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ABSTRACT In this paper, the bifurcation trees of analytical solutions of a 3-D brushless DC motor with
the voltage disturbance are obtained through the generalized harmonic balance method. The electrical and
mechanical model of the 3-D brushless motor is transformed to the dynamic system of coefficients of finite
Fourier series. Stable and unstable analytical solutions of the 3-D brushless motor are solved based on
such a Fourier series coefficient system. Bifurcation trees of analytical solutions of period-1 to period-
2 and period-1 to period-4 motions are achieved. Stability and bifurcations of the analytical solutions of
the 3-D brushless motor are determined by the eigenvalues of Jacobian matrix of the coefficient dynamic
system. Frequency-amplitude characteristics of periodic motions are presented for a better understanding of
the motion complexity in frequency domain. Numerical illustrations are completed for comparison of the
analytical solutions with numerical results. The complex dynamics of the 3-D brushless motor are exhibited

through the bifurcation trees of analytical solutions.

INDEX TERMS Brushless DC motor, analytical solutions, stability, bifurcation tree.

I. INTRODUCTION

The brushless DC motor is widely used in engineering. It can
produce much higher torque and lower noise than DC brushed
motor with the same weight. The elimination of physical
contact between the brush and commutator allows the motor
run more stable and reliable. However, it’s difficult to estab-
lish the mathematical model for such brushless DC motor.
Without the voltage disturbance, in 1993, Hemati [1] first for-
mulated a compact representation of autonomous third order
nonlinear differential equations of a brushless DC motor.
With this nonlinear brushless DC motor system, the dynamic
characteristics of chaotic motions were discussed. Based on
Hemati’s model, Ge and Chang [2] studied the periodic and
chaotic motions of a brushless DC motor through numerical
method. The bifurcation diagrams and Lyapunov exponents
were presented in their research. In 1995, Kang and Sul [3]
applied torque control method for the investigation of the
brushless DC motor. The simulation and experimental results
showed the torque control method could attenuate the torque
ripple. In 2000, Rubaai et al. [4] studied the identification and
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control of the brushless DC motor through online training
of dynamic neural networks. The dynamic system of the
stator was transformed to a second-order nonlinear differen-
tial equations. Numerical method was applied to investigate
the dynamic response of the brushless DC motor system.
In 2003, Lee and Ehsani [5] built a new simulation model
of the brushless DC rotor based on trapezoidal back wave-
forms to monitor and predict the steady-state response.
In 2004, Jabbar et al. [6] applied finite-element method
for the investigation of the steady state and dynamic
response of the brushless DC motor system. The results
from finite-element method were verified by experiment.
Luo et al. [7], [8] combined the method of dynamic sur-
face control technology, radial basis function neural network
and adaptive method for controlling the chaotic motions of
the brushless DC motor system. Based on Luo’s model,
Zhang et al. [9] employed the generalized Lyapunov function
stability theory and the extremum principle of functions for
investigation of the chaotic motions of the brushless DC
motor system. The global attractive and positively invariant
sets were discussed. In 2012, Jagiea and Gwozdz [10] defined
a framework for the comprehensive steady-state time domain
analysis of the brushless DC motor. The time-periodic finite
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element method was used to study the dynamic response
of the brushless DC motor. Based on their solutions, all
waveforms in the unique framework can be provided. In 2017,
Fasil et al. [11] proposed a nonlinear phase variable model to
simulate a permanent magnet brushless DC motor. In 2018,
Huang and Xiong [12] applied a discrete mapping method to
periodically excited brushless DC motor. Analytical expres-
sion in terms of finite Fourier series terms is obtained based
on semi analytical results.

For the nonlinear system of the brushless DC motor,
one uses numerical method for investigation of the steady-
state response and chaotic motions. Steady-state responses
of nonlinear systems are sensitive to initial conditions when
there are coexisting periodic solutions. Numerical method
has difficulties to capture these coexisting periodic solutions.
Besides, the bifurcation trees from periodic motions into
chaos and out of chaos are also difficult to be achieved
through numerical method. In 2012, Luo [13], [14] developed
a generalized harmonic balance method for the analytical
solutions of nonlinear systems. The generalized harmonic
balance method transforms the original nonlinear system into
the dynamic system of coefficients of finite Fourier series.
In 2016, Ying et al. [15] obtained symmetric period-1 motion
to asymmetric period-2 motion and the independent priod-2
and period-4 motion in a Duffing oscillator through general-
ized harmonic balance method. In 2017, Xu et al. [16] applied
the generalized harmonic balance method for the stable and
unstable analytical solutions of a first-order nonlinear system
with a cubic term. The bifurcation branches of symmetric and
asymmetric analytical solutions were obtained and jumping
phenomenon was observed.

In this paper, the electrical and mechanical model of the
3-D brushless motor with voltage disturbance will be pre-
sented first. Then the nonlinear dynamic system of 3-D brush-
less is transformed to a dynamic system of coefficients of
finite Fourier series through generalized harmonic balance
method. Analytical solutions of period-1 to period-2 and
period-1 to period-4 motions will be obtained from the coef-
ficient dynamic system. Saddle node and Hopf bifurcations
are determined by the eigenvalues of Jacobian matrix. The
analytical bifurcation tree from period-1 to chaos will be
demonstrated through the analytical route of period-1 to
period-4 motions. Numerical results will be performed to
verify the analytical solutions.

Il. MATHEMATICAL MIODEL AND

ANALYTICAL SOLUTIONS

Consider a brushless DC motor, the electrical and mechanical
dynamic equations can be given as ([9]):

a, 1

T L [—RI; — no> (Lalg + ki) + ug]

dly 1

il [—RIq + noLgly + ug],

do n 1

<=7 [kely + (Lo — Lg) Ig1a] — 7 bo+T), (D)
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where I, and I; are the quadrature-axis and direct-axis cur-
rents; u, and uy are the quadrature-axis and direct-axis volt-
ages; n is the number of permanent pole pairs; w is the
angular velocity; R is the winding resistance; L; and Ly
are the quadrature-axis and direct-axis fictitious inductance;
k. and k; = \/ﬁke the permanent-magnet flux constants; b is
the viscous damping coefficient; 77, is the additional torque.

The system in (1) can be transformed to a compact form.
Based on the affine and the single time scaling transfor-
mations [1], the nondimensionalized system of (1) can be
obtained.

Define new variables as

I, . Lk w iR

=1 L we=—, T=— (2
lg p 14 s Ld0{2+p wr - Lq ( )
where
ks £ \[82k7 — 4pdeLybed/R
) R t=Lj—L, 8 Ly (3)
o) = ooy, o3 = —, = — y = —.
2 1 3 nL, d q i
and
! L9 lua + Repar + 21
Vg = ——Ug, Vd = 17} o —)I,
47 R VT grL, M T PR T
- L L,b fojan
=—LT, o=—" n="-". @)
JosR JR Jaz

Substitute (2), (3) and (4) into (1), a nondimensional sys-
tem of the 3-D brushless motor is obtained as

di o
E = Vg —lg —ldwr + pwe,

dig L

I = Vg — 8ig + izwe,

dw . .. =

drf = 0(iy — wy) +nigig — Ty 5)

Consider the quadrature-axis voltage disturbance as
Vg + Qo cos Qt, equations (5) are rewritten as

I=F{I, 1) (6)
where

F=(f.f.f)" 7

. . . \T
I=C(1,02,73),
and

i1 =lg, Ip=1lg, 3=0w;
J1 = vg —ig — igor + pwr + Qo cos(27),
o =va —8ig + i,
3= O'(iq —wg) + niqid —Tr. (8)
Note that; Qp and 2 are disturbance amplitude and
frequency, respectively.
From (2) to (8), the 3-D brushless motor system is trans-
formed to a nondimensional nonlinear motor system. Since
the steady state solution of motor system in (6) is a periodic
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motion, by generalized harmonic balance method, the ana-
lytical solution of order-m of such a nonlinear 3-D brush-
less motor system can be expressed as finite Fourier series
form as

N
. k ok
it :a&")(t)—i—g_l ik/m(1) €S — QU +ci (1) sin — Q1 (9)

where (1), bixm(t) and c;g/m(t) (i = 1,2,3) are the
coefficients varying with time. m is period of the analytical
solutions. The derivative of (9) gives

N
. . . k k
i = ag?) + E Dikym + EQCi,k/m) cos EQI

k=1
. k _k
+ (Cikym — —Rbj g/m) sin — Q¢ (10)
m m
Note that al’ = al(t), big/m = big/m(1) and c;p/m =

Ci,k/m ®).
Substitution of (9) and (10) to (6) gives a nonlinear system
of coefficients as

al" = FJ" ()", p™, cm),
m

k
& = Qb Fy (@ b ™). (D)
m

where

(m) (m) (m) _(m)\T
a; " = (ay; . agy’» apz)

b = (b1 /m, bajm. - by ym)"
bi/m = B1kjms b2k jms b3,/m)"
™ = (C1/ms €2/ms cN/m)T’

T
Ck/m = (Clk/m» C2.k/m> C3,k/m) s

(m) (m) p(m) H(m)\NT
Fo" = (Fo» Fop ' Fos )

(m) (m) p(m) (m)\T
Fi7 =@ Fy, - ’FIN) g
(m) _ p(m)  (m)  (m) \T

F, = (Flk,l’Flk,Z’Flk,3) ’

(m) (m) gp(m) (m)\T
F,7 =@y Fy' oo ’FZN) g

(m) _ (m) (m) (m) \T
Fy = (Fy s Fop o For3)
ki = diag[I3x3, 2I3x3, - - - , NI3x3]. (12)

forN =1,2,3,---, 00.
and

) am) pmy oy L™
F, " (a, ,b", ¢")= — F(, 7)dt,
0 (@ ) mT/O @ )
2 (T k
FU @)™, b, )= — / F(I, 7) cos(— Q1)dt,
mT Jo m
2 T k
FU) @y, b, ¢y = — / F(L 7)sin(—Qt)dr, (13)
mT Jo m
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fork=1,2,3,---,N with

(m) (m) (m) (m) (m)
Fop” =vg—ag —agy ays’ + pags

N
1

- E §(b2,i/mb3,i/m + €2,i/mC3,i/m)

i=1

(m) (m) (m) _(m)
Foy = va —8agy +ag, agy

N
1
+ Z z(bl,i/mb3,i/m + C1,i/mC3,i/m)
i=1
(m) (m) (m) (m) _(m)
Foy” = oay —oagy +nagap, —TL
A
+n Z E(bl,i/me,i/m + cri/me2,i/m)
i=1
F(m) S _ (m)b (m)b b 8k
11 = —b1kym— @y b3 kym+ags b2,k ym)+Pbk kym+Q05,,
N N
- Z Z E(b2,i/mb3,j/m82cl + €2,i/mC3,j/mb2c2)
i=1 j=1
Fl(f)z = —38b2 kym + a(()T)b;k/m + agg‘)bl,k/m
N N

(14a)

1
+ Z Z 5 (Orijmb3 j/mBaer + C1ijm€3j/m2c2)
i=1 j=1
FU = 6(b1g/m — baxm) + 0@ baijm + al by i m)
k3 = 1,k/m 3,k/m nagy 02,k/m T Aoy O1,k/m
N N
+n Z Z E(bl,i/me,j/mBZCl + CLi/mC1,j/mb2c2)
i=1 j=1
(14b)
Féz)l = —Clk/m — (aé”;)cs,k/m + aé’?Cz,k/m) + 0C3.k/m
N N
- Z Z z(b2,i/mc3,j/m + D3,i/mC2,j/m)d2s1,
i=1 j=1
Fyy = —8cakym + (@) ¢ /m + agy €1k /m)

N N

1
+ Z Z z(bl,i/mclj/m + D3,i/mC1,j/m)d2s1,
i=1 j=1

F§Z1>3 = o (Cl,kfm — C3,k/m) + n(ag?)clk/m + a(()';l)CLk/m)
N N

1
+n Z Z z(bl,i/mCZ,j/m + bz,i/mcl,j/m)SZsl
i=1 j=1

(14c)
The deta functions in (14) are
8301 = 871 + 8y + 8,
8302 = 8} + 8y — 8y
82c1 = 511:_]- + 6‘]‘,-_]1, S22 = —Bﬁ_j + 8{2_]-‘,
8as1 = 8 ; — sgn(i — )3,
8ac1 = 8fyjy1 + 8yjp 8w + 86y (15a)
832 = =840 + By + iy — Sy
8351 = _5;(+j+l +sgn(i+j — l)‘s\kprj—u

+sgni —j+ D8l — senli —j— D8f;_;_y.
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8352 = 8f iy +sgnli+j— D8y,
+sgni —j+ D8l +senli —j— D8f_;_y.

(15b)
and
1 =k, 1 k>0,
8t = sgn (k) = = (16)
0 [ #k. -1 k<O.
Let z = (38"), b | T, equation (11) can be
rewritten as
7 — f(m)(z(m)) (17)

where
k k
£ = F", Q=™ 4F", Q=Lp™ 4 F)T
m m

There are 3(2N + 1) nonlinear equations in the coefficient
system in (17). The periodic solutions of (6) are determined
by the constant coefficients of the finite Fourier series in (17).
Let z* be the equilibrium of £ (z) = 0, thus

B, b, ) = o,
", 1, ey = 0
F" g™ b, ¢ = 0. (18)

By solving the 3(2N + 1) algebraic equations in (18),
the equilibrium point z"™* = (a(()m)*, b* AT can be
obtained, and the analytical solutions of the 3-D brushless DC
motor system can be achieved. Once the analytical solutions
of the brushless motor are achieved, the stability and bifur-
cations of periodic solutions can be analyzed. In the neigh-
borhood of z™*, with 2™ = z™* 4 Az the linearized
equations of (17) gives

Az = D™ (7% Az (19)

The Jacobian matrix is obtained as
atim

DE™ () = ,
( ) 3Z(m) z(m)x

(20)

The stability of the 3-D brushless DC motor system is
determined by the eigenvalues of the Jacobian matrix.

DE™ (zm*) — )»13(2N+1)x3<21v+1)’ =0 (21)
where
B (m) (m) (m)
oY OF! OFy
838") obm) dctm
(m) (m) (m)
oo _ | OF OF gk, P
aa(()’") bl m  9cim
OF " o oF" IFY”
2" m | abm delm)
(22)
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From the generalized harmonic balance method, the eigen-
values of Df™ are grouped as

(n1, na, n3| ng, ns, ne) (23)

where n is the number of negative real eigenvalues, n; is
the number of positive real eigenvalues, n3 is the number of
zero eigenvalues, ng is the number of the pairs of complex
eigenvalues with negative real parts, ns is the number of the
pairs of complex eigenvalues with positive real parts, ng is
the number of the pairs of complex eigenvalues with zero real
parts.

i. If all the real parts of eigenvalues of D™ are less than
zero (i.e. Re(Ay) < 0,k = 1,2,---,32N + 1)),
the analytical solutions of the 3-D brushless DC motor
with truncated harmonic terms are stable.

ii. If at least one real part of eigenvalues of Df?™ is greater
than zero (i.e. Re(A;) > 0,k ={1,2,--- , 32N +1)}),
the analytical solutions of the 3-D brushless DC motor
with truncated harmonic terms are unstable.

iii. If the real part of the eigenvalues of D' equals to
zero, bifurcations including Saddle node bifurcation
and Hopf bifurcation are determined.

Ill. FREQUENCY-AMPLITUDE CHARACTERISTICS

The bifurcation trees of analytical solution of period-1 to
period-4 motions are presented through frequency-amplitude
curves. The harmonic amplitude and phase of the analytical
solutions of the 3-D brushless DC motor are.

Cik
Ai‘k/m — bl'z’k/m + Ciz,k/m’ (Pi,k/m = arctan bi kj:: (24)

Based on (24), the analytical solutions in (9) are modi-
fied as

N
. k .
if=ag"+ Y Aikim OS2 = @iigm), (i=1,2,3)
k=1
(25)

Consider a set of parameters as

vy = 0.168,
o = 4.15,

p =60, Qp =10, § = 0.875, vz = 20.66,
n =026, T, =0.53 (26)

From the chosen parameters, the analytical solutions of
period-1 to period-4 motions of the 3D brushless DC motor
are obtained. The solid and dashed curves represent stable
and unstable analytical solutions, respectively. “SN” and
“USN” represent stable and unstable saddle-node bifurca-
tion, respectively. “HB” and “UHB” are for stable and unsta-
ble Hopf bifurcation, respectively. P-1, P-2 and P-4 represents
period-1, period-2 and period-4 motions, respectively.

In Fig.1, global views of bifurcation trees of analytical
solutions of period-1 to period-2 and period-1 to period-4
motions of the 3-D brushless DC motor are presented for
Q € (2.5,7.5). In the interested excitation frequency range,
there are two bifurcation trees. The first bifurcation tree is
formed by independent analytical solutions of period-1 to
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FIGURE 1. A global view of the bifurcation trees of analytical solutions versus with excitation frequency of @ € (2.5, 7.5). (i) constant term ag;,
(i) harmonic amplitude A, ;, (iii) constant term ag;, (iv) harmonic amplitude A, ;, (v) constant term a3, (vi) harmonic amplitude A5 ;.

period-2 in 2 € (2.983, 3.178). The second bifurcation tree
is formed by independent analytical solutions of period-1 to
period-4 in Q € (5.457,7.193). In Fig.1 (i), the global view
of the constant term agf) of the analytical solutions of the
quadrature-axis i, current is presented. On left half plane of
Fig.1 (i), the analytical solution in terms of agf) has three
independent bifurcation trees of period-1 to period-2 motions
within Q € (2.983,3.082), (3.01, 3.118), (3.004, 3.178),
respectively. On the right half plane of Fig.1 (i), the ana-
lytical solution in terms of ag'f) has two independent

VOLUME 8, 2020

bifurcation trees of period-1 to period-4 motions within
Q € (5.457,6.517), (5.698, 7.193), respectively. In Fig.1 (ii),
the global view of the analytical solution in terms of harmonic
amplitude Ay, of the quadrature-axis current i, is presented.
The three independent analytical solutions of period-1 to
period-2 are clearly observed. The two analytical solutions
of period-1 to period-4 motions overlap with each other. The
detail excitation frequency ranges of analytical solutions are
presented in Table 1. In Fig.1 (iii), the global view of the
analytical solution in terms of ag;’) of the direct-axis current iy
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TABLE 1. Excitation frequency ranges of analytical solution in the 3D
brushless DC motor.

No. Frequency range Period
1 (2.983, 3.082) P-1to P-2
2 (3.010, 3.118) P-1to P-2
3 (3.004, 3.178) P-1to P-2
4 (5.457,6.517) P-1to P-4
5 (5.698, 7.193) P-1to P-4

is presented. Similarly with ag?), agg) only happen in limited

frequency range. The quantity level of ag;) is much bigger
than ag"f). The stability frequency ranges and bifurcation
points are the same with agf). In Fig.1 (iv), the global view
of the analytical solutions in terms of harmonic amplitude
Ay of the direct-axis current is presented. On left half
plane, three bifurcation trees of the analytical solutions of
period-1 to period-2 motions ovelap. On the right half plane,
the bifurcation trees of analytical solutions of period-1 to
period-4 motions can be clearly observed. A> ; has the same
stability and bifurcation points. In Fig,1 (v), the global view
. L. (m)
of the analytical solution in terms of ay;" of the angular
velocity w; is presented. In Fig.1 (vi), the global view of the
analytical solutions in terms of harmonic amplitude A3 ; of
the angular velocity w; is presented. a(()";) possesses the same
s (m)

curve pattern with ay . A3 1 possesses the same curve pattern
with Aq 1. aggl) and A3 have the same stability frequency
range and bifurcation points with agf).

In the nonlinear dynamic system of 3-D brushless DC
motor shown in (6), the quadrature-axis current i, direct-
axis current iy and angular velocity w,; have the same
stability frequency ranges and bifurcations. To avoid too
much illustration, only the bifurcation trees of the analyti-
cal solutions of the quadrature-axis current i, are presented.
In Fig.2 (i) and (ii), the zoomed views of the analytical
solutions in terms of the constant term agf) are presented for
Q € (2.95,3.22) and (5.00, 7.50), respectively. In Fig.2 (i),
the three bifurcation trees of the analytical solutions of
period-1 to period-2 motions are observed. In the lower
bifurcation tree of Fig.2(i), a saddle node bifurcation occurs
at Q = 3.082 which generates jumping. Two Hopf bifur-
cations occur at 2 = 2.986 and 3.077 where the stable
analytical solution of period-1 turns becomes unstable and
the analytical solutions of period-2 happens. Another two
Hopf bifurcations occur at at 2 = 2.993 and 3.073 where
the stable analytical solutions of period-2 becomes unstable.
The stable analytical solutions connect with the stable ana-
lytical solutions and they form close loops. In the middle
bifurcation tree of Fig.2(i), a saddle node bifurcation occurs at
Q = 3.177 and jumping phenomenon happens. A Hopf bifur-
cation occurs at 2 = 3.149 which turns the stable analytical
solution of period-1 to unstable and the analytical solution of
period-2 happens. In the cut bifurcation tree, a saddle node
bifurcation occurs at 2 = 3.591 which generates jumping.

129618

A Hopf bifurcation occurs at 2 = 3.598 which turn the
stable analytical solution to be a quasi-periodic solution.
At Q = 3.514, a Hopf bifurcation occurs which generates
period-doubling phenomenon that turns the analytical solu-
tion of period-1 to period-2. In Fig.2 (ii), the two bifurcation
trees of the analytical solutions of period-1 to period-4 are
observed. In the lower bifurcation tree, the stable analytical
solution becomes unstable after a saddle node bifurcation at
Q = 6.522. Two Hopf bifurcations occur at 2 = 6.426 and
Q = 6.385 which turn the analytical solution of period-1 to
period-2 and period-4, respectively. In the upper bifurcation
trees, a saddle node bifurcation occurs at 2 = 7.194 and
stable analytical solution becomes unstable. Two Hopf bifur-
cations occur at 2 = 6.521 and 6.473 where the analytical
solution of period-1 goes to the analytical solution of period-2
and the analytical solution of period-2 goes to the analytical
solution of period-4. In Fig.2 (iii), the analytical solution in
terms of the harmonic term Ay 1,4 is presented. The harmonic
term A1, 1,4 only appear for the analytical solution of period-4.
Two Hopf bifurcations occurs at 2 = 6.378 and 6.466
which will turn the analytical solution of period-4 to period-8.
InFig.2 (iv) and (v), the analytical solution in terms of the har-
monic term Ay 1,7 is presented. In Fig.2 (iv), three branches
of the analytical solutions of period-2 are clearly observed.
Ay,1/2 is the first harmonic term of the analytical solution
of period-2. The stable analytical solutions are connected
with the unstable analytical solutions at Hopf bifurcations.
In Fig.2 (v), two Hopf bifurcations at 2 = 6.385 and
6.473 turn the analytical solutions of period-2 to period-4.
Two unstable Hopf bifurcations at Q = 5.844 and 5.904
turns the unstable analytical solution of period-4 back to
period-2. In Fig.2 (vi), the analytical solution in terms of the
harmonic term A 3,4 is presented. Aj 3,4 has the same stabil-
ity and bifurcations with Ay 1 /4. In Fig.2 (vii), (viii) and (ix),
the zoomed views of the analytical solution of period-1 to
period-2 in terms of the harmonic term A ; are presented.
There are two bifurcation trees of the analytical solutions
in Fig.2 (vii). The upper bifurcation tree possesses two Hopf
bifurcations at Q = 2.986 and 3.077 which generate the
analytical solutions of period-2 from period-1. A saddle node
bifurcation at 2 = 3.082 connects the stable and unstable
analytical solutions of period-1. The lower bifurcation tree
in Fig.2 (vii) possesses one Hopf bifurcation at 2 = 3.149 for
period-doubling and a saddle node bifurcation at 2 = 3.177
for connecting the stable and unstable analytical solutions.
In Fig.2 (viii), the embedded window clearly shows the
bifurcation branches of the analytical solutions. Two Hopf
bifurcations at 2 = 3.05136 and 3.05141 are for turning
the analytical solutions of period-1 to period-2. One Hopf
bifurcation at Q@ = 3.0544 is for quasi-periodic analytical
solutions. Fig.2 (ix) shows the zoomed view of two bifurca-
tion trees of the analytical solutions of period-1 to period-4.
The stability and bifurcations are the same with aonf) when
Q € (6.3, 6.6). In Fig.2 (x), (xi) and (xii), the zoomed views
of the analytical solution of period-1 to period-2 in terms
of the harmonic term A are presented. Ay o in Fig.2 (x)
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FIGURE 2. (Continued.) The bifurcation trees of analytical solutions versus with excitation frequency of the quadrature-axis current ig:
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FIGURE 2. (Continued.) The bifurcation trees of analytical solutions versus with excitation frequency of the quadrature-axis current ig: (i) constant
term ag, (1); (ii) constant term ag,; (2); (iii) harmonic amplitude A, ; 4; (iv) harmonic amplitude A, ; >(1); (v) harmonic amplitude A, ; (2);

(vi) harmonic amplitude A; 3 4. (vii) harmonic amplitude A; ;(1); (viii) harmonic amplitude A, ;(2); (ix) harmonic amplitude A, ;(3); (x) harmonic
amplitude A; ,(1); (xi) harmonic amplitude A; ,(2); (xii) harmonic amplitude A; ,(3). (xiii) harmonic amplitude A; 5(1); (xiv) harmonic amplitude

A, 3(2); (xv) harmonic amplitude Ay 5(3); (xvi) harmonic amplitude A; 79,4(1); (xvii) harmonic amplitude A; 3¢(1); (xviii) harmonic amplitude A; 5¢(2).

possesses the same stability and bifurcations with Aj
in Fig.2 (viii). A2 in Fig.2 (xi) possesses the same stability
and bifurcations with Ay ; Fig.2 (vii). A1 2 in Fig.2 (xii) pos-
sesses the same stability and bifurcation with ag’f) Fig.2 (ii).
In Fig.2 (xiii), (xiv) and (xv), the zoomed views of the
analytical solution of period-1 to period-2 in terms of the
harmonic term A 3 are presented. Aj 3 in Fig.2 (xiii) pos-
sesses the same stability and bifurcation with A1 ; Fig.2 (viii).
A1 3 inFig.2 (xiv) possesses the same stability and bifurcation
with Ay ; Fig.2 (vii). A 3 in Fig.2 (xv) possesses the same
stability and bifurcation with agi’) Fig.2 (ii). To avoid over
illustration, the analytical solution in terms of the harmonic
term A1 79,4 is presented. A 79,4 has two Hopf bifurcations at
Q = 6.378 and 6.466 and has the quantity level of 1 x 1074,
In Fig.2 (xvii) and (xviii), the zoomed views of the analytical
solution in terms of the harmonic term Aj ¢ are presented.
In Fig.2 (xvii), the three bifurcation trees of the analytical
solutions of period-1 to period-2 become more complicated.
A1.20 has the quantity level of 1 x 1072, In Fig.2 (xviii),
the saddle node and Hopf bifurcation points are clearly shown
in the embedded window. A 2o possesses the same stability
and bifurcation points as Aj,; within the same corresponding
frequency range. From the above discussion, at least 40 har-
monic terms are needed for the analytical solution of period-1
to period-2 to reach the accuracy of 1 x 1072 within Q €
(2.95,3.22), and at least 80 harmonic terms are needed for
the analytical solution of period-1 to period-4 to reach the
accuracy of 1 x 1073 within Q € (5.0, 7.5).

IV. NUMERICAL ILLUSTRATIONS

In this section, the numerical illustration of the analytical
solutions in the 3-D brushless DC motor are presented via
mid-point integration method for verification the analytical
solutions. Numerical illustrations of stable analytical solu-
tions of period-m (m = 1,2 and 4) are completed. The
initial conditions for numerical illustration are extracted from
the analytical solutions listed in Table 2. In the following

VOLUME 8, 2020

TABLE 2. Initial conditions and input data for numerical simulations.

No. Q Initial condition Stability
1 6.45 (2.947755,66.370974,19.216232) stable P-1
2 6.40 (1.172633,66.543098,18.612383) stable P-1
3 6.381 (1.651893,66.351656,19.005615) stable P-1

figures, the analytical solutions are depicted by circular sym-
bols. Numerical solutions are depicted by solid curves. Initial
conditions and starting points of each period are labeled as
“I.C.” and “mT” (m =1, 2 and 3).

A stable analytical solution of period-1 of the 3-D brush-
less DC motor is illustrated for Q = 6.45 in Fig.3.
The initial conditions for numerical illustration are Iy =
(2.947755, 66.370974, 19.216232)T. The iq—1iq plane (iy, iq)
of the analytical solution of period-1 is presented in Fig.3
(i). For stable solutions, the analytical results have good
agreement with the numerical results. The i; — w; plane
(ig, w7) of the analytical solution is presented in Fig.3 (ii).
The analytical and numerical solutions match with each
other and they form a simple periodic orbit. The iy — w,
plane (ig, w;) of the analytical solution is presented
in Fig.3 (iii). With the initial conditions given, these orbits
can be reproduced by other numerical methods like ode45.
The iy — iy — w; 3D orbit (iy, iy, w;) of the analyti-
cal solution is presented in Fig.3 (iv). The agreement of
the analytical and numerical solutions can be observed.
To avoid too much illustration, only the harmonic amplitudes
of the analytical solutions of the quadrature-axis current
ig and direct-axis current iy are presented in Fig.3 (v).
For quadrature-axis current i (white), the constant term is
A10 = —aio =~ 0.1202. The main harmonic amplitudes
are Al,l ~ 6.4202,141,2 ~ 3.7882,A1,3 ~ 2.0872,A1’4 ~
1.9394,A15 ~ 0.4447,A16 ~ 04968,A17 ~ 0.2193,
A],g ~ 0.0965,14],9 ~ 0.0692,141,]() ~ 0.0253,141,11 ~
0.0165. The rest harmonic amplitudes are A;; €
(10719,107%) (j = 12, 13, - - - , 40). For direct-axis iy (gray),
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FIGURE 3. A stable analytical solution of period-1 of the 3D brushless motor at 2 = 6.45. (i) ig — iy plane (iq, ig), (ii) iq — . plane (ig, »:),
(iii) ig — @ plane (ig, o), (iv) ig — ig — @ curve (i, iy, wz), (v) harmonic amplitude A; ;, (vi) harmonic phase 0jjli=1,2;j=0,1,...,40).

Arp = azo = 59.0041,A>1 =~ 3.5550,A3, =~ 5.0133,
A2’3 ~ 3.0841,A2’4 ~ 0.7933,A2,5 ~ 1.0325,A2’6 ~
0.3284,A7 =~ 0.2201,A25 ~ 0.1290,429 ~ 0.0462,
Az 10 ~ 0.0346,A2 11 ~ 0.0146 and Ay € (10710,1072)
(G = 12,13, ---,40). The harmonic phases of the analytical
solutions of the quadrature-axis and direct-axis are presented
in Fig.6 (vi) with ¢;; € (0,27)(i = 1,2;j = 0,1, ---,40).
For such an analytical solution of period-1 with Q = 6.45,

40 harmonic terms are needed to reach the accuracy
of 1 x 10710,

129622

A stable analytical solution of period-2 for Q = 6.40
is illustrated in Fig.4. The initial conditions for numerical
illustration are I = (1.172633, 66.543098, 18.612383)".
The iy — iy, iy — w; and iy — w; planes (iff), iglz)), (igz), a)(rz))
and (i, ) are presented in Fig4 (i), (i) and (ii).
The numerical results match with the analytical results. The
period-doubling phenomenon can be clearly observed. The

ig — ig plane (i(qz) , iEiZ)) has double pattern of (iy, iz) shown

in Fig.3 (). The i; — w, plane (iflz), a)?) ) has double pattern
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FIGURE 4. A stable analytical solution of period-2 of the 3D brushless motor at 2 = 6.40. (i) ig — iz plane (i(z), i‘(f)), (ii) ig — o, plane (i(z), w?’),

(iii) ig — wr plane (P, o), @) ig - iy — wr curve (i, i, 0P

of (i, w;) shown in Fig.3 (ii). The iy — w; plane (if) , a)(fz))

has double pattern of (iy, w,) shown in Fig.3 (iii). The 3D

orbit (iéz), if), w?)) of the analytical solution of period-2 is

presented in Fig.4 (iv). The period-doubling phenomenon in
Fig.4 (iv) is obvious compared with (iy, iz, w.) in Fig.3 (iv).
The harmonic amplitudes of quadrature-axis iq2 are pre-
sented in Fig.4 (v). For igf), the constant term is Ay 02 =
—aﬁ%g) ~ 0.1340. The main harmonic terms are with Ay 1,7 ~
0.2555, Al,l ~ 6.2826,A1,3/2 ~ 0.6879,141,2 ~ 4.0259,

VOLUME 8, 2020

q q

) (v) harmonic amplitude A; ;, (vi) harmonic phase ¢; ;(i =1,2;j =0,1,---, 40).

Ayspp & 09492,A13 ~ 1.7698,A17/2 ~ 0.7161,A1 4 ~
1.9025. The rest harmonic terms are Ay j2 € (10710,109)
G = 9,10, ---,80) For iy, the constant term is Az 92 =
0(22,2) A 58.8945. The main harmonic terms are with A 1,2 ~
0.4564,A5 1 ~ 3.8573,A23,2 ~ 0.9063,A2, ~ 4.7583,
Az 50 &~ 0.8444,A2 3 ~ 3.1914. The rest harmonic terms
are Ay jp € (1071910%) (j = 7,8, -+, 80). The harmonic

phases for if,z) and ifiz) are presented in Fig.4 (vi) with ¢; ; €
©0,2m)i@ = 1,2;j = 0,1,---,80). Such an analytical
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solution of period-2 needs 80 harmonic terms to get appro-

priate accurate solution of accuracy ¢ < 1 x 10710,

In Fig.5, a stable analytical solution of period-4 is pre-
sented for 2 = 6.381. The initial conditions for numerical
illustration are I}’ = (1.651893, 66.351656, 19.005615)".
The iy — iy, iy — w; and iy — w; planes (i,(f), if;‘)), (i((f), w(,4))
and (iY?, 0!V are presented in Fig.5 (i), (ii) and (iii). The
numerical and analytical results match with each other.
The iy — iz plane (i514), ig)) has double pattern of (i;z), i;z))
in Fig.4 (i), quadruple pattern of (iy,ig) in Fig.3 (i).

129624

The i; — w; plane (ig”, w(,4)) has double pattern of (ig,z), w?))

in Fig.4 (i), and quadruple pattern of (iy, ;) in Fig.3 (ii).
The iy — w; plane (igl), a)§4)) has double pattern of (i;z), a)(rz))
in Fig.4 (iii), and quadruple pattern of (i, w.) in Fig.3 (iii).
The 3D orbit (i(q4), i(d4), a)§4)) of the analytical solution of
period-4 is presented in Fig.5 (iv). Similarly, (124) , iff), w(,4))
has the double pattern of (iff), ii,z), w(rz)) in Fig4 (iv),
and quadruple pattern of (iy, iz, w;) in Fig. 3 (iv).
The period-doubling phenomenon is clearly presented.
For such stable analytical solution of period-4, harmonic

VOLUME 8, 2020
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amplitudes of i£14) and i£14) are presented in Fig.5(v). For i£14),
the constant term is A g4 = —a(f% ~ (0.1352. The main har-

monic terms are A1)1/4 ~ 0.0299,’A1,1/2 ~ 0.3191, A1,3/4 ~
0.0732,141’1 ~ 6.2395, A1,5/4 ~ 0.0775,A1,3/2 ~ 0.8515,
A1’7/4 ~ 0.1950,A1,2 ~ 4.0169,A1,9/4 ~ 0.1353,A1,5/2
1.1804,A1,11/4 ~ 0.2470,A1’3 ~ 1.6658,A1,13/4
0.0813,A17,2 ~ 0.8775,A1,15/4 ~ 0.1606 and A 4
1.8312. The rest harmonic terms are Ay j4 € (10’10,100)
G = 17, 18,---,160). For iff), the constant term is
Az 0/4 = ag% ~ 58.8633, and the main harmonic terms are
Az 174 = 0.0497, A2 12 ~ 0.5695, A3 3,4 ~ 0.1539, A2 4
3.8807,142’5/4 ~ 0.1633,A2’3/2 ~ 1.1340,A2,7/4
0.2124,A2, =~ 4.6816,A29/4 =~ 0.1050,A25/
1.0414, A2 1174 ~ 0.2006 and A>3 ~ 3.1471. The rest har-
monic terms are Az j4 € (10719,10%) (j = 13, 14, - - - , 160).
The harmonic phases of iff) and i£14) are presented in Fig.5 (vi)
with ¢;; € (0,27)@ = 1,2;j = 0,1,---,160). For the
accuracy of ¢ = 1071, the analytical solution of period-4
needs 160 harmonic terms in the 3-D brushless DC motor
system.

QX

%

R R

%

V. CONCLUSION

In this paper, the analytical solutions of the 3-D brushless DC
motor are obtained through the generalized harmonic balance
method. The bifurcation trees of period-1 to period-2 and
period-1 to period-4 motions are achieved analytically. The
stable and unstable analytical solutions of period-2 motions
originated from the stable and unstable Hopf bifurcations
of period-1 motions are presented. The stable and unstable
analytical solutions of period-4 motions originated from the
stable and unstable Hopf bifurcations of period-2 motions are
presented. With the analytical solutions, initial conditions for
numerical illustrations are obtained and the dynamic char-
acteristics of the 3-D brushless DC motor are investigated.
From the analytical solutions, the bifurcation trees revealing
the relationship among the independent periodic motions are
depicted, which is difficult to be obtained by numerical meth-
ods. The close loop curves in harmonic amplitudes formed
by stable and unstable analytical solutions are observed. The
harmonic results indicate the analytical solutions turn to be
more complicated when the disturbance frequency closes to
zero. The numerical solutions have good agreement with the
analytical solutions. The analytical solutions obtained present
new insights of the complex dynamics of the 3-D brushless
motor.
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