrdk (p)
lrdk (q)

(6)

where Nk(q) is the k th neighborhood of sample q and lrdk (p)
and lrdk (q) respectively represent the local reachable densi-
ties for samples p and q, using the distance between each as
a measurement [42]. These can be expressed as:

lrdk (q) = 1

/∑
p∈Nk (q) reach_distk (p, q)

|Nk (q)|
,

lrdk (p) = 1

/∑
p∈Nk (p) reach_distk (p, q)

|Nk (p)|
.

An LOF value greater than 1 implies a higher outlier degree
for a given sample, meaning it is more likely abnormal than
normal. Such data were excluded from the experiments.
Step 3: RSSI feature representation and extraction
Model performance depends on the RSSI feature represen-

tation. In this step, the relevant 5-dimensional statistical fea-
tures (i.e., variance, maximum, minimum, mean, and range)
were extracted from the RSSI set to reflect trends and data
volatility. RSSI values were then converted into distances
using a dynamic signal propagation model.

The common signal propagation model is given as:

P(d) = P(d0)− 10eplg(
d
d0

)+ Xσ (7)

where P(d) is the received signal strength at point d from
a node, ep is the path loss exponent representing the rate
at which RSSI decays with distance and X is the Gaussian
random noise. Thus, according to (7), the signal propagation
distance can be calculated based on the RSSI.
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Given three adjacent nodes (A, B, and C) corresponding to
an unknown node n, the RSSI value between A and B or A
and C can respectively be represented as:

P(dB) = P(d0)− 10eplg(
dAB
d0

)+ Xσ

P(dC ) = P(d0)− 10eplg(
dAC
d0

)+ Xσ ,
(8)

Accurate values of ep can reduce distance estimation
errors. If the positions of nodes A, B, and C are known
with sufficient precision, dAB and dAC can be calculated to
the required accuracy. Equation (8) can then be solved for
ep value. Distance errors can be amended by calculating ep
dynamically. Thus, suchmodel is called as the dynamic signal
propagation model.

Shorter distances inherently produce less environmental
interference and signal attenuation. Thus, position estimation
errors will be smaller for unknown nodes that are closer to
anchor nodes. RSSI values are also given higher weights
between both nodes. The modified weighting function for
each known node can be expressed as:

ωi =
dmax − di∑

i6=max dmax − di
, (9)

where di represents the distance between an unknown node
and the ith anchor node. The term dmax denotes the maximum
value among all distances between both node sets. Two new
combined features, composed of several first-order discrete
features, were introduced to solve nonlinear problems. The
signal-distance cross feature can then be expressed as Rdj =
RSSIj × dj and the weighted RSSI feature is given by Rωj =
RSSIj × ωj. Here, Rdj and Rwj are j-dimensional (j = 1 . . . k)
signal distance cross features and weighted RSSI features for
unknown nodes, respectively.
Step 4: off-line Model training
The feature data consisted of (5k + 5)×m rows, includ-

ing k-dimensional RSSI data, distances, weights, signal dis-
tances, and weighted RSSI features, as well as 5-dimensional
statistical parameters. The feature data and the coordinates
(X, Y, and Z) for any node could be combined to form three
training datasets: datax , datay, and dataz, respectively. After
data pre-processing, the position estimationmodels in each of
the three coordinate directions (X, Y, and Z)were respectively
labeled X-MLGB, Y-MLGB, and Z-MLGB.The models were
then trained using the three datasets.
Step 5: Position estimation
After target node data were acquired and pre-processed,

RSSI feature extraction was conducted using data with a
structure similar to that of the training samples. These data
were input to the X-MLGB, Y-MLGB, and Z-MLGB mod-
els, which provided unknown nodes with rough localization
estimates

(
xrl_est , yrl_est , zrl_est

)
. This approach can be repre-

sented systematically as shown in the algorithm 1.
MLGB-based rough localization techniques can overcome

uniform error distributions in position estimates and sparsity
in RSSI data. They are also highly robust and can adapt to

Algorithm 1 Rough Localization Based on MLGB
Input: Known (xAN , yAN , zAN ) and unknown nodes
(i ∈ 1, 2, 3, . . . . . . , n).
for i=1 to n do:
[RSSI1, . . . ,RSSIk ]← Collect signal strength values
for j = 1 to m do:
µ,σ 2

← Apply a Gaussian filter
end for
LOFk (q) = (

∑
p∈Nk (p) lrdk (p)/lrdk (q))/|Nk (q)|)

[RSSI1, . . . , d1,..., ωk ] ← Construction feature engineer-
ing

X-MLGB, Y- MLGB, Z- MLGB ←

[RSSI1, . . . , d1,..., ωk , x, y, z]
end for
Output: Estimated target node position(
xrl_est , yrl_est , zrl_est

)

different network topologies. However, experimental results
have shown that estimation errors can be as high as 10%.
Therefore, other techniques are required to further improve
localization precision.

B. SCREENING COOPERATIVE NODES WITH SELECTED
PREFERENCE ACCURACY
Anchor node density is a key factor influencing location
estimation performance. In this stage, a cooperative local-
ization strategy is introduced to improve node distributions,
by adding a cooperative anchor node. Unknown WSN nodes
can not only communicate with anchor nodes, but also with
each other. In this way, anchor nodes can take advantage of
cooperation between unknown nodes, producing cooperative
anchor (CA) nodes that can be used to collaboratively esti-
mate unknown node positions.

The accurate selection of CA nodes is critical in this pro-
cess, as mistaking unknown nodes for CA nodes can decrease
accuracy and increase algorithm complexity [33], [43], [44].
Cumulative errors from CA node selection can be reduced by
ensuring that unknown nodes are identified with sufficiently
high precision. In this study, a new strategy is proposed for
screening CA nodes with preference accuracy. The method
is composed of three steps: an RSSI threshold-based filtering
node, a subset judgement policy, and an anchor node replace-
ment strategy.

1) RSSI THRESHOLD-BASED FILTERING NODES
RSSI values are easily affected by external conditions. In this
stage of the proposed algorithm, RSSI thresholds were deter-
mined empirically in various scenarios. Unknown nodes with
high precision were then screened out as candidate CA nodes
using the resulting thresholds. These experiments demon-
strated that larger RSSI values produced estimated values that
were closer to the actual values. This is in agreement with the
signal propagation model, which predicts that smaller RSSI
values yield greater errors between measured and actual data
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(see FIGURE 8). Empirical RSSI thresholds are provided
in Table 1, where the included parameters are d0 = 1m,
P(d0) = −40dBm, and Xσ is a normal distribution with a
mean of zero and a variance of 2.

FIGURE 8. The relationship between measurement distance errors and
signal strength.

TABLE 1. Relationship between Path loss exponent and RSSI threshold.

An unknown node may include k RSSI values at the same
position for sampling time k . As such, a Gaussian model
was used to process these data and reduce the impact of
interference noise. The term RSSIav refers to the average of
RSSI values, which can be expressed as:

RSSIav =
1
n

∑n

i=1
RSSIi, (10)

where n is the number of anchor nodes and RSSIi is the RSSI
value between the unknown node and the ith anchor node. The
corresponding decision rule is then given by:

RSSIav ≥ RSSIthres, (11)

where RSSIthres can be determined from the values in Table 1.
Any node that satisfies the conditions described in these
equations is considered high precision. In this stage, unknown
nodes with low accuracy can be omitted and only a few
nodes with high precision need to be retained as candidate
cooperative nodes.

2) SUBSET DETERMINATION POLICY
A subset judgment policy is proposed to further eliminate
environmental impacts on RSSI data. Experimental results
indicated that larger RSSI values resulted in smaller distance
errors and higher positioning accuracy. As such, the k nodes
with the largest RSSI values were selected from the nearest
neighbors of a given unknown node. Four nodes from each
set were then selected and the QSC algorithm (a new centroid
localization method, see section C.1)) was used to calculate
estimated positions for unknown nodes. Typically, k positions
for each unknown node approach the same position. Subsets

were constructed in which any four of k nodes with the
largest RSSI values composed a set (k , 4). These four nodes
could then be used to estimate unknown node positions with
the QSC algorithm, producing k estimated positions. The
minimum error among these estimations is given by:

E = min{dis(ci, cj), ∀i ∈ [1, k], j ∈ [1, k] and j 6= i},

(12)

where i and j are the number of subsets, ci is a position
estimation based on the ith subset, and dis(ci, cj) indicates
the distance error between the ith and jth position estimates.
The Euclidean distance was then calculated for each set. The
corresponding judgement condition is given by:

Es ≤ µ, (13)

where µ is a threshold value. This term is a trade-off between
the almost non-existent nodes with higher localization accu-
racies (corresponding to smaller values of µ) and nodes with
lower localization accuracies (corresponding to larger values
of µ). The estimation error was calculated for N unknown
nodes in the subset E , resulting in a value for µ that can be
expressed as:

µ =
1
N

∑N

r=1
Er ; r, s ∈ [1,N ] (14)

where Es is the minimum error in the subset for the
sth unknown node and Er is the minimum error in the subset
for the r th unknown node.
Satisfying this condition indicates that a position estimate

is accurate, exhibiting limited environmental interference.
As such, all unknown nodes that satisfy (12) and (13) were
assumed to be candidate CA nodes. This approach was used
to eliminate unknown nodes affected by the environment,
producing screened nodes with higher precision.

3) ANCHOR NODE REPLACEMENT STRATEGY
The proposed technique increased the number of anchor
nodes and improved the precision of position estimates.
An anchor node replacement strategy was developed to pro-
cess candidate

CA nodes and retain those with the highest accuracy are
retained. This approach can be described as follows. The posi-
tion estimate for an unknown node N is represented by the
coordinates (xN , yN , zN ), which is assumed to be a transform-
ing anchor node. The positions of four anchor nodes can then
be expressed as A(xA, yA, zA),B(xB, yB, zB),C(xC , yC , zC ),
and D(xD, yD, zD). If, for example, node B is an unknown
node, the QSC algorithm can be used to process nodes A, C ,
D, andN . The result is a localization estimate for node B, rep-
resented by B′(xB′ , yB′ , zB′ ). The error between the estimated
and actual value is then given by:√

(xB − xB′ )2 + (yB − yB′ )2 + (zB − zB′ )2 ≤ δ, (15)

where δ controls the estimation error (δ = 0.2 m in this
study). Smaller values of δ result in smaller errors. If the error

130212 VOLUME 8, 2020



L. Xu et al.: Hybrid Approach Using Multistage Collaborative Calibration for WSN Localization in 3D Environments

for node B satisfies equation (15), the precision of node N
is higher. As such, node N is considered the CA node that
replaces node B. All unknown nodes can be screened and
considered CA nodes using this strategy.

C. COLLABORATIVE FUSION FINE CALIBRATION
In this stage, a collaborative fusion fine calibration frame-
work is proposed, which consists of quadrilateral shrunk
centroid (QSC) and distance vector algorithms based on
a multi-communication radius and improved frog leap-
ing (DVMFL) models, to produce rough location estimates.
The step-by-step procedure for both QSC and DVMFL are
combined in the flowchart shown in FIGURE 9.

FIGURE 9. The collaborative fusion calibration framework.

1) THE QUADRILATERAL SHRUNK CENTROID ALGORITHM
The conventional centroid algorithm is based on a trian-
gle location principal [45]. However, three circles do not
necessarily intersect at a point, but form a 2D spatial
region that results in position estimation errors. Theoretically,
including more nodes in the localization process increases
positioning accuracy. As such, we propose a quadrilateral
contraction centroid algorithm, with the intention of reduc-
ing the area to iteratively approximate the spatial centroid.
In this process, the four nodes consist of known (anchor) or
unknown (CA) nodes. FIGURE 10 demonstrates a quadrilat-
eral centroid approximating the actual position by shrinking
by different quadrilaterals. This 3D algorithm is based on
a two-dimensional plane and initially uses the XY plane to

FIGURE 10. The proposed center of mass approximation technique
(region shrinking). a) there is an error between the estimated position
(quadrilateral centroid) and the actual position; b,c) represents two
quadrilateral centroids(red ‘+’, green ‘+’) are gradually approaching to the
actual position.

make corrections along the X- and Y-axis. It was then applied
in the X-Z plane to make corrections along the X- and Z-axes.

The QSC algorithm utilizes the intersection of four circles
to form a quadrilateral region around the target node N and
assumes the centroid of this quadrilateral to be the estimated
node position. FIGURE 11 shows an example of four nodes
that could be either anchor nodes or CA nodes, labeled A, B,
C, and D. The distance between any two nodes is considered
the radius of a circle. The quadrilateral region is composed of
the intersection of two adjacent circles. The centroids of the
new quadrilaterals E, F, G, and H, which are formed by the
inner intersection of any two adjacent circles, were used as
position estimates for node N . This was done by iteratively
shrinking the region, as shown in FIGURE 11.

FIGURE 11. An illustration of the quadrilateral centroid shrinking
algorithm.

The four intersection points can be represented as
The four intersection points can be represented as
E(xE , yE ),F(xF , yF ),G(xG, yG), and H (xH , yH ). The posi-
tion of node N can then be determined from:x =

xE + xF + xG + xH
4

y =
yE + yF + yG + yH

4
.

(16)

VOLUME 8, 2020 130213



L. Xu et al.: Hybrid Approach Using Multistage Collaborative Calibration for WSN Localization in 3D Environments

Coordinates for E, F, G, and H are based on a two-
dimensional rotation matrix, as shown in FIGURE 12. The
corresponding transformation can be expressed as:{

xA − xD = R cos θ∗

yA − yD = R sin θ∗
(17)

FIGURE 12. A rotation matrix map.

where θ∗ is the angle between and the x-axis. The vector
is formed by rotating the vector through an angle θ , which
yields: {

xG − xD = R cos(θ∗ − θ)
yG − yD = R sin(θ∗ − θ ).

(18)

The coordinates for point G can then be calculated as:[
xG
yG

]
=

[
xD
yD

]
+

[
cos θ sin θ
−sin θ cos θ

] [
xA − xD
yA − yD

]
. (19)

Therefore, the coordinates for G can be calculated from the
positions of nodes A and D. Similarly, the coordinates for
H, E, and F were determined from the adjacent pairs AB,
BC, and CD, respectively. As such, it is critical to determine
whether anchor nodes are adjacent to each other. Assuming
the order of four anchor nodes is not known, two nodes (B and
C) can be randomly selected and a linear equation F(x) =
mx + b can be determined. The coordinates (xA, yA) and
(xD, yD) of anchor nodes A and D were used in conjunction
with (20) to classify nodes as being on either the same side or
opposite sides. This can be represented as:{

F (xA)× F (yA) > 0 (same side)
F (xD)× F (yD) < 0 (opposite side).

(20)

In this process, two distinct cases must be considered:
1) the two nodes (B and D) are on opposite sides and 2) two
nodes and C form the edge and diagonal segments of a
quadrilateral.

FIGURE 13(a) shows a configuration in which the straight
line between nodes A and C forms the diagonal of a quadri-
lateral. After the first judgment is made, nodes B and D lie on
the two sides of the line AC. Four adjacent anchor nodes can
be determined from this configuration. FIGURE 13(b) shows
the geometry used to make the twice judgement with the

FIGURE 13. Three different configurations involving adjacent nodes.

four nodes. For the first judgement, nodes A and D lie on the
same side of the line BC, as indicated by (18). In the second
judgement, it is evident that nodes A and B lie also the same
side of the line CD. Thus, nodes B, C, and D form two sides
(i.e. BC and CD) of a quadrilateral. FIGURE 13(c) demon-
strates that the first judgment is similar to FIGURE 13(b).
Nodes B and D lie on opposite sides of the line AC in the
second judgment. Thus, nodes A, B, and C construct the edge
and a diagonal of a quadrilateral. Therefore, the four anchor
nodes are adjacent to each other and can be determined
for three different configurations. The accompanying QSC
algorithm is described in Algorithm 2.

The primary limitation of this algorithm is that position
estimation can be correctedwhile an unknown node is inside a
quadrilateral composed of four anchor nodes. This is demon-
strated in FIGURES 14 (a) and (b), where the red triangle
represents the anchor node, the green ‘+’ is the estimated
position acquired by rough localization, and the black ‘+’
is the QSC algorithm correction result. The blue ‘.’ is the
actual position of the target node. However, as shown in
FIGURE 14(c), it is possible for an unknown node to
lie outside of the quadrilateral. It is also possible for the
quadrilateral to be composed of non-anchor nodes as in
(FIGURE 14(d)).

Localization errors produced by the QSC algorithm are
significantly higher in these cases. As such, the DVMFL
algorithm is introduced to overcome these issues.

2) DVMFL ALGORITHM
The DVMFL algorithm is a modified version of the con-
ventional DV-hop method, which is a well-known range-
free localization technique. However, DV-hop exhibits two
common flaws: 1) hop count and 2) average hop distance
errors. As a result, the real distance is often very different
while the minimum hop count is mostly the same. How-
ever, accurate node positioning depends heavily on the esti-
mation of average hop distance. As such, we propose the
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Algorithm 2 Quadrilateral Shrunk Centroid (QSC)
Input: Rough location node estimation(
xrl_est , yrl_est , zrl_est

)
xrl_est as x ′i , yrl_est as y

′
i, zrl_est as z

′
i, i ∈ 1, 2, . . . , n,

θ = 60, j = 0;
for i = 1 to n do:
j = j+ 1← Cooperative node
if j = 4 then:
E,F,G,H ← Rotation matrices for x and y
(x ′′i , y

′′
i , z
′
i)← x ′′i =

xE+xF+xG+xH
4 , y′′i =

yE+yF+yG+yH
4

E ′,F ′,G′,H ′← Rotation matrices for x and z
(x ′′′i , y

′′
i , z
′′
i ) ← x ′′′i =

xE ′+xF ′+xG′+xH ′
4 , z′′i =

zE ′+zF ′+zG′+zH ′
4

else
continue

end if
end for
Output: Corrected node (x ′′′i , y

′′
i , z
′′
i )

FIGURE 14. Localization correction results for various situations.

DVMFL algorithm to address these two issues. The algorithm
is based on a multi-communication radius and an improved
frog leaping model, used to optimize the hop distance for
anchor nodes and enhance localization performance. This
process consists of three steps, which are described in detail
below.
Step 1: Minimum hop counts are calculated based on a

multi-communication radius
Each anchor node broadcasts two parameters: coordinates

and minimum hop count. The initial value of minimum hop
count is zero. Each adjacent node then stores the received
information and forwards the updated values to neighboring
nodes after adding 1 hop value. However, the actual distance
between nodes will occasionally differ while the minimum
hop count remains the same. To resolve this issue, we propose
dividing the signal radius R into DF sections. The minimum
hop count from a given node to the anchor node is thenDF∗R,
where num is an empirical decimal value ranging from 0 to 1
with a step size of 0.25.

In FIGURE 15, the minimum hop counts for nodes in
regions A, B, C, and D (to the anchor node i) were 0.25R,
0.5R, 0.75R, and R, respectively. Neighboring nodes then
receive and forward anchor node information within the com-
munication radius R. After the end of message transmission,
each node obtains the minimum hop count to the anchor node
i. Refining a hop count between nodes canmake theminimum
hop number more accurate.

FIGURE 15. An example of a multi-communication radius.

Step2:The average hop-distance is calculated using amod-
ified frog leaping algorithm

In this section, we introduce an improved frog leaping
algorithm to optimize the hop distance for anchor nodes.
The shuffled frog leaping (SFL) algorithm [46], [47] offers
the advantages of fewer parameters, faster calculation, and
stronger optimization for WSNs. SFL simulates the infor-
mation exchange process, implemented in the classification
of subgroups using a fitness function, as virtual frogs search
for food. This approach combines a global search with sub-
group interior searching, prompting the algorithm to proceed
in a globally optimal direction. The key is to design a fitness
function capable of solving application-specific scenarios,
as discussed below.

The average hop distance for each anchor node (i) can be
expressed as:

AvgDisi =

∑Ni
j=1

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2∑Ni

j=1 hij
,

(21)

where (xi, yi, zi) and (xj, yj, zj) are the positions of anchor
nodes i and j, respectively. The term hij is the hop count
between anchor nodes and Ni is the number of anchors
connected by node i. The distance estimation between the
unknown node k and the anchor node i is given by AvgDisi×
hik , where hik is the hop count between nodes k and i. The
actual distance can be expressed as:

dik =
√
(xi − xk )2 + (yi − yk )2 + (zi − zk )2.

The difference between these two terms is represented by:

eik = |d ik − AvgDisi × hik |, (22)

where hik is the minimum hop count between unknown
node k and the anchor node i. Smaller values of the error eik
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result in more accurate average hop distances (AvgDisi).
Therefore, the solution to (22) can be transformed into the
following minimum value optimization problem:

f (AvgDisi) =
1

Nk − 1

∑Nk

i6=k
eik . (23)

Different weights must be considered for each node in
order to reduce hop distance errors. In FIGURE 16, the actual
distance between the anchor nodes (A or B) and P is approx-
imately the signal radius R. However, the hop count between
A and P is 1 and the hop count between B and P is 2. Thus,
the hop distance between P and B is 2R. As such, the hop
distance error will increase significantly if the fitness value
for anchors A and B is the same.

FIGURE 16. Weighted values for different nodes.

A modified fitness function can then be expressed as:

f (AvgDisi) =
1

Nk − 1

∑Nk

i6=k
a2e2ik , a =

dik
hik
, (24)

where Nk is the number of anchor nodes, dik is the actual
distance between anchor nodes, and hik is the hop count
between anchor nodes. This new fitness function was used
in conjunction with the improved frog leaping algorithm to
solve for optimal average hop distance.
Step3: Position estimation
Distance estimation errors typically increase with hop

count. However, estimated positions for target nodes were
restricted to smaller regions using the rough localization,
to prevent estimation from being included in too many
hop counts. Due to the complexity of the algorithm to be
reduced, a least squares optimization technique was applied
to further calculate unknown node positions within the small
region [48].

The distance between target nodes and the anchor node (i)
is given by dik = AvgDisi × hik . The corresponding position
estimation is then:

X = (ATA)−1ATB, (25)

where

X =

 xy
z

, (26)

A =

 2(x1 − xn)
...

2(xn−1 − xn)

2(y1 − yn)
...

2 (yn−1 − yn)

2(z1 − zn)
...

2(zn−1 − zn)

, (27)

B =

 x21 − x
2
n + y

2
1 − y

2
n + z

2
1 − z

2
n + d

2
n − d

2
1

...

x2n−1 − x
2
n + y

2
n−1 − y

2
n + z

2
n−1 − z

2
n + d

2
n−1 − d

2
1

.
(28)

3) FUSION CALIBRATION
The QSC algorithm is based on RSSI values and the DVMFL
algorithm is based on hop counts. Each model has unique
advantages for estimating position. Therefore, we propose
a fusion calibration framework, combining both algorithms,
to further improve localization precision. The QSC algorithm
produces larger position estimation errors for unknown nodes
lying outside the quadrilateral region or anchor nodes that do
not form a quadrilateral. As such, two judgment rules were
used to determine whether an unknown node was located
within a quadrilateral, as shown in FIGURE 17.

FIGURE 17. Various types of intersection points. (a) An unknown node is
inside the region but not outside the quadrilateral. (b) An odd number of
intersection points. (c) An even number of intersection points.

Rule #1: Minimum and maximum coordinates are searched
within the quadrilateral vertices. If an unknown
node is not located within this range, the node
is assumed to lie outside the quadrilateral. This
process is demonstrated in FIGURE 17(a).

Rule #2: If the node does lie inside a region composed of
four vertices (A,G,E, and F) (i.e., Rule #1 is sat-
isfied), intersections between unknown node rays
and quadrilateral edges can be used for further
assessment. Specifically, if the number of inter-
secting points is odd, the node lies inside the
quadrilateral.

The fusion calibration formula can then be expressed as:

α × QSC + β × DVMFL, (29)

where α is a weighting factor in the QSC algorithm, β is a
weighting factor in the DVMFL algorithm, and β = 1− α.
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Algorithm 3 A Judgement to Determine Whether an
Unknown Node Is Inside or Outside a Quadrilateral
Input: An unknown node (xUN , yUN , zUN ) and an anchor

node (x iAN , y
i
AN , z

i
AN ), i ∈ 1, 2, 3, 4

xmax , xmin← max(x iAN ) and min(x iANi )
ymax , ymin← max(yiAN ) and min(yiAN )

if (xmin ≤ x ≤ xmax) and (ymin ≤ y ≤ ymax) then:
return True

else
P = False
for i = 1 to 4, j = 4 to1 do:

if ((yi > y)! = (yj > y)) and (x < ((xj − xi)(y −
yi))/(yj − yi)+ xi)

P = !P
end if

end for
returnP

end if
Output: Unknown node is either inside or outside the quadri-
lateral

In this study, the algorithm was used to test 200 unknown
nodes. When it was determined that a node was positioned
within a quadrilateral area composed of cooperative anchor
nodes, the weight α was set to different values for compar-
ison. These results are shown in the table below. The ALE
was minimized, indicating the highest position estimation
accuracy, when α = 0.8, as shown in Table 2. As such,
the value of α was set to 0.8.

TABLE 2. ALE corresponding to different α values.

The value of α will be larger (α = 0.8 in this study) if
Rules #1 and #2 apply, otherwise β will be larger. The values
of α and β were determined through empirical testing. This
process is represented in Algorithm 3.

IV. EXPERIMENTAL EVALUATION
This section analyzes the performance of our hybrid model,
considering different parameters and various conditions, such
as anchor node density and network topology. The proposed
technique is also compared to conventional methods.

A. SIMULATION CONFIGURATIONS
All experiments were conducted on a PC with a Windows 7
(64-bit) operation system, running an Intel Core i5-6300
2.33 GHz CPU with 20 GB DDR-SDRAM memory and
a 1 TB hard drive. All code was developed in Python
3.6.2 using the Spyder 3.3.4 IDE.

For the sake of simplicity, the testing process was per-
formed in a 100 m × 100 m × 100 m cubic region in which
the anchor and unknown nodes were randomly positioned.
The number of nodes and related parameters were developed
empirically as shown in Table 3. Ultimately, 200 unknown
nodes were used to evaluate location estimation accuracy.
Table 3 provides a detailed summary of the experimental
configuration used to assess the proposed algorithm.

The training process for the MLGB model is described
below.
Step 1: A higher learning velocity is selected (set ν = 0.1)

and the default values for other parameters are estab-
lished: md = −1, S = 1, F = 1, λ = 0, γ = 0, and
T = 31. The runtime for 300 iterations is acquired.

Step 2: Basic parameters are adjusted in the decision tree ϕT ,
a vector consisting of md = [4, 6, 8, 10] and min-
split-gain= 0. A grid search is then used to fine-tune
the parameters in a specific range.

Step 3: The regularization parameters λ and γ are optimized.
Step 4: The learning velocity is reduced and the number

of iterations is increased to further optimize model
parameters.

Specific parameter values after adjustment and optimiza-
tion are shown in Table 3.

Non-uniform deployment was also investigated using
C-shape, H-shape, S-shape, and O-shape networks. The
effects of node density and sensing coverage were specifi-
cally tested. The number of nodes was varied from 0 to 200,
producing different point densities. The coverage (i.e., the
communication radius) was varied from 20 m to 80 m using
a 10 m step size.

In this manner, the training and test datasets are produced
under the same simulation conditions. A total of 10000 and
200 recorded points were acquired after data processing and
feature extraction, respectively, for both datasets.

Localization performance was quantified using the average
location estimation (ALE) error defined in the (29). The ALE
metric used in the experiment is similar to that of previous
studies [17], but with slight modifications. It is given by:

ALE =

∑n
i=1 ‖Pest − Psensor‖

2

n · R
, (30)

where Pest = [ x ′i_est y
′
i_est z

′
i_est ]

T is the estimated position
of the ith unknown node, Psensor = [ xi yi zi ]T is the actual
position of the ith unknown node, n is the total number of
unknown nodes in the sensing coverage region, and R is the
signal coverage radius between nodes. Smaller ALE values
indicate higher location estimation precision.
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TABLE 3. Experimental parameter configuration.

B. VARYING ANCHOR NODE DEPLOYMENT
The effect of varying node density on location estima-
tion error was investigated experimentally. In this process,
25 anchor nodes with signal radii ranging from 20-80m were
randomly distributed in the sample space. The results for
40 and 80 m coverage distances are plotted in FIGURE 18.
As shown in Table 4, the ALE for this configuration was
0.0464 with random deployment. This value was only 8.2%
higher than the result produced with uniform deployment.
In other words, anchor node distribution had little effect on
ALE errors.

We further evaluated location estimation errors at the cen-
ter and edges of the sensing range for uneven distributions.
A 90× 90× 90 m simulated area was considered the center
of the coverage region; the remaining area was marginal.
Consequently, we derive that 104 nodes were assigned to the
marginal area and 96 nodes were placed in the center region
by counting nodes in different region.

FIGURE 19 shows a series of simulation results in which
there was little difference between positioning errors at the
center and edges of the sensing coverage region. As shown
in Table 5, the max-min error in the marginal and center
regions was 0.1236 and 0.0816 for randomly distributed
anchor nodes, respectively. This suggests the positioning
errors are well distributed in the sensing coverage region,
allowing the proposed algorithm to compensate in marginal
areas.

TABLE 4. Simulation results from four network topologies.

TABLE 5. ALE results for varying anchor node distributions.

FIGURE 18. The results of uniform and random anchor node deployment
strategies.

FIGURE 19. A comparison of center and edge regions.

C. RESULTS FOR DIFFERING NETWORK TOPOLOGIES
An experiment was conducted to investigate non-uniform
deployment scenarios in four distinct network topologies.
In practical applications, node distributions are not uniform
and are restricted to specific network architectures. As such,
C-shape, H-shape, S-shape, and O-shape networks were
studied, to assess the effects of positioning accuracy with
25 anchor nodes. The communication radius in this simula-
tion ranged from 30 to 80 m, as shown in FIGURE 20.

The influence of location estimation errors with four dif-
ferent network shapes is also evident in the figure. The
ALE was lowest in the ‘H-shape’ network and highest in
the ‘C-shape’ network. Detailed simulation results are also
provided in Table 4. The ALE values were 8.9% higher than
those of Table 5 (random deployment), with a maximum
difference of 33.6%. As such, the effect of network topology
on location estimation accuracy is evident.

FIGURE 21 shows the probability density distribution
for location estimation errors in four network topologies.
The primary component of each curve is inclined to the left by
a factor of 0.34, which indicates the majority of positioning
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FIGURE 20. Experimental results from four network topologies.

FIGURE 21. A graph of error distributions from four network topologies.

errors are smaller (less than the mean value). The shape of
each curve is similar to that of a normal distribution. For
example, in the ‘C-shape’ network, the area of µ + 2σ
(the sum of ALE values and double the standard deviation)
accounted for 95% of the area.

This represents the proportion of nodes (4.8%) in which
the location estimation errors were above µ+ 2σ were. This
suggests the probability of large errors is very small and that
ALE was relatively uniform and low. These results suggest
our algorithm is robust and offers improved localization per-
formance for a variety of network topologies.

As shown in FIGURE 22, the ALE across four network
shapes decreased with increasing communication radius. The
curve also decreased rapidly when the communication radius

FIGURE 22. The effect of signal radius on location estimation errors in
four network topologies.

was less than 50 m. The error gap between the four network
shapes also tended to decrease gradually as the location
estimation error approached 80 m. The largest change was
observed in the ‘S-shape’ network, in which the location error
was reduced by 79.7%. The trend in the ‘H-shape’ structure
was similar to that of the ‘O-shape’ network and the influence
of signal radius was the smallest among network types. From
this, we conclude that the impact of different network shapes
on location estimation accuracy is relatively small for the
proposed algorithm.

D. ROUGH LOCALIZATION SIMULATION RESULTS
In this section, the performance of MLGB is evaluated and
compared with four conventional algorithms. The effect of
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RSSI data sparsity on location estimation errors was evalu-
ated experimentally. Tests were performed over 100× 100×
100 m cubic areas with 25 anchor nodes randomly distributed
over a sensing coverage distance of 40 m. Four different mod-
els including Random forest [16], GBDT [41], XGBoost [49],
and LightGBM [40] were used to assess the performance of
rough localization in the first stage of the proposed algorithm.

FIGURE 23 shows a series of simulation results in which
the percentage of missed values (RSSI sparsity) directly
affected location estimation errors using different models.
The average location estimation error was high when the
percent of missed values was high, increasing significantly
as the percentage rose from 50% to 60%. It is also evident
that the GBDTmodel produced the lowest accuracy, while the
proposed model outperformed the other four algorithms. Our
technique offers improved sparse feature processing capabil-
ities and a new fitness function for WSN localization.

FIGURE 23. The effect of RSSI data sparsity on location estimation errors.

E. EXPERIMENTAL RESULTS FOR SCREENING
COOPERATIVE NODE STRATEGIES
Screening cooperative node strategies were evaluated in
the second stage of the algorithm. An experiment was
performed using the same configuration as in Section IV,
in which the results were compared to those not utilizing a
screening strategy. This comparison included four nodes with
the nearest distance for cooperative anchor nodes. The results
are shown in Table 6.

FIGURE 24 shows the average location estimation errors
produced with different strategies. It is evident from these
results that the effect of screening on ALE is relatively
low, while the accuracy exhibits minor improvements. The
largest improvement in prediction accuracy was observed
along the X-axis, due to the two corrections occurring in
the X-axis direction. The three-dimensional ALE was as
much as 14.8% lower with screening than without, suggest-
ing the strategy smallest location estimation errors for all
algorithms were observed as the percentage of anchor nodes
increased, particularly from 20-50%. The proposed algorithm
achieved the lowest estimation errors, which remainedmostly

FIGURE 24. A comparison of different localization strategies.

FIGURE 25. A comparison of results with and without collaboration
calibration.

constant, fluctuating only slightly as the anchor node density
passed 30%. This is because an increase in the percentage
of anchor nodes leads to an increase in data dimensionality.
Higher-dimensional features can provide more information
and additional missing improved overall precision.

F. SIMULATION RESULTS FOR COLLABORATIVE FUSION
CALIBRATION
In this section, we evaluate performance in the third stage
of our approach. Position coordinates for unknown nodes
acquired by rough localization were further calibrated using
the QSC and DVMFL algorithms, which are based on anchor
nodes (including screening cooperative anchor nodes). The
effectiveness of collaborative fusion fine calibrationwas eval-
uated using 3D positioning errors along the X-, Y-, and
Z- axes, as shown in Table 7.

FIGURE 25 provides a comparison of results produced
with and without collaboration calibration. The collaborative
fusion algorithm reduced positioning errors along the X,
Y, and Z-axes. While errors in each of the three directions
were similar, precision in the X direction showed the largest
improvement, decreasing positioning errors by 53% (as a
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TABLE 6. A comparison of results using screening and unfiltered strategies.

TABLE 7. Location errors along the X-, Y-, and Z-axEs, with 200 unknown nodes.

FIGURE 26. The effect of communication radius on location estimation
error.

result of two corrections in the X direction). The total aver-
age location estimation error in three dimensions was also
reduced by 44.0%.

G. A COMPARISON OF CONVENTIONAL TECHNIQUES
A comparative evaluation of the whole algorithm was per-
formed using the improved RSSI-LSSVR (least squares sup-
port vector regression) [50] and RSSI-TOA-LSSVR [51]
algorithms, which were based on a machine-learning model
and applied to node localization in 3D environments. In addi-
tion, the configuration shown in Table 3 was used to investi-
gate three factors: communication radius, anchor node den-
sity, and ranging-distance error, all of which can effect loca-
tion estimation accuracy.

FIGURE 26 shows location estimation errors with com-
munication radii ranging from 20 to 70 m. These errors

FIGURE 27. The effect of anchor node density on location estimation
error.

decreasedwith increasing communication radius, particularly
over the 20-30 m range, before stabilizing over larger values.
The proposed algorithm outperformed other models in the
same conditions, producing the smallest and most consistent
positioning errors, indicating our model was the least affected
by communication radius.

FIGURE 27 shows location estimation errors for anchor
node percentages ranging from 20-50%, with other condi-
tions unchanged. This error increased with node density. The
values. Enhancing data sparsity can also lead to an increase
in positioning errors.

FIGURE 28 shows the error for measurement distances
ranging from 0.5-3.0 m, with other conditions held con-
stant. The difference between measured and real distances
increased with range distance, as did the maximum location
estimation error. The superior performance offered by our
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FIGURE 28. The effect of range distance error on location estimation
error.

algorithm is a result of adopting a dynamic signal propagation
model, which can effectively reduce environmental effects
on measurement distances. The proposed model was also
used to establish a relationship between signal feature space
and position coordinates in a rough localization stage, rather
than relying solely on range information, which reduced the
effects of range distance errors.

V. CONCLUSION
In this study, a hybrid approach was proposed and applied to
localization approximations for WSNs in 3D environments.
Specifically, the effects of uneven localization error distri-
butions, RSSI data sparsity, and irregular network topology
were investigated, including their effects on localization esti-
mation. Our contribution to this novel algorithm included a
modified version of the LightGBM, QSC, and DVMFL algo-
rithms, as well as a new screening cooperative anchor node
policy with a multistage collaborative calibration scheme.

This process included three primary components. First,
MLGB-based rough localization was used to estimate the
positions of unknown nodes by overcoming issues that
affected localization precision. Second, a cooperative tech-
nique was used to improve anchor node density. Third, QSC
and DVML models were combined to establish a collabora-
tive fusion calibration framework to improve location esti-
mation precision. Experimental evaluation was conducted by
varying factors to be considered include such as node dis-
tribution, non-uniform error distribution, network topology,
signal radius, and RSSI data sparsity. Results showed that
the proposed model outperformed conventional techniques.
we intend to continue developing applications of this work in
several engineering fields in a future study.
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