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ABSTRACT In this paper, the bifurcation trees of analytical solutions of a 3-D brushless DC motor with
the voltage disturbance are obtained through the generalized harmonic balance method. The electrical and
mechanical model of the 3-D brushless motor is transformed to the dynamic system of coefficients of finite
Fourier series. Stable and unstable analytical solutions of the 3-D brushless motor are solved based on
such a Fourier series coefficient system. Bifurcation trees of analytical solutions of period-1 to period-
2 and period-1 to period-4 motions are achieved. Stability and bifurcations of the analytical solutions of
the 3-D brushless motor are determined by the eigenvalues of Jacobian matrix of the coefficient dynamic
system. Frequency-amplitude characteristics of periodic motions are presented for a better understanding of
the motion complexity in frequency domain. Numerical illustrations are completed for comparison of the
analytical solutions with numerical results. The complex dynamics of the 3-D brushless motor are exhibited
through the bifurcation trees of analytical solutions.

INDEX TERMS Brushless DC motor, analytical solutions, stability, bifurcation tree.

I. INTRODUCTION
The brushless DC motor is widely used in engineering. It can
producemuch higher torque and lower noise thanDC brushed
motor with the same weight. The elimination of physical
contact between the brush and commutator allows the motor
run more stable and reliable. However, it’s difficult to estab-
lish the mathematical model for such brushless DC motor.
Without the voltage disturbance, in 1993, Hemati [1] first for-
mulated a compact representation of autonomous third order
nonlinear differential equations of a brushless DC motor.
With this nonlinear brushless DC motor system, the dynamic
characteristics of chaotic motions were discussed. Based on
Hemati’s model, Ge and Chang [2] studied the periodic and
chaotic motions of a brushless DC motor through numerical
method. The bifurcation diagrams and Lyapunov exponents
were presented in their research. In 1995, Kang and Sul [3]
applied torque control method for the investigation of the
brushless DC motor. The simulation and experimental results
showed the torque control method could attenuate the torque
ripple. In 2000, Rubaai et al. [4] studied the identification and
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control of the brushless DC motor through online training
of dynamic neural networks. The dynamic system of the
stator was transformed to a second-order nonlinear differen-
tial equations. Numerical method was applied to investigate
the dynamic response of the brushless DC motor system.
In 2003, Lee and Ehsani [5] built a new simulation model
of the brushless DC rotor based on trapezoidal back wave-
forms to monitor and predict the steady-state response.
In 2004, Jabbar et al. [6] applied finite-element method
for the investigation of the steady state and dynamic
response of the brushless DC motor system. The results
from finite-element method were verified by experiment.
Luo et al. [7], [8] combined the method of dynamic sur-
face control technology, radial basis function neural network
and adaptive method for controlling the chaotic motions of
the brushless DC motor system. Based on Luo’s model,
Zhang et al. [9] employed the generalized Lyapunov function
stability theory and the extremum principle of functions for
investigation of the chaotic motions of the brushless DC
motor system. The global attractive and positively invariant
sets were discussed. In 2012, Jagiea and Gwozdz [10] defined
a framework for the comprehensive steady-state time domain
analysis of the brushless DC motor. The time-periodic finite
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element method was used to study the dynamic response
of the brushless DC motor. Based on their solutions, all
waveforms in the unique framework can be provided. In 2017,
Fasil et al. [11] proposed a nonlinear phase variable model to
simulate a permanent magnet brushless DC motor. In 2018,
Huang and Xiong [12] applied a discrete mapping method to
periodically excited brushless DC motor. Analytical expres-
sion in terms of finite Fourier series terms is obtained based
on semi analytical results.

For the nonlinear system of the brushless DC motor,
one uses numerical method for investigation of the steady-
state response and chaotic motions. Steady-state responses
of nonlinear systems are sensitive to initial conditions when
there are coexisting periodic solutions. Numerical method
has difficulties to capture these coexisting periodic solutions.
Besides, the bifurcation trees from periodic motions into
chaos and out of chaos are also difficult to be achieved
through numerical method. In 2012, Luo [13], [14] developed
a generalized harmonic balance method for the analytical
solutions of nonlinear systems. The generalized harmonic
balance method transforms the original nonlinear system into
the dynamic system of coefficients of finite Fourier series.
In 2016, Ying et al. [15] obtained symmetric period-1 motion
to asymmetric period-2 motion and the independent priod-2
and period-4 motion in a Duffing oscillator through general-
ized harmonic balancemethod. In 2017, Xu et al. [16] applied
the generalized harmonic balance method for the stable and
unstable analytical solutions of a first-order nonlinear system
with a cubic term. The bifurcation branches of symmetric and
asymmetric analytical solutions were obtained and jumping
phenomenon was observed.

In this paper, the electrical and mechanical model of the
3-D brushless motor with voltage disturbance will be pre-
sented first. Then the nonlinear dynamic system of 3-D brush-
less is transformed to a dynamic system of coefficients of
finite Fourier series through generalized harmonic balance
method. Analytical solutions of period-1 to period-2 and
period-1 to period-4 motions will be obtained from the coef-
ficient dynamic system. Saddle node and Hopf bifurcations
are determined by the eigenvalues of Jacobian matrix. The
analytical bifurcation tree from period-1 to chaos will be
demonstrated through the analytical route of period-1 to
period-4 motions. Numerical results will be performed to
verify the analytical solutions.

II. MATHEMATICAL MODEL AND
ANALYTICAL SOLUTIONS
Consider a brushless DCmotor, the electrical and mechanical
dynamic equations can be given as ([9]):

dIq
dt
=

1
Lq

[
−RIq − nω (Ld Id + kt)+ uq

]
,

dId
dt
=

1
Ld

[
−RId + nωLqIq + ud

]
,

dω
dt
=

n
J

[
kt Iq +

(
Ld − Lq

)
IqId

]
−

1
J
(bω + TL) , (1)

where Iq and Id are the quadrature-axis and direct-axis cur-
rents; uq and ud are the quadrature-axis and direct-axis volt-
ages; n is the number of permanent pole pairs; ω is the
angular velocity; R is the winding resistance; Lq and Ld
are the quadrature-axis and direct-axis fictitious inductance;
ke and kt =

√
1.5ke the permanent-magnet flux constants; b is

the viscous damping coefficient; TL is the additional torque.
The system in (1) can be transformed to a compact form.

Based on the affine and the single time scaling transfor-
mations [1], the nondimensionalized system of (1) can be
obtained.

Define new variables as

iq=
Iq
α1
, id=

Id
α2
+

kt
Ldα2

+ρ, ωτ =
ω

α3
, τ=

tR
Lq

(2)

where

α1 =
−δkt ±

√
δ2k2t − 4ρδζLqbα23/R

2ρδζ
,

α2 = δα1, α3 =
R
nLq

, ζ = Ld − Lq, δ =
Lq
Ld
. (3)

and

vq =
1
α1R

uq, vd =
Lq

α2RLd
[ud + R(ρα2 +

kt
Ld

)],

T̄L =
Lq
Jα3R

TL , σ =
Lqb
JR
, η =

ζα1α2

Jα23
. (4)

Substitute (2), (3) and (4) into (1), a nondimensional sys-
tem of the 3-D brushless motor is obtained as

diq
dτ
= vq − iq − idωτ + ρωτ ,

did
dτ
= vd − δid + iqωτ ,

dωτ
dτ
= σ (iq − ωτ )+ ηiqid − T̄L . (5)

Consider the quadrature-axis voltage disturbance as
vq + Q0 cos�t , equations (5) are rewritten as

İ = F(I, τ ) (6)

where

I = (i1, i2, i3)T, F = (f1, f2, f3)T (7)

and

i1 = iq, i2 = id , i3 = ωτ
f1 = vq − iq − idωτ + ρωτ + Q0 cos(�τ ),

f2 = vd − δid + iqωτ ,

f3 = σ (iq − ωτ )+ ηiqid − T̄L . (8)

Note that; Q0 and � are disturbance amplitude and
frequency, respectively.

From (2) to (8), the 3-D brushless motor system is trans-
formed to a nondimensional nonlinear motor system. Since
the steady state solution of motor system in (6) is a periodic
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motion, by generalized harmonic balance method, the ana-
lytical solution of order-m of such a nonlinear 3-D brush-
less motor system can be expressed as finite Fourier series
form as

i∗i =a
(m)
0i (t)+

N∑
k=1

bi,k/m(t) cos
k
m
�t+ci,k/m(t) sin

k
m
�t (9)

where a(m)0i (t), bi,k/m(t) and ci,k/m(t) (i = 1, 2, 3) are the
coefficients varying with time. m is period of the analytical
solutions. The derivative of (9) gives

i̇∗1 = ȧ(m)0i +

N∑
k=1

(ḃi,k/m +
k
m
�ci,k/m) cos

k
m
�t

+ (ċi,k/m −
k
m
�bi,k/m) sin

k
m
�t (10)

Note that a(m)0i = a(m)0i (t), bi,k/m = bi,k/m(t) and ci,k/m =
ci,k/m(t).

Substitution of (9) and (10) to (6) gives a nonlinear system
of coefficients as

ȧ(m)0 = F(m)
0 (a(m)0 ,b(m), c(m)),

ḃ(m) = −�
k1
m
c(m)+F(m)1 (a(m)0 ,b(m), c(m)),

ċ(m) = �
k1
m
b(m)+F(m)2 (a(m)0 ,b(m), c(m)). (11)

where

a(m)0 = (a(m)01 , a
(m)
02 , a

(m)
03 )T

b(m) = (b1/m,b2/m, · · · ,bN/m)T,

bk/m = (b1,k/m, b2,k/m, b3,k/m)T,

c(m) = (c1/m, c2/m, · · · , cN/m)T,

ck/m = (c1,k/m, c2,k/m, c3,k/m)T,

F(m)
0 = (F (m)

01 ,F
(m)
02 ,F

(m)
03 )T,

F(m)1 = (F(m)11 ,F
(m)
12 , · · · ,F

(m)
1N )T,

F(m)1k = (F (m)1k,1,F
(m)
1k,2,F

(m)
1k,3)

T,

F(m)2 = (F(m)21 ,F
(m)
22 , · · · ,F

(m)
2N )T,

F(m)2k = (F (m)2k,1,F
(m)
2k,2,F

(m)
2k,3)

T,

k1 = diag [I3×3, 2I3×3, · · · ,N I3×3] . (12)

for N = 1, 2, 3, · · · ,∞.
and

F(m)
0 (a(m)0 ,b(m), c(m))=

1
mT

∫ mT

0
F(I, τ )dt,

F(m)1k (a(m)0 ,b(m), c(m))=
2
mT

∫ mT

0
F(I, τ ) cos(

k
m
�t)dt,

F(m)2k (a(m)0 ,b(m), c(m))=
2
mT

∫ mT

0
F(I, τ ) sin(

k
m
�t)dt, (13)

for k = 1, 2, 3, · · · ,N with

F (m)
01 = vq − a

(m)
01 − a

(m)
02 a

(m)
03 + ρa

(m)
03

−

N∑
i=1

1
2
(b2,i/mb3,i/m + c2,i/mc3,i/m),

F (m)
02 = vd − δa

(m)
02 + a

(m)
01 a

(m)
03

+

N∑
i=1

1
2
(b1,i/mb3,i/m + c1,i/mc3,i/m),

F (m)
03 = σa

(m)
01 − σa

(m)
03 + ηa

(m)
01 a

(m)
02 − TL

+ η

N∑
i=1

1
2
(b1,i/mb2,i/m + c1,i/mc2,i/m) (14a)

F (m)1k,1=−b1,k/m−(a
(m)
02 b3,k/m+a

(m)
03 b2,k/m)+ρbk,k/m+Q0δ

k
m

−

N∑
i=1

N∑
j=1

1
2
(b2,i/mb3,j/mδ2c1 + c2,i/mc3,j/mδ2c2)

F (m)1k,2 = −δb2,k/m + a
(m)
01 b3,k/m + a

(m)
03 b1,k/m

+

N∑
i=1

N∑
j=1

1
2
(b1,i/mb3,j/mδ2c1 + c1,i/mc3,j/mδ2c2)

F (m)1k,3 = σ (b1,k/m − b3,k/m)+ η(a
(m)
01 b2,k/m + a

(m)
02 b1,k/m)

+ η

N∑
i=1

N∑
j=1

1
2
(b1,i/mb2,j/mδ2c1 + c1,i/mc1,j/mδ2c2)

(14b)

F (m)2k,1 = −c1,k/m − (a(m)02 c3,k/m + a
(m)
03 c2,k/m)+ ρc3,k/m

−

N∑
i=1

N∑
j=1

1
2
(b2,i/mc3,j/m + b3,i/mc2,j/m)δ2s1,

F (m)2k,2 = −δc2,k/m + (a(m)01 c3,k/m + a
(m)
03 c1,k/m)

+

N∑
i=1

N∑
j=1

1
2
(b1,i/mc3,j/m + b3,i/mc1,j/m)δ2s1,

F (m)2k,3 = σ (c1,k/m − c3,k/m)+ η(a
(m)
01 c2,k/m + a

(m)
02 c1,k/m)

+ η

N∑
i=1

N∑
j=1

1
2
(b1,i/mc2,j/m + b2,i/mc1,j/m)δ2s1

(14c)

The deta functions in (14) are

δ301 = δ
0
i−j+l + δ

0
i+j−l + δ

0
i−j−l,

δ302 = δ
0
i−j+l + δ

0
i+j−l − δ

0
i−j−l,

δ2c1 = δ
k
i+j + δ

k
|i−j|, δ2c2 = −δ

k
i+j + δ

k
|i−j|,

δ2s1 = δ
k
i+j − sgn(i− j)δk

|i−j|,

δ3c1 = δ
k
i+j+l + δ

k
|i+j−l| + δ

k
|i−j+l| + δ

k
|i−j−l|, (15a)

δ3c2 = −δ
k
i+j+l + δ

k
|i+j−l| + δ

k
|i−j+l| − δ

k
|i−j−l|,

δ3s1 = −δ
k
i+j+l + sgn(i+ j− l)δk

|i+j−l|

+ sgn(i− j+ l)δk
|i−j+l| − sgn(i− j− l)δk

|i−j−l|,
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δ3s2 = δ
k
i+j+l + sgn(i+ j− l)δk

|i+j−l|

+ sgn(i− j+ l)δk
|i−j+l| + sgn(i− j− l)δk

|i−j−l|.

(15b)

and

δlk =

{
1 l = k,
0 l 6= k.

sgn (k) =

{
1 k ≥ 0,
−1 k < 0.

(16)

Let z = (a(m)0 ,b(m), c(m))T, equation (11) can be
rewritten as

ż(m) = f (m)(z(m)) (17)

where

f (m) = (F(m)
0 ,−�

k1
m
c(m)+F(m)1 , �

k1
m
b(m)+F(m)2 )T

There are 3(2N + 1) nonlinear equations in the coefficient
system in (17). The periodic solutions of (6) are determined
by the constant coefficients of the finite Fourier series in (17).
Let ż(m)∗ be the equilibrium of f(m)(z) = 0, thus

F(m)
0 (a(m)∗0 ,b(m)∗, c(m)∗) = 0,

F(m)1 (a(m)∗0 ,b(m)∗, c(m)∗) = 0,

F(m)2 (a(m)∗0 ,b(m)∗, c(m)∗) = 0. (18)

By solving the 3(2N + 1) algebraic equations in (18),
the equilibrium point z(m)∗ = (a(m)∗0 ,b(m)∗, c(m)∗)T can be
obtained, and the analytical solutions of the 3-D brushless DC
motor system can be achieved. Once the analytical solutions
of the brushless motor are achieved, the stability and bifur-
cations of periodic solutions can be analyzed. In the neigh-
borhood of z(m)∗, with z(m) = z(m)∗ + 1z(m), the linearized
equations of (17) gives

1ż(m) = Df(m)(z(m)∗)1z(m) (19)

The Jacobian matrix is obtained as

Df(m)(z(m)∗) =
∂f(m)

∂z(m)

∣∣∣∣
z(m)∗

, (20)

The stability of the 3-D brushless DC motor system is
determined by the eigenvalues of the Jacobian matrix.∣∣∣Df(m)(z(m)∗)− λI3(2N+1)×3(2N+1)∣∣∣ = 0 (21)

where

Df(m) =



∂F(m)0

∂a(m)0

∂F(m)0

∂b(m)
∂F(m)0

∂c(m)

∂F(m)1

∂a(m)0

∂F(m)1

∂b(m)
−�

k1
m
+
∂F(m)1

∂c(m)

∂F(m)2

∂a(m)0

�
k1
m
+
∂F(m)2

∂b(m)
∂F(m)2

∂c(m)


(22)

From the generalized harmonic balance method, the eigen-
values of Df(m) are grouped as

(n1, n2, n3| n4, n5, n6) (23)

where n1 is the number of negative real eigenvalues, n2 is
the number of positive real eigenvalues, n3 is the number of
zero eigenvalues, n4 is the number of the pairs of complex
eigenvalues with negative real parts, n5 is the number of the
pairs of complex eigenvalues with positive real parts, n6 is
the number of the pairs of complex eigenvalues with zero real
parts.

i. If all the real parts of eigenvalues of Df(m) are less than
zero (i.e. Re(λk ) < 0, k = 1, 2, · · · , 3(2N + 1)),
the analytical solutions of the 3-D brushless DC motor
with truncated harmonic terms are stable.

ii. If at least one real part of eigenvalues ofDf(m) is greater
than zero (i.e. Re(λk ) > 0, k = {1, 2, · · · , 3(2N +1)}),
the analytical solutions of the 3-D brushless DC motor
with truncated harmonic terms are unstable.

iii. If the real part of the eigenvalues of Df(m) equals to
zero, bifurcations including Saddle node bifurcation
and Hopf bifurcation are determined.

III. FREQUENCY-AMPLITUDE CHARACTERISTICS
The bifurcation trees of analytical solution of period-1 to
period-4 motions are presented through frequency-amplitude
curves. The harmonic amplitude and phase of the analytical
solutions of the 3-D brushless DC motor are.

Ai,k/m =
√
b2i,k/m + c

2
i,k/m, ϕi,k/m = arctan

ci,k/m
bi,k/m

(24)

Based on (24), the analytical solutions in (9) are modi-
fied as

i∗i (t)=a
(m)
0i +

N∑
k=1

Ai,k/m cos(
k
m
�t − ϕi,k/m), (i=1, 2, 3)

(25)

Consider a set of parameters as

vq = 0.168, ρ = 60, Q0 = 10, δ = 0.875, vd = 20.66,

σ = 4.15, η = 0.26, T̄L = 0.53 (26)

From the chosen parameters, the analytical solutions of
period-1 to period-4 motions of the 3D brushless DC motor
are obtained. The solid and dashed curves represent stable
and unstable analytical solutions, respectively. ‘‘SN’’ and
‘‘USN’’ represent stable and unstable saddle-node bifurca-
tion, respectively. ‘‘HB’’ and ‘‘UHB’’ are for stable and unsta-
ble Hopf bifurcation, respectively. P-1, P-2 and P-4 represents
period-1, period-2 and period-4 motions, respectively.

In Fig.1, global views of bifurcation trees of analytical
solutions of period-1 to period-2 and period-1 to period-4
motions of the 3-D brushless DC motor are presented for
� ∈ (2.5, 7.5). In the interested excitation frequency range,
there are two bifurcation trees. The first bifurcation tree is
formed by independent analytical solutions of period-1 to
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FIGURE 1. A global view of the bifurcation trees of analytical solutions versus with excitation frequency of � ∈ (2.5,7.5). (i) constant term a01,
(ii) harmonic amplitude A1,1, (iii) constant term a02, (iv) harmonic amplitude A2,1, (v) constant term a03, (vi) harmonic amplitude A3,1.

period-2 in � ∈ (2.983, 3.178). The second bifurcation tree
is formed by independent analytical solutions of period-1 to
period-4 in � ∈ (5.457, 7.193). In Fig.1 (i), the global view
of the constant term a(m)01 of the analytical solutions of the
quadrature-axis iq current is presented. On left half plane of
Fig.1 (i), the analytical solution in terms of a(m)01 has three
independent bifurcation trees of period-1 to period-2 motions
within � ∈ (2.983, 3.082), (3.01, 3.118), (3.004, 3.178),
respectively. On the right half plane of Fig.1 (i), the ana-
lytical solution in terms of a(m)01 has two independent

bifurcation trees of period-1 to period-4 motions within
� ∈ (5.457, 6.517), (5.698, 7.193), respectively. In Fig.1 (ii),
the global view of the analytical solution in terms of harmonic
amplitude A1,1 of the quadrature-axis current iq is presented.
The three independent analytical solutions of period-1 to
period-2 are clearly observed. The two analytical solutions
of period-1 to period-4 motions overlap with each other. The
detail excitation frequency ranges of analytical solutions are
presented in Table 1. In Fig.1 (iii), the global view of the
analytical solution in terms of a(m)02 of the direct-axis current id
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TABLE 1. Excitation frequency ranges of analytical solution in the 3D
brushless DC motor.

is presented. Similarly with a(m)01 , a(m)02 only happen in limited
frequency range. The quantity level of a(m)02 is much bigger
than a(m)01 . The stability frequency ranges and bifurcation
points are the same with a(m)01 . In Fig.1 (iv), the global view
of the analytical solutions in terms of harmonic amplitude
A2,1 of the direct-axis current is presented. On left half
plane, three bifurcation trees of the analytical solutions of
period-1 to period-2 motions ovelap. On the right half plane,
the bifurcation trees of analytical solutions of period-1 to
period-4 motions can be clearly observed. A2,1 has the same
stability and bifurcation points. In Fig,1 (v), the global view
of the analytical solution in terms of a(m)03 of the angular
velocity ωτ is presented. In Fig.1 (vi), the global view of the
analytical solutions in terms of harmonic amplitude A3,1 of
the angular velocity ωτ is presented. a

(m)
03 possesses the same

curve pattern with a(m)01 . A3,1 possesses the same curve pattern
with A1,1. a

(m)
03 and A3,1 have the same stability frequency

range and bifurcation points with a(m)01 .
In the nonlinear dynamic system of 3-D brushless DC

motor shown in (6), the quadrature-axis current iq, direct-
axis current id and angular velocity ωτ have the same
stability frequency ranges and bifurcations. To avoid too
much illustration, only the bifurcation trees of the analyti-
cal solutions of the quadrature-axis current iq are presented.
In Fig.2 (i) and (ii), the zoomed views of the analytical
solutions in terms of the constant term a(m)01 are presented for
� ∈ (2.95, 3.22) and (5.00, 7.50), respectively. In Fig.2 (i),
the three bifurcation trees of the analytical solutions of
period-1 to period-2 motions are observed. In the lower
bifurcation tree of Fig.2(i), a saddle node bifurcation occurs
at � = 3.082 which generates jumping. Two Hopf bifur-
cations occur at � = 2.986 and 3.077 where the stable
analytical solution of period-1 turns becomes unstable and
the analytical solutions of period-2 happens. Another two
Hopf bifurcations occur at at � = 2.993 and 3.073 where
the stable analytical solutions of period-2 becomes unstable.
The stable analytical solutions connect with the stable ana-
lytical solutions and they form close loops. In the middle
bifurcation tree of Fig.2(i), a saddle node bifurcation occurs at
� = 3.177 and jumping phenomenon happens. AHopf bifur-
cation occurs at � = 3.149 which turns the stable analytical
solution of period-1 to unstable and the analytical solution of
period-2 happens. In the cut bifurcation tree, a saddle node
bifurcation occurs at � = 3.591 which generates jumping.

A Hopf bifurcation occurs at � = 3.598 which turn the
stable analytical solution to be a quasi-periodic solution.
At � = 3.514, a Hopf bifurcation occurs which generates
period-doubling phenomenon that turns the analytical solu-
tion of period-1 to period-2. In Fig.2 (ii), the two bifurcation
trees of the analytical solutions of period-1 to period-4 are
observed. In the lower bifurcation tree, the stable analytical
solution becomes unstable after a saddle node bifurcation at
� = 6.522. Two Hopf bifurcations occur at � = 6.426 and
� = 6.385 which turn the analytical solution of period-1 to
period-2 and period-4, respectively. In the upper bifurcation
trees, a saddle node bifurcation occurs at � = 7.194 and
stable analytical solution becomes unstable. Two Hopf bifur-
cations occur at � = 6.521 and 6.473 where the analytical
solution of period-1 goes to the analytical solution of period-2
and the analytical solution of period-2 goes to the analytical
solution of period-4. In Fig.2 (iii), the analytical solution in
terms of the harmonic term A1,1/4 is presented. The harmonic
termA1,1/4 only appear for the analytical solution of period-4.
Two Hopf bifurcations occurs at � = 6.378 and 6.466
which will turn the analytical solution of period-4 to period-8.
In Fig.2 (iv) and (v), the analytical solution in terms of the har-
monic term A1,1/2 is presented. In Fig.2 (iv), three branches
of the analytical solutions of period-2 are clearly observed.
A1,1/2 is the first harmonic term of the analytical solution
of period-2. The stable analytical solutions are connected
with the unstable analytical solutions at Hopf bifurcations.
In Fig.2 (v), two Hopf bifurcations at � = 6.385 and
6.473 turn the analytical solutions of period-2 to period-4.
Two unstable Hopf bifurcations at � = 5.844 and 5.904
turns the unstable analytical solution of period-4 back to
period-2. In Fig.2 (vi), the analytical solution in terms of the
harmonic term A1,3/4 is presented. A1,3/4 has the same stabil-
ity and bifurcations with A1,1/4. In Fig.2 (vii), (viii) and (ix),
the zoomed views of the analytical solution of period-1 to
period-2 in terms of the harmonic term A1,1 are presented.
There are two bifurcation trees of the analytical solutions
in Fig.2 (vii). The upper bifurcation tree possesses two Hopf
bifurcations at � = 2.986 and 3.077 which generate the
analytical solutions of period-2 from period-1. A saddle node
bifurcation at � = 3.082 connects the stable and unstable
analytical solutions of period-1. The lower bifurcation tree
in Fig.2 (vii) possesses one Hopf bifurcation at� = 3.149 for
period-doubling and a saddle node bifurcation at � = 3.177
for connecting the stable and unstable analytical solutions.
In Fig.2 (viii), the embedded window clearly shows the
bifurcation branches of the analytical solutions. Two Hopf
bifurcations at � = 3.05136 and 3.05141 are for turning
the analytical solutions of period-1 to period-2. One Hopf
bifurcation at � = 3.0544 is for quasi-periodic analytical
solutions. Fig.2 (ix) shows the zoomed view of two bifurca-
tion trees of the analytical solutions of period-1 to period-4.
The stability and bifurcations are the same with a(m)01 when
� ∈ (6.3, 6.6). In Fig.2 (x), (xi) and (xii), the zoomed views
of the analytical solution of period-1 to period-2 in terms
of the harmonic term A1,2 are presented. A1,2 in Fig.2 (x)
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FIGURE 2. The bifurcation trees of analytical solutions versus with excitation frequency of the quadrature-axis current iq: (i) constant
term a01(1); (ii) constant term a01(2); (iii) harmonic amplitude A1,1/4; (iv) harmonic amplitude A1,1/2(1); (v) harmonic amplitude
A1,1/2(2); (vi) harmonic amplitude A1,3/4. (vii) harmonic amplitude A1,1(1); (viii) harmonic amplitude A1,1(2); (ix) harmonic amplitude
A1,1(3); (x) harmonic amplitude A1,2(1); (xi) harmonic amplitude A1,2(2); (xii) harmonic amplitude A1,2(3). (xiii) harmonic amplitude
A1,3(1); (xiv) harmonic amplitude A1,3(2); (xv) harmonic amplitude A1,3(3); (xvi) harmonic amplitude A1,79/4(1); (xvii) harmonic
amplitude A1,20(1); (xviii) harmonic amplitude A1,20(2).
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FIGURE 2. (Continued.) The bifurcation trees of analytical solutions versus with excitation frequency of the quadrature-axis current iq:
(i) constant term a01(1); (ii) constant term a01(2); (iii) harmonic amplitude A1,1/4; (iv) harmonic amplitude A1,1/2(1); (v) harmonic
amplitude A1,1/2(2); (vi) harmonic amplitude A1,3/4. (vii) harmonic amplitude A1,1(1); (viii) harmonic amplitude A1,1(2); (ix) harmonic
amplitude A1,1(3); (x) harmonic amplitude A1,2(1); (xi) harmonic amplitude A1,2(2); (xii) harmonic amplitude A1,2(3). (xiii) harmonic
amplitude A1,3(1); (xiv) harmonic amplitude A1,3(2); (xv) harmonic amplitude A1,3(3); (xvi) harmonic amplitude A1,79/4(1);
(xvii) harmonic amplitude A1,20(1); (xviii) harmonic amplitude A1,20(2).
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FIGURE 2. (Continued.) The bifurcation trees of analytical solutions versus with excitation frequency of the quadrature-axis current iq: (i) constant
term a01(1); (ii) constant term a01(2); (iii) harmonic amplitude A1,1/4; (iv) harmonic amplitude A1,1/2(1); (v) harmonic amplitude A1,1/2(2);
(vi) harmonic amplitude A1,3/4. (vii) harmonic amplitude A1,1(1); (viii) harmonic amplitude A1,1(2); (ix) harmonic amplitude A1,1(3); (x) harmonic
amplitude A1,2(1); (xi) harmonic amplitude A1,2(2); (xii) harmonic amplitude A1,2(3). (xiii) harmonic amplitude A1,3(1); (xiv) harmonic amplitude
A1,3(2); (xv) harmonic amplitude A1,3(3); (xvi) harmonic amplitude A1,79/4(1); (xvii) harmonic amplitude A1,20(1); (xviii) harmonic amplitude A1,20(2).

possesses the same stability and bifurcations with A1,1
in Fig.2 (viii). A1,2 in Fig.2 (xi) possesses the same stability
and bifurcations with A1,1 Fig.2 (vii). A1,2 in Fig.2 (xii) pos-
sesses the same stability and bifurcation with a(m)01 Fig.2 (ii).
In Fig.2 (xiii), (xiv) and (xv), the zoomed views of the
analytical solution of period-1 to period-2 in terms of the
harmonic term A1,3 are presented. A1,3 in Fig.2 (xiii) pos-
sesses the same stability and bifurcation withA1,1 Fig.2 (viii).
A1,3 in Fig.2 (xiv) possesses the same stability and bifurcation
with A1,1 Fig.2 (vii). A1,3 in Fig.2 (xv) possesses the same
stability and bifurcation with a(m)01 Fig.2 (ii). To avoid over
illustration, the analytical solution in terms of the harmonic
term A1,79/4 is presented. A1,79/4 has twoHopf bifurcations at
� = 6.378 and 6.466 and has the quantity level of 1× 10−4.
In Fig.2 (xvii) and (xviii), the zoomed views of the analytical
solution in terms of the harmonic term A1,20 are presented.
In Fig.2 (xvii), the three bifurcation trees of the analytical
solutions of period-1 to period-2 become more complicated.
A1,20 has the quantity level of 1 × 10−2. In Fig.2 (xviii),
the saddle node and Hopf bifurcation points are clearly shown
in the embedded window. A1,20 possesses the same stability
and bifurcation points as A1,1 within the same corresponding
frequency range. From the above discussion, at least 40 har-
monic terms are needed for the analytical solution of period-1
to period-2 to reach the accuracy of 1 × 10−2 within � ∈
(2.95, 3.22), and at least 80 harmonic terms are needed for
the analytical solution of period-1 to period-4 to reach the
accuracy of 1× 10−3 within � ∈ (5.0, 7.5).

IV. NUMERICAL ILLUSTRATIONS
In this section, the numerical illustration of the analytical
solutions in the 3-D brushless DC motor are presented via
mid-point integration method for verification the analytical
solutions. Numerical illustrations of stable analytical solu-
tions of period-m (m = 1, 2 and 4) are completed. The
initial conditions for numerical illustration are extracted from
the analytical solutions listed in Table 2. In the following

TABLE 2. Initial conditions and input data for numerical simulations.

figures, the analytical solutions are depicted by circular sym-
bols. Numerical solutions are depicted by solid curves. Initial
conditions and starting points of each period are labeled as
‘‘I.C.’’ and ‘‘mT’’ (m = 1, 2 and 3).
A stable analytical solution of period-1 of the 3-D brush-

less DC motor is illustrated for � = 6.45 in Fig.3.
The initial conditions for numerical illustration are I0 =
(2.947755, 66.370974, 19.216232)T. The iq−id plane (iq, id )
of the analytical solution of period-1 is presented in Fig.3
(i). For stable solutions, the analytical results have good
agreement with the numerical results. The iq − ωτ plane
(iq, ωτ ) of the analytical solution is presented in Fig.3 (ii).
The analytical and numerical solutions match with each
other and they form a simple periodic orbit. The id − ωτ
plane (id , ωτ ) of the analytical solution is presented
in Fig.3 (iii). With the initial conditions given, these orbits
can be reproduced by other numerical methods like ode45.
The iq − id − ωτ 3D orbit (iq, id , ωτ ) of the analyti-
cal solution is presented in Fig.3 (iv). The agreement of
the analytical and numerical solutions can be observed.
To avoid too much illustration, only the harmonic amplitudes
of the analytical solutions of the quadrature-axis current
iq and direct-axis current id are presented in Fig.3 (v).
For quadrature-axis current iq(white), the constant term is
A1,0 = −a1,0 ≈ 0.1202. The main harmonic amplitudes
are A1,1 ≈ 6.4202,A1,2 ≈ 3.7882,A1,3 ≈ 2.0872,A1,4 ≈
1.9394,A1,5 ≈ 0.4447,A1,6 ≈ 0.4968,A1,7 ≈ 0.2193,
A1,8 ≈ 0.0965,A1,9 ≈ 0.0692,A1,10 ≈ 0.0253,A1,11 ≈
0.0165. The rest harmonic amplitudes are A1,j ∈

(10−10,10−2) (j = 12, 13, · · · , 40). For direct-axis id (gray),
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FIGURE 3. A stable analytical solution of period-1 of the 3D brushless motor at � = 6.45. (i) iq − id plane (iq, id ), (ii) iq − ωτ plane (iq, ωτ ),
(iii) id − ωτ plane (id , ωτ ), (iv) iq − id − ωτ curve (iq, id , ωτ ), (v) harmonic amplitude Ai,j , (vi) harmonic phase ϕi,j (i = 1,2; j = 0,1, · · · ,40).

A2,0 = a2,0 ≈ 59.0041,A2,1 ≈ 3.5550,A2,2 ≈ 5.0133,
A2,3 ≈ 3.0841,A2,4 ≈ 0.7933,A2,5 ≈ 1.0325,A2,6 ≈
0.3284,A2,7 ≈ 0.2201,A2,8 ≈ 0.1290,A2,9 ≈ 0.0462,
A2,10 ≈ 0.0346,A2,11 ≈ 0.0146 and A2,j ∈ (10−10,10−2)
(j = 12, 13, · · · , 40). The harmonic phases of the analytical
solutions of the quadrature-axis and direct-axis are presented
in Fig.6 (vi) with ϕi,j ∈ (0, 2π )(i = 1, 2; j = 0, 1, · · · , 40).
For such an analytical solution of period-1 with � = 6.45,
40 harmonic terms are needed to reach the accuracy
of 1× 10−10.

A stable analytical solution of period-2 for � = 6.40
is illustrated in Fig.4. The initial conditions for numerical

illustration are I(2)0 = (1.172633, 66.543098, 18.612383)T.
The iq − id , iq − ωτ and id − ωt planes (i

(2)
q , i

(2)
d ), (i(2)q , ω

(2)
τ )

and (i(2)d , ω
(2)
τ ) are presented in Fig.4 (i), (ii) and (iii).

The numerical results match with the analytical results. The
period-doubling phenomenon can be clearly observed. The

iq − id plane (i(2)q , i
(2)
d ) has double pattern of (iq, id ) shown

in Fig.3 (i). The iq − ωτ plane (i
(2)
q , ω

(2)
τ ) has double pattern
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FIGURE 4. A stable analytical solution of period-2 of the 3D brushless motor at � = 6.40. (i) iq − id plane (i (2)
q , i (2)

d ), (ii) iq − ωτ plane (i (2)
q , ω

(2)
τ ),

(iii) id − ωτ plane (i (2)
d , ω

(2)
τ ), (iv) iq − id − ωτ curve (i (2)

q , i (2)
d , ω

(2)
τ ), (v) harmonic amplitude Ai,j , (vi) harmonic phase ϕi,j (i = 1,2; j = 0,1, · · · ,40).

of (iq, ωτ ) shown in Fig.3 (ii). The id − ωτ plane (i
(2)
d , ω

(2)
τ )

has double pattern of (id , ωτ ) shown in Fig.3 (iii). The 3D

orbit (i(2)q , i
(2)
d , ω

(2)
τ ) of the analytical solution of period-2 is

presented in Fig.4 (iv). The period-doubling phenomenon in
Fig.4 (iv) is obvious compared with (iq, id , ωτ ) in Fig.3 (iv).
The harmonic amplitudes of quadrature-axis i(2)q are pre-
sented in Fig.4 (v). For i(2)q , the constant term is A1,0/2 =
−a(2)1,0 ≈ 0.1340. The main harmonic terms are with A1,1/2 ≈
0.2555,A1,1 ≈ 6.2826,A1,3/2 ≈ 0.6879,A1,2 ≈ 4.0259,

A1,5/2 ≈ 0.9492,A1,3 ≈ 1.7698,A1,7/2 ≈ 0.7161,A1,4 ≈
1.9025. The rest harmonic terms are A1,j/2 ∈ (10−10,100)
(j = 9, 10, · · · , 80) For id , the constant term is A2,0/2 =
a(2)2,0 ≈ 58.8945. The main harmonic terms are with A2,1/2 ≈
0.4564,A2,1 ≈ 3.8573,A2,3/2 ≈ 0.9063,A2,2 ≈ 4.7583,
A2,5/2 ≈ 0.8444,A2,3 ≈ 3.1914. The rest harmonic terms

are A2,j/2 ∈ (10−10,100) (j = 7, 8, · · · , 80). The harmonic

phases for i(2)q and i(2)d are presented in Fig.4 (vi) with ϕi,j ∈
(0, 2π )(i = 1, 2; j = 0, 1, · · · , 80). Such an analytical
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FIGURE 5. A stable analytical solution of period-4 of the 3D brushless motor at � = 6.381. (i) iq − id plane (i (4)
q , i (4)

d ), (ii) iq − ωτ plane (i (4)
q , ω

(4)
τ ),

(iii) id − ωτ plane (i (4)
d , ω

(4)
τ ), (iv) iq − id − ωτ curve (i (4)

q , i (4
d , ω

(4)
τ ), (v) harmonic amplitude Ai,j , (vi) harmonic phase ϕi,j (i = 1,2; j = 0,1, · · · ,40).

solution of period-2 needs 80 harmonic terms to get appro-
priate accurate solution of accuracy ε < 1× 10−10.
In Fig.5, a stable analytical solution of period-4 is pre-

sented for � = 6.381. The initial conditions for numerical
illustration are I(4)0 = (1.651893, 66.351656, 19.005615)T.
The iq − id , iq − ωτ and id − ωt planes (i

(4)
q , i

(4)
d ), (i(4)q , ω

(4)
τ )

and (i(4)d , ω
(4)
τ ) are presented in Fig.5 (i), (ii) and (iii). The

numerical and analytical results match with each other.
The iq − id plane (i(4)q , i

(4)
d ) has double pattern of (i(2)q , i

(2)
d )

in Fig.4 (i), quadruple pattern of (iq, id ) in Fig.3 (i).

The iq−ωτ plane (i
(4)
q , ω

(4)
τ ) has double pattern of (i(2)q , ω

(2)
τ )

in Fig.4 (ii), and quadruple pattern of (iq, ωτ ) in Fig.3 (ii).

The id −ωτ plane (i
(4)
d , ω

(4)
τ ) has double pattern of (i(2)d , ω

(2)
τ )

in Fig.4 (iii), and quadruple pattern of (id , ωτ ) in Fig.3 (iii).
The 3D orbit (i(4)q , i

(4)
d , ω

(4)
τ ) of the analytical solution of

period-4 is presented in Fig.5 (iv). Similarly, (i(4)q , i(4)d , ω(4)
τ )

has the double pattern of (i(2)q , i(2)d , ω(2)
τ ) in Fig.4 (iv),

and quadruple pattern of (iq, id , ωτ ) in Fig. 3 (iv).
The period-doubling phenomenon is clearly presented.
For such stable analytical solution of period-4, harmonic
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amplitudes of i(4)q and i(4)d are presented in Fig.5(v). For i(4)q ,
the constant term is A1,0/4 = −a

(4)
1,0 ≈ 0.1352. The main har-

monic terms are A1,1/4 ≈ 0.0299,A1,1/2 ≈ 0.3191,A1,3/4 ≈
0.0732,A1,1 ≈ 6.2395, A1,5/4 ≈ 0.0775,A1,3/2 ≈ 0.8515,
A1,7/4 ≈ 0.1950,A1,2 ≈ 4.0169,A1,9/4 ≈ 0.1353,A1,5/2 ≈
1.1804,A1,11/4 ≈ 0.2470,A1,3 ≈ 1.6658,A1,13/4 ≈
0.0813,A1,7/2 ≈ 0.8775,A1,15/4 ≈ 0.1606 and A1,4 ≈
1.8312. The rest harmonic terms are A1,j/4 ∈ (10−10,100)
(j = 17, 18, · · · , 160). For i(4)d , the constant term is
A2,0/4 = a(4)2,0 ≈ 58.8633, and the main harmonic terms are
A2,1/4 ≈ 0.0497,A2,1/2 ≈ 0.5695,A2,3/4 ≈ 0.1539,A2,1 ≈
3.8807,A2,5/4 ≈ 0.1633,A2,3/2 ≈ 1.1340,A2,7/4 ≈
0.2124,A2,2 ≈ 4.6816,A2,9/4 ≈ 0.1050,A2,5/2 ≈

1.0414,A2,11/4 ≈ 0.2006 and A2,3 ≈ 3.1471. The rest har-
monic terms are A2,j/4 ∈ (10−10,100) (j = 13, 14, · · · , 160).
The harmonic phases of i(4)q and i(4)d are presented in Fig.5 (vi)
with ϕi,j ∈ (0, 2π )(i = 1, 2; j = 0, 1, · · · , 160). For the
accuracy of ε = 10−10, the analytical solution of period-4
needs 160 harmonic terms in the 3-D brushless DC motor
system.

V. CONCLUSION
In this paper, the analytical solutions of the 3-D brushless DC
motor are obtained through the generalized harmonic balance
method. The bifurcation trees of period-1 to period-2 and
period-1 to period-4 motions are achieved analytically. The
stable and unstable analytical solutions of period-2 motions
originated from the stable and unstable Hopf bifurcations
of period-1 motions are presented. The stable and unstable
analytical solutions of period-4 motions originated from the
stable and unstable Hopf bifurcations of period-2 motions are
presented. With the analytical solutions, initial conditions for
numerical illustrations are obtained and the dynamic char-
acteristics of the 3-D brushless DC motor are investigated.
From the analytical solutions, the bifurcation trees revealing
the relationship among the independent periodic motions are
depicted, which is difficult to be obtained by numerical meth-
ods. The close loop curves in harmonic amplitudes formed
by stable and unstable analytical solutions are observed. The
harmonic results indicate the analytical solutions turn to be
more complicated when the disturbance frequency closes to
zero. The numerical solutions have good agreement with the
analytical solutions. The analytical solutions obtained present
new insights of the complex dynamics of the 3-D brushless
motor.
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