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ABSTRACT Underwater images suffer from color cast and low visibility caused by the medium scattering
and absorption, which will reduce the use of valuable information from the image. In this paper, we propose
a novel method which includes four stages of pixel intensity center regionalization, global equalization
of histogram, local equalization of histogram and multi-scale fusion. Additionally, this method uses a
pixel intensity center regionalization strategy to perform centralization of the image histogram on the
overall image. Global equalization of histogram is employed to correct color of the image according to
the characteristics of each channel. Local equalization of dual-interval histogram based on average of peak
and mean values is used to improve contrast of the image according to the characteristics of each channel.
Dual-image multi-scale fusion to integrate the contrast, saliency and exposure weight maps of the color
corrected and contrast enhanced images. Experiments on variety types of degraded underwater images show
that the proposed method produces better output results in both qualitative and quantitative analysis, thus,
the proposed method outperforms other state-of-the-art methods.

INDEX TERMS Underwater image enhancement, pixel intensity center regionalization, histogram equal-
ization, multi-scale fusion.

I. INTRODUCTION
In recent years, with the continuous growth of population
and the shortage of resources, people have turned their atten-
tion to the development and utilization of the ocean world
with rich mineral resources. However, the water medium
and the suspended particles have absorption and scattering
effect on light when traveling in water [1]–[3]. Absorption
causes color distortion of underwater images, while scatter-
ing results in low visibility of underwater images. In brief,
the visual degeneration of underwater images is multifarious
in Figure 1. Therefore, the study of underwater sharpening
technology is of great significance for the exploration and
utilization of underwater resources [4]–[6].

To improve the quality of underwater degraded images,
underwater sharpening methods include underwater image
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restoration methods, underwater image enhancement meth-
ods and data-driven methods that are put forward succes-
sively. Restoration methods [13]–[24] consider the degraded
physical model to restore underwater images. However,
the restoration methods are inflexible to be implemented
due to various complicated underwater physical and optical
factors. Enhancement methods [25]–[45] focus on mod-
ifying pixel values to enhance underwater images with-
out considering underwater imaging parameters. Although
the enhancement methods are simple and fast, it tends to
over-enhanced or under-enhanced due to failure to con-
sider underwater optical imaging parameters. Data-driven
methods [51]–[58] are trained to rely on synthetic pairs of
degraded images and high-quality counterparts. However, the
data-driven methods heavily depend on a lot of training data
and complex network structures.

In this paper, a method based on global and local equal-
ization of histogram and dual-image multi-scale fusion
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FIGURE 1. Examples of different underwater degraded images; these degraded underwater images are from [57].

(GLHDF) is proposed to enhance underwater images. First,
a pixel intensity centered image is obtained from the input
image via a Retinex-based inspired method. Then, a color-
corrected is obtained from the centered image by a global
equalization of histogram strategy and a contrast-enhanced
image is obtained from the color-corrected image by a local
equalization of dual-interval histogram based on average
of peak and mean values strategy. Finally, a dual-image
multi-scale fusion strategy is used to fuse the color-corrected
and contrast-enhanced images. Quantitative and qualitative
results demonstrate that the enhanced image achieves signif-
icant and sufficient improvements in color and contrast. The
main contributions of this paper are summarized as:

1) A novel underwater image enhancement method
based on global and local equalization of histogram and
dual-image multi-scale fusion is proposed. It is suit-
able not only for variety types of degraded underwater
images, but also for low-light, natural, foggy, and sandy
images.

2) A pixel intensity center regionalization strategy is
employed to perform centralization of the image his-
togram for each color channel. It not only smoothes the
image, but also increases the similarity of the tricolor
histogram.

3) A dual-interval histogram based on average of peak and
mean values is applied to enhance the foreground sub-image
and background sub-image, and then the contrast-enhanced
image is integrated based on the average point.

4) A dual-image multi-scale fusion is used to fuse the color
corrected image and contrast enhanced image to obtain a
high-quality output image.

The rest of the paper is organized as follows. In section II,
we review the progress of underwater image sharpening
methods. Section III details the motivation of the proposed
method. Section IV details the proposed method from pixel
centralization, color correction, enhancement contrast and
fusion. Section V shows the results of qualitative and quanti-
tative comparison of the proposed and state-of-the-art meth-
ods. The last section summarizes the conclusions and future
work of the study.

II. RELATED WORK
From different views, this paper summarizes the underwater
image sharpening technology into three categories: under-
water image restoration method, underwater image enhance-
ment method and data-driven method.

A. UNDERWATER IMAGE RESTORATION METHOD
Underwater image restoration method restores underwater
images by inverting the degraded process and estimating
the parameters of the degraded model. Polarization-based
methods [7]–[9] were applied to recover underwater images,
which could improve the visibility and contrast of underwater
images. However, it required hardware devices to obtain deep
scene information of different degrees of polarization.

In recently, the dark channel prior (DCP) [10] had shown
superiority in the field of image defogging [11], [12] and
had been gradually applied to underwater image restora-
tion [13]–[24]. Chiang and Chen [13] restored underwater
images by a defogging method and a wavelength compen-
sation method, it could handle light scattering and color
distortions simultaneously. Galdran et al. [14] proposed an
automatic red-channel method to restore color and improve
contrast of the image. Drews et al. [15] presented an underwa-
ter dark channel prior (UDCP) restoration method bymodify-
ing the original DCP [10]. Li et al. [16] proposed an effective
enhancement method based on histogram distribution prior
and minimum information loss, which could improve the
contrast and brightness of underwater images. In [17], a ran-
dom forest regression model to estimate the transmission
of underwater scenes was proposed. Peng and Cosman [18]
proposed an underwater image restoration method based on
image blurriness and light absorption. Peng et al. [19] pro-
posed a generalized dark channel prior (GDCP) for under-
water image restoration, which could be applied to foggy,
hazy, sandstorm, and underwater images. Wang et al. [20]
presented an underwater image restoration method based on
adaptive attenuation-curve prior. Yang et al. [21] proposed a
reflection-decomposition-based transmission map estimation
underwater image restoration method.
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In addition, haze-line-based [22] and color-line-based [23]
methods were gradually applied to underwater restoration.
Moreover, Berman et al. [22] constructed a distance maps
dataset. Akkaynak and Treibitz [24] proposed a physically
accurate model based on an atmospheric image formation
model to enhance underwater image.

B. UNDERWATER IMAGE ENHANCEMENT METHOD
Underwater image enhancement method improves the
contrast and brightness of underwater images by modify-
ing pixel values of images. It mainly includes histogram-
based [25]–[30], Retinex-based [31]–[34], fusion-based
[35]–[39] and other methods [40]–[45]. Iqbal et al. [25]
stretched the dynamic grey range in RGB color model and
HSI color model to improve the contrast and color of under-
water images. Ghani et al. [26] stretched the dynamic grey
level in RGB color model and HSV color model to enhance
the contrast and color of underwater images. Ghani and
Isa [27] enhanced the low-quality underwater images by
dual-image Rayleigh-stretched contrast-limited adaptive his-
togram. Ghani and Isa [28] modified the work of [26], [27]
to improve underwater image contrast and color by recursive
adaptive histogram modification. Shahrizan and Ghani [29]
improved the visibility of underwater image by recursive-
overlapped contrast limited adaptive histogram and dual-
image wavelet fusion. Azmi et al. [30] proposed a color
enhancement method based on natural underwater image,
which mainly included underwater color cast neutralization,
dual-intensity images fusion, swarm-intelligence based mean
equalization and unsharp masking.

Underwater image enhancement based on the Retinex
method. Fu et al. [31] proposed an underwater image
enhancement method based on Retinex, it included color
correction, layer decomposition, and enhancement. Zhang et
al. [32] employed an extendedmulti-scale Retinex to enhance
underwater images. Chong et al. [33] proposed an underwater
image and video enhancement method based on Retinex.
In [34], a multi-channel convolutional MSRCR method for
enhancement of fog images and underwater images was pro-
posed.

Underwater image enhancement based on the fusion
method. Ancuti et al. [35] proposed a fusion-based strategy to
enhance the visibility of underwater images, the weight maps
consisted of luminance, contrast, chromatic, and saliency
weight maps. Treibitz and Schechner [36] employed a
multi-directional illumination fusion method for turbid scene
enhancement. In [37], an underwater images and videos
enhancement method based on fusion was proposed, which
consisted of white balance and multi-scale fusion. Lu et al.
[38] proposed an underwater image super resolution method
based on descattering and fusion. Ancuti et al. [39] proposed
a color balance and fusion method to underwater image
enhancement.

Another line of research tries to enhance underwater
images. Lu et al. [40] employed a weighted guided trigono-
metric filtering and artificial light correction for underwa-

ter image enhancement. Fu et al. [41] proposed a two-
step method for single underwater image enhancement,
which consisted of color correction and optimal contrast.
In [42], an underwater image color correction method using
exposure-bracketing imaging was proposed. In [43], an
underwater image enhancement method based on adaptive
retinal mechanisms was proposed. Ancuti et al. [44], [45]
proposed a color channel transfer for image dehazing [44] and
a color channel compensation for image enhancement [45],
respectively.

C. DATA-DRIVEN METHOD
The superior performance of deep learning in image segmen-
tation [46], image defogging [47], super resolution [48], and
salient objection detection [49] had demonstrated in recent
years. Moreover, deep learning-based methods were gradu-
ally applied to low-level vision problems [50], [51]. How-
ever, underwater imaging models were depended on specific
scenes and lighting conditions. Therefore, it is difficult to
generate a real-world underwater image by deep learning.
In [51], the survey had concluded that the performance and
the number of underwater image enhancementmethods based
on deep learning did not match the success of recent low-level
vision problems based on deep learning.

Recently, Li et al. [52] proposed a real-time color cor-
rection method based on unsupervised generative network
for monocular underwater images. Li et al. [53] proposed a
weakly supervised underwater image color correctionmethod
based on cycle-consistent adversarial networks. Uplavikar et
al. [54] presented a domain-adversarial learning for underwa-
ter image enhancement, which nicely handled the diversity
of water. Chen et al. [55] proposed a GAN-based restoration
scheme to improve the low contrast of underwater images,
which developed a multibranch discriminator for the purpose
of simultaneously preserving image content and removing
underwater noise. Guo et al. [56] designed a new underwater
image restoration model based on parallel convolutional neu-
ral network. Li et al. [57] constructed an underwater image
enhancement benchmark (UIEB) and proposed an underwa-
ter image enhancement network trained on this benchmark,
which including 950 read-world images, 890 of which had
the corresponding reference images. An underwater scene
prior method was proposed in [58], the UWCNN model
generalized well to different underwater scenes as real-world
and synthetic underwater images and videos. In additional,
Liu et al. [59] designed an undersea image capturing system
and constructed a large-scale real-world underwater image
enhancement dataset divided into three subsets, and the three
subsets target at three challenging aspects for enhancement,
image visibility quality, color casts and higher-level detec-
tion/classification, respectively.

Although data-driven-based underwater image enhance-
ment methods have achieved some achievements, these meth-
ods have complex network structures with long training
times, and rely on large amounts of training data.
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FIGURE 2. Flowchart of the proposed GLHDF method.

III. MOTIVATION
Underwater captured images suffer from random noise
caused by the irregular movement of electronic components
and photons during the imaging process. However, the noise
interference affects the subsequent processing of underwater
images. In addition, it also suffers from color cast and low
visibility caused by the scattering and absorption. More seri-
ously, the color cast and low visibility will reduce the use of
valuable information from the image. Therefore, the noise,
color cast, and low visibility are three issues that need to be
addressed urgently for underwater degraded images.

In the noise study, such as guide filter [11], Gaussian filter
[32], and trigonometric filter [40] all show the effectiveness
of smoothing and denoising, but the complexity of the guide
filter and trigonometric filter is higher than the Gaussian
filter. Therefore, a Gaussian smoothed image is obtained from
the input image using a Retinex-based inspired method, that
is, a pixel intensity centered image is obtained. And then,
we focus on color correction and contrast enhancement of the
smoothed image in subsequent work.

In the color correction and contrast enhancement study,
such as UCM [25] and ICM-RD [26] implement global
enhancement in the process of considered the histogrammod-
ification of the overall image. Meanwhile, DIRS-CLAHS
[27], RAHIM [28] and RO-CLAHS [29] consider the
enhancement process by dividing the image into windows
of the identical size. However, as the number of windows
increases, the processing time also increases. NUCE [30]
used dual-intensity images fusionmethod based on average of
mean and median values without considering the processing
of windows. Therefore, we consider not only global color
correction based on UCM [25] and ICM-RD [26], but also
local contrast enhancement based on NUCE.

On the one hand, the GLHDF method conducts global
color correction by a global equalization of histogram strat-
egy. The global equalization of histogram is different from
the UCM [25] and ICM-RD [26], it performs linear transfor-
mation according to the characteristics of each color channel.
On the other hand, the GLHDF method implements local
contrast enhancement by dual-interval histogram based on
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FIGURE 3. Pixel intensity centered underwater images. From top to bottom: 1. Raw underwater images; 2. Tricolor histogram corresponding to the first
row; 3. Pixel intensity centered underwater images; 4. Tricolor histogram corresponding to the third row.

average of peak and mean values strategy. The dual-interval
histogram is different from the dual-interval of the NUCE,
which uses the average value equality strategy of foreground
and background sub-images to obtain the dual-interval sep-
aration threshold. Finally, a dual-image multi-scale fusion
strategy is used to fuse the color-corrected and contrast-
enhanced images. The details of the proposed method are
explained in the subsequent sections.

IV. METHODOLOGY
As illustrated in Figure 2, the proposed GLHDF method
consists of four stages, namely, (1) Pixel intensity center
regionalization (PICR), (ii) Global Equalization of Histogram
(GEH), (iii) Local Equalization of Histogram (LEH), and (iv)
Dual-image multi-scale fusion (DIMCF). The first step is to
remove noise and smooth image by the multi-scale Gaussian
filter. Meanwhile, the second step intends to correction color
by global equalization of histogram strategy according to
the characteristics of each color channel. The third step is
implemented to improve the contrast of the color corrected
image by the dual-interval histogram based on average of

peak and mean values. Finally, the enhanced underwater
image is obtained by a dual-image multi-scale fusion strategy
to integrate the color corrected and contrast enhanced images.

A. PIXEL INTENSITY CENTER REGIONALIZATION
Underwater captured images suffer from random noise
caused by the irregular movement of electronic components
and photons during the imaging process, it affects the color
correction and contrast enhancement of underwater images
seriously. Therefore, the noise removal from underwater
images is of great application value. First, an underwater
image in RGB color model are decomposed into its respective
color channels. For each color channel, the image needs to be
performed with Gaussian smoothing. In Retinex [32], a real-
world image can be defined as

S(x, y) = L(x, y)∗R(x, y) (1)

where S(x, y) is the observed image, L(x, y) and R(x, y) are
luminance and reflectance components, respectively. To sep-
arate the luminance L(x, y) and reflectance R(x, y), the
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equation (1) needs to be converted to the log domain.

log (S(x, y)) = log (L(x, y))+ log (R(x, y)) (2)

In [32], it is required to reduce the effect of the lumi-
nance component L(x, y) for further preserve the reflectance
component R(x, y) of the object. Gaussian low-pass filter,
which allows low-frequency signals to pass while cutting
off or attenuating high-frequency signals. In underwater
image, the noise is regarded as high-frequency signal which
is not required for further analysis. Therefore, Gaussian ker-
nel functions with different scales are used to convolve the
original image S(x, y) to estimate the luminance component
L(x, y). Eq. (2) can be redefined as

R(x, y)=
N∑
n=1

wn
{
log(S(x, y))−log(Gn(x, y)∗S(x, y))

}
(3)

where N is the number of scales, and Gn(x, y) =

1
2πσ 2n

exp
−
(
x2+y2

)
2σ 2n

. Typically, 0 ≤ σ < 50 is small scale,
50 ≤ σ < 100 is medium scale, and 100 ≤ σ is large
scale. The determination of N and σn refers to our previous
defogging work [34]. Since the underwater scene is different
from the foggy scene, we finally determined σ1 = 10, σ2 =
30, σ3 = 60, σ4 = 80, σ5 = 120, σ6 = 160, and n = 6 based
on extensive experiments and experimental design references
[34]. Then, Eq. (3) is implemented to each color channel.

The transformation operation of the Log domain improves
the contrast of the image while smoothing the image (see the
third row in Figure 3). In addition, it introduces a problem of
color distortion. Therefore, a Gamma correction is introduced
into Eq. (3) as follows

Pout (x, y) = 255∗
(
Pin(x, y)
255

)γ
(4)

where Pin and Pout are the input and output of pixel values,
respectively. γ is constant, the Gamma correction has two
main effects when γ > 1. On the one hand, it reduces the
dynamic range of low grayscale areas to reduce the contrast
of images in low grayscale areas. On the other hand, it
expands the dynamic range of high grayscale areas to improve
the contrast of images in high grayscale areas. Meanwhile,
the overall contrast of the image is also reduced as shown in
the third row of Figure 3. Finally, the Eq. (3) is redefined as

Pout (x, y)

= 255∗


N∑
n=1

wn {log(S(x, y))−log(Gn(x, y)∗S(x, y))}

255


γ

(5)

where γ = 3 is determined based on a large number of
statistical analyses. Figure 3 illustrates several examples of
PICR. For pixel intensity centered underwater images, the
tricolor histogram distribution is more concentrated and sim-
ilar than the tricolor histogram distribution of raw under-
water images. Despite the pixel intensity centered image

with low visibility and color distortion, the distribution of
the tricolor histogram is more similar and the images are
smoother from subjective visual perspective, which is desired
in our framework. Therefore, the color and contrast of images
need to be further improved. In sections B and C, we
focused on the color correction and the contrast enhancement,
respectively.

B. GLOBAL EQUALIZATION OF HISTOGRAM
In Figure 3, underwater image processed by PICR still with
serious problems of color distortion and low visibility. The
intensity distribution of the tricolor histogram is generally
concentrated within a certain range of intensity level, that
is, the tricolor histogram cannot be sufficiently distributed
in the entire range of the intensity level. However, the PICR
operation makes the pixel intensities of red, green, and blue
channels more similar. Therefore, the color of image is cor-
rected by applying a global equalization strategy of his-
togram correction to each color channel. The pixels of the
image are distributed widely within the entire range of the
intensity level. However, the intensity level of the output
is limited to perc of the minimum and maximum limits in
the global equilibrium strategy. The limit strategy is used
to reduce the effects of under- and over-corrected areas in
the image.

1) Calculation the minimum and maximum values of his-
tograms of red, green, and blue channels.

First, the histogram of red, green, and blue channels is
calculated. Then, the limited ratio perc corresponding to the
minimum and maximum intensity is defined as Eq. (8), that
is, the limit ratio perc is determined based on the relationship
between the total pixel intensity of each channel. Unlike the
limit ration of [26] and [27], which is directly determined as
5%. Based on cumulative distribution function, the minimum
pcmin and the maximum pcmax color deviation in red, green, and
blue color channels for underwater image is defined as:

pcmin

=min
{
x
∣∣H c (x) ≥ M∗N ∗perc

}
(6)

pcmax

=max
{
x
∣∣Hc (x) ≤ M∗N ∗

(
1− perc

)}
(7)

perc

= α×
Max

{
Sum

(
prout (x)

)
, Sum

(
pgout (x)

)
, Sum

(
pbout (x)

)}
Sum

(
pcout (x)

)
(8)

where Hc is the cumulative histogram corresponding to Pcout
in the c channel, and Pcout is the image processed by PICR.
perc is the limited ratio in the c channel and c ∈ {r, g, b}.
M and N are the row and column of the image, pcmin and
pcmax are the minimum and maximum intensity values of the
c channel, Sum and Max are function of sum and maximum,
respectively. α is a heuristic value and set to 0.002 for each
color channel.

1) Global correcting of red, blue, and green channels
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FIGURE 4. Color corrected underwater images. From top to bottom: 1. Raw underwater images; 2. Color corrected underwater
images by our method.

The color correction method of the output image is applied
within a certain range. The proposed method applies limits
to the input image instead of limiting the output image. The
pixel intensity values of red, green, and blue channels of the
input image are limited as

p(x)c =


pcmin p(x)c ≤ pcmin

p(x)c pcmin < p(x)c < pcmax

pcmax p(x)c ≥ pcmax

(9)

Then, the color correcting process is applied in accordance
with formula (10). p(x)CCR and p(x)c are the output and input
images in the c channel, respectively. pcmin, p

c
max, o

c
min and

ocmax are the minimum and maximum intensity values of the
input and output images in the c channel, respectively.

p(x)CCR = ocmin +
(
p(x)c − pcmin

) (ocmax − o
c
min

pcmax − p
c
min

)
(10)

Figure 4 shows several examples of corrected results,
it showsmore color details than underwater degraded images.
Although we have no ground truth to verify the accuracy
and robustness of the color correction method, the color of
underwater images corrected by the proposed method looks
more genuine and pleasing than before. Despite this step
shows excellent performance in reducing underwater color
distortion, it cannot solve the problem of low visibility due
to the edges and details of the scene are affected by the
scattering problem. Therefore, a local equalization of dual-
interval histogram based on average of peak and mean values
is employed improve image contrast in the section C.

C. LOCAL EQUALIZATION OF HISTOGRAM
In Figure 4, color corrected underwater images with more
genuine and pleasing color. However, the color corrected
underwater images still with the problem of low visibility.
Therefore, the step aims to enhance image contrast due to the
edges and details of the scene are affected by the scattering.

1) CALCULATION THE MINIMUM, MAXIMUM, AND AVERAGE
THRESHOLD OF HISTOGRAMS OF RED, GREEN, AND BLUE
CHANNELS
First, the minimum, maximum, and average value of the his-
togram for each channel is calculated. Theminimum intensity
value icmin is calculated based on the lowest intensity value of
the image histogram, whereas the maximum intensity value
icmax is calculated based on the highest intensity value of the
image histogram. The average threshold icave is selected based
on average of peak and mean values.

Azmi et al. [30] had used the mean point, median point,
and the average point of the mean and median points as the
separation point to divide the histogram into two regions.
Different from the separation method of [30], we consider
that most underwater images are captured with dark areas
at the background and bright areas at the foreground. To be
precise, the area close to the light source is brighter than the
area away from the light source. Therefore, it is necessary for
underwater images to be divided into background sub-image
and foreground sub-image in our framework. In addition,
when the sample size is large and does not include outliers,
this mean usually results in better separation performance.
However, the peaks give an ideal separation performance for
some to be extreme values (high or low). Considering this
fact, the proposed method considers that the background and
foreground sub-images are separated by an average threshold
of peak and mean values for each color channel. The detailed
calculation steps are as follows.

Step1: The peak value is calculated by icpeak =

find (Tc
== max (Tc) , 1), where Tc is the number of times

each pixel value appears in the image histogram of channel c,
the max () is the function that takes the largest pixel out, and
find (Tc

== max (Tc) , 1) is the pixel value corresponding to
the first peak point to be taken out.

Step2:Themean value is calculated by icmean =

M∑
i=1

N∑
j=1

ic(i,j)

M∗N ,
M and N are the number of rows and columns of the input
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FIGURE 5. Dividing and stretching of the original histogram to produce background-stretched
and foreground-stretched regions.

FIGURE 6. Integration process of under-enhanced background image and over-enhanced foreground.

image I , respectively. icmean is the mean of the total pixel
intensity in the c channel.

Step3:The average threshold is calculated according to the
average values of peak and mean, it is expressed as icave =(
icpeak+i

c
mean

)
2 .

2) LOCAL ENHANCING OF RED, BLUE, AND GREEN
CHANNELS
After the average threshold is determined, the histogram of
each color channel (red, green, and blue) is divided into two
regions, namely the background and foreground stretched-

regions, as shown in Figure 5. Then, the background region
is stretched from the minimum intensity value icmin to the
average threshold icave of the dynamic range, and the fore-
ground region is stretched from the average threshold icave to
the maximum intensity value icmax of the dynamic range.

The background and foreground regions are stretched by
Eq. (11) and Eq. (12), respectively.

pcB = icmin+(i
c
ave − i

c
min)×CDF(i

c
n), icn ∈

[
0, icave

)
(11)

pcF = (icave + 1)+ (icmax − (icave + 1))× CDF(icn),

icn ∈
[
icave, 255

]
(12)
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FIGURE 7. Input images from the PICR, contrast weight map, saliency weight map, exposure weight map and normalized weight map or each input
images, and our final result.

where pcB and p
c
F are pixels intensity values of the background

and the foreground stretched-regions in the c channel, respec-
tively. icn and CDF() are pixel values and cumulative distribu-
tion function, respectively. Meanwhile, CDF(icn) represents
the cumulative frequency of pixel value icn from the current
position n to the starting position in the c channel.
For the red, green, and blue color channels, the division

at the average point and equalization processing will pro-
duce two regions, namely lower-stretched background and
upper-stretched foreground regions. All low-stretched back-
ground regions are composed to produce an under-enhanced
background image. Likewise, all upper-stretched back-
ground regions are composed to produce an over-enhanced
background image. After that, these images are integrated
in the average threshold points. Figure 6 shows the integra-
tion process of under-enhanced background image and over-
enhanced foreground image to output a contrast-enhanced
image.

This step has achieved good results in improving contrast.
In general, the local equalization of histogram enhanced
underwater images tends to appear too bright for some under-
water images with high brightness. Therefore, a gamma
correction operation is applied to the contrast-enhanced
image. This operation increases the difference between
darker/lighter areas at the expense of losing detail in under-
exposed/over-exposed areas. To compensate for this loss,
we adopted a dual-image multi-scale fusion strategy to fuse
the color corrected and contrast enhanced images. Where the
color corrected image and the contrast enhanced image are
derived from the global equalization operation of histogram
and the local equalization operation of histogramwith gamma
correction, respectively. Details of the fusion will be pre-
sented in D.

D. DUAL-IMAGE MULTI-SCALE FUSION
Dual-image multi-scale fusion strategy is inspired by [39].
In work of Ancuti et al. [39], a gamma corrected image and a
sharpened image are derived from a white-balanced version
of the input, and are fused by a fusion method. However, our
method differs from Ancuti et al. [39] in the input image
of the fusion method. On the one hand, we use a local
equalization of histogram to achieve the detail sharpening and
contrast enhancement of the image, while using a gamma cor-
rection to correct the over-enhancement problem introduced

by the local equalization of histogram for some underwater
images with high brightness. On the other hand, we use the
color-corrected image as another input of the fusion method
to compensate for the loss introduced by gamma correction,
and we use the exposure weight map to replace the saturation
weight map in Ancuti et al. [39]. As displayed in Figure 2 and
detailed below, the underwater image fusion process consists
of three parts: two input images, weight maps definition, and
dual-image multi-scale fusion.

1) WEIGHT MAPS
In the fusion process, the use of weight maps makes pixels
with high weight values more easily represented in the final
result (see Figure 7). Therefore, they are defined based on a
large number of local image quality or saliency metrics.
Luminance weight map (WL) is used to estimate the global

contrast by applying a Laplacian filter on each input lumi-
nance channel and computing the absolute value of the filter-
ing operation, it is expressed as Eq. (13). However, the weight
is not sufficient to enhance the contrast of underwater images.
To solve this problem, the proposed method introduces a
saliency weight and an exposure weight.

W k
L =

∣∣∣LF∗Lk ∣∣∣ (13)

where LF and ∗ are the Laplace operator and the convolution
operation, respectively. Lk is luminance channel of each input
I k .
Saliency weight map (WS ) aims at highlighting the salient

objects and increase the contrast between the highlighted area
and shaded area, thereby improving the global contrast of the
output image. In the LAB color model, the saliency weight
maps of input1 and input2 are obtained by Eq. (14).

W k
s = (Lk − Lkm)

2
+ (ak − akm)

2
+ (bk − bkm)

2 (14)

When k = 1, L1, a1, and b1 are the luminance and color
channel values of a and b of the input image I1, respectively.
L1m, a

1
m, and b

1
m correspond to the average of the L1, a1, and

b1, respectively. Likewise, the image I2 can be understood
when k = 2.
Exposure weight map (WE ) reduces the color cast by

processing the saturation gain of the blurred image for the
color shift problem of underwater images. In the LAB color
model, the exposure weight maps of input1 and input2 are
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TABLE 1. Quantitative result of 8 underwater images selected from the DataA. The best result is in bold.

obtained by Eq. (15).

W k
E = exp(−

(
I k (i, j)− β

)
2σ 2 )2 (15)

where I k (i, j) is the value of the input image I k in the pixel
location (i, j), while the mean value β and standard deviation
σ are set to 0.5 and 0.25 refer to [60].
Normalized weight map (W ) yields consistent results.

Finally, the normalized weight maps W
k
= W k/

∑K
k=1W

k ,
and W k

= W k
L + W k

s + W k
E . The normalized weights of

corresponding weights are shown in Figure 7.

TABLE 2. Average quantitative result of 63 tested underwater images
DataA. The best result is in bold.

2) MULTI-SCALE FUSION
To avoid the undesirable halos in the output image, a dual-
image multi-scale fusion method is used to fuse the defined
input images with the defined weight maps at every pixel
location. The detailed operation is as follows:

Step1: The input image I is decomposed by Laplacian
pyramid and defined as Ll{I k (x, y)}. The normalized weight
mapW

k
is decomposed by Gaussian pyramid and defined as

Gl{W
k
(x, y)}, and the l represents the l th level.

Step2: The Laplacian pyramid Ll{I k (x, y) and the Gaus-
sian pyramid Gl{W

k
(x, y)} are fused according to Fl(x, y) =

N∑
k=1

Gl{W
k
(x, y)}Ll{I k (x, y)} at every pixel location, where

Fl(x, y) represents the Laplacian pyramid of the fusion image.
Step3: Reconstruct the Laplacian pyramid to obtain the

final fusion image F(x, y) from the bottom level to the top
level. Finally, the enhanced image F(x, y) is obtained by
Eq. (16) in the top level.

F(x, y) =
K∑
k=1

W
k
(x, y)I k (x, y) (16)

where I k is the input (k = 2 in our work) that is weighted by
the normalized weight mapsW

k
.

V. EXPERIMENTAL RESULTS AND ANALYSIS
The performance of the proposed GLHDF method is com-
pared with several state-of-the-art methods namely red chan-
nel [14], hybrid-based [17], underwater image restoration
based on image blurriness and light absorption (UIBLA) [18],
generalization of the dark channel prior for single image
restoration (GDCP) [19], Retinex-based [31], fusion-based
[35] and two-step-based [41]. The enhancement results of
each method are evaluated in terms of qualitative and quan-
titative. We use the recommended parameter settings to run
the source code provided by the authors to produce the best
results for an objective evaluation.

In qualitative evaluation, it is mainly evaluated in terms
of contrast, visibility, and color. In quantitative evaluation,
it is mainly evaluated in terms of average gradient (AG) [34],
patch-based contrast quality index (PCQI) [61] and under-
water color image quality evaluation (UCIQE) [62]. A high
AG value represents the enhanced image with high clarity.
A high PCQI value indicates the enhanced image with high
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FIGURE 8. Qualitative comparisons on the DataA. Quantitative result of 8 underwater images is provided in Table 1.

TABLE 3. Quantitative result of 8 underwater images selected from the DataB. The best result is in bold.

contrast. A high UCIQE value demonstrates the enhanced
image balances chroma, luminance and saturation well.

In this experiment, we evaluate the proposed GLHDF
method on real world underwater image datasets DataA,
DataB and DataC. Where the DataA including 63 underwater
images is collected from the Internet and the DataB contain-
ing 893 underwater images is shared by Li et al. [57]. In

addition, 8 low-light underwater images selected from the
DataB as DataC. These underwater images usually suffer
from color cast, lose details and low contrast. Due to the
limited space, we only show parts of the experimental results
as shown in Figures 8 to 10. Furthermore, Tables 1 to 4 give
quantitative results of tested images and all images of DataA
and DataB, and Table 5 gives all the evaluation metrics of
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FIGURE 9. Qualitative comparisons on the DataB. Quantitative result of 8 underwater images is provided in Table 3.

FIGURE 10. Qualitative comparisons on the DataC. Quantitative result of 8 underwater images is provided in Table 5.
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DataC. In addition, the proposed GLHDF method is used
to enhance the low-light, natural and foggy images captured
in the atmospheric environment. Furthermore, the proposed
GLHDF method is used to enhance underwater images with
a ColorChecker 24 X-Rite Chart captured by different spe-
cialized cameras in the same underwater scene.

A. EVALUATION ON DataA
In this part, we evaluate the proposed method on real-world
underwater image dataset DataA. Due to the limited space,
Figure 8 only presents the experimental results of 8 selected
images from the DataA.

A first glance at Figure 8 may give the impression that the
results of Hybrid-based [17] and Retinex-based [31] might
be brighter; however, a careful inspection reveals that the
Hybrid-based [17] method causes over-saturation that some
results with red tone. Similarly, Retinex-based [31] method
leads to a darker appearance. Two-step-based [41] results in
a darker appearance that some results with red tone. And the
images enhanced by UIBLA [18] and GDCP [19] are not
natural and over-enhancement. The methods of Red channel
[14] and Fusion-based [35] have little effect. In contrast,
the proposed GLHDF method presents promising results on
read-world underwater images DataA, without introducing
any color casts, artificial, over- and under-enhanced areas.

Observing the failure cases in Figure 8, the Hybrid-based
[17] and Two-step-based [41] tend to introduce reddish color
in some results. For the failure cases of the Red channel
[14], UIBLA [18] and GDCP [19], it aggravates the green-
ish failure and produces unpleasing results visually. For the
failure cases of the Retinex-based [31] and Fusion-based [35],
it leads to a darker appearance that some results lost details.
In contrast, the proposedGLHDFmethod removes color casts
and improves contrast and brightness of enhanced images,
which generates better visibility and pleasant perception.

We first evaluated the AG, PCQI, and UCIQE metrics
of 8 selected underwater images from the DataA as shown
in Table 1. It can be seen that the GLHDF can obtain the
highest or approximately high AG, PCQI and UCIQE values
for these 8 underwater images compared with competitive
methods. In addition, we also evaluated the average quanti-
tative result of 63 underwater images as shown in Table 2.
It can be observed that the GLHDF method obtains higher
AG, PCQI and UCIQE values compared with competitive
methods. Therefore, the proposed GLHDF method enhanced
results with better sharpness, contrast, chroma, luminance
and saturation on real-world underwater image from an objec-
tive perspective.

B. EVALUATION ON DataB
In this part, we evaluate the proposed method on real-world
underwater image dataset DataB. Due to the limited space,
Figure 9 shows the experimental results of 8 selected images
from the DataB.

Like the enhanced results of DataA, the results of Hybrid-
based [17] and Retinex-based [31] show the bright-coloured
impression at first glance; however, Hybrid-based [17]
introduces reddish color casts. Similarly, Retinex-based [31]
method leads to a darker appearance. The result produced by
the UIBLA [18] and GDCP [19] are exacerbate the greenish
color and produce visually unpleasing results. The meth-
ods of Red channel [14], Fusion-based [35] and Two-step-
based [41] have less effect on the inputs than other methods.
In contrast, the proposedGLHDFmethod removes color casts
and improves contrast and brightness, which generates better
visibility and pleasant perception.

We evaluated the quantitative results of the 8 selected
underwater images and all samples of DataB as shown
in Table 3 and Table 4, respectively. It can be observed
that the proposed GLHDF method obtains higher AG, PCQI
and UCIQE values for single underwater image or all tested
underwater images compared with competitive methods.

C. EVALUATION ON DataC
To evaluate the performance of the proposed method for low-
light underwater images, we conduct experiments on low-
light underwater image DataC. Due to the limited space,
Figure 10 presents the experimental results of 8 selected
images from the DataC.

In Figure 10, the proposed GLHDF method can remove
the color shifts and improve the contrast of the low-light
underwater images. Moreover, our results are consistent and
without flickering artifacts on all selected low-light under-
water images. In contrast, the methods of the UIBLA [18],
GDCP [19], Fusion-based [35] and Two-step-based [41]
produce inconsistent enhancement for all selected low-light
underwater images. For instance, for Image2, the methods of
the UIBLA [18], GDCP [19], Fusion-based [35] and Two-
step-based [41] produce visually unpleasing results and intro-
duce greenish color casts. Hybrid-based [17] and Retinex-
based [31] might be brighter; however, the Hybrid-based [17]
method introduces red tone. The method of Red channel [14]
has little effect on the input images; however, the method lost
details. In addition, the proposed can obtains similar or usu-
ally higher AG, PCQI and UCIQE values in Table 5. It shows
that our approach has a better enhancement capability for
low-light underwater images.

TABLE 4. Average quantitative result of 893 tested underwater images
DataB. The best result is in bold.
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FIGURE 11. Results produced using different components.

FIGURE 12. Evaluation on low-light images.

FIGURE 13. Evaluation on natural images.

FIGURE 14. Evaluation on foggy images.

D. ABLATION STUDY
To illustrate the effectiveness of each component in the
proposed GLHDF method, we conduct an ablation study

including qualitative and quantitative experiments on UIEB.
Details as follows: (a) GLHDF without pixel intensity cen-
ter regionalization (-w/o PICR), (b) GLHDF without global
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FIGURE 15. Evaluation on sandy images.

FIGURE 16. The results are obtained via GLHDF (the second row) correspond to underwater images captured by different cameras
(the first row). The images are shared by [39]. The cameras used to capture underwater images are Canon D10, FujiFilm Z33, Olympus
Tough 6000, Olympus Tough 8000, Pentax W60, Pentax W80, Panasonic TS1, respectively.

TABLE 5. Quantitative result of 8 low-light underwater images. The best result is in bold.

equalization of histogram (-w/o GEH), (c) GLHDF without
local equalization of histogram, and (d) GLHDF without
dual-image multi-scale fusion. Due to the limited space, Fig-
ure 12 only shows part of the UIEB experimental results. The
average values in terms of AG, PCQI, and UCIQE are given
in Table 6.

From Figure 11, the following observations can be found:
1) Contrast can be enhanced in the test images by the ours-w/o
PICR, but the details have not been effectively enhanced. 2)
Ours-w/o GEH can enhance contrast, but cannot effectively
remove color cast. 3) Ours-w/o LEH can effectively remove
color cast, however the contrast is not enhanced well. 3) Our-
w/o DIMCF can enhance contrast well, but image details are
not obtained. The images produced by the proposed GLHDF

TABLE 6. The corresponding images are presented in Figure 11. The best
result is in bold.

method with good visibility, natural color, high contrast, and
sharpness texture. Quantitative evaluation results are given
in Table 4, GLHDF obtains similar or higher values in terms
of AG, PCQI and UCIQE metrics. Additionally, GLHDF
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obtains higher averages of AG, PCQI and UCIQE values,
which presents the effectiveness of each component.

E. EXTENDED APPLICATIONS
GLHDF is designed to enhance the quality of underwater
degraded images. However, the GLHDF is still attempted to
enhance the degraded images taken in the atmosphere (low-
light, natural, foggy, sandy, and etc.), as shown in Figure 12-
14. It can be seen that the images enhanced by the proposed
GLHDF method with high contrast, natural color, and clear
details.

In addition, we further use underwater degraded images
captured by different underwater specialized cameras in
the same underwater scene to evaluate the performance of
GLHDF, as shown in Figure 16. It can clearly see that the
enhanced results by GLHDF with a more satisfying appear-
ance from the subjective perspective.

VI. CONCLUSION
In this paper, the proposed GLHDF method is implemented
to improve the quality of real-world and low-light underwa-
ter images. GLHDF consists of four stages, namely, pixel
intensity center regionalization, global equalization of his-
togram, local equalization of histogram, and multi-scale
fusion. As shown in the result, GLHDF enhanced images
with good visibility, natural color, high contrast, and sharp-
ness texture. In addition, the proposed method outperforms
other state-of-the-art techniques in qualitative and quantita-
tive. Furthermore, GLHDF also can obtain satisfactory results
in terms of low-light, natural, foggy, sandy, and underwater
images captured by different underwater specialized cameras.

Despite GLHDF obtains good performance, it also has
some limitations. The enhanced images cannot achieve the
consistency of the background color for underwater images
captured by different underwater specialized cameras in the
same scene. The selection of the average threshold of the
dual-interval histogrammay increase the computational com-
plexity of GLHDF. In addition, GLHDF does not study under-
water images taken at different levels of turbidity. We intend
to solve the above limitations in future work.
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