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ABSTRACT Cancer is a leading killer disease globally, it occurs when the cellular changes cause the
abnormal growth and division of the cells. Conventional treatment such as therapies and wet experimental
methods are deemed unsatisfactory and worthless because of its huge cost and laborious nature. However,
the recent innovation of anticancer peptides (ACPs) offers an effective way to treat cancer affected cells.
Due to the rapid growth of biological sequences, truly identification of ACPs has become a difficult task for
scientists. Therefore, measuring the importance of ACPs, an efficient and reliable intelligent model is highly
essential to accurately identify its pattern. In this study, three distinct nature encoding schemes are employed
to obtain features from peptide sequences. However, K-space amino acid pair (KSAAP) is used to extract
highly correlated and effective descriptors. Apart from the sequential features, composite physiochemical
properties are applied to gather local structure descriptors. Furthermore, to represent the intrinsic residue
information of amino acids, autocovariance is also used. Additionally, a novel two-level feature selection
(2LFS) method is utilized to select high discriminative features and to minimize the dimensionality of
the proposed descriptors. At last, to examine the performance of the proposed model, several learning
hypotheses are investigated to select a superior operational engine. To measure the generalization capability,
two diverse benchmark datasets are used. After evaluating the empirical outcomes, KSAAP using 2LFS
reported high classification results on both datasets. Whereas, the classification outcomes reveal that our
proposed cACP-2LFS achieved ~11% improved performance accuracy than present models in the literature
so far. It is expected that our proposed model might be useful in the area of medicine, proteomics, and research
academia. The source code and all datasets are publicly available at https://github.com/shahidawkum/
cACP-2LFS.

INDEX TERMS Anticancer peptides, support vector machine, K-space amino acid pair, two-level feature
selection, composite physiochemical properties, classification.

I. INTRODUCTION

Cancer is the major health concern globally [1], and every
year millions of death occur due to this devastating disease
worldwide [2]. According to the recent statistics in 2018,
about 9.6 million deaths occur due to cancer [3]. Addi-
tionally, the ratio of cancer deaths reported in developing
countries is relatively high. To treat cancer patients various

The associate editor coordinating the review of this manuscript and

approving it for publication was Fan-Hsun Tseng

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

numbers of traditional therapies i.e., radiation, hormonal,
and chemotherapy has been applied so far. However, these
methods are ineffective because of their expensive cost and
severe side impacts on the normal cells [4], [5]. Keeping
these issues, the discovery of anticancer peptides (ACPs) are
deemed as an alternative for the accurate identification of
cancer affected cells. ACPs are usually the small fragment
of a protein sequence called peptide containing less than
50 amino acids [6]. whereas, ACPs are mostly collected
from antimicrobial peptides (AMPs) and have similar basic
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characteristics with ACPs [7]. Currently, various peptide-
based therapies have been applied to treat various tumor types
using clinical and preclinical trials [8], [9]. However, the iden-
tification of ACPs from the peptide sequences using exper-
imental approaches is time-consuming, costly, and difficult
to be applied in a high-throughput manner [10]. Therefore,
the recent efforts have mainly focused on the development of
computational methods, especially machine learning-based
methods in order to expedite the identification of ACPs. Over
the last decade, various intelligent statistical-based models
have been proposed in the literature to accurately identify
ACPs [11]-[14]. Hajisharifi et al., generated a non-redundant
training dataset, the Hajisharifi-Chen (HC) dataset, which
contained 138 ACPs and 206 non-ACPs, whereas the bio-
logical sequences were formulated using pseudo amino acid
composition (PseAAC) and local-alignment based kernel
for the identification of ACPs [15]. The proposed model
was evaluated using the support vector machine (SVM)
and achieved an accuracy of 89.70%. In continuation,
Chen er al., developed a sequence-based predictor namely,
‘1ACP’ using a similar HC dataset [16]. Whereas, iACP
proposed an optimized g-gap dipeptide feature vector in
combination with SVM and reported a better performance
accuracy of 94.70%. In a sequel, Akbar et al., proposed a
hybrid model, namely, “iACP-GAEnsC” using a similar HC
dataset for the accurate classification of ACPs [17]. Where the
integrated feature space is calculated using three formulation
techniques such as Reduce amino acid alphabet, gapped
dipeptide, and amphiphilic-PseAAC. Finally, the ensemble
learning approach using a genetic algorithm was applied
by combining the prediction rates of the five individual
classifiers and reported high accuracy of 96.45%. Further-
more, Kabir et al. proposed a “TargetACP” model using
the HC dataset, that extracts sequential and evolutionary
descriptors from peptide sequences [18]. Besides, an over-
sampling method was also applied to reduce the biases of
the majority class. The proposed model achieved a remark-
able result of 98.78% using the training dataset. More-
over, Khan et al. formulated the ACPs sequences of the
HC dataset by employing the Split Amino acid composi-
tion based sequential approach [19]. The extracted sequen-
tial features achieved the performance accuracy of 93.31%
using the SVM classifier. Similarly, Xu et. al., used g-gap
dipeptide and maximum relevance-maximum distance-based
statistical model to identify ACPs [20]. The proposed sequen-
tial model was trained using the similar HC dataset and
reported an accuracy of 91.86%. Besides, Manavalan et al.
developed SVM and RF-based predictors for the identifi-
cation of ACPs [21], where features are calculated from
peptide sequences using amino acid composition, dipeptide
composition, and composite physiochemical properties. The
encoding features were examined using two different pre-
dictors and reported the performance accuracy of 87.20%
using the training dataset. However, among all the com-
putational models that were trained using the HC dataset,
only TargetAC and iACP-GAEnsC achieved encouraging
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performances with high prediction accuracies, but the overall
utility of these two methods have certain limitations in terms
of high computational cost, Interpretability and practical util-
ity thereby require further improvements. On the other hand,
several other computational models were also developed
using different datasets, such as Vijayakumar et al., Presented
a webserver namely, “ACPP” for the accurate identifica-
tion of ACPs [22]. ACPP model was trained using their
own generated dataset, which consists of 4276 sequences,
among which 257 are categorized as ACPs, and 4019 were
non-ACPs. To formulate the ACP sequence, various protein-
relatedness measure (PRM) parameters measures, such as
combining compositional descriptors, distribution of amino
acids, and particular regions of the amino acid were tar-
geted. Finally, the performance of the extracted features was
examined using SVM and obtained an accuracy of 97%.
However, apart from the accuracy, the other performance
evaluation parameters such as sensitivity and specificity were
unbalanced due to biases of ACPs in the training dataset.
More recently, Akbar et. al., [23] proposed another intelligent
model for ACPs using the two different nature benchmark
datasets, selected from the AntiCP predictor [24]. Whereas,
highly effective correlated residue information’s of amino
acids are extracted using quasi-sequence order. In addition,
a principal component analysis was also utilized to mini-
mize redundancy and irrelevant features. The proposed cACP
model achieved an improved accuracy of 96.91% and 8§9.54%
using main and alternate dataset. Derived from recent publi-
cations [25]-[29], investigators have extensively emphasized
the following Chou steps for developing an effective pre-
diction model. These are: (i) to select or develop a valid
benchmark dataset to train and test a model (ii) to represent
the peptides sequence to effectively reflect their intrinsic
correlation with targeted class, (iii) to propose or select an
effective classification learner (iv) to assess the success rates
of the classifier using cross-validation test.

After investigating the existing models in the literature,
it was found that most of the models used traditional methods
such as AAC, g-gap DPC, and PseAAC to formulate peptide
sequences. However, there were several flaws while process-
ing short peptide sequences. i.e., in small peptide sequences,
the performance of g-gap DPC may affect for the high
value of g because some of the useful amino acid residues
may be skipped. Similarly, PseAAC may also lose residue
information by increasing tier values. Moreover, TargetACP
used an oversampling approach to increase the instances of
the minority class, which may cause overfitting issues and
may discard useful data. Nonetheless, the performance of the
aforementioned existing models is not adequate and needs
more improvement. Therefore, to effectively deals with such
issues, an accurate and computationally efficient classifica-
tion model is proposed for anticancer peptides. Three distinct
nature feature formulation methods, such as; K-space amino
acid pair (KSAAP), Composite physiochemical properties
(CPP), and auto-covariance (AC) is applied to collect valu-
able descriptors from ACP sequences. In contrast with other
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encoding schemes, KSAAP achieved improved prediction
results. Whereas, KSAAP reflects the short-range interac-
tions of amino acids among peptides sequences. On the other
hand, to collect the high discriminative features, a novel two-
level feature selection (2LFS) is utilized. 2LFS is an ensemble
approach of the wrapper (SVM-RFE) and filter (mRMR)
based feature selection methods. However, SVM-RFE col-
lects the optimal features by computing the weights among
extracted feature vectors. SVM-RFE uses the SVM training
model to rank the features, which may increase the compu-
tational cost of the proposed model. Therefore, to make the
model computationally effective, mRMR is utilized to deals
with overfitting issues by eliminating irrelevant and redun-
dant features. At last, the predictive results of our proposed
model are examined using several classification algorithms,
such as FKNN, SVM, and RF.

The rest of the paper is prepared as follows; section 2
explains methods and performance evaluation matrices;
results and discussions are presented in section 3; and
finally, the conclusion is represented at the end of the

paper.

Il. MATERIALS AND METHODS

A. DATASET

In the area of machine learning, the selection of a valid
benchmark dataset is a rudimentary part for developing an
intelligent predictor. However, choosing a suitable dataset has
a high impact on performance rates. Measuring the effec-
tiveness of the dataset on a computational model, we used
two diverse nature benchmark datasets i.e., LEE dataset (S1)
and independent dataset (S2). Whereas, both the datasets
are divided into binary classes i.e., anticancer peptides
(ACP) and non-anticancer peptides (non-ACP). LEE dataset
is constructed using the screening procedure from various
databases such as CancerPPDB [6] and APD3 [30]. How-
ever; most non-ACPs are selected from Tyagi independent
datasets [24] and random selection from Swiss-Prot [31].
Thus, in total 844 unique sequences are used that are equally
categorized into ACP and non-ACPs [21]. Whereas, the
sequence length of most ACPs and non-ACPs are less than 25.
On the other hand, to examine the generalization power
of our proposed model, dataset S2 is also utilized, which
consists of 150 ACPs (positive samples) and 150 non-ACPs
(negative samples). The sequences of dataset S2 are selected
from the Tyagi et al. [24] datasets and CancerPPDB [6].
Whereas, none of the sequences of the LEE dataset S1 is
selected/repeated in independent dataset S2. Furthermore,
the illegal amino acids such as, ‘B’, ‘U’, ‘X’, and ‘Z’, are
eliminated from peptide sequences.

B. FEATURE EXTRACTION TECHNIQUES

1) K-SPACED AMINO ACID PAIRS (KSAAP)

K-spaced amino acid pairs (KSAAP) is an effective fea-
ture formulation scheme that highlights the valuable motif
of protein fragments or sequences [32]-[34]. KSAAP is
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useful for identifying protein flexible or rigid regions and
has been successfully applied for various post-translational
modification sites [35], [36]. Consequently, measuring the
significance of KSAAP descriptors over other formulation
methods, KSAAP obtains valuable descriptors from the pep-
tide sequences for the accurate classification of ACPs and
non-ACPs. The detailed procedure of KSAAP is described
as follows [34], [37]. For a protein fragment, it computes
the occurrence frequency of amino acid pairs separated by K
(G=0, 1, 2, ...k) number of residue [38]. Whereas, the rep-
resentation of the features is based on the frequency of
k-spaced amino acid pairs in a local sequence window. For
k=2, k-spaced pairs for j=0, 1, and 2 are calculated. For each
value of j, the corresponding feature spaces Fj i.e., Fo, F,
and F, as shown in Egs. (1), (2), and (3), respectively, are
computed, each having a dimension of 441. The final feature
space F can be calculated by combining the individual feature
spaces as shown in Eq.(4). The value of each descriptor is
computed by dividing the number of occurrences of that
amino acid pair by the total number of j-spaced residue pairs
(No, N1, ... .Nj) in the peptide. For j, N; = L —(j+1) where L
represents is the length of the peptide sequence. In Figure 1,
only a few windows have been illustrated to represent the
mechanism of KSAAP for illustration.
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FIGURE 1. Representation of KSAAP descriptor for K = 2 [38].

In this work, KSAAP feature vectors are collected using
different K values, i.e. k =1, 2, 3, and 4.
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2) COMPOSITE PHYSIOCHEMICAL PROPERTIES (CPP)

A peptide sequence consists of twenty unique amino acids,
whereas each amino acid residue has various specific bio-
logical and physicochemical properties [39]. Physiochemical
properties play a crucial role in identifying the structure
and behavior of amino acids [40]. Moreover; these prop-
erties have direct or indirect influences on the functions
and structures of proteins. It was also found that by com-
bining the physicochemical properties effectively provides
high discriminative features for the identification of protein
types [41]. Hence, the twenty native amino acids are divided
into several groups/clusters based on their nature [42]. In this
work, the composite physiochemical properties based valu-
able and informative features are extracted from peptide
sequences using eight different properties that are: charge,
aliphatic, aromatic, acidic, hydrophilic, hydrophobic, small
and tiny, as shown in Table 1. In addition, 20 features of amino
acid composition are also combined with the final feature
space.

TABLE 1. Composite physiochemical properties (CPP) groups of amino
acids.

Amino Acid No; of Amino acids No; of
Property group Features
Charge Asp, Glu, His, Arg, Lys 5
Aromatic Phe, His, Trp, and Tyr 4
Aliphatic Ile, Leu, and Val 3
Acidic Asp and Glu 2
Hydrophilic Asp, Glu, Lys, Asn, Gln 5
Hydrophobic Ala, Cys, Phe, Ile, Leu, Met, Val, 9

Trp, Tyr
Small Ala, Cys, Asp, Gly, Asn, Pro, Ser, 9
Thr, and Val
Tiny Ala, Cys, Gly, Ser, Thr 5
Amino acid A,C,D,E,F,G,H,LK,L,M, N, P, 20

composition QR S, T,V,W,Y

3) AUTO COVARIANCE (AC)

Auto covariance (AC) is a statistical encoding scheme that has
been widely used in the area of bioinformatics to efficiently
formulate the amino acid sequences [43]-[45]. AC is also
considered more effective to minimize the loss of sequence
order information as well as to represent the amino acid
descriptor into a specific length [46]. In statistics, AC is the
covariance of amino acid residues against a certain distance
apart from the whole sequence [47]. In this work, AC is used
to represent the average correlation factor among positions
with a series of lag apart from the whole protein sequence P.
whereas, AC can be computed by:

1 n—lag 1 n
s = e 2 (= )
i=1

i=1
1 n
X (P(i+lag),j - Zpi,j) (%)
i=1
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where n represents the length of a sequence, lag denotes
the distance between one residue and its neighbors, i is the
position, and j represents one descriptor. The lag value should
be smaller than the sequence length.

C. TWO LEVEL FEATURE SELECTION (2LFS)

In bioinformatics and machine learning, the feature extrac-
tion phase is highly valuable and important for the accurate
classification of biological sequences. Although, the feature
vectors with high dimensions require high training time that
leads to producing low classification accuracy [48], [49].
Therefore, an effective feature selection is highly indispens-
able to select reliable features with minimum redundant
and noisy features. In this work, a novel two-level feature
selection (2LFS) approach is presented. Whereas, at level-1,
SVM-RFE [50] based wrapper method is applied to select
optimal features using SVM learner. However, in some cases,
the computational time of SVM-RFE is high and may lead
to overfitting because of its involvement in SVM training.
Therefore, to deals with such issues, mRMR based filter
feature selection method is applied in level-2 [51]. mRMR
eradicates irrelevant and noisy features and considered much
faster than the wrapper technique. Moreover, it is considered
less prone to over-fitting. The detail explanation of 2LFS is
described below:

1) SVM-RFE
SVM-RFE is a wrapper feature selection approach that
selects optimal features by computing the weights among
the extracted feature vector [52]. The evaluating criteria
of SVM-RFE are almost similar to the general SVM learning
model [53]. At first, SVM-RFE examines the weights against
all the features using SVM parameters and then built a model.
Whereas, in each turn, the weight of each feature is ordered
and updated based on its closeness to the class label and
the performance of the SVM model [54]. Consequently, the
features with the smallest weight ‘w’ are eradicated and an
optimal feature set is kept until vector space becomes empty.
The same procedure is repeated for all no; of features and
finally, the optimal feature set is formed.

In this work, SVM-linear kernel is applied and evaluation
measure C; of SVM is computed by weight ‘w’ using the
following equation:

Cj = (w))? ©)

whereas w; represents the weight vector of the jth feature.
while for the smallest value C;, the jth element is eradicated.
The class interval of SVM-RFE can be calculated as:

Y=lw2 7
2

If the jth feature is removed, then the following Taylor expres-
sion is applied to calculate the variation AY as below:

Y %Y )
AY = —Aw+ —(Aw) ®)
ow ow?
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On the other hand, SVM-REFE is considered ineffective due
to the ““correlation bias” problem [55], where the importance
of highly correlated features are underestimated. To deals
with such a problem, correlation bias reduction (CBR) is also
incorporated with SVM-RFE to select optimal features.

2) MINIMUM REDUNDANCY MAXIMUM

RELEVANCE (mRMR)

Maximum Relevance and Minimum Redundancy (mRMR)
is an effective feature selection that is applied to choose
valuable, unique, and relevant features from extracted feature
spaces [56]. Sometimes the feature encoding phase extract
features that are highly correlated and are not capable to
accurately predict the target class. Additionally, the Replica-
tive space of feature highly affects the process of learning
hypotheses [57]. Therefore, to deals with such an issue, an
optimal feature set needs to be found with minimum cor-
related features. Whereas, such features can be effectively
obtained using mRMR. mRMR ranked feature deals with
larger dimensions of data. It also ensures the reduced dimen-
sion features with minimal loss of useful features. The rele-
vancy between two vectors (a, b) can be calculated using the
following mutual information (MI) formula:

P(a;, bj)

i/ 9
P(a;)P(bj) ®

Mi(a,b)= Y Pla;, bj)log

ijeN
where P(a;, b;) represents the joint probability density func-
tion and P(a;)P(b;) shows the marginal probability function.
Similarly, MI between feature and targeted classes can be

computed as below:

P(ai, ci)
MI(a, c) = P(a;, cx)log ———— (10)
,;V ’ P(aj)P(ck)
where the variable “a” denotes the feature and “c” repre-

sents the targeted class.
Now the feature vector with minimal redundancy can be
calculated using the following expression,

min(mR) = #Ml(a, b) (11)
v

where a symbol |v| represents the total number of features in
vector v.

Furthermore, maximum relevance can be found using the
following formula,

1
max(MR) = o ZMI(a, ) (12)

acy

Finally, we have

Max(VMI) = MR — mR (13)

D. CLASSIFICATION APPROACHES

1) SUPPORT VECTOR MACHINE (SVM)

SVM has been effectively utilized for the prediction of vari-
ous biological applications [58]. Initially, SVM was presented
by Vapnik for binary problems, but subsequently, it was also

VOLUME 8, 2020

extended to multi-class problems. In contrast, with other
classification learners, SVM is considered more objective and
efficient due to its accurate classification rates. SVM mea-
sures the predictive ability using different kernel functions
that maps the input samples into a high dimensional feature
vector [59]. However, the observations of the different classes
are linearly classified using an optimal hyperplane. Whereas,
the optimal hyperplane computes the maximum margin lines
among the samples of different classes, which can effectively
reduce the error rates [60]. The cost function of SVM is
also convex like logistic regression. Therefore, while dealing
with large datasets or features quadratic programming (QP)
problems may occur but such a problem can be effectively
solved using Sequential Minimal Optimization (SMO) based
optimization method [61]. This divides the large QP problem
into smaller sub-problems that can be analytically solved to
avoid time complexity to some degree. SMO can be eas-
ily implemented using the ‘libsvm’ package. In this work,
the radial base function (RBF) is utilized to train the peptide
sequences. RBF as compare to other kernel functions is con-
sidered more effective due to its best hyperplane selection.
Whereas, RBF uses two parameters such as; kernel width y
and regularization parameter C. furthermore, the values of
these parameters are adjusted via grid search method.

The optimal hyperplane obtained using RBF kernel can be
represented as below:

K(xi, 5) = exp(—y Ixi — ;) (14)

The regularization parameter C and kernel parameter y for
search space can be, respectively [62], represented as

23 <Cc<?
{ -~ with step of 1 (15)

276 <y <2¢

2) FUZZY K-NEAREST NEIGHBOR (FKNN)
FKNN an improved classification learner that overcome the
drawbacks of the standard KNN algorithm [63]. Compare to
other fuzzy methods, it has been considered more competitive
in terms of accuracy and also provides a low error rate in
classifying the objects. The main searching concept of both
KNN and FKNN is similar, but in the case of standard KNN,
every sample belongs to one majority class only [64]. While
using FKNN the memberships of the data samples associated
with more than one class.

In FKNN, the fuzzy class membership u;(P) is assigned to
the test instance “P” according to the following equation.

K ~om —
Zui(Pj)Dj (m 1)

=1
/ i=1,2,3,....C

-2
& m—1)
2 D;
J=1

(16)

where ‘m’ is a Fuzzy strength parameter, which controls the
magnitude of the distance of the neighbors from the test
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instance, ‘K’ represents the number of nearest neighbors,
and i=1, 2, 3,..., C denotes the number of classes. D_j =
||P — P;| represents the Euclidean distance between the test
instance ‘P’ and its jth nearest references data P;. Several
distance metrics can be applied to compute the distance
among instances, however, Euclidean distance is utilized in
this study. finally, after examining the memberships of a
query sample, it is then assigned to a class with the highest
membership value.

3) RANDOM FOREST (RF)

Random forest is a widely used ensemble learner, which was
initially developed by Breiman to effectively deals with clas-
sification and regression problems [65]. RF, as compared to
other classification methods, is considered more efficient due
to its simple training, fast prediction, and interpretability [66].
RFis an ensemble approach that involves multiple numbers of
decision trees, wherein each tree the “‘n”” number of features
is randomly selected from the whole feature vector. It has
been found that the random selection nature of RF is un-
bias that reduces the correlation among unpruned trees. In the
next step, a bagging algorithm is used to produce a training
feature set with resample instances [67]. In the third step,
the decision tree is built using a randomly selected feature
vector and resampled training set [68]. Finally, the number
of decision trees is summarized and the final prediction is
generated using a majority voting procedure.

E. PERFORMANCE EVALUATION MEASURES

In machine learning, the strength and efficiency of a compu-
tational predictor are examined through various criteria [69].
Whereas, a confusion matrix is maintained to keep the pre-
dicted results of a hypothesis learner. Generally, in prediction
models, accuracy is employed to evaluate the strength and
capability of classification learners, while in most of the cases
the only accuracy is unable to predict the overall effective-
ness of a model [70]. Therefore, the following performance
parameters are utilized to accurately examine our proposed
model.

TP + TN
Acc = (17)
TP+ FP+ FN + IN
P
Sen = —— (18)
TP+ FN
TN
Spe = ———~ 19
P = IN + FP (19)

(TN x TP) — (FN x FP)

V(TP ¥ FP) (TP + FN) (IN + FP)(IN + FN)
(20)

MCC =

Here TP, FP, TN and FN represents the true positive, false
positive, true negative, and false negative, respectively.

IIl. RESULTS AND DISCUSSIONS
In this section, we will explain the predicted outcomes of
our proposed classification methods. The proposed work
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extracts features from the ACP sequence using three dis-
tinct nature encoding schemes. Furthermore, the extracted
feature set is then processed using a 2LFS approach to select
highly relevant and optimum features. Whereas, at first level
SVM-REE is applied to select optimal features. Moreover,
to reduce the biases of highly correlated features. a CBR
approach is also incorporated with SVM-RFE. Whereas,
RFE uses the SVM training model to gather the optimal
features that may lead to high computational time. There-
fore, to speed up the proposed model, mRMR is adopted in
level-2 to eradicate irrelevant and redundant descriptors.
At last, the effectiveness of our model is examined using
different nature hypotheses learners. The detailed graphical
abstract of our proposed intelligent model is illustrated in
Figure 2. Generally, in the area of machine learning several
cross-validation (CV) tests are applied to enhance the success
rate of a computational model. Among these tests; k-fold
subsampling, independent, and jackknife tests are widely
utilized to boost the prediction of hypothesis learners. In this
paper, a 10-fold CV test is used to examine the success rates
of our proposed model. Whereas, 9-folds are used to train the
model and the remaining fold is used to test the model. In the
below sub-sections, the predicted outcomes of our proposed
formulation methods using training and independent datasets
are briefly described.

Feature Selection

Level-1

Feature Encoding

. SVM-RFE
Level I l
Peptide — mRMR
Sequences
»| Data l
K-Fold . SVM Classifer
Model l
Feature
i Prediction of
. Encoding& ACP and
Ea Testing WP Selection — Non-ACP
Phase

FIGURE 2. The framework of the proposed cACP-2LFS model.

A. PERFORMANCE ANALYSIS OF HYPOTHESIS LEARNERS
USING LEE DATASET

The performance outcomes of the proposed three encoding
schemes using different hypothesis learners were illustrated
in Table.2. However, each of the encoding methods repre-
sents the feature vector of different dimensionality. Whereas,
KSAAP extracts highly correlated sequential descriptors
using different K-values i.e. (k = 0,1,2,3). In this paper,
the highest performance was reported using K=3 having
dimensions of (441 x 4) =1764D. Among all the hypothesis
learners, SVM achieved the highest accuracy of 90.04% as
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TABLE 2. Performance of proposed feature encoding schemes using LEE
dataset.

Method Classifier Acc (%) Sen (%) Spe (%) MCC
RF 87.51 83.46 91.47 0.75
CPP SVM 87.75 83.5 95.83 0.76
FKNN 87.03 87.83 86.25 0.74
RF 81.52 78.91 84.12 0.63
AC SVM 81.99 75.12 88.86 0.65
FKNN 82.12 72.99 91.47 0.66
RF 87.02 82.94 91.47 0.74
K=0 SVM 87.2 82.69 91.72 0.75
FKNN 87.44 78.19 96.68 0.76
RF 87.68 8531 90.05 0.75
K=1 SVM 88.39 82.7 94.07 0.77
FKNN 86.73 77.01 96.44 0.75
KSAAP
RF 87.67 84.36 90.99 0.75
K=2 SVM 89.34 82.46 96.21 0.79
FKNN 86.73 77.49 95.97 0.75
RF 88.51 86.02 90.99 0.77
K=3 SVM 90.04 84.36 95.73 0.81
FKNN 86.73 75.83 97.83 0.75

shown in Table.2. However, to develop a computationally
efficient training model, a feature selection is highly essential
to reduce the dimensional size of the extracted feature vector
while retaining the significant features. Therefore, we pro-
posed a 2LFS approach which comprises of two levels to
collect optimal features. At level-1, SVM-RFE selects only
122 optimal features by examining the weights among all fea-
tures using the SVM model. While training the SVM model,
the linear kernel was utilized. However, SVM-RFE due to
the SVM model may lead to high computational cost (time-
complexity). Thus, mRMR based filter method was applied
at the second level to choose only relevant features by erad-
icating irrelevant and redundant descriptors. mRMR further
reduced the dimensions of KSAAP to 80D. After selecting
the optimal subset of KSAAP performed remarkably and
achieved an accuracy of 93.72%, with specificity, sensitivity,
and MCC of 93.51%, 91.85%, and 0.86, respectively. The
detailed classification results of the 2LFS approach using
different classification algorithms are given in Table 3 and
figure 3. On the other hand, CPP and AC descriptors reported
an accuracy of 88.36% and 81.99%, respectively. Which was
comparatively lower performance than KSAAP descriptor
using all hypothesis learners.

B. PERFORMANCE ANALYSIS OF HYPOTHESIS LEARNERS
USING INDEPENDENT DATASET

While discriminating ACP and non-ACP sequences,
it may be possible to develop a prediction model whose

VOLUME 8, 2020

TABLE 3. Performance rates of LEE dataset after applying 2LFS approach.

Level 1 (SVM-RFE)

Method | Classifier | Acc(%) Sen(%) Spe(%) MCC
RF 87.04 82.73 91.22 0.74
CcPP SVM 87.36 84.31 90.42 0.76
FKNN 87.64 85.65 89.57 075
RF 80.81 77.25 84.36 0.62
AC SVM 81.99 72.28 91.71 0.65
FKNN 82.35 75.83 99.86 0.65
RF 89.93 89.1 90.76 0.8
KSAAP SVM 92.11 90.52 94.32 0.85
FKNN 83.41 93.6 73.33 0.68
Level 2 (SVM-RFE) + mRMR
RF 87.15 83.7 90.52 075
CPP SVM 88.36 84.19 92.47 0.77
FKNN 87.28 84.92 89.57 0.75
RF 81.17 77.72 84.61 0.63
AC SVM 81.99 71.8 92.19 0.65
FKNN 81.87 71.57 92.19 0.65
RF 90.28 88.86 91.69 0.81
KSAAP SVM 93.72 91.85 94.71 0.86
FKNN 85.54 91.47 79.62 0.72
00— —
I I P 177 | ksase |
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FIGURE 3. Performance analysis of LEE dataset after 2LFS feature
selection.

prediction accuracy is over-estimated due to an overfitting
problem. Therefore, to avoid overfitting, we used an inde-
pendent dataset to examine the generalization capability of
our model. The detailed empirical outcomes of the inde-
pendent dataset using cACP-2LFS are given in Table.4.
Among all hypothesis learners, SVM achieved the highest
prediction outcomes with an accuracy of 94.15%, sensitivity
of 91.33%, and specificity of 96.23% and MCC of 0.87.
Whereas, these results were reported using the KSAAP
descriptors (K=0) whose dimensions are reduced to 72D
using 2LFS.

131945



IEEE Access

S. Akbar et al.: cACP-2LFS: Classification of Anticancer Peptides Using Sequential Discriminative Model

TABLE 4. Performance rates of the proposed model using independent
dataset.

Method Classifier Acc (%) Sen (%) Spe (%) MCC
RF 90.81 89.33 91.67 0.81

CPP SVM 91.99 92.42 95.34 0.84
FKNN 89.91 92.67 88.01 0.79

RF 88.33 83.33 92.67 0.76

AC SVM 87.67 82.67 92.71 0.76
FKNN 86.77 78.11 95.33 0.75

RF 91.01 88 95 0.82

KSAAP SVM 94.15 91.33 96.23 0.87
FKNN 88.01 77.33 98.67 0.78

TABLE 5. Performance comparisons of ‘cACP-2LFS’ model with existing
models.

. Acc Sen Spe
Dataset Predictors (%) (%) (%) MCC

SVMACP[21] | 81.40 77.50 85.30 0.63

LEE
RFACP [21] | 82.70 70.60 94.80 0.67

Dataset
cACP-2LFS | 93.72 9185 94.71 0.86
IACP [16] | 92.67 93.33  92.00 0.85

Independent )

Fm-Li[71] | 93.61 89.86 96.12 0.87

Dataset
cACP-2LFS | 94.15 91.33 96.23 0.87

C. PERFORMANCE COMPARISON OF cACP-2LFS MODEL
WITH EXISTING METHODS

The comparison analysis of the cACP-2LFS model with the
existing state of art methods is provided in Table 5. In the
case of LEE dataset, previously, Manavalan et al. proposed
two predictors namely, ‘SVMACP’ and ‘RFACP’ to pre-
dict peptides sequences using physicochemical properties
and AAC & DPC based sequential features [21]. Whereas,
SVMACEP achieved an accuracy of 81.40 % with specificity,
sensitivity, and MCC of 77.50%, 85.30 and 0.63, respectively.
Similarly, RFACP performed better and reported an accu-
racy of 82.70%, a specificity of 70.60 %, and a sensitivity
of 94.80 % and MCC of 0.67. In contrast, our cACP-2LFS
model using LEE dataset achieved a remarkable prediction
accuracy of 93.72%, the sensitivity of 91.85%, the specificity
of 94.71%, and MCC of 0.86. On the other hand, cACP-2LFS
independent dataset S2, achieved an accuracy of 94.15%,
with 91.33% specificity and 96.23% sensitivity which was
~2% higher than the existing prediction models available in
the literature [16], [71]. Furthermore, the detailed comparison
of the cACP-2LFS model with existing studies is illustrated
in Table 5, Figures 4 & 5.
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FIGURE 4. Performance comparison of cACP-2LFS and existing models
using LEE dataset.
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FIGURE 5. Performance comparison of cACP-2LFS and existing models
using independent dataset.

IV. CONCLUSION

In this study, we proposed an effective and reliable com-
putational model for the identification of ACPs. To extract
high discriminative features, three distinct nature formula-
tion schemes are employed. Whereas, KSAAP and CPP are
utilized to extract highly correlated sequential and local
structure features. Besides, AC is also employed to gather
neighboring residue information from peptide sequences.
Furthermore, to select optimal features and to eradicate irrel-
evant and noisy features, a novel 2LFS is applied. Various
hypothesis learners are utilized to investigate the classifi-
cation rates of our proposed model. It is observed that the
KSAAP feature set in combination with 2LFS outperformed
than existing studies in literature and reported the highest
accuracy of 93.72% and 94.11% using LEE and independent
datasets, respectively. Consequently, it is expected that our
proposed work will be considered a useful tool for research
academia and drug discovery.
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