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ABSTRACT Recently, agent-based software technology (ABST) has received widespread attention from
the research community and users. However, security issues facing ABST are critical. When a mobile
agent migrates from their home machine to perform tasks, the agent becomes vulnerable to attacks by the
destination machine, which has full control over the visiting mobile agent. To address this security issue,
we propose a dummy task selection (DTS) approach to protect the mobile agent by confusing the attacker
(destination machine) with regard to distinguishing the real task among dummy attacks. Considering that
side information may be employed by the attacker to perform advanced attacks, we introduce improved
DTS as an enhancement of the DTS approach. The improved DTS approach generates strong dummy tasks
based on execution probabilities that lead to the highest entropy. Unlike previous approaches, the improved-
DTS approach performs the full protection mechanism at the home machine, which in turn limits the ability
of the attacker to control the visiting mobile agent. Compared to previous approaches, both the DTS and
improved-DTS methods achieved better performance and higher resistance to advanced active attacks such
as alternation, collusion, and DoS attacks.

INDEX TERMS Agent, attack, destination machine, dummy, home machine, task.

I. INTRODUCTION
A. IMPORTANCE OF SOFTWARE AGENTS
One of the most important software technologies used to
manage and perform tasks over the Internet is agent-based
software technology (ABST). A software agent is defined
as an independent program that runs on behalf of a network
user [1], [2]. Compared to other technologies such asmessage
passing (MP) [3], remote procedure call (RPC) [4], and code
on demand (CoD) [5], ABST achieves better performance in
distributed systems in terms of scalability (for both increasing
numbers of users and sizes of data), manipulation (at both
access latency and tuning time levels), and network latency
[2], [6]. Moreover, ABST is highlighted in regard to solving
transmission challenges when addressing big data, especially
if the data are of images or videos [7], [8]. In other words,
instead of sending the big data to the processing machine,
an agent can be sent to the place where the big data are
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FIGURE 1. Solving transmission challenge by ABST.

located, therein processing the data locally and then returning
with the results only, which in turn contributes to reducing the
network overhead, as illustrated in Figure 1.

B. STATEMENT OF PROBLEM
Both the strengths and weaknesses of ABST come from
the features of the agent as follows: (1) Adaptability, which
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means platform independence, whereby the agent can be exe-
cuted on different machines with different operating systems;
(2) Transparency and accountability, which means that the
software agent runs on behalf of its owner, and the owner
can ask the agent about both its current location and what
has been accomplished; (3) Ruggedness, which enables the
agent to run given low or high resources, interpreting different
data formats; and (4) Mobility, which is a unique property of
this technology. This means that the agent can move from one
machine, called the homemachine (HM), to another machine,
called the destination machine (DH), performing a specific
task there and then returning to the original machine with
the results [9], [10]. In other words, the agent is goal driven.
Figure 2 illustrates the classical scenario of performing a
mission by an agent.

FIGURE 2. Classical scenario of performing a mission by an agent.

The first three features of ABST (i.e., adaptability, trans-
parency and accountability, and ruggedness) make it a pow-
erful technology. However, the mobility feature makes it
vulnerable to attacks from a security point of view. This is
because the migrated agent can be attacked by a man-in-the-
middle attack or even by another malicious agent. The secu-
rity problem is accentuated in regard to talking about the DM
as an attacker. Since the DM has full control over the visiting
mobile agent, it has the ability to tamper with the results of
the executed mission, which in turn leads to loss of result
integrity, or even the whole code (behavior of the agent).
Moreover, the attacker (DM) can apply advanced attacks,
such as alternation attacks [11], collusion attacks [12], [13],
and denial of service (DoS) attacks [2], [14]. Furthermore,
some malwares and advanced persistent threats can be easily
distributed to steal data from the visiting agents [15], [16].
This in turn makes solving the security issues facing ABST
pressing.

C. MOTIVATION
The importance of presenting an effective solution to ensure
the integrity of the results is highlighted when an agent
is used to perform sensitive tasks. For example, in smart
cities, where ensuring safety is very important, smart warning

systems (SWSs) are used to collect data about the bridges,
cranes, and swings in kids’ play areas, which are located in
different locations of the smart city [17], [18]. When using
agents to migrate to DMs (computers connected to cameras)
and a video magnification task [19]–[21] is assigned to the
agents to check if the vibration of the items is normal or not,
returning unmodified results is critical to the decision-making
center taking proper corresponding steps. If data are com-
promised, this can lead to disasters, and many people may
lose their lives. Figure 3 illustrates the key idea behind this
example.

FIGURE 3. Agent-based SWS in smart cities.

To protect mobile agents and to ensure the integrity of their
task results against malicious DMs, researchers have pro-
posed many approaches such as result partial encapsulation
(RPE) [22], obfuscated code (OC) [23], environmental key
generation (EKG) [24], co-signing [25], and fragmentation-
based encryption (FBE) [26]. However, the main drawbacks
of these techniques are related to their low performance and
high complexity since all of them (except for the EKG and
OC techniques) rely on encryption and decryption concepts.
Moreover, the malicious DM can keep a copy of the secret
encryption key, which in turn leads to a large security gap in
such approaches since the decryption process is performed
within the space of the hosted machine (i.e., the DM, which
is the attacker itself) [27]. The problem with the EKG-based
technique is related to generalization, where it limits the exe-
cution of the visiting mobile agent to the conditions that must
be satisfied on the DM side. In other words, it is unsuitable
for certain applications since it may lead to the blocking
of the execution of the visiting agent [28]. Furthermore, all
the approaches mentioned above suffer from low resistance
to advanced attacks, such as alternation attacks, collusion
attacks, and denial of service (DoS) attacks, according to
previous works [2], [28]. Beyond that, from a security point of
view, the whole protection mechanism should be performed
on the HM side (user or agent owner side). However, all
previous protection approaches have complementary parts
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that are executed at the DM such as the decryption process
in the FBR approach.

D. CONTRIBUTION
Since the visiting mobile agent is controlled by the DM and
that the task is executed within its space, one way to ensure
the integrity of the task’s results is to confuse the DM (as an
attacker) and prevent it from determining the executed task.
This can be achieved by executing dummy tasks so that the
attacker cannot recognize the real task among the dummies.
In this paper, we introduce a novel dummy-based approach
to protect mobile agents, which combines two main quality
attributes (high performance and high resistance to attacks)
and can be adopted with all agent-enabled applications. The
main contributions of this paper are as follows:
• To protect the behavior of the mobile agent as well as
ensure the integrity of the results, we propose a novel
protection approach for mobile agents called dummy
task selection (DTS). This technique relies on gener-
ating dummy tasks to be executed on the attacker side
(destination machine) so that the real task cannot be
recognized among the dummy tasks.

• Considering resistance against advanced attacks,
we improve the DTS approach. The improved DTS
approach generates strong dummy tasks based on both
the execution probability and the type of real task.

• We introduce a novel security metric to estimate the
protection level that is achieved. The security metric
mainly depends on the entropy to quantify the amount of
protection, therein considering the amount of violation
caused by the attacker side.

The remainder of the paper is structured as follows. The
related work is reviewed in section II. The system archi-
tecture along with the proposed approaches are presented
in section III. Section IV discusses the security analyses.
In section V, the metrics used are introduced, followed by the
experimental results and evaluations in section VI. Finally,
the paper is concluded in section VII.

II. RELATED WORK
In this section, we provide an overview of mobile agents and
their life cycle. Then, we review some security approaches
that were proposed to protect mobile agents.

A. OVERVEW OF MOBILE AGENT
As we mentioned earlier in the introduction section, the agent
has the ability to roam among differentmachines connected to
the internet called DMs. Therefore, the HM does not restrict
where it is written, as illustrated in Figure 4.

As shown in Figure 4, there is one HM and three differ-
ent DMs, and each machine has its own operating system
(OS) and hardware (HW) specifications. The mobile agent
is created (or written) by the owner at the HM using an
agent manager, which is uniform and must be installed on
all machines. Several agent managers, such as Concordia,
Java Agent Development Framework (JADE) and Agelets,

FIGURE 4. Migration of mobile agent.

FIGURE 5. Life cycle of the mobile agent.

are available. Using an agent manager and after agent cre-
ation, an itinerary that includes DMs is defined, as well as the
mission that will be executed there. According to this, three
main stages are involved in the lifecycle of the mobile agent,
creation, migration, and termination, as shown in Figure 5.

If the mobile agent safely returns to the HM, the termina-
tion is performed by the owner of the agent; otherwise, it is
killed or blocked by a visited DM (i.e., it is attacked).

B. PROTECTING MOBILE AGENT
In the security field of ABST, researchers have classified
security approaches into two main categories according to
the surveys conducted in the works [2], [28]: (1) protecting
agent platform (PAP) and (2) protecting mobile agent (PMA)
approaches. Table 1 shows the main difference between the
two categories.

TABLE 1. Security approaches classification.

Since we are concerned in this work about the PMA cat-
egory, we review some related approaches. The key idea
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FIGURE 6. General architecture of some PMA approaches.

of each approach reviewed in this section is to equip the
agent manager with a specific module that is responsible
for applying the intended protection approach, as shown in
Figure 6.

1) RESULT PARTIAL ENCAPSULATION (RPE)
This technique is designed to detect any changes that might
occur regarding the results of an executed task at a DM by
a mobile agent. To end this, the results are encapsulated
so that a verification step is performed later at the HM to
provide proof that no change was performed by an attack.
This technique is applied to the agent’s code to provide con-
fidentiality using encryption based on a secret key. Relying
on the RPE technique, Yee at el. proposed the approach
in [22]. The key idea is to have a list of secret keys stored
within the mobile agent, used for encryption, such that each
key is related to a specific DM. In the current DM, the agent
uses the corresponding secret key to generate a message
authentication code (MAC). Then, encapsulating the MAC
with amessage that represents the results of the task execution
generates a partial result authentication code (PRAC). There-
fore, encryption, decryption, and authentication modules are
used to support the agent manager (JADE in Figure 6 above).

2) COSIGNING
This technique relies on hiring an external trusted party to
co-sign the migration of the agent. The key idea of the work
proposed by Linna and Jun [25] is that after producing the
results, the DMs encapsulate them with information about
the task performed by the mobile agent. Then, the entire
encapsulated package is encrypted and sent to the next DM.
When the mobile agent reaches the next DM, a compari-
son is performed between the generated results and the task
information to discover any attack that may have occurred.
Therefore, encryption and decryption modules are used to
support the agent manager.

3) FRAGMENTATION BASED ENCRYPTION (FBE)
This technique proposed by Srivastava andNandi [26] aims to
enhance the performance, where only the sensitive data that
may be exploited by a DM are first extracted. Then, these sen-
sitive data are encrypted. Finally, the encrypted sensitive data
are randomized so that only the agent knows the process of

backing the correct order. When execution at the DM occurs,
the agent uses the same randomization key (i.e., the seed) to
retrieve the correct ordering of all code bytes as well as the
results when returning to the HM. Therefore, similar to the
co-signing approach, encryption and decryption modules are
essential.

4) OBFUSCATED CODE (OC)
In this technique, the mobile agent travels through a series of
DMs of different trust levels. To ensure that no DM is able to
extract sensitive data hidden in the code (such as the secret
key or credit card numbers), the behavior of the mobile code
is protected. The key idea is to perform some obfuscating
transformations on the code before actual execution so that
the code cannot be understood by the malicious DM. Based
on the obfuscation code technique, Badger et al. [23] pro-
posed a black-box security approach to preserve the behavior
of the code. They obfuscated the data structure used within
the code without modifying the code itself. Therefore, the
agent manager is supported by an OC module.

5) ENVIRONMENTAL KEY GENERATION (EKG)
This technique relies on the principle that ‘‘the execution
is not allowed unless some environmental conditions are
satisfied at the DM’’. In [24], the authors defined the environ-
mental conditions as matching a specific search string. When
this condition is true, an activation key is performed to allow
the execution. The activation key function is hidden within a
file system. Therefore, an EKG module is needed to support
the agent manager.

III. THE PROPOSED SYSTEM ARCHETECTURE
This section is organized so that the threat model is pre-
sented first. Then, the main proposed approach is introduced.
Finally, an enhancement of the main approach is provided.

The general architecture of the proposed system is illus-
trated in Figure 7.

FIGURE 7. General architecture of the proposed system.

As shown in Figure 7, the agent manager is supported by
a dummy generation module. This module is responsible for
generating dummy tasks to be executed at the DM. The final
goal of this module is to protect the behavior of the agent
(i.e., the code of the real executed task, referred to as the
integrity of execution) as well as ensure the integrity of the
results.
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A. THREAT MODEL
The attacker is the DM at which the task of the visitingmobile
agent is executed, as shown in Figure 8 below.

We consider the side information possessed by the attacker.
This term refers to the fact that the attacker knows the
behavior of the agent (i.e., the loops, if-then-else and other
statements included in the code of the executed mission) as
well as the frequency of the executed task. Based on this side
information, the objective of the attacker is to tamper with
the code of the executed task or to modify the results of the
execution. To end this, we assume that the attacker has capa-
bilities to perform different attacks, which are summarized
in Table 2.

TABLE 2. Cababilities of the attacker.

In an alternation attack, the malicious DM targets either
the execution integrity or the result integrity of the task.
Figure 8 illustrates the main concept of the alternation attack.

FIGURE 8. The attacker.

An alternation attack can be converted into a more dan-
gerous attack, called a collusion attack [2], [28]. In collusion
attacks, two malicious DMs (or more) collude to mod-
ify the results. Formally, let (n) denote a number of DMs
(DM1,DM2, . . . ,DM(n-1),DMn), which form a series of
malicious DMs. Let (Resi,RẽsAi) denote the original result
of the executed mission and the attacked mission (or modi-
fied) by the ith DM, respectively. Then,

RẽsA1 = RẽsA2 = · · · = RẽsAi | 0 < i ≤ n (1)

In other words, the HM is tricked when receiving the same
modified results generated at the malicious DMs. Therefore,
each DM involved in the malicious series is seen as honest
in the eyes of the HM. Figure 9 illustrates the concept of the
collusion attack.

In a DoS attack, the mobile agent performs a task referred
to as a time-sensitive task TST . The TST is attached to

FIGURE 9. Concept of the collusion attack.

a deadline (Tdl), and both of them are carried by the mobile
agent to be executed at the DM within the period of the Tdl .
The result of the TST becomes invalid if the execution time
of the TST exceeds the predefined Tdl even if it is correct
(i.e., it was not modified) [2], [28]. Therefore, the goal of the
malicious DM is to lengthen the execution time or modify Tdl
to (T̃dl), as shown in Figure 10.

FIGURE 10. Concept of DoS attack.

B. ROLE OF DUMMY GENERATION MODULE
The final goal of our proposed module is to generate strong
dummy tasks to be executed at the DM, which in turn aims
at guaranteeing both the execution integrity and the result
integrity of the visiting mobile agent. Executing dummy tasks
along with the real tasks limits the ability of the attacker to
recognize the real code (or the actual generated result) among
the dummies for malicious modification purposes. To this
end, the dummy generation module applies an enhanced
dummy task selection approach (improved DTS) to select
strong dummies. We first introduce the DTS approach and
then the improved-DTS approach, as described below.
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1) DUMMY TASK SELECTION (DTS) APPROACH
Definition 1: DBhistoricaltasks refers to a database at the HM. The
database includes historical tasks that have been executed at
different DMs. Formally, it is given by the following formula:

DBhistoricaltasks =

i=1⋃
i=m

Taskm, m = size (DB) (2)

Definition 2. Taskref ,DM
i

freq,dl refers to a task stored in the pre-
vious DB. Each task is modeled so that it includes historical
information. This historical information mainly includes the
frequency of the execution of the task (freq) and at which ith

DM is executed. (ref ) is used to distinguish the task, and (dl)
is used to mark the task as a normal task or time-sensitive task
as follows:

Taskref ,DM
i

freq, dl =

{
NT , if dl = ∞
TST , if dl = value

i = 1, 2, . . . , or n

(3)

Here, each DM has a number of tasks that are performed
within its space previously, and each task has its own fre-
quency number. All of this information is stored in a DB at
the HM side. Figure 11 illustrates the idea.

FIGURE 11. DB of historical tasks.

In Figure 11, Task005, DM
2

7, ∞ and Task017, DM
5

5, ∞ refer to two
normal tasks that are executed at DM2 and DM5, and, in the
past, they were executed seven and five times, respectively.
Task Task032, DM

4

3, 3 sec is an TST executed at DM4 three times in
the past, and dl = 3 sec.
Definition 3: For a given number of tasks (α) that are

executed at the ith DM and recorded in DBhistoricaltasks , each task
has an execution probability denoted as (ExeP). Then, from a
mathematical point of view,

α∑
j=1

ExePj = 1 (4)

According to the ith DM, the tasks differ or may be equal
in terms of ExeP, as shown in Figure 12.
In Figure 12, the historical tasks executed at DM-2 have

different execution probabilities, which are represented by the

FIGURE 12. Tasks executed at DM-2 with execution probabilities.

separated column. For example, among the α tasks, there are
18 tasks coloured yellow, and each task has the same query
probability (0.0028).
Definition 4: (γ − anonymity) refers to the anonymity set

that protects the real task. Formally, for the γ tasks, executed
at the ith DM, which includes a real task and (γ − 1) dummy
tasks, each task has a conditional probability of being a
real executing task. Let ExePj (j = 1, 2, . . . , γ ) denote the
probability that the jth task is the real executing task; then,

ExePj =
ExePj
γ∑
j=1

ExePj

(5)

According to Shannon’s principle [29], stemming from
information theory, the entropy (ε) of identifying the real task
out of the anonymous set is given as

ε = −

γ∑
j=1

ExePj × log2(ExePj) (6)

Definition 5: (RaSdummytasks ) refers to a set of (γ − 1) dummy
tasks that are selected from the α tasks that were executed at
the ith DM. Formally, this is given as

RaSdummytasks =



Dtask
Taskref ,DM

i

freq,dl
1

Dtask
Taskref ,DM

i

freq,dl
2

. . . ..

Dtask
Taskref ,DM

i

freq,dl
γ−1


(7)

The DTS approach forms the RaSdummytasks , where it selects
the tasks randomly without further considerations. For a real
task (ReTaskref ,DM

i

freq, dl ) that is intended to be executed at the
ith DM, the DTS approach selects (7) dummy tasks to achieve
(8 − anonymity) protection level, as shown in Figure 13
(DM i

= DM2).
As shown in Figure 13, the real task (coloured by green)

falls in a yellow cell, which means that its execution prob-
ability is 0.0028. The DTS randomly selects seven dummy
tasks (coloured by red), where none of the dummy tasks have
the same execution probability as the real one.

When the mobile agent migrates to a malicious DM
(attacker), executing the anonymous set there in parallel,
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FIGURE 13. Generating dummy tasks by the DTS approach.

FIGURE 14. Ensuring the integrity of both the execution and results by
the DTS approach.

the attacker cannot recognize the real task among the dum-
mies. This means that the execution integrity is protected
since the attacker cannot distinguish the behavior of the real
task. This in turn leads to the generated real result being sur-
rounded by dummy results, and the attacker cannot determine
the correct results for modification (i.e., the result integrity is
ensured). Figure 14 illustrates this idea.

Algorithm 1 shows the steps of the DTS approach.

Algorithm 1 Dummy Task Selection
Input: execution probabilities ExeP, γ value, real

task ReTaskref ,DM
i

freq, dl

Output: dummy task set (RaSdummytasks )
1: RaSdummytasks = φ

2: for(j = 1; j ≤ γ − 1, j++) do
3: begin
4: randomly select Dtaskj

∣∣Dtaskj ∈ DM i

5: add Dtaskj to the RaSdummytasks
6: end
7: output: RaSdummytasks

Since the attacker possesses the side information men-
tioned in the threat model above, the frequency of execu-
tion of each task can be employed to infer the real task as

well as apply some analysis to the executing tasks. To avoid
this and to achieve greater defenses against malicious DMs,
we enhance the DTS approach, as explained below.

2) IMPROVED-DUMMY TASK SELECTION
(IMPROVED-DTS) APPROACH
The key idea of enhancement is to consider two factors:
(1) selecting the dummies so that the execution probabil-
ities of each dummy are the same as the real task and
(2) selecting the dummies that have the same type of real task
(i.e., normal or time-sensitive task).

For the first factor, since a larger entropy value leads to
a higher uncertainty in identifying the real task from the
dummy tasks, our goal is to achieve the highest entropy value.
The maximum entropy value is achieved when all (γ − 1)
dummy tasks are treated as the real task (i.e., all of them have
the same execution probability). The maximum entropy value
is given as

εmax = log2 (γ ) (8)

Definition 6: (CaSdummytasks ) refers to a set of (β) candidate
dummy tasks that have the same execution probability as the
real task (regardless of the type of task). From amathematical
point of view, forming the CaSdummytasks set is considered an
objective optimization problem. It is generated from the α
tasks that were previously executed at the ith DM, where
β ≤ α . Thus, the candidate dummy tasks are given by

CaSdummytasks = arg max

−
β∑
j=1

ExePj × log2(ExePj)

 (9)

Figure 15 illustrates building the candidate dummy tasks
based on the maximum entropy.

FIGURE 15. Generating the candidate dummy set by the improved DTS
approach.

As shown in Figure 15, the real task (coloured by green)
falls in a yellow cell, which means that its execution proba-
bility is 0.0028. The improved DTS forms the candidate of
the dummy set by selecting all the tasks that fall in yellow
cells (β = 17 dummy task).
Since each task included in the CaSdummytasks set is of the

normal task type or time-sensitive task type, the CaSdummytasks
set must be filtered to obtain only the tasks that agree with
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the type of the real task. This means that the second factor is
considered in the improved DTS approach.
Definition 7: (SCaSdummytasks ) refers to a second set of (δ)

candidate dummy tasks that have the same execution prob-
ability as well as the same task type as the real task. For a
givenCaSdummytasks set, the SCaSdummytasks set is formed by selecting
δ candidate dummy tasks out of the β candidate dummy
tasks based on the value of the deadline (dl) of the real task.
Formally, for a given real task (ReTaskref ,DM

i

freq, dl ), SCaSdummytasks
is defined as

SCaSdummytasks =

δ⋃
k=1

(Taskref ,DM
i

freq, dlk ∈ CaS
dummy
tasks ) | dlk = dlreal

(10)

Figure 16 illustrates building the second candidate dummy
tasks based on the type of real task.

FIGURE 16. Generating the second candidate dummy set by the improved
DTS approach.

In Figure 16, among the tasks (β = 17 dummy task)
located in Figure 15, five cells are filtered because they do
not match the type of the real task. The improved DTS forms
the second candidate of the dummy set by selecting the tasks
that fall in yellow cells whose type also matches the type of
the real task (δ = β – 5 = 17–5 = 12 dummy tasks).
Definition 8: (FSdummytasks ) refers to the final set of dummy

tasks that will be executed at the malicious DM along
with the real task. To achieve a desired protection level
(i.e., γ − 1 anonymity level), the FSdummytasks set is generated
by randomly selecting the (γ − 1 ) dummy task from the
SCaSdummytasks set. This is defined as

FSdummytasks =

γ−1⋃
d=1

rand (Taskref , DM
i

freq, dld ∈ SCaSdummytasks ) (11)

After forming the final set of dummy tasks, they will
be executed at the DM. According to this execution event,
the execution probability of each task involved in the execu-
tion event changes (i.e., the tasks included in the final set of
dummy tasks). Due to this change, the execution probabilities
of the tasks that are not selected to be involved in the execu-
tion event also change. In other words, the execution proba-
bility of all tasks changes dynamically with the execution of

each task. Depending on the frequency of the execution of the
task ( freq), we model this issue mathematically.

Originally, for a given task executed previously (freq = n)
in the second destination machine DM i=2, which contains α
tasks, the set ExeP is defined according to its frequency as

ExeP(task) =
n

α∑
k=1

freqk

(12)

Let cur(freq) and fut(freq) refer to the current frequency
and the future (after execution event) frequency of a task,
respectively. The future frequency for each task is defined as

fut(freq) =

{
cur(freq)+ 1, task ∈ FSdummytasks

cur(freq)+ 0, task /∈ FSdummytasks

(13)

For generalization, the execution event causes a change in
the execution probability of other tasks. Let ExePfuttask refer to
the future execution probability for a task. Then, it is defined
based on both the fut(freq) and the level of desired anonymity
(γ ) as

ExePfuttask =
fut(freq)

α∑
k=1

fut(freq)+ γ
(14)

Security Gap and Dummy Times: The improved DTS
approach has a security gap against DoS attacks. The attacker
can attempt to modify the deadlines of all the tasks (i.e., the
real and dummy tasks), making their execution time higher
than the longest deadline found in FSdummytasks . Using this
method, the attacker guarantees that the real task will defi-
nitely exceed its own deadline. To solve this problem, we rely
on the dummy term to regenerate the deadlines of the tasks.
The key idea is to make all deadlines of the tasks uniform
(the real tasks and those included in the FSdummytasks set). This
is performed according to the deadline of the real task so
that the uniform deadline will be equal to half of the origi-
nal deadline of the real task. Using dummy times (uniform
deadline) ensures robustness against the DoS attack because
the deadline of the real task cannot be recognized among
the dummy times. However, setting the uniform deadline as
half of the original deadline of the real task can be used as
a second level of protection against the DoS attack. In other
words, even if the attacker updated the uniform deadline by
duplicating it to enable the success of the DoS attack, this
malicious trail fails because the original deadline of the real
task will not exceed the modified deadline performed by the
attacker side.

Algorithm 2 shows the steps of the improved DTS
approach.

C. THEORETICAL ANALYSIS ON THE TIME COMPLEXITY
After sorting the tasks based on their query probability,
the algorithm needs to choose candidate tasks whose history
execution probabilities are similar to those of the real task.
In this work, we set the size of the CaSdummytasks to be double the
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Algorithm 2 Improved-Dummy Task Selection
Input: execution probabilities ExeP, γ value, real task

ReTaskref ,DM
i

freq, dl

Output: final dummy task set FSdummytasks
1: CaSdummytasks = SCaSdummytasks = FSdummytasks = φ

2: sort tasks based on their execution probability
3: while (DBhistoricaltasks 6= φ ) do
4: begin
5: select Dtskj

∣∣ (Dtskj ∈ DM i and
ExeP (Dtskj) = ExeP (ReTask))

6: add Dtskj to the CaSdummytasks
7: end
8: while CaSdummytasks 6= φ do
9: begin
10: select Dtskj

∣∣ type (Dtskj) = type (Retask)
11: add Dtskj to the SCaSdummytasks
12: end
13: for (k = 1; k ≤ γ − 1, k ++) do
14: begin
15: randomly select Dtskk |Dtskk ∈ CaSdummytasks
16: add Dtskk to the FSdummytasks
17: end
18: output: FSdummytasks

required level of security (i.e., the improved-DTS approach
chooses 2γ candidate tasks). In the 2γ candidate tasks, γ −1
tasks are randomly selected. Then, the approach derives ∂
sets, and each set contains γ tasks. For each set, one task is
real, and the other γ − 1 tasks are randomly chosen from the
2γ candidates. In this context, ∂ = Cγ−12γ , and the entropy
for the jth(j ∈ [1, ∂]) set can be calculated according to
Equation (6). It is obvious that the greater the value of ∂
is, the higher the computational cost of the improved DTS
algorithm is. In addition, different values of ∂ may result in
different optimal task sets in the improved-DTS algorithm,
and the improved-DTS algorithm can obtain the optimal loca-
tion set when ∂ = Cγ−12γ . In terms of time complexity and
using the notations summarized in Table 3, we analyze the
performance of the improvedDTS algorithmwhen ∂ = Cγ−12γ
as follows.

1) BEST PERFORMANCE
∃i, j ∈ [1,N ],ExePi = ExePj(i 6= j) is the set ExeP.
We assume that for a particular task i the number of tasks
whose execution probabilities are the same as that of the real
task in the chosen candidate tasks is denoted by γ̂ . Since
ExePi = ExePj, the set ExePi, the procedure selected for
task i, is the same as the set ExePj, the procedure selected for
task j, in the improved-DTS algorithm. We then discuss the
performance of the improved DTS algorithm in the following
situations. When 1 ≤ γ̂ ≤ γ − 1, set Ci as the same
as Cj in the improved-DTS algorithm under the condition

TABLE 3. Key notations.

∂ = Cγ−12γ . In this situation, although the DM (attacker)
can infer the probability for a task selection, the DM cannot
know the real task. This phenomenon is observed because
there are other tasks whose execution probabilities are the
same as that of the real task. Moreover, the larger γ̂ is, the
better the performance of the improved DTS algorithm is.
When γ̂ ≥ γ , Ci may be different from Cj. This difference
is observed because randomly selecting γ − 1 tasks from the
γ̂ tasks whose execution probabilities are the same as that of
ExePi may yield the optimal task set. In this situation, since
each task has the same execution probability, the improved-
DTS algorithm achieves the best performance.

2) BAD PERFORMANCE
∃i, j ∈ [1,N ],ExePi 6= ExePj(i 6= j) is the set ExeP. Since
ExePi 6= ExePj, the set ExePi, the procedure selected for
task i, must be different from the set ExePj, the procedure
selected for task j. However, when ∂ ≤ γ − 1, Ci may be
the same as Cj, that is, the chosen optimal task set for task i
is likely to be the same as the chosen optimal task set for
task j. In this situation, although the DM may try to infer
which task is most likely to select this task set, the DM may
make an incorrect decision. The reason is that the optimal
task sets chosen by the procedure in other tasks are the same
as that of the real task. Moreover, the larger the number of
tasks whose chosen optimal task sets are the same as those
of the real task is, the better the performance of the improved
DTS algorithm is. However, if there is no task whose chosen
optimal task set is the same as that of the other tasks in the
set ExeP, then the improved-DTS algorithm will have bad
performance.

D. A SPECIFIC APPLICATION EXAMPLE OF DTS AND
IMPROVED-DTS APPPROACHES
To demonstrate a real application of the DTS and improved
DTS, we present a specific example of the DTS and the
improved-DTS in the medical domain. The reason for select-
ing the medical domain is that it contains both normal
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and time-sensitive tasks, which are suitable for a historical
database description. The patients whose medical cases are
critical are admitted to the intensive care room. The biological
signs of the bodies of such patients need to be monitored
throughout the period of medical care. There are important
medical signs that indicate the status of the body’s vital (life-
sustaining) functions, these include body temperature (BT),
blood pressure (BP), heart rate (HR), and breathing rate (BR).
Such vital functions represent medical time-sensitive tasks
and are required to be monitored periodically because a poor
status of a vital function reflects a bad indicator (i.e., the life
of the patient is threatened). Other functions are considered
normal medical tasks. Examples of normal medical tasks
include urine analyses and stool analyses. The following
figure shows real medical analyses (normal medical tasks).

FIGURE 17. Examples of real medical tests.

In Figure 17, there are 30 medical tasks (18 urine analysis
tasks and 13 stool analysis tasks). The result of each task can
be obtained using a mobile agent, for example, the level of
acidity in the urine (i.e., PH = 5 in the urine analysis).

In Figure 18 below, we arranged 26 normal medical tasks
similar to those shown in Figure 17 along with 4 time-
sensitive medical tasks in two tables that show the medical

FIGURE 18. Corresponding medical task frequencies and execution
probabilities.

tasks with the corresponding frequency and execution proba-
bility of each task.

Using the information in Figure 18, the DTS approach
selects dummy tasks randomly without taking into con-
sideration any factor in the selection process. In contrast,
the improved-DTS approach selects dummy tasks while con-
sidering two factors (execution probability and type of the
task). Suppose that we create a mobile agent with a task
related to finding the pH value of the urine, and the required
security level is 5 (i.e., anonymity level is γ − 1 = 4).
During execution, the DTS approach selects, for example, the
following dummy tasks: BP, Ova, Colour S, and Nitrite, with
the corresponding execution probabilities: 0.0336, 0.0268,
0.0403, and 0.0336, respectively. Based on the selected dum-
mies, the entropy value is

ε = −(0.0336× log(0.0336))− (0.0268× log(0.0268))

−(0.0403× log(0.0403))− (0.0336× log(0.0336))

−(0.0403× log(0.0403)) = 0.584

Since the improved-DTS selects the dummies such that
each dummy has an execution probability equal to that of the
real task, where any four tasks among the nine tasks available
in the medical data set can be chosen, the entropy value is

ε = −(0.0403× log(0.0403))− (0.0403× log(0.0403))

−(0.0403× log(0.0403))− (0.0403× log(0.0403))

−(0.0403× log(0.0403)) = 0.0403 = 0.648

By comparing the results generated by the DTS and
improved-DTS approaches, we can infer that the improved-
DTS is stronger than the DTS in terms of entropy.

The lower bound of the number of tasks in the historical
task database. It is worth mentioning that the level of danger
is high when only one existing task matches the criteria of
the improved-DTS approach. This is because the probability
of determining the real task as opposed to a dummy task is
50 %, which is notably high. In addition, it is obvious that
as the number of dummy tasks increases, the probability of
recognizing the real task decreases. This leads to the creation
of a lower bound on the number of tasks in the historical
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task database. Since the final set of dummy tasks is formed
by randomly selecting the dummy tasks from the second
candidate dummy set, then

size(SCaSdummytasks )〉size(FSdummytasks ) (15)

where

size(FSdummytasks ) = γ − 1 (16)

In terms of the sizes, the lower bound (Boundlower ) of the
number of tasks in the historical task database is determined
based on the following condition:

size(SCaSdummytasks )〉Boundlower ≥ γ (17)

In the case where the condition on the lower bound is
not satisfied, it is essential to generate additional imaginary
dummy tasks. This case will be considered in future work.

IV. SECURITY ANALYSIS
In this section, we discuss the resistance of the improved
DTS approach against the attacks included in the threat model
above. In addition, we address the process of reversing the
algorithm at the attacker side.

A. RESISTANCE AGAINST ATTACKS
The information possessed by the attacker includes the execu-
tion probability (ExeP) of each individual task and all γ tasks
(i.e., the γ − 1 dummy tasks included in the FSdummytasks set as
well as the real task). The key to the success of alternation,
collusion, and DoS attacks is to determine the real task suc-
cessfully, which is followed by malicious actions. Let PeGuess
denote the probability that the attacker can successfully guess
if the event e is true. Then, an approach is resistant to attacks if

P
e1=Taski ∈FS

dummy
tasks

Guess = P
e2=Taskj ∈FS

dummy
tasks

Guess ∀ (0 < i 6= j≤γ )

(18)

Proof: The attacker cannot obtain any benefit from
employing the ExeP to determine the real task. This is
because the process of selecting the dummy tasks depends on
the same values of the ExeP. This problem (i.e., determin-
ing the real task among the dummies) will be accentuated
at the attacker’s side since all tasks are of the same type.
Therefore, the probability of successfully guessing the real
task is 1

γ
, where this value is the same for all executed tasks

at the attacker’s side. Thus, the only choice for the attacker
is to guess the real task in a random manner. Guessing the
real task randomly means being unable to identify the real
result (generated by the real task) among the dummy results
(generated by the dummy tasks), which in turn means that the
attacks fail. It is worth mentioning that even if the attacker
attempts to apply some time-based analysis, no benefit is
gained since all tasks have the same deadline.

B. REVERSING THE ALGORITHM
We assume that the attacker knows the proposed algorithm of
the improved DTS approach; therefore, he/she may attempt
to reverse the algorithm, but this will fail. This is because
the content of the FSdummytasks set is generated randomly. This
randomization used to construct the actual dummy tasks
guarantees the uncertainty of the selection, which, in turn,
leads to uncertain dummy selection results. As a result, even
if the attacker runs our proposed algorithm several times,
he/she cannot infer the real task and, of course, the real
corresponding result.

C. SPECIAL CASE
In the case of an existing DM, the tasks in the HM that are
collected are almost the same as the tasks in the historical
task database, and the probability of the DM identifying the
real task depends on pure random guessing. This is because
the content of the FSdummytasks set is generated randomly. This
randomization used to construct the actual dummy tasks
guarantees the uncertainty of the selection, which, in turn,
leads to uncertain dummy selection results. Mathematically,
the probability of identifying the real task is

pro =
1

size(dataset)
(19)

where size(dataset) refers to the number of tasks located at
the DM. As a result, the method is considered safe from a
mathematical perspective.

V. USED METRICS
In this section, we provide the metrics that are used for
evaluation purposes. Two types of metrics are used in this
work: security metrics and performance metrics.

A. SECURITY METRICS
We consider the user, who wants to protect the sending agent
(or the agent’s own side), as well as the attacker’s side.

For the agent’s side, since the entropy ε measures the
uncertainty of determining the real task among the dummy
tasks, we employ it as a security metric to quantify the pro-
tection level that is achieved. A higher entropy value means
a higher security protection level and vice versa. The entropy
is identified by equation 6 above.

For the attacker’s side, we define the level of violation
(LoV ) metric. The LoV metric is derived from the entropy
as follows. The highest entropy value (i.e., the optimal value)
that can be achieved is εmax = log2 (γ ), which is achieved
when all the executed dummy tasks have the same probability
of being treated as the real task. If the agent’s owner achieves
an entropy value ( ε̂ ) that is less than εmax, then the attacker
succeeds in violating the defense by

LoV = log2 (γ ) − ε̂ (20)

Figure 19 illustrates the key idea of the level of violation
metric.

129330 VOLUME 8, 2020



B. Alluhaybi et al.: Dummy-Based Approach for Protecting Mobile Agents Against Malicious Destination Machines

FIGURE 19. Level of violation LoV metric.

It is obvious that a higher LoV value means a lower resis-
tance against attacks and vice versa.

B. PERFORMANCE METRICS
Wemeasure the performance in terms of time. In this context,
we consider the processing time spent in both the home
machine and destination machine. We define the following
times:

1) THMproc denotes the time spent at the HM, including
the time of creating the agent, time of defining the
itinerary, and any other time needed for the protection
mechanism.

2) TDMproc denotes the time spent at the DM, including the
time needed for the protectionmechanism and the delay
spent starting execution.

3) T taskexe denotes the time spent at the DM to execute the
task performed by the agent.

4) T
agent
sent

5) denotes the time required to send the agent to the DM
(i.e., migration).

6) T
agent
recieve denotes the time required to receive the agent at

the HM (i.e., migration back).
Then, the total time required from the moment of creating

the agent to the moment of receiving the results is given by

T
agent
total = THMproc + T agentproc + TDMproc + T taskexe + T

agent
recieve (21)

To generalize the total time to be suitable for other pro-
tection mechanisms, we ignore the T

agent
sent , T taskexe , and T

agent
recieve

times because they are not related the protection mechanism
being applied. In other words, we include only the time
required to perform the protection mechanism at the HM and
the DM. Thus, the total time will be as follows:

T
agent
total = THMproc + TDMproc (22)

In practice, as the total time decreases, a better perfor-
mance is achieved.

VI. EXPERIMENTAL RESULTS AND EVALUATIONS
We implement the proposed system on the Aziz supercom-
puter available at King Abdulaziz University, Jeddah Saudi
Arabia, to enable parallel execution. The Aziz supercomputer
has the specifications summarized in the following table.

An artificial medical database, which consists of
10,000 records, is used. Each record represents a task that
contains the following fields:

TABLE 4. Key notations.

1) freq represents the frequency of the execution of the
task.

2) ref represents the ID of the task.
3) dl represents the deadline of the task and is used to

determine whether the task is a normal task or a time-
sensitive task.

4) DMi represents the destination machine where the task
is executed.

5) ExeP represents the execution probability of the task.

The normal tasks are related to performing certain queries
regarding a diagnosis, collecting information, or reporting the
cases of the patients.

Time-sensitive tasks are related to critical medical situa-
tions that threaten the lives of patients and require immediate
information about such measurements as heartbeat, blood
pressure, and temperature. More than 1000 tasks are executed
and stored in the database as historical tasks. In addition,
TSTs are performed, therein exploiting the multiple GPUs
contained in the Aziz supercomputer. The TSTs used in the
system are inspired by ref [19] for adaptation in the medical
area. The execution probabilities are generated randomly and
associated with the tasks.

We select the fragmentation-based encryption (FBE) and
the obfuscated code (OC) approaches for comparison pur-
poses with the DTS and the improved-DTS approaches in
terms of dummy sets. This is because the code generated by
the OC-based approach can be considered as a dummy for the
real code, the same as with the fragmented code generated by
the FBE-based approach.

1) ENTROPY-BASED EVALUATION
Figure 20 shows the relationship between γ and the security
level.

Generally, the entropy increases as γ increases. This is
reflected in Figure 18 by both the DTS and improved-
DTS approaches. However, the improved-DTS approach per-
forms the best, overcoming the DTS approach, because it is
designed to achieve the highest entropy values based on the
same execution probability values. The DTS approach does
not consider the previous factor, where it selects the dummy
tasks randomly.

For the FBE and OC approaches, γ is limited to 2 because
each approach generates only one task code as a dummy of
the real task code. Both approaches retain the same value
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FIGURE 20. Entropy vs γ .

regardless of the increased γ value because the execution
probability value of the dummy task will be the same as
the real task. Therefore, the FBE, OC, and improved DTS
approaches achieved the same entropy value when γ = 2.
However, the DTS approach performs slightly poorer than the
other approaches when γ = 2 because the randomly selected
dummy task has a low execution probability compared to the
real task in the conducted experiment.

2) RESISTANCE IN TWO ATTACKS
In this context, we measure the robustness of the approaches
involved in the comparison against a mixture of alternation
and collusion threats. We use the LoV metric to measure the
resistance, where we define a threshold (LoV = 0.75) above
which the agent is considered at the danger level. A total
of 20 different tasks are used with a security level (γ = 6),
as shown in Figure 21.

FIGURE 21. LoV value for 20 tasks, γ = 6, threshold = 0.75.

As shown in Figure 19, most of the tasks that are performed
by the mobile agents and protected based on the FBE and
OC approaches are attacked by the destination machine. This
is mainly because these approaches can generate only one
dummy for each real task. The DTS approach outperforms
the OC and FBE approaches. This is because of the higher

value of the entropy, given that it generates five dummies.
This leads to most of the agents being safe and the corre-
sponding tasks not being attacked by the destinationmachine.
However, some agents were on the danger side since the
approach ignores the fact that the attacker may employ side
information (execution probability) for malicious purposes.
As a result, some of the chosen dummies may present a
very low execution probability and consequently are fil-
tered by the attacker. The improved-DTS approach performs
the best, where all agents exceeded the danger threshold.
This is because the approach generates five strong dummy
tasks based on both execution probability and type of task.
Thus, the improved-DTS approach has the highest resistance
against a mixture of both alternation and collusion attacks.
Compared to the improved-DTS, the DTS approach some-
times perform better. This phenomenon is attributable to the
pure-random selection in the DTS. It happens that by chance,
the execution probability of each selected dummy task is the
same as that of the real task, in addition, the dummy and real
tasks are of the same type. This is because the probability
of each dummy task being of the same type as the real task
is high (50 %) because we have only two choices (normal
task or time sensitive task). In such cases, if the execution
probability of the real task is originally high, the value of the
LoVwill be lower compared to the corresponding value when
applying the improved DTS. Table 5 summarizes the results
obtained from Figure 19.

TABLE 5. Resistance of approaches.

TABLE 6. Resistance-of-violation-based comparison.

Note that the resistance of both the OC and FBE
approaches depends on the value of the execution probability
of the current task. Therefore, the OC approach sometimes
outperforms the FBE approach and vice versa. We re-execute
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FIGURE 22. Resistance under mix of three attack methods, LoV = 0.75, dl = 60 m sec.

FIGURE 23. Total time analyses.

the experiments under different decreased threshold values
and different numbers of tasks, as shown in Table 6.

The results of Table 6 support those found in Table 5,
where both the FBE and OC approaches show the lowest
resistance against attacks, with 100% violation. Compared
to the improved-DTS approach, the DTS approach performs
poorly, with an increased violation percentage. The improved
DTS approach shows the best resistance, with a steady vio-
lation percentage. The last violation percentage (0.1) can
be justified by the success of recognizing some real tasks
among dummy tasks, and this success is due to pure random
guessing.

3) EVALUATION OF RESISTANCE TO THREE ATTACKS
In this context, we strengthen the power of the alternation and
collusion attacks by applying a DoS attack. We use both the
LoV security metric and T

agent
total performance metric in this

evaluation.
Ten TSTs are selected and tested under the thresholds

LoV = 0.75 and dl = 60m sec. Figures 22 (a) and (b) above
show the resistance against the three-attack mixture for the
OC and FBE approaches, respectively.

Both the OC and FBE approaches were attacked, and all
tasks exceeded both the predefined threshold of the LoV

and deadline. This is because the destination machines have
full control over the protection mechanisms executed at
their sides. In addition, due to only one dummy task being
generated, the probability of determining the real task is
high (50%). As a result, it is easy to tamper with the codes,
results, and deadlines of the visiting agents at the attackers’
side, leading to successful attacks.

To analyze the success of the DoS attack, Figure 23 above
provides insight into the total time on both sides THMproc
and TDMproc .
The time spent at the HM in both the OC and FBE

approaches is short compared to the time spent at the DM.
This is because the process of obfuscation of the code (in the
OC approach) and the process of extracting and encrypting
sensitive parts of the code (in the FBE approach) take some
time at the HM. In the ideal case (i.e., the DM is not mali-
cious), it is expected to spend approximately the same amount
of time reconstructing the real code (in the OC approach) and
extracting and decrypting the encrypted pieces of code (in the
FBE approach). However, there are two reasons behind the
long time spent at the DM: (1) it is easy for the malicious
DM to determine the real code, and (2) because the processes
of reconstructing and decrypting code are performed in the
space of the DM, the malicious DM has the ability to tamper
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FIGURE 24. Resistance under mix of three attack methods, LoV = 0.75, γ = 6, dl = 60 m sec.

FIGURE 25. Total time analyses.

with (or lengthen) the deadlines of the tasks. This results in
long delays before starting the execution of the tasks at the
DM, which in turn leads to the deadlines being exceeded and
thus the success of the DoS attack.

In Figure 24 above, the same ten tasks are protected
using the DTS and improved-DTS approaches and are tested
under the threat of three attack methods. The improved DTS
approach shows better resistance to alternation and collu-
sion attacks, where three tasks are attacked in the DTS
approach. For the DoS attack, we analyze the time spent at
both the HM and DM.

In Figure 25 above and for the DTS approach, the time
spent at the DM is long; thus, more than half of the tasks
(2nd, 3rd, 4th, 7th, 8th, and 10th tasks) exceeded the dead-
line, which reflects a low resistance to DoS attack. That is
because the deadline was not protected, and the malicious
DM has the ability to adjust the deadlines of all the tasks
(including the real one) according to the longest deadline
(which is originally longer than 60 ms) found in the dummy
tasks regardless of whether the real task is distinguished.
However, the dummy tasks contributed to protecting the four
tasks against the DoS attack by confusing the malicious DM
when determining the real task among the dummy tasks.
Compared to the DTS approach, the time spent at the DM

FIGURE 26. Performance of protection approaches, γ = 6.

for the improved-DTS approach is shorter, leading to a higher
resistance against DoS attack (actually, none of the tasks were
attacked). The underlying reasons for this are as follows:
(1) the malicious DM cannot recognize the real task (to tam-
per with its deadline) among the dummy tasks since all tasks
have the same execution probability and the same task type,
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FIGURE 27. Total time analyses without any threat.

FIGURE 28. Total time analyses without any threat.

and (2) all tasks have uniformed deadlines, which act as
dummy times to defend against DoS attacks.

Note that compared to the OC and FBE approaches,
the time spent at the HM in the DTS and improved-DTS
approach is longer. This in turn highlights an important
feature for our proposed approaches, which is having full
control over the protection mechanism at the user (owner
of the agent) side. This is because from a higher security
level perspective, it is preferred to apply the whole protection
mechanism at the user side rather than only a part of it. This
is to say that compared to performing the full protection
mechanism (i.e., generating all dummies at the HM in our
proposed approaches), the second part of the OC approach
(reconstructing the real code) and the second part of the
FBE approach (decryption of the encrypted pieces of the
code) are performed at the DM, which is the attacker. This
clearly justifies the higher level of protection in our proposed
approaches against potential attacks.

4) PERFORMANCE-BASED EVALUATION
In this context, we evaluate the four approaches without threat
of any attack. Using the T

agent
total performance metric, the same

ten tasks are tested, as illustrated in Figure 26.

Without any threat, the DTS approach performs the best
since it generates dummies directly without considering any
other factors. Compared to the DTS, the improved DTS per-
forms relatively poorly because it needs extra time to generate
strong dummy tasks based on the execution probability, type
of task, and deadline. The OC approach performs the worst
because it requires a long time to obfuscate the entire original
code and to reconstruct it at the DM. Compared to the OC,
the FBE approach performs better because the time needed
for encrypting the sensitive pieces of the original code and
decrypting it at the DM requires is shorter.

Without any threat, both the OC and FBE approaches are
returned to the ideal case, where the time spent at both theHM
and DM is approximately the same, as shownwhen analyzing
the total time in Figure 27 above.

The reason behind the results shown in Figure 27 is that
the reconstruction of the original code from the obfuscated
code requires almost the same amount of time in the OC
approach. The same scenario occurs in regard to encryption
and decryption processes in the FBE approach. However,
the scenario changes in our proposed approaches, as illus-
trated in Figure 28 above.

The time spent at the DM in both the DTS and improved
DTS approaches is very short compared to the time spent
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at the HM. This is because all protection approaches are
applied at the HM and because no other parts of the protection
mechanism are required at the DM, where very little time
is spent preparing the agents for execution. In other words,
the execution at the DM starts directly without any delays at
the DM. This in turn reflects the higher protection level in
terms of time because the time spent at the DM (attacker)
is very short, and, consequently, there is no chance for the
attacker to perform any malicious actions on the visiting
agents.

VII. CONCLUSION
In regard to managing and performing tasks over the inter-
net, agent-based software technology (ABST) is the most
popular framework. Due to the mobility feature, where an
agent can migrate from the home machine to the destination
machine to perform tasks, security issues are critical in this
technology. The security issue in ABST becomes critical
when the destination machine is the attacker, where it has
full control over the visiting agent. The results of executed
tasks may lose their integrity, the behavior of the agent may
be changed, and advanced active attacks, such as alternation,
collusion, and DoS attacks, may be applied by the attacker.
In responding to this issue, we present in this paper the
dummy task selection (DTS) and improved-DTS approaches.
From a historical database of tasks, the DTS randomly gener-
ates dummy tasks to protect the real task, aiming at confusing
the attackerwhen determining the real task among the dummy
tasks and limiting their ability to perform malicious actions.
The improved DTS aims at generating strong dummy tasks
based on three factors: (1) dummy tasks have the same exe-
cution probability as the real task, which in turn guarantees
the highest entropy; (2) dummy tasks are of the same type
as the real task (normal or time-sensitive task); and (3) the
deadlines of the dummy tasks are the same as that of the real
task. Based on the entropy, total time, and level of violation
(LoV)metrics and compared to well-known protection mech-
anisms, i.e., the obfuscation code (OC) and fragmentation-
based encryption (FBE), our proposed approaches showed
high resistance to advanced attacks and better performance.
In regards to the resistance against alternation, collusion, and
DoS attacks, the improvedDTS showed the highest resistance
according to the LoV security metric, where the percentage of
the violation predefined thresholds was 0 and 0.1 for the first
five trials and the sixth trial, respectively. In regard to perfor-
mance, the DTS was ranked 1st because it performed better
than the improved DTS. The root reason is that the improved
DTS handles more conditions to improve the security level.
In addition, considering the security issues in the context of
time, our proposed approaches spend the minimum amount
of time at the attacker’s side.

In future work, resistance against other advanced threats,
such as tailgating and blocking attacks, will be considered.
In addition, there is a trade-off between the performance and
the security level that is achieved. The higher the security
level is, the lower the performance is. This work largely

concerns the security issue. Therefore, poor performance
(i.e., increasing load) can be considered out of scope. Also,
a special case may be occurred if execution probability of the
historical task in the database is different with the real task.
In this case, creation of imaginary dummy tasks is considered
in future work.
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