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ABSTRACT The position tracking control of a barrel system driven by a two-stage hydraulic cylinder
with long transmission lines was addressed in this paper. First, an active balancing system was designed
to balance the gravitational torque which may deteriorate the performance of the barrel control system. The
active balancing system is totally isolated from the barrel control system; thus the dynamics of the barrel
servo system is significantly simplified. The effects of the long transmission lines were also considered
during the modeling of the barrel servo system. In order to exactly estimate the unmeasured states and the
mechanical disturbance, an extended state observer was designed by employing the Levant’s Differentiator,
thus the estimation errors would converge to zero exponentially. Then, based on the estimated signals, the
barrel system was transformed into the pure integration chain form, thus the sliding mode technology can be
directly utilized. After that, a sliding mode controller is designed to make the position output of the barrel
to track different motion trajectories as close as possible in the presence of model uncertainty and unknown
dynamics. The closed loop system was proven to be asymptotical stable in the sense of Lyapunov theory.
Three different motion trajectories were tested to verify the effectiveness of the proposed controller.

INDEX TERMS Barrel servo system, electrohydraulic servo system, sliding mode control, state estimation,
unknown dynamics.

I. INTRODUCTION
Barrel servo system is a key component of modern pipe
weapons since the combat effectiveness of the whole weapon
system significantly depends on the control performance of
the barrel system. Typically, there are two types of barrel
servo system, namely, motor driven barrel servo system and
hydraulic driven barrel servo system. The hydraulic driven
barrel servo system is widely used in modern pipe weapons
due to its high stiffness, high response and high load capa-
bility. The gravitational center of the barrel system is usually
not aligned with the trunnion due to the structure feature and
the space limitation, thus the unbalanced gravitational torque
appears. Moreover, the unbalanced gravitational torque is
function of the barrel angle, thus it is time-varying during
the motion of the barrel. The time-varying unbalance grav-
itational torque can significantly deteriorate the control per-
formance of the barrel servo system [1], [2]. To overcome this
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problem, passive balancing and active balancing are the most
commonly used methods [2], [3]. In the passive balancing
system, an inertia mass is usually used as the clump weight to
make gravitational center aligned with the trunnion, thus the
whole system is unwieldy and more energy is needed during
the motion. In the active balancing system, the balancing
torque is generated by another actuator, thus the whole system
is much more light and energy-efficient. Hence, the active
balancing system is widely used in modern pipe weapon sys-
tems. A hydraulic cylinder with three chambers was used as
the balancing system in [4], thus the driving forces of the actu-
ator is significantly reduced. Similarly, the three chambered
hydraulic cylinder was also employed in the barrel servo sys-
tem in [2]. Themain disadvantage of this balancing strategy is
that the three chambered hydraulic cylinder is expensive and
the dynamics of the whole system is complicated. Another
commonly used method in the hydraulic balancing system is
the usage of the balance valve. However, the balance valve
usually produces large pressure drop, which make the system
inefficient. In this paper, a simple but effective hydraulic
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balancing system was designed, which will be explained in
detail in section 2.1.

Apart from the unbalanced torque, the barrel servo system
studied in this paper is essentially a strong nonlinear sys-
tem subjected to unknown external mechanical disturbance
and large hydraulic parameter variations. The nonlinearity is
mainly caused by the pressure-flow characteristic of the servo
valve, nonlinear frictions and the structure of the system.
Recently, several advanced control methods had been devel-
oped for the position tracking control of the electro-hydraulic
system (EHS), such as passivity-based control [5], [6],
linearization-based control [7], [8], back-stepping based con-
trol [9], [10], adaptive robust control [11], [12] and so on.
Sliding mode control (SMC) was also widely used in EHS for
its fast response, simplicity and robust [2], [9], [10]. Theoret-
ically, SMC is robust only to matched disturbance (including
matched model uncertainties). Unfortunately, the mechanical
disturbances in EHS is mismatched, thus SMC cannot be
directly used in position control of EHS. To overcome this
problem, the back-stepping based SMC was proposed for
the position tracking control of EHS in [9] and [10], and
excellent results had been obtained. However, the control
law is extremely complicated due to the differentiating of
the virtual control signal in each step, which is well-known
as ‘‘explosion of term’’ problem. The multiple-surface based
sliding mode control [13], [14] is essentially the same as
the back-stepping based sliding mode control, in which the
‘‘explosion of term’’ problem also exits. The dynamic surface
technology [15] can be used to calculate the derivative of
the virtual control signal in each step, thus the back-stepping
based control law is significantly simplified, but this usually
leads to slower response of the closed loop system due to
the extra dynamics of the controller. Generally speaking,
the bound of the lumped disturbance should be known to
design the switching control law of SMC, but this bound
is not always known in practical applications due to the
complicated dynamics of the controlled plant. Disturbance
observer (DOB) based sliding mode control were devel-
oped for system with matched and mismatched disturbance
in [16] and [17], in which the bound of the disturbance
was not needed and the switching gain was only needed to
be greater than the bound of the estimation error, thus the
chattering phenomenon was significantly reduced. However,
good estimation performance can be obtained only when the
disturbance is constant or slow-varying, which is difficult
to fulfill in practical applications. Another obstacle for the
real applications of SMC is the well-known chattering phe-
nomenon that caused by sensor delays, unmolded dynamics,
non-ideal switching and so on [18]. In order to reduce or even
eliminate the chattering phenomenon, several methods, such
as boundary layer, continuous approximation function, soft
computing based optimization and high order sliding mode
based control had been proposed [16], [18]. The effectiveness
of the above mentioned methods for chattering attenuation
have already proved in practical applications.

Another difficulty of the position tracking control of EHS
is the unmeasured states. A high gain observer (HGO) was
designed to estimate the unmeasured states of an electro
hydraulic loading system [19], and the HGO was proven to
be exponentially stable. The HGO was used to estimate the
full-state of an active suspension system in [20], and simula-
tions were performed to verify the effectiveness of the HGO.
However, HGO is not robust enough to model uncertainties
and external disturbances, thus, the performance of the HGO
based control would degrade significantly when large model
uncertainty or disturbance appears. Moreover, HGO can only
estimate the unmeasured states. To attenuate the effect of
model uncertainty and disturbance, an unknown dynamic
estimator (UDE) was designed to estimate the unknown
lumped disturbance of the EHS in [21], and meanwhile,
the Levant’s Differentiator [22] was employed to obtain the
higher order derivatives of the output signal. However, the
estimation error always exists due to the nonzero time con-
stant of the low-pass filter. In order to simultaneously esti-
mate the unmeasured states and unknown disturbance of the
EHS, extended state observer (ESO) was firstly employed
by Yao et al. in [23], and the effectiveness of the ESO was
verified though extensive experiments. The ESO was also
employed to estimate the full states and unknown disturbance
of the EHS in [24], although the mismatched disturbance was
temporarily ignored during the design of ESO, the ESO is
proven to be robust to the mismatched disturbance. Theo-
retically, the estimation errors of the traditional linear ESO
can be effectively reduced by tuning the observer bandwidth,
however, the estimation errors always exist when the distur-
bance is not exactly known [25], [26] and too large observer
bandwidth would lead to peak phenomenon which is not
desired in practical applications.

In this paper, motived by the above discussions, a novel
nonlinear ESO was designed to simultaneously estimate the
unmeasured states and unknown disturbance of the barrel sys-
tem by employing the Levant’s Differentiator. Thus, the esti-
mation errors would converge to zero exponentially, which
means that the estimated states would converge to their true
values. Then, based on the estimated signals, the barrel sys-
tem was transformed into the pure integration chain form.
Hence, the sliding mode control technology can be directly
used. To attenuate the hydraulic uncertainties, a sliding mode
controller was designed as the position tracking controller
based on the new state variables. The closed loop system was
proven to be exponentially stable in the sense of Lyapunov
theory.

II. DYNAMIC MODELS AND PROBLEM FORMULATION
A. DECRIPSION OF THE ACTIVE BALANCING SYSTEM
In this section, a simple but effective hydraulic active bal-
ancing system is designed. As shown in Figure 1, the active
balancing system is mainly comprised of three accumulators
and a two-stage hydraulic cylinder whose structure is the
same as the actuator of the barrel servo system.
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FIGURE 1. Schematic diagram of the active balancing system.

TABLE 1. Main parameters of the active balancing system.

FIGURE 2. Curves of gravitational torques and balance torques.

The three accumulators are placed in parallel, and the gas
pressure of each accumulator is carefully designed such that
each of them works mainly at specific barrel angle ranges.
The gravitational torques within the angle 0-40 degrees,
40-60 degrees and 60-75 degrees are mainly balanced by one
of the three accumulators. The main parameters of the three
accumulators are given in Table 1. The curves of the gravi-
tational torque and the balance torque provided by the active
balancing system are depicted in Figure 2. As can be seen,
although not totally compensated, the unbalanced torques are
kept at small arrange throughout the whole working area.
It is also should be noted that the active balancing system is
totally isolated from the barrel servo system, which make the
dynamics of the barrel servo system significantly simplified.

B. DYNAMICS OF THE BARREL SERVO SYSTEM
The diagram of the barrel servo system is given in Figure 3.
As can be seen, the structure and the placement of the actuator
are the same as that of the active balancing system, thus the
synchronous of the two actuators are guaranteed physically.

FIGURE 3. Diagram of the barrel servo system.

By using the Newton’s Second Law, the mechanical
dynamics of the barrel system can be given as

J θ̈ + Bθ̇ + Td = Fl sinβ (1)

where J is the equivalent moment of inertia; B is the equiv-
alent viscous damping coefficient; Td is the equivalent load
torque including the unbalanced gravitational torques, exter-
nal disturbances, nonlinear frictions and other unmolded
dynamics. F is the driving force provided by the actuator,
which can be given as

F = P1mA1 − P2mA2 (2)

where P1m, P2m, A1 and A2 are the chamber pressures and the
effective areas of the actuator, respectively.

Generally speaking, the dynamics of the servo valve should
be considered when the response of the servo valve is not far
greater than that of the controlled system. However, the sens-
ing system of the valve spool displacement makes the servo
valve very complicated and very limited control performance
improvements are obtained. Moreover, a high response servo
valve is used in the studied barrel servo system, thus it is
reasonable to assume that the spool displacement is directly
proportional to the control voltage applied to the servo valve,
that is,

xv = ksvu (3)

where xv is the spool displacement of the servo valve, ksv is the
servo valve gain, and u is the control input voltages. In view
of (3), it can be concluded that the sign of xv is equivalent
to that of u. Hence, the flow rate of the servo valve can be
described as

Q1 = ss(u)kqu
√
Ps − P1 + ss(−u)kqu

√
P1 − Pr (4)

Q2 = ss(u)kqu
√
P2 − Pr + ss(−u)kqu

√
Ps − P2 (5)

where P1 and P2 are the pressures at port A and port B of
the servo valve, respectively; Ps is the supply pressure; Pr
is the returned pressure; kq is the servo valve flow gain; and

ss(u) =
{
1, u ≥ 0
0, u < 0

.

Typically, the servo valve should be connected directly to
the hydraulic cylinder to increase the stiffness and reduce the
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parameter uncertainty of the controlled system. However, the
servo valve cannot be directly connected to the actuator due to
the imitated mounting space in the studied barrel system; thus
long transmission lines are introduced to connect the servo
valve and the actuator. Although the dynamics of the long
transmission line is very complicated, it can well be approxi-
mated by a stable transfer function with time delay [28], i.e.,

P1m =
ψ(s+ a)
(s+ b)

e−TDsP1 = H1(s)P1 (6)

P2m =
ψ(s+ a)
(s+ b)

e−TDsP2 = H1(s)P2 (7)

where ψ is a constant that is determined by the structure of
the pipe; the time delay constant TD is determined by TD =
Lm/Csd , in which Lm is the length of the pipe and Csd is the
speed of sound [28], [29].

Suppose that the external leakage of the actuator is zero,
then the pressure dynamics of the actuator can be given as

Ṗ1m =
βe

v1
(Q1 − A1ẋA − Ci(P1m − P2m)) (8)

Ṗ2m =
βe

v2
(−Q2 + A2ẋA + Ci(P1m − P2m)) (9)

where v1 and v2 are the total control volumes including the
volumes of the two actuator chambers and the long trans-
mission lines; Ci is the internal leakage coefficient of the
actuator; βe s the modulus of the hydraulic oil; xA is the
displacement of the actuator rod.

If the state variables are defined as x = [x1, x2, x3]T , where
x1 = θ , x2 = θ̇ and x3 = (P1mA1 − P2mA2)/J . Then the
dynamics of the barrel servo system can be described in the
state space form as follows.

ẋ1 = x2
ẋ2 = ax3 + d1(t)
ẋ3 = g(x, u)u− f (x, t)(P1 − P2)+ d2(x, t)
y = x1

(10)

where a = l sinβ, d1 = −(B + Td )/J , f (x, t) =
βe
J (

A1
v1
+

A2
v2
)CiH1, d2(x, t) = −(

βeA21
Jv1
+

βeA22
Jv2

)ẋA, g(x, u) =
βe
J (

A1R1
v1
+

A2R2
v2

), in whichR1 = ss(u)kq
√
Ps − P1+ss(−u)kq

√
P1 − Pr ,

R2 = ss(u)kq
√
P2 − Pr + ss(−u)kq

√
Ps − P2.

Without loss of generality, the following practical assump-
tions are made before the controller design.
Assumption 1: The unknown external disturbance

d1 and d2 are bounded, i. e., |d1| < ∞, |d2| < ∞. d1 is
differentiable and has a bounded derivative, i.e.,

∣∣ḋ1∣∣ < δ,
where δ is a known constant.
Assumption 2: Under normal working situations, the pres-

sures P1 and P2 are both bounded by the supply Ps and return
pressure Pr , which is about zero, i.e., 0 ≈ Pr < P1 < Ps, 0 ≈
Pr < P2 < Ps. Thus, the chamber pressures of the actuator
are also bounded by Ps and Pr , i.e., 0 ≈ Pr < P1m < Ps,
0 ≈ Pr < P2m < Ps.

Let xd be the desiredmotion trajectory, and xd is known and
bounded up to the third order derivatives, i.e., |xd | + |ẋd | +

|ẍd | + |
...
x d | <∞. The objective in this paper is to synthesize

a bounded control signal u such that the position tacking error
is as small as possible in the presence of external disturbances
and model uncertainties.

III. POSITION TRACKING CONTROLLER DESIGN
In view of (10), the mechanical disturbance d1 is mismatched,
thus the sliding mode control cannot be directly used. As dis-
cussed in section 1, the backstepping-based or multi-surface-
based control is very complicated due to the ‘‘explosion of
term’’ problem. Hence, the goal of this section is to design a
slidingmode controller without using back-stepping or multi-
surface.

A. DESIGN MODEL OF THE BARREL SERVO SYSTEM
In order to use the SMC technology directly, define a set of
new state variables as follows

ξ1 = x1
ξ2 = x2
ξ3 = ax3 + d1(t)

(11)

Thus, the barrel servo system (10) can be rewritten as
ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = φ1u− φ2(P1 − P2)+ d
y = ξ1

(12)

where

φ1 =
βe

J
(
A1R1
v1
+
A2R2
v2

)l sinβ,

φ2 =
1
J
(
βeA1
v1
+
βeA2
v2

)CiH1l sinβ,

d(x, t) = −(
βeA21
Jv1
+
βeA22
Jv2

)ẋAl sinβ + ḋ1(t).

Note that the pressures P1 and P2 are both bounded, thus
R1 and R2 are also bounded. Suppose that d(x, t) is bounded
by some known constant 1 due to the boundedness of d1,
i.e., |d(x, t)| < 1. Note also that the control volumes v1 and
v2 are always positive and bounded in practical applications.
Thus, there must exist some positive constants φ1min > 0 and
φ1max > 0 such that φ1min < φ1 < φ1max . Similarly, φ2
is bounded by some constant φ2min and φ2max , i.e., φ2min <
φ2 < φ2max .

It should be noted that the rod displacement xA of the actua-
tor is not known, thus the control volumes v1 and v2 are both
unknown. Moreover, the dynamics of the long transmission
lines is also not known due to the complicated characteris-
tic of the pipe. Hence, it can be concluded form (12) that
φ1 is not known. However, φ1 is bounded according to the
above discussion; thus, it is reasonable to assume that φ1
can be modeled by a nominal part plus a uncertain part, i.e.,
φ1 = φ10+ 1φ1, in which φ10 and 1φ1 are the nominal part
and uncertain part of φ1, respectively. Similarly, φ2 can be
modeled by φ2 = φ20 +1φ2, in which φ20 and 1φ2 are the
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nominal part and uncertain part of φ2, respectively. Consider-
ing the uncertainties of φ1 and φ2, the barrel system (12) can
be rewritten as

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = φ10u− φ20(P1 − P2)+ dlump
y = ξ1

(13)

where dlump = d + 1φ1u − 1φ2(P1 − P2) is the lumped
disturbance. Note that d , 1φ1, 1φ2, u, P1 and P2 are all
bounded, thus it is reasonable to assume that dlump is bounded
by some known positive constant δ, that is, |dlump| < δ.

B. POSITION TRACKING CONTROLLER DESIGN
In this section, the sliding mode technique will be employed
to design the position tacking controller of the barrel servo
system based on the design model (13). Define the tracking
errors as

e = ξ1 − xd (14)

Thus, by using (13), the time derivatives of (14) can be given
as

ė = ξ̇1 − ẋd = ξ2 − ẋd (15a)

ë = ξ̇2 − ẍd = ξ3 − ẍd (15b)
...
e = ξ̇3 −

...
x d = φ10u− φ20(P1 − P2)+ dlump −

...
x d (15c)

Define the sliding surface as

s = k0

∫ t

0
e(τ )dτ + k1e+ k2ė+ ë (16)

where k0, k1, k2 are some positive constants to be designed
later, and they are chosen such that the characteristic polyno-
mial p3 + k2p2 + k1p + k0 is Hurwitz. Hence, the position
tracking error e will converge to zero exponentially if the
sliding variable s is zero.
By using (15), the time derivative of (16) can be given as

ṡ = k0e+ k1ė+ k2ë+ k3
...
e

= k0e+ k1ė+ k2ë+ φ10u− φ20(P1 − P2)+ dlump −
...
x d
(17)

Now, the following theorem can be summarized.
Theorem 1: For the barrel servo system (10) satisfying the

assumption 1-2, if the control law is design as

u =
1
φ10

(−k0e− k1ė− k2ë+ φ20(P1 − P2)+
...
x d )

−
1
φ10

(kss+ (1+ η)sign(s)) (18)

where ks > 0 and η > 0 are controller parameters to be
chosen later. Then the sliding variable (16) will converge to
zero in finite time. And consequently, the position tracking
error (14) will converge to zero exponentially and all signals
will be bounded.

Proof: Considering the following positive definite Lya-
punov function

Vc =
1
2
s2 (19)

By using (17) and (18), the time derivative of (19) along
the system (13) is given as

V̇c = sṡ

= s(k0e+k1ė+k2ë+φ10u− φ20(P1 − P2)+ dlump−
...
x d )

≤ −kss2 +
∣∣dlump∣∣ s− δ |s| − η |s|

≤ −2ksVc −
√
2ηV 1/2

c (20)

Thus, there exists a finite time T > 0 such that the sling vari-
able s will converge to zero [30]. And consequently, the posi-
tion tracking error (14) will converge to zero exponentially
due to the exponential converge rate of the sliding variable s,
and all signals will be bounded due to the boundedness of the
practical system states and the desired motion trajectory. The
proof is completed.

C. DESIGN OF STATES AND DISTURBANCE OBSERVER
WITH ZERO ERRORS
Note that the control law (18) cannot be implemented directly
since the system states ξ2, ξ3 are not known. However, if the
state x2 and the disturbance d1 are known exactly, then ξ2, ξ3
can be calculated based on (11). Thus, the goal in this section
is to estimate x2 and d1 with zero estimation errors. In the
next step, the linear ESO [25], [26] and the Levant’s Differ-
entiator [22] will be combined to simultaneously estimate the
unknown state x2 and the disturbance d1.
Since only x2 and d1 need to be estimated, only the first

two equations of (10) are used to design the observer. As in
the ESO design, the disturbance d1 is extended as a new state
xe, i.e., xe = d1, and its time derivative is defined as h(t), that
is, ẋe = h(t). Note that the time derivative of d1 is bounded
by δ, thus, h(t) is also bounded by δ, i.e., |h(t)| < δ. Thus,
it can be obtained that

ẋ1 = x2
ẋ2 = ax3 + xe
ẋe = h(t)

(21)

To achieve zero estimation errors, the Linear ESO is inte-
grated with the Levant’s differentiator [22]. The designed
states observer is given as

˙̂x1 = x̂2 + 3ω0x̃1 + H3L2/3sign(x̃1)|x̃1|2/3

˙̂x2 = ax̂e + 3ω2
o x̃1 + H2L1/3sign(x̃1)|x̃1|1/3

˙̂xe = ω3
o x̃1 + H1Lsign(x̃1)

(22)

where ωo, L, H1, H2, H3 are positive constants to be chosen
later. Let the estimation of ∗ be ∗̂, and the estimation error is
defined as ∗̃ = ∗ − ∗̂. It can be obtained from (21) and (22)
that 

˙̃x1 = x̃2 − 3ωox̃1 − H3L2/3sign(x̃1)|x̃1|2/3

˙̃x2 = ax̃e − 3ω2
o x̃1 − H2L1/3sign(x̃1)|x̃1|1/3

˙̃xe = h(t)− ω3
o x̃1 − H1Lsign(x̃1)

(23)
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which can be written as ˙̃x = ϕ1 + ϕ2, where

ϕ1 =

−H3L1/3sign(x̃1)|x̃1|2/3 + 0.5x̃2
−H2L1/2sign(x̃1)|x̃1|1/3 + 0.5x̃3
−H1Lsign(x̃1)+ h(t)

 (24)

ϕ2 =

−3ω0 0.5 0
−3ω2

o 0 0.5
−ω3

o 0 0

 x̃1x̃2
x̃e

 = Ax̃ (25)

in which A =

−3ω0 0.5 0
−3ω2

o 0 0.5
−ω3

o 0 0

.
Note that ˙̃x = ϕ1 is finite time stable [22], thus, there must

exist some real numbers 0 < α < 1, c > 0 and continuous
positive definite function V1 such that [31]

V̇1 ≤ −cV α1 (26)

Note also that the matrix A is Hurwitz since ωo > 0, thus
there must exist some symmetric positive definite matrix P
such that

ATP+ PA = −I3×3 (27)

where I3×3 is the unit matrix. Define the positive definite
Lyapunov function as follows

V2 = x̃TPx̃ (28)

Since P is a symmetric positive definite matrix, it can be
obtained that

V2
λmax(P)

≤ ‖x̃‖2 ≤
V2

λmin(P)
(29)

The time derivative of (28) using (23) can be given as

V̇2 = ˙̃xTPx̃ + x̃TP ˙̃x

= (Ax̃)TPx̃ + x̃TP(Ax̃)

= x̃T (ATP+ PA)x̃

= −x̃T x̃

≤ −
V2

λmax(P)
(30)

Thus, the system ˙̃x = ϕ2 = Ax̃ is exponentially stable,
i.e., x̃ → 0 as t → ∞. And the converge rate can be
tuned effectively by ωo since the maximum eigenvalue of P
is determined by ωo.
To verify the stability of the proposed observer, define the

Lyaponuv function as Vo = V1+V2. By using (26) and (30),
its time derivative can be given as

V̇o = V̇1 + V̇2 ≤ −cV α1 −
V2

λmax(P)
≤ 0 (31)

Thus, Vo together with V1 and V2 will converge to zero expo-
nentially. And consequently, the estimation errors will also
converge to zero exponentially, that is, x̃i→ 0(i = 1, 2, e) as
t → ∞. Note that the states of system (21) are finite, thus,
all the signals will be bounded.
Remark 1: The Linear ESO has bounded estimation

errors [24]–[26] while the Levant’s Differentiator can only

estimate the unmeasured states [22]. By combine the advan-
tages of the linear ESO and the Levant’s Differentiator,
a novel nonlinear ESO is proposed, which can simultaneously
estimate the unknown state and disturbance with zero estima-
tion errors.
Remark 2: The parameter ωo is similar to the observer

bandwidth in linear ESO [25], [26], L, Hi (i = 1, 2, 3) are
the same as the Levant’s differentiator [22], namely, L should
be chosen such that L > δ, and H1 = 1.1, H2 = 1.3, H3 = 3.
General speaking, ωo should be chosen large enough to atten-
uate the model uncertainties while L should be chosen such
that L > δ. However, too large values may lead to stability
issues due to the discretization of the observer and the sample
noise. Thus, the selection of the observer parameters should
balance the estimation performance and the stability in real
applications. A simple but effective method is following the
parameter design of linear ESO [25], [26] and the Levant’s
differentiator [22] simultaneously.

Now, the estimated signals can be used in the controller
design, thus the control law (18) can be rewritten as

u =
1
φ10

(−k0e− k1ė− k2ë+ φ20(P1 − P2)+
...
x d )

−
1
φ10

(kss+ (1+ η)sign(s)) (32)

where e = ξ̂1 − xd , ė = ξ̂2 − ẋd , ë = ξ̂3 − ẍd .

D. STABILITY ANALYSIS OF THE CLOSED LOOP SYSTEM
The proof of the closed loop system stability is similar to the
process in the works [20] and [32]. The stability of the closed
loop system will be established in the following three steps:

(1) In the first step, the estimation errors (23) converge to
zero as shown in section 3.3, i.e., ξ̃1 → 0, ξ̃2 → 0,
ξ̃e → 0 as t → ∞. Since the initial condition of the
observer are finite and the states of the barrel servo
system are bounded according to the assumption 1-2,
the estimated signals are also bounded, i. e.,

∣∣∣ξ̂1∣∣∣ <∞,∣∣∣ξ̂2∣∣∣ <∞,
∣∣∣ξ̂e∣∣∣ <∞.

(2) After the converge to zero of the estimation errors of the
observer (22), the sliding variable (16) will converge
to zero in a finite time T under the control effort of
the control law (29). Note that the calculation of the
variable s is based on the estimated signals provided by
the observer (22).

(3) In the last step, the position tracking error (14) will
converge to zero exponentially due to the exponential
converge rate of the sliding variable (16). And conse-
quently, the controlled plant (x1 - xd ) will also converge
to zero exponentially.

To further verify the stability of the closed loop system,
define the following Lyapunov function

V = Vc + Vo = Vc + V1 + V2 =
1
2
s2 + V1 + x̃TPx̃ (33)
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FIGURE 4. The barrel system.

By using (13), (23) and (27), the time derivative of (30) can
be given as

V̇ = sṡ+ V̇1 + ˙̃xTPx̃ + x̃TP ˙̃x

≤ −2ksVc −
√
2ηV 1/2

c − cV α1 −
V2

λmax(P)
≤ 0 (34)

Thus, the Lyapunov function V together with Vc and Vo
will converge to zero exponentially. And consequently, the
sliding variable s and the position tracking error e will con-
verge to zero exponentially.

IV. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed controller,
an experimental test rig of the barrel servo system had been
set up in our laboratory, which is shown in Figure 4. The
barrel servo system consists mainly of an electrohydraulic
servo system and a hydraulic active balancing system. The
electrohydraulic servo system is powered by a fixed displace-
ment pump (5.20 mL/r) which is driven by a servo motor
(2.0 Kw). The actuator is a custom-made two-stage single-rod
hydraulic cylinder with large effective area ratio (1963.5mm2

vs. 326.7 mm2, stroke length 311.0 mm). The servo valve is a
high response rotate direct drive servo valve with the natural
frequency of 100 Hz and the rated flow rate of 30 L/min at
7.0 Mpa pressure drop. The pressures at port A and port B
of the servo valve are measured via two pressure sensors
(25.0 Mpa, ±0.25% FSO). The actuator and the servo valve
are connected by hydraulic horses with the internal diameter
of 10.0 mm and the length of 2.8 m. The angle position of
the barrel is measured via an absolute encoder (resolution
±0.022◦). The control algorithms are coded in C program and
carried out in a commercial programmable logic controller
(667 Mhz). All the signals are measured with the sampling
rate of 2.0 ms in the experiments.

The nominal value of φ1 and φ2 are set as 1.0, 0.01, respec-
tively, that is, φ10 = 1.0, φ20 = 0.01. The parameters of the
proposed controller are set as k0 = 1.0 × 10−5, k1 = 0.015,
k2 = 1.0 × 10−4, ks = 1.5, ksw = 5.0. To attenuate the
chattering, the sign function sign(s) is replaced by s/(|s|+ε),
where ε = 0.15.

To verify the effectiveness of the proposed controller,
it was comparedwith the PI control with velocity feedforward

FIGURE 5. Position tracking of PTP motion trajectory.

FIGURE 6. Position tracking errors (PTP motion).

(PIVF), which is commonly used in industrial applications.
The controller is given as

u = kpe+ ki

∫
edt + kvẋd

where the controller gains kp, ki, and kv were chosen via try-
and-error method as kp = 0.02, ki = 0.005 and kv = 0.004.

Three differentmotion trajectories are tested to evaluate the
control performance of the proposed controller and the PIVF.

(1) Point-to-point motion trajectory (PTP): In this case, the
classic PTP motion trajectory was tested, the experimental
results are shown in Figure 5 – Figure 9.

The position tracking curves and the position track-
ing errors are shown in Figure5 and Figure 6, respec-
tively. As can be seen, the position tracking errors of the
two controllers are almost the same during the ascending
motion, the maximum position tracking error of the PIVF
is about 0.65 degrees while that of the proposed controller
is about 0.63 degrees. However, the steady position tracking
error of the PIVF is much larger than that of the proposed
controller (0.15 degrees vs. 0.03 degrees). The position track-
ing error of the proposed controller during the descending
motion is about 1.9 degrees, which is about one third of that
of the PIVF (about 5.8 degrees). The control performance of
the barrel control system is improved by 67.24% in terms
of position tracking error during the descending motion. The
large position tracking errors during the descending motion is
mainly caused by the large effective area ratio (about 6) of the
two-stage single-rod actuator. The large effective area ratio
leads to very different dynamic characteristic of the barrel
servo system from ascending motion to descending motion.
Moreover, the steady position tracking error of the proposed
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FIGURE 7. Sliding variable (PTP motion).

FIGURE 8. Control signals (PTP motion).

FIGURE 9. Pressures at port A and port B of the servo valve (PTP motion).

controller is still about 0.03 degrees while that of the PIVF
is about 0.9 degrees during the descending motion, which is
about 30 times of that of the proposed controller.

The sliding variable of the proposed controller and the con-
trol signals of the two controllers are depicted in Figure 7 and
Figure 8, respectively. As can be seen, no obvious chattering
appears in the control signals. The pressures at port A and
port B of the servo valve are given in Figure 9.

(2) Sinusoidal motion trajectory: The sinusoidal motion
trajectory was tested in this case, i.e.,

xd = 36+ 6 sin(0.5π t).

The experimental results are shown in
Figure 10 – Figure 13.

As can be seen from Figure 10, the position tracking error
of the proposed controller is about -1.5 degrees – 0.8 degrees
while that of the PIVF is about -2.0 degrees – 1.6 degrees. The
position tracking error of the proposed controller is still much
smaller than that of the PIVF in this case. The asymmetry
of position tracking error is still mainly caused by the large
effective area ratio of the actuator.

FIGURE 10. Position tracking error (sine).

FIGURE 11. Sliding variable (sine).

FIGURE 12. Control signals (sine).

FIGURE 13. Pressures of the two chambers (sine).

The sliding variable of the proposed controller and
the control signals of the two controllers are shown in
Figure 11 and Figure 12, respectively. Both of the two con-
troller suffer a little chattering under the effort of large control
signals, and this is mainly because of the effect of the long
transmission lines. This can also be seen form the pressures of
the servo valve, which is depicted in Figure 13. Some pressure
oscillations appear at the time around the fourth second, the
eighth second, the twelfth second, the sixteenth second and
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FIGURE 14. Position tracking of multi-frequency sinusoidal motion.

FIGURE 15. Position tracking error of multi-frequency sinusoidal motion.

the twentieth second, which is corresponded to the time at
which the chattering appears in the control signals.

(3) sinusoidal motion trajectory with multi-frequency: The
sinusoidal-like motion trajectory with multi-frequency was
tested in this case, i.e.,

xd = 36+ 6(sin 0.5π t + cos 0.6π t + sin 0.2π t).

The experimental results are shown in Figure 14 and
Figure 15. As can be seen, the position tracking error of
the proposed controller is still much smaller than the PIVF.
The other experimental results are not given in this case for
the limitation of paper length.

V. CONCLUSIONS
In this paper, the position tracking control of a hydraulic
driven barrel system with long transmission lines was
addressed. In order to balance the gravitational torques,
an active balancing system was designed. The active balanc-
ing system is composed of a two-stage hydraulic cylinder and
three accumulators. The accumulators were placed in paral-
lel and the gas pressure of each accumulator was carefully
designed, thus each of them works mainly at specific barrel
angles. Moreover, the active balancing system was totally
isolated from the barrel servo system, thus the dynamics
of the barrel servo system was significantly simplified. The
barrel was driven by another actuator whose structure and
placement are the same as that of the active balancing system.
Hence, the synchronous of the two hydraulic cylinders are
guaranteed physically. In order to use the sliding mode con-
trol without back-stepping or multi-surface, the barrel servo
system was transformed into the pure integration chain form
by defining a set of new state variables. Then a sliding mode
controller was designed based on the transformed system to
make the barrel angle to track the desired motion trajectories
as close as possible in the presence of mode uncertainty and

unknown dynamics. Since the transform of the barrel servo
system into the pure integration form needs the mechani-
cal disturbance to be known exactly, a nonlinear extended
state observer was designed by incorporating the Levant’s
Differentiator. The designed nonlinear ESO was proven to
be of zero estimation errors. Three motion trajectories were
tested to evaluate the performances of the proposed controller.
Experimental results show that the proposed controller has
a much better control performance than the commonly used
PI control with velocity feedforward. The pressure signals
are needed by the proposed controller. However, the pressure
signals are not always available in real application, thus, our
future work will focus on the application of the proposed
control method on pure output feedback control of EHS.

REFERENCES
[1] D. J. Purdy, ‘‘Comparison of balance and out of balance main battle tank

armaments,’’ Shock Vib., vol. 8, nos. 3–4, pp. 167–174, 2001.
[2] Q. Gao, Y. Hou, J. Liu, R. Hou, and M. Lv, ‘‘An extended state observer

based fractional order sliding-mode control for a novel electro-hydraulic
servo system with iso-actuation balancing and positioning,’’ Asian J. Con-
trol, vol. 21, no. 1, pp. 289–301, 2019.

[3] T. Karayumak, ‘‘Modeling and stabilization control of a main battle tank,’’
Ph.D. dissertation, Dept. Mech. Eng., Middle East Tech. Univ., Ankara,
Turkey, 2011.

[4] C. W. Han, ‘‘The robust control and application of artillery position servo
system,’’ Ph.D. dissertation, School Mech. Eng., Xi’an Jiaotong Univ.,
Xi’an, China, 2002.

[5] W. Lee, S. Yoo, S. Nam, K. Kim, and W. K. Chung, ‘‘Passivity-based
robust compliance control of electro-hydraulic robot manipulators with
joint angle limit,’’ IEEERobot. Automat. Lett., vol. 5, no. 2, pp. 3190–3197,
Apr. 2020.

[6] H. Kogler, M. Schöberl, and R. Scheidl, ‘‘Passivity-based control of a
pulse-widthmode operated digital hydraulic drive,’’Proc. Inst. Mech. Eng.,
I, J. Syst. Control Eng., vol. 233, no. 6, pp. 656–665, 2018.

[7] M. Fallahi, M. Zareinejad, K. Baghestan, A. Tivay, S. M. Rezaei, and
A. Abdullah, ‘‘Precise position control of an electro-hydraulic servo sys-
tem via robust linear approximation,’’ ISA Trans., vol. 80, pp. 503–512,
Sep. 2018.

[8] N. D.Manring, L.Muhi, R. C. Fales, V. S.Mehta, J. Kuehn, and J. Peterson,
‘‘Using feedback linearization to improve the tracking performance of a
linear hydraulic-actuator,’’ J. Dyn. Syst., Meas., Control, vol. 140, no. 1,
p. 1198, 2018.

[9] D. T. Tran, D. X. Ba, and K. K. Ahn, ‘‘Adaptive backstepping sliding mode
control for equilibrium position tracking of an electrohydraulic elastic
manipulator,’’ IEEE Trans. Ind. Electron., vol. 67, no. 5, pp. 3860–3869,
May 2020.

[10] W. Hu, F. Ding, J. Zhang, B. Zhang, M. Zhang, and A. Qin, ‘‘Robust
adaptive backstepping sliding mode control for motion mode decoupling
of two-axle vehicles with active kinetic dynamic suspension systems,’’ Int.
J. Robust Nonlinear Control, vol. 30, no. 8, pp. 3110–3133, 2020.

[11] A. Mohanty and B. Yao, ‘‘Integrated direct/indirect adaptive robust con-
trol of hydraulic manipulators with valve deadband,’’ IEEE/ASME Trans.
Mechatronics, vol. 16, no. 4, pp. 707–715, Aug. 2011.

[12] B. Helian, Z. Chen, and B. Yao, ‘‘Precision motion control of a
servomotor-pump direct-drive electrohydraulic system with a nonlin-
ear pump flow mapping,’’ IEEE Trans. Ind. Electron., vol. 67, no. 10,
pp. 8638–8648, Oct. 2020, doi: 10.1109/TIE.2019.2947803.

[13] M. Won and J. K. Hedrick, ‘‘Multiple-surface sliding control of a class of
uncertain nonlinear systemsm,’’ Int. J. Control, vol. 64, no. 4, pp. 693–706,
1996.

[14] S. K. Pandey, S. L. Patil, D. Ginoya, U. Chaskar, and S. B. Phadke,
‘‘Robust control of mismatched buck DC–DC converters by PWM-based
sliding mode control schemes,’’ Control Engineering Practice, vol. 84,
pp. 183–193, Mar. 2019.

[15] M. P. Aghababa and S. Moradi, ‘‘Robust adaptive dynamic surface
back-stepping tracking control of high-order strict-feedback nonlinear sys-
tems via disturbance observer approach,’’ Int. J. Control, to be published,
doi: 10.1080/00207179.2020.1712478.

131378 VOLUME 8, 2020

http://dx.doi.org/10.1109/TIE.2019.2947803
http://dx.doi.org/10.1080/00207179.2020.1712478


Q. Zou: Observer Based Sliding Mode Control for Hydraulic Driven Barrel Servo System With Unknown Dynamics

[16] J. Zhang, X. Liu, Y. Xia, Z. Zuo, and Y. Wang, ‘‘Disturbance
observer-based integral sliding-mode control for systems with mismatched
disturbances,’’ IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 7040–7048,
Nov. 2016.

[17] J. Yang, S. Li, and X. Yu, ‘‘Sliding-mode control for systems with mis-
matched uncertainties via a disturbance observer,’’ IEEE Trans. Ind. Elec-
tron., vol. 60, no. 1, pp. 160–169, Jan. 2013.

[18] X. Yu and O. Kaynak, ‘‘Sliding-mode control with soft computing:
A survey,’’ IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3275–3285,
Sep. 2009.

[19] Q. Guo, G. Shi, D. Wang, C. He, J. Hu, and W. Wang, ‘‘Iterative learning
based output feedback control for electro-hydraulic loading system of a
gait simulator,’’Mechatronics, vol. 54, pp. 110–120, Oct. 2018.

[20] J. J. Rath, M. Defoort, H. R. Karimi, and K. C. Veluvolu, ‘‘Output feedback
active suspension control with higher order terminal sliding mode,’’ IEEE
Trans. Ind. Electron., vol. 64, no. 2, pp. 1392–1403, Feb. 2017.

[21] J. Na, Y. Li, Y. Huang, G. Gao, and Q. Chen, ‘‘Output feedback control
of uncertain hydraulic servo systems,’’ IEEE Trans. Ind. Electron., vol. 67,
no. 1, pp. 490–500, Jan. 2020.

[22] A. Levant, ‘‘Higher-order sliding modes, differentiation and
output-feedback control,’’ Int. J. Control, vol. 76, nos. 9–10, pp. 924–941,
Jan. 2003.

[23] J. Yao, Z. Jiao, and D. Ma, ‘‘Extended-State-Observer-Based output feed-
back nonlinear robust control of hydraulic systems with backstepping,’’
IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6285–6293, Nov. 2014.

[24] G. Yang and J. Yao, ‘‘Output feedback control of electro-hydraulic
servo actuators with matched and mismatched disturbances rejection,’’
J. Franklin Inst., vol. 356, no. 16, pp. 9152–9179, Nov. 2019.

[25] B.-Z. Guo and Z.-L. Zhao, ‘‘On the convergence of an extended state
observer for nonlinear systems with uncertainty,’’ Syst. Control Lett.,
vol. 60, no. 6, pp. 420–430, Jun. 2011.

[26] Q. Zheng, L. Q. Gaol, and Z. Gao, ‘‘On stability analysis of active
disturbance rejection control for nonlinear time-varying plants with
unknown dynamics,’’ in Proc. 46th IEEE Conf. Decis. Control, Dec. 2007,
pp. 3501–3506.

[27] R. Madoński and P. Herman, ‘‘Survey on methods of increasing the
efficiency of extended state disturbance observers,’’ ISA Trans., vol. 56,
pp. 18–27, May 2015.

[28] K. Butt andN. Sepehri, ‘‘A nonlinear integral sliding surface to improve the
transient response of a force-controlled pneumatic actuator with long trans-
mission lines,’’ J. Dyn. Syst., Meas., Control, vol. 141, no. 12, Dec. 2019,
Art. no. 121012.

[29] E. Richer and Y. Hurmuzlu, ‘‘A high performance pneumatic force actuator
system: Part I—Nonlinear mathematical model,’’ J. Dyn. Syst., Meas.,
Control, vol. 122, no. 3, pp. 416–425, 2000.

[30] Z. Zuo and L. Tie, ‘‘Distributed robust finite-time nonlinear consensus
protocols for multi-agent systems,’’ Int. J. Syst. Sci., vol. 47, no. 6,
pp. 1366–1375, Apr. 2016, doi: 10.1080/00207721.2014.925608.

[31] S. P. Bhat and D. S. Bernstein, ‘‘Geometric homogeneity with applications
to finite-time stability,’’ Math. Control, Signals, Syst., vol. 17, no. 2,
pp. 101–127, Jun. 2005.

[32] Q. Guo, Y. Zhang, B. G. Celler, and S. W. Su, ‘‘Backstepping control
of electro-hydraulic system based on Extended-State-Observer with plant
dynamics largely unknown,’’ IEEE Trans. Ind. Electron., vol. 63, no. 11,
pp. 6909–6920, Nov. 2016.

VOLUME 8, 2020 131379

http://dx.doi.org/10.1080/00207721.2014.925608

