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ABSTRACT An optimal power flow (OPF) problem of power systems can have multiple local optimal
solutions, which is worthwhile studying both in theory and practice. Based on the existing nonlinear dynamic
systems, this paper proposes an efficient deterministic algorithm to solve multiple or all local optimal
solutions of OPF, which takes some numerical improving measures to enhance the numerical convergence
for integration process of dynamics and adapt to OPF problem. The steps of this algorithm are as follows:
1. The reflected gradient system (RGS) is used to calculate the decomposition points to locate different
feasible components. 2. The quotient gradient system (QGS) is used to calculate feasible points in different
feasible components, and we numerically integrate projected gradient system (PGS) with these feasible
points as initial points forward until the trajectories approach the local optima. 3. Slack variable perturbation
method (SVPM) is proposed to help escape from the saddle points to the adjacent local optima when the
trajectories fall into saddle points. Comparedwith the interior point method (IPM)with random initialization,
multiple IEEE test cases show that the proposed algorithm can identify much more local optimal solutions,
and meanwhile, significantly reduce the calculation time.

INDEX TERMS Global optimization, nonlinear dynamics, multiple solutions for OPF, KKT conditions.

I. INTRODUCTION
The optimal power flow (OPF) problem is an important issue
in power system operation, planning and control. The pur-
pose of OPF is to optimize the objective function (such as
generator operation cost, network loss, voltage offset, etc.)
by adjusting the active power output of the generators and
other control variables. Meanwhile, the constraints of power
balance and safe operation of the power systems should be
strictly satisfied.

Because OPF problem usually has many constraints, espe-
cially the existence of power flow equality constraints makes
the feasible regions non-convex and disconnected, resulting
in more than one optimal power flow solution [1]. There-
fore, identifying multiple or all local optimal solutions can
better find and recognize the global optimal solution, and
enhance the confidence of the result as the global optimal
solution [2]. The complex behaviors of power systems such
as load changes [3], bifurcation [4] and non-convexity [5]
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of feasible regions, are often accompanied by changing,
generating and disappearing of the local optima. Therefore,
identifying and analyzing the local optima for OPF is helpful
to better understand the operating conditions of power sys-
tems, and help us to better understand OPF, which is a com-
plex constrained optimization problem [2]. In addition, many
numerical optimization methods have difficulty converging
to the local optimal solutions due to the stagnation points
such as saddle points and maximum points [6], especially for
OPF problem which has many saddles. Hence an effective
method is needed to help escape from the saddle points to
adjacent local optimawhen optimization algorithms converge
to the saddle points. Therefore, it is of great significance in
theory and practice to efficiently identify multiple or all local
optimal solutions for OPF problem.

Many optimization algorithms are proposed to solve the
OPF problems, including numerical calculation methods
such as interior point method [7], sequential quadratic pro-
gramming method [8], etc. And heuristic algorithms such
as particle swarm optimization [9], genetic algorithm [10],
etc. These algorithms can guarantee the local optimality of
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the solutions, but cannot guarantee the global optimality
of the solutions, nor can they find all or most of the local
optimal solutions deterministically within a valid time. In ref-
erence [3], repeated calculations are carried out by many
NLP solvers, which is cumbersome. In reference [2], branch
tracing method and monotone search strategy are proposed
to locate multiple local optimal solutions of the OPF, but the
rules are complicated and will result in mass computation,
so it is difficult to implement when the scale of nodes of test
cases is up to dozens. At present, there are few papers about
how to solve the multiple or all solutions for OPF accurately
and efficiently.

Nonlinear dynamics is a science for studying the law
of changes in variety of systems. Since the 1970s, people
began to solve the optimal solutions of nonlinear optimiza-
tion problems or the root of nonlinear algebraic equations
by tracing the solution trajectories of ordinary differential
equations [11], whichwas called the trajectorymethod. In ref-
erence [12]–[15], a series of nonlinear dynamic models have
been established to solve nonlinear optimization problems.
In reference [12]–[13], a gradient vector system has been
established based on KKT condition, and a nonlinear opti-
mization method was initially developed. In reference [14],
a quasi-gradient system has been established, and then a
method for solving a class of unconstrained optimization
problems has been proposed. In reference [15], by alternating
between two dynamic models, multiple or all local optimal
solutions with constrained optimization can be solved, which
was verified in a small numerical example, but large-scale
engineering applications still remain to be further investi-
gated. In reference [16]–[18], the nonlinear dynamics meth-
ods have been used to solve the optimization problems of
power systems. In reference [16], the reactive power opti-
mization problem has been solved, and in reference [17], [18],
the active power optimization problem has been solved, but
the upper limit of objective function needs to be adjusted
many times, resulting in mass computation, and it is also
unable to calculate multiple or all local optimal solutions
deterministically.

The optimization algorithms based on integration [12]–[15]
are different from these based-on iteration represented by the
interior point method, but the engineering applications are
insufficient. In this paper, this optimization idea and method
are applied to identify multiple local optima for OPF, and
some measures are adopted to improve the convergence of
numerical integration and make it more appropriate for OPF
problems, and then, a deterministic algorithm for efficiently
calculating multiple or all local optimal solutions for OPF is
formed: the reflected gradient system (RGS) is used to calcu-
late decomposition points xd , so as to locate multiple or all
feasible components of OPF problem, which is implemented
by integrating the quotient gradient system (QGS) with exit
points Xex ,so that we can calculate the initial points in
different feasible components, with which we could integrate
projected gradient system (PGS) [15] numerically forward

FIGURE 1. The diagram of the proposed algorithm.

until the trajectories approach to adjacent local optima, and
for more details, see section IV.When the trajectories fall into
saddle points, slack variable perturbation method (SVPM)
can help escape from saddle points to adjacent local optima.
Multiple or all local optima for OPF can be identified by
alternating between these procedures. The algorithm process
is shown in Figure 1.

The crucial contributions of this paper are presented as
follows:

1) Apply the dynamic models proposed in refer-
ence [12]–[15] to the OPF problem, the challenging
engineering application, and some improvement mea-
sures are taken to enhance the numerical convergence
property for integration process of dynamics and make
it appropriate to the characteristic of OPF problem.

2) Based on the theory of stability region, we combine sev-
eral important dynamic models organically and propose
a deterministic algorithm, which can identify multiple or
all solutions for OPF efficiently.

3) The slack variable perturbation method (SVPM) can
help optimization algorithms escape from saddle points
and reach the local optima again more effective, and it is
especially suitable for OPF problems, which have many
saddle points.

This paper is organized as follows:
In section II and III, the mathematical model of OPF

and KKT condition are briefly introduced respectively; in
section IV, the crucial dynamic model, projected gradient
system is introduced, and several methods to enhance the
numerical convergence property of PGS are proposed, and
then, the deterministic optimization method is proposed;
in section V, the test results of IEEE cases in comparison
to interior point method (IPM) are shown and discussed.
Finally, the conclusion and research prospects are illustrated
in section VI.

II. MATHEMATICAL MODEL OF OPF
In this paper, the objective function is the minimal total
generation cost. The OPF problem in polar coordinate can
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be described as follows:

min
∑

k∈SnG
ak + bkPGk + ckP2Gk

s.t.
∑
k∈i

PGk − Vi
∑
j∈i
Vj(Gij cos θij + Bij sin θij)

= PLi i ∈ Snb∑
k∈i

QGk − Vi
∑
j∈i
Vj(Gij sin θij − Bij cos θij)

= QLi i ∈ Snb
PGkmin ≤ PGk ≤ PGkmax ,QGkmin ≤ QGk
≤ QGkmaxk ∈ SnG
Vimin ≤ Vi ≤ Vimax i ∈ SnB
Sfi ≤ Sfimax , Sti ≤ Stimax i ∈ SnL

(1)

where SnB, SnG, and SnL represent the set of nodes, generation
units and transmission lines respectively. PLi and QLi denote
are the active and reactive load demand of the node i. Gij and
Bij are the conductance and susceptance of the line between
the node i and j. Voltage phase angle of the slack bus is set
to 0. θij = θi − θj, which represents the voltage phase angle
difference between node i and j.Vimax andVimin are the upper
and lower voltage limits of node i. PGimax, PGimin, QGimax
and QGimin are the upper and lower limits of the active and
reactive output of generator i respectively. Sfi and Sti are the
apparent power at the head and end of the line i respectively.
Sfimax and Stimax are the upper limit of the apparent power
at the head and end of the line i respectively. By introducing
the slack variable vector s for the inequality constraints, (1)
is transformed into the following compact form [1]:{

min f (x)
s.t. H(X) = 0

(2)

whereX = [x, s]T, x ∈ <2(nB+nG) = [θi,Vi,Pk ,Qk ], i ∈ SnB,
k ∈ SnG, s ∈ <4nG+2nB+2nL , H(X) = [g(x),h(x)+ s2]T.
H : <6nG+4nB+2nL → <4nB+4nG+2nL+1 is the constraint

set, where g : <2(nB+nG) → <2nB+1 is the set of equality
constraints, h : <2(nB+nG) → <

4nG+2nB+2nL is the set of
inequality constraints.

III. KKT CONDITIONS FOR DEALING WITH CONSTRAINED
OPTIMIZATION PROBLEMS
For the constrained optimization problem (2), lagrangian
multiplier vector λ ∈ <4nG+4nB+2nL+1 is added, and then
(2) can be transformed into an unconstrained optimization
problem as shown in equation (3):

minF(X,λ) = f (X)+H(X)Tλ (3)

where F : <10nG+8nB+4nL+1→ <1. The gradient of F is:

∇F =
(
∇xF
∇λF

)
=

(
∇f (X)+ DH(X)Tλ

H(X)

)
= 0 (4)

DH(X) represents the Jacobian matrix of H(X). Let
(X∗, λ∗) be the point satisfying (4), which is the stagnation
point (KKT point) of problem (1). KKT points includes the
local optima, local maxima and saddle points. It is necessary

to further verify the second-order sufficient condition [1] to
distinguish the local optima from these stagnation points.
Calculate the Hesse matrix of (3):

∇
2F =

(
∇

2f + D(DH(X)Tλ) DH(X)T

DH(X) 0

)
(5)

The second-order sufficient condition is simplified by
transforming (1) into the compact form (2): for any vector
u in the set 3 =

{
u 6= 0 : DH(X∗)u = 0

}
, which is the

basis of the tangent space of the constraint set H(X) at X∗,
if uT∇2F(X∗)u > 0,∀u ∈ 3, thenX∗ is a strict local optimal
solution of problem (2).

IV. OPTIMIZATION METHOD BASED ON DYNAMICS
A. A PROJECTED GRADIENT SYSTEM
To solve equations (4) and get KKT points, we build the
following differential-algebraic equations (6) [13]:

dX/dt = −∇f (X)− DH(X)Tλ

H(X) = 0 (6)

The lagrangian multiplier vector λ can be elimi-
nated through: dH(X)/dt = DH(X) × dX/dt = 0,
so dH(X)/dt = DH(X)[∇f (X) + DH(X)Tλ] = 0, and we
get λ = −[DH(X)DH(X)T]−1DH(X)∇f (X), then substitute
λ into (6), we can get well-known projected gradient sys-
tem (7): [12], [13], [15]

dX/dt = P(X) (7)

HereP(X) = −(I−DH(X)T[DH(X)DH(X)]−1DH(X))∇f (X)
Because PGS (7) has nice properties, which has been

proved in [15]:
1) (7) is globally convergent, that is, every trajectory of (7)

converges to one of its equilibrium points.
2) Every local optimal solution of optimization problem (2)

corresponds to a stable equilibrium point of system (7).
From these properties, we can search local optima of (2) by

integrating system (7) with initial points until the trajectories
approach to stable equilibrium point of (7).
According to property 1), the initial value of system (7) can

be selected at random, but it is different from the simplemath-
ematical examples mentioned in [12]–[15]. In OPF problems,
the dimension of the vector (X,λ) is generally high, and the
orders of magnitude of the elements of (X,λ) are signifi-
cantly different, so the integration trajectories of (7) tend to
diverge due to the limitations of numerical integrationmethod
without any processing, although it is theoretically globally
convergent. In order to promote the numerical convergence,
the following methods are adopted:

B. METHODS TO IMPROVE THE NUMERICAL
CONVERGENCE OF PGS (7)
1) SELECT THE APPROPRIATE INITIAL VALUES OF
INTEGRATION FOR (7)
If the integral initial values of (7) is selected at random,
more divergence and lower efficiency will occur in practice.
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Selecting the feasible points of (2), which satisfy H(X) = 0,
and it can make (7) converge quickly and steadily. The quo-
tient gradient system (QGS) [15] has good robustness and
strong search capabilities, which can quickly generate widely
distributed feasible points. Therefore, in this paper, the QGS
is used to obtain the feasible points as the integral initial
points for PGS (7).

For problem (2), the QGS is established with the constraint
set:

dX/dt = QH(X) = −DH(X)TH(X) (8)

The feasible region (FR) of OPF is often disconnected [1],
that is, FR = ∪Ni=1FRi, where FRi is the i th feasible compo-
nent, and N is the number of all feasible components. Refer-
ence [1] proves that every regular stable equilibriummanifold
of QGS (8) is corresponding to one feasible component of (2).
And (8) has good robustness, which can be integrated forward
with any initial points (infeasible) to the stable equilibrium
points of (8), that is, the feasible points of (2). With the
increase of search times, all the stable equilibrium manifolds
of (8) will be gradually found, which is the complete feasible
region of (2). Moreover, (8) is globally convergent, and each
trajectory will converge to an equilibrium point of (8), which
guarantees the efficiency of generating feasible initial points
of (7).

In reference [19], the QGS is used to calculate the complete
feasible region of OPF. But in this paper, it is not necessary to
obtain the complete feasible region, but just need to acquire
the integral initial points of (7) lying inside as many discon-
nected feasible components as possible, which can expand
the search space for local optima. To accomplish this, besides
relying on the search capability of QGS, it is also necessary to
find the decomposition points (DP) of QGS, which connects
different feasible components, so as to ensure that feasible
points in multiple or all feasible components of (2) can be
found.

The type-1 unstable equilibrium points located on the
boundaries of the stability domains of the stable equilibrium
manifolds of QGS (8) are called the decomposition points
(DP), represented by xd in Fig.1. In reference [15], it is proved
that the unstable equilibrium manifolds of DP converge to
two adjacent stable equilibrium manifolds of QGS (8). From
this property, the disconnected feasible components of (2)
can be found through the DP of QGS (8). The methods
for finding the type-1 unstable equilibrium points include
eigenvector tracing method [21], homotopy-based method
[22], etc. In this paper, eigenvector tracking method is used
to find xd of (8).

The eigenvector tracing method can find the type-1 unsta-
ble equilibrium points of QGS (8) by the reflected gradient
system (RGS). By establishing RGS (9), the type-1 unstable
equilibrium points of (8) are transformed into the stable equi-
librium points of RGS (9). For the n-dimensional vectorX, let
λ1(X) ≤ λ2(X) . . . ≤ λn(X) be the eigenvalue of the Jacobian
matrix of X at QGS(8), and vi(X) be the eigenvector corre-
sponding to λi(X),Pi(X) = vTi (X)vi(X)i = 1, 2 . . . n, and

RGS is defined as the following nonlinear dynamic system:

dX/dt = [P1(X)−
∑n

i=2
Pi(X)]DQH(X) (9)

where DQH(X) represents the Jacobian matrix of QH(X).
The selection method of the integral initial points of (9) is

generally empirical [22], which is related to the structure of
the dynamic system under study. For simplicity, in this paper,
the integral initial values of (9) are chosen randomly. The
searching method of type-1 of QGS (8) is as follows:

Numerically integrate (9) forward with an random initial
point.

1) If the integral trajectory converges to the equilibrium
point6 of QGS (8), then judge whether6 is the type-1 unsta-
ble equilibrium point of the system (8) and filter DP. The
judgment method is to calculate the number of positive real
part eigenvalues corresponding to eigenvectors of DQH(

∑
)

on the normal space Nx(
∑

) (orthogonal complement of tan-
gent space Tx(

∑
)) [1], and the details are as follows:

Tx(
∑

)n×m =
{
u 6= 0 : DH(

∑
)u = 0

}
,m = n −

rank(DH(
∑

))
Tx(

∑
) is decomposed on the basis of QR decomposition,

that is, Qn×nRn×m = Tx(
∑

), where Qn×nQT
n×n = In and Q

is orthogonal matrix.
LetAn×(n−m) = Qn×n\Tx(

∑
), JQ = ATDQH(X)A, and if

JQ has k eigenvalues of positive real parts, then6 is the type-
k unstable equilibrium point of (8), when k= 1, it is what we
desire.

2) If the integral trajectory diverges, integrate (9) with
another initial point.

The method for filtering DP from {xd }[14] is: start from xd
and move a small distance ε along the two directions of the
unstable eigenvectorEud of DQH(xd) to obtain the points xd±
εEud , and take xd ± εE

u
d as the initial values to integrate (8),if

they converge to different stable equilibrium points, then xd
is DP.

When we get the DP of QGS (8), we can search the feasible
points in different feasible components through the known
feasible points and DP, so that the integral initial values of
PGS (7) are widely distributed and the searching space for
local optima is vast. The method [24] is as follows:

let Xex = X0 + σ (DP − X0) where X0 is the point
inside the known feasible component,Xex is named exit point
[14], and σ is greater than 1 to ensure that Xex falls into the
stability domain of the adjacent stable manifold. Integrate (8)
forward with Xex until the trajectory approaches the stable
equilibrium point X1, where X1 is the new feasible point
inside the adjacent feasible component (see Figure 1).

2) IMPROVE THE SINGULARITY OF DH(X)
Slack variable vector s is introduced so as to deal with the
inequality constraints, and s is not dependent, which satisfies
h(x)+ s2 = 0. If we update s with (7) as if it is independent
without any processing method, case study results indicate
the poor convergence.

The method is as follows: at each step of integration
for (7), if the i th inequality constraint hi < 0, then let
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si =
√
−hi,which can keep the (2nB +1+ i) th element of

H(X) satisfying hi+ s2i = 0, and enhancing the convergence.
When hi ≥ 0, let si = δ, instead of 0, δ is small positive real
number, the reasons are as follows:

At each integration step of (7), when the row of DH(X) is
not full rank, formula (7) will diverge because of the singu-
larity of DH(X)DH(X)T. Besides, the first order derivative of
hi+s2i with respect to si is 2si. When k th inequality constraint
violate the limit,

DH(X)2nB+1+k,2nB+2nG+k = 2sk = 2δ 6= 0 (10)

Which will not only improve the singularity of DH(X) but
also basically satisfy the feasible conditions of (2), so as to
enhance the numerical convergence of (7).

3) SLACK VARIABLE PERTURBATION METHOD
Numerically integrate (7) with different feasible points of (2)
as the integral values until the trajectories converge to the
adjacent local optima or saddle points (SD), and then the
integration stops. The saddle points are the unstable equilib-
rium points of PGS (7), and their stable manifolds form the
boundaries of the stability domains of the stable equilibrium
points [15]. OPF problem usually has many saddle points
[2], which causes much difficulties when Newton method
is adopted to solve KKT equations (4), because Newton
method is easy to fall into saddle points, especially for large-
scale cases. According to theory of stability regions [14],
the stable manifolds of the saddle points are much smaller
in the whole space than that of stable equilibrium points.
Therefore, when dynamic method is adopted to solve OPF
problem, the trajectories are more likely to converge to the
local optima of (2) (stable equilibrium points of (7)) than
converge to the saddle points. Even so, some trajectories
will still fall into the saddle points, which is meaningless
for optimization. Reference [15] proposed the eigenvector
perturbation method to escape from saddle points, but it is
tedious to calculate multiple unstable eigenvectors of the
Jacobian matrix of (7) at SD. In this paper, a simple and
effectivemethod to escape from the saddle points is proposed:
slack variable perturbation method (SVPM).

At every integration step of (7), s is updated as follows:

si =

{
δ hi ≥ 0
ε
√
−hi hi < 0

(11)

where ε ∈ (0.99, 1), δ is a small positive number as described
in 2).

The saddle points (SD) are unstable equilibrium points,
of PGS (7), and SVPM is adopted to give the value of (7)
at SD a perturbation by changing the value of ε, and then
the PGS (7) on the right generates a mismatch, which means
max(P(SD)) 6= 0, and then numerically integrate (7) forward
with initial point SD. During the first few integration steps,
s is updated according to (11). After a short distance of inte-
gration, s is updated according to the method in 2). Due to the
global convergence of (7), the mismatch value will eventually

FIGURE 2. The flow chart of the proposed algorithm.

be reduced to 0. Meanwhile, the integration trajectory of (7)
approaches to one adjacent local optimal solution of OPF
problem (1) which is stable equilibrium point of PGS (7).
The numerical experiments of many different scale test cases
show that trying different ε for 1-2 times can guarantee to
escape from saddle points to adjacent local optima. Here,
the integration trajectories of (7) falling into saddle points
can be replaced by any optimization algorithms’ trajectories
converging to saddle points which violate the second-order
sufficient condition, and then the SVPMcan help them escape
from the saddle points and reach the local optima again.

Based on the discussion above, X0 can be selected as the
integral initial value of system (7), where:

X0 ∈ FR =
{
X ∈ <n,H(X) = 0

}
(12)

FR is the feasible region of (2). Measures proposed above
in this section are taken to enhance the numerical convergence
of PGS (7) and help the integral trajectories escape from
saddle points. The algorithm flow chart is shown in Figure 2.

V. NUMERICAL EXAMPLES
Multiple IEEE test cases are used to verify the effectiveness of
the proposed algorithm, which is compared with the interior
point method (IPM). The ode15s integrator in MATAB is
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adopted for the integration of QGS and RGS, and the hybrid
integration method in reference [15] is adopted for the inte-
gration of PGS (7), which combines the convergence speed
of Newton method and the robustness of the steepest descent
method. The numerical measures proposed in B of section IV
are taken to enhance convergence and adapt to OPF problem
at each integration step of PGS (7). The parameters, wiring
diagram and optimal solution information of the cases can be
found on the website [23]. For the convenience of description,
in the following figures, INI stands for the integral initial
points of system (7). Xex stands for the exit points. DP stands
for the decomposition points. And LOS stands for the local
optimal solutions. SD stands for saddle points. And subscript
numbers are used to distinguish each point. FR stands for
feasible region.

A. CASE STUDY
1) LMBM3 TEST
The three-bus case contains 5 local optimal solutions and
2 disconnected feasible components. In order to show the
relative positions of the local optima and integration trajec-
tories, the complete feasible region (grey area) of this case is
characterized in Figure 3 using the method in [19], and the
optimization process is also shown in Figure 3.

FIGURE 3. The process of optimization for LMBM3 test.

The green curves are the trajectories of searching the
decomposition points, and the red curves are the trajecto-
ries of searching different feasible components from the exit
points, the blue curves are the trajectories of identifying
the local optima, and the local optima are marked with red
crosses. In the following figures, the axis label P1 means the
active power of the first generator, and so on; and the axis
label Q1 means the reactive power of the first generator, and
so on.

The optimization process is as follows in detail:
Loop 1: Integrate (8) with random initial point to feasible

point INI4, and integrate (7) with INI4 as the initial value to
local optimal solution LOS4. Move a distance along the line

(dashed line) between INI4 and the decomposition point DP1
(cyan diamond) to the exit point Xex1. And then integrate (8)
with Xex1 as the initial point to the feasible point INI3 (in
another feasible component, marked in yellow). Integrate (7)
to another local optimal solution LOS3with INI3 as the initial
value. Then extend the line between INI4 and the decom-
position point DP2 to the exit point Xex2 and integrate (8)
with Xex2 as the initial value to the feasible point INI2, and
integrate (7) with INI2 as the initial value to the local optimal
solution LOS2.

Loop 2: Integrate (8) with random initial point to the
feasible point INI1, and integrate (7) with INI1 as the ini-
tial value to LOS1. Extend the line (dashed line) between
INI1 and DP1, INI1 and DP2 to the corresponding exit points
respectively, and repeat the process in loop 1 and identify the
local optimal solutions LOS2 and LOS3.

Loop 3: Integrate (8) with random initial point to the
feasible point INI5, and integrate (7) with INI5 as the initial
value to LOS5, and all local optima have been identified.

When the integration trajectories of (7) converge to the
saddle points, the slack variable perturbation method can help
the trajectories escape from the saddle points and reach the
adjacent local optimal solutions. As shown in Figure 4, the red
curves are the trajectories of falling into saddle points, and the
blue curves are the trajectories of escaping from the saddle
points to local optimal solutions. Integrate (7) with INI1 and
INI2 and the trajectories fall into saddle points SD1 and
SD2 respectively. By SVPM to change ε for perturbation,
two trajectories can escape from the saddle points to the
adjacent local optimal solution LOS1. The red trajectories
in the figure can also be replaced by the trajectories falling
into saddle points of other numerical algorithms (such as the
interior point method), which can be improved by SVPM.

In order to test the convergence of the algorithm,
the method in [19] is adopted to characterize the complete
feasible region of the 3-bus case, with a total of 10,000 feasi-
ble points as initial value to integrate (7), so as to identify cor-
responding local optimal solutions. Among them, 112 points

FIGURE 4. The trajectories escaping from saddle points to local optima.
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converge to the saddle points, which all escape to adjacent
local optima through SVPM, and the rest all converge to
local optima. And then characterize the convergence domain
of each local optimal solution with different colors, whose
boundary are smooth, as shown in Figure 5. The PGS (7)
presents adjacent convergence and global convergence, that
is, the feasible points will converge to the adjacent local
optimal solutions, and each feasible point will converge to
an equilibrium point of system (7), and most points will
converge to the stable equilibrium points of (7), which are
local optima of (2). This property enables the algorithm to
identify multiple or all local optima for OPF efficiently and
deterministically.

FIGURE 5. The convergence domain of each local optimal solution.

2) WB5MOD TEST
The 5-bus case has 4 disconnected feasible components and
5 local optimal solutions. The optimization process is shown
in Figure 6.

The green curves are the trajectories of identifying the
decomposition points, and the red curves are the trajecto-
ries of searching different feasible components from the exit
points, and the blue curves are the trajectories of identifying
local optima. And the gray area is the feasible region.

The optimization process is as follows in detail:
Loop 1: Integrate (8) with random initial point to the

feasible point INI3, and then integrate (7) with INI3 as
the initial value to the local optimal solution LOS3. Inte-
grate (7) with feasible points INI2, INI1 and INI4 (located
in different feasible components) as initial points, which are
acquired by integrating (8) with corresponding exit points
Xex1,Xex2,and Xex3 searched by extending the dashed line
between INI3 and DP1, DP2, and DP3, to local optimal
solutions LOS2, LOS1 and LOS4 respectively.

Loop 2: Repeat process in loop 1, and identify LOS2,
LOS1.

Loop 3: Integrate (8) with random initial point to the
feasible point IN5, and integrate (7) with INI5 as the initial

FIGURE 6. The process of optimization for WB5mod test.

FIGURE 7. The trajectories escaping from saddle points to local optima.

value to the local optimal solution LOS5. And all local optima
have been identified.

Figure 7 shows the process of escaping from the sad-
dle points to adjacent local optima. The complete feasible
region is characterized, including 10000 feasible points, and
we numerically integrate (7) with them as initial values to
identify corresponding local optima. Among them, 108 points
converge to saddle points, which all escape to adjacent local
optima through SVPM, and the rest converge to local optimal
solutions.

The convergence domain of each local optimal solution
are characterized with different colors, as shown in Figure 8,
which shows the fine global convergence and adjacent con-
vergence of PGS (7).

3) CASE9MOD TEST
The 9-bus case has 3 disconnected feasible components and
4 local optimal solutions. The optimization process is shown
in Figure 9.

The green curves are the trajectories of identifying the
decomposition points, and the red curves are the trajecto-
ries of searching different feasible components from the exit
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FIGURE 8. The convergence domain of each local optimal solution.

FIGURE 9. The process of optimization for case9mod test.

points, and the blue curves are the trajectories of identifying
the local optima. And the gray area is the feasible region. The
optimization process is as follows:

Loop 1: Integrate (8) with random initial point to the
feasible point INI1, and then integrate (7) with INI1 as the
initial value to the local optimal solution LOS1. Integrate (7)
with feasible points INI2 and INI3 (located in different fea-
sible components) as initial points, which are acquired by
integrating (8) with corresponding exit points Xex1 and Xex2
searched by extending the dashed line between INI1and DP1,
DP2, to local optimal solutions LOS2, LOS3 respectively.

Loop 2: Integrate (8) from random initial point to the
feasible point INI5, and then integrate (7) with INI5 as initial
point to the local optimal solution LOS2. Integral (7) with
INI4 (located in different feasible component), which are
acquired by integrating (8) with exit points Xex3 searched by
extending the dashed line between INI5 and DP3, to the local
optimal solution LOS4.

Figure 10 shows the process of esfrom the saddle points
to adjacent local optima. The complete feasible region is

FIGURE 10. The trajectories escaping from saddle points to local optima.

characterized, including 10000 feasible points, and we
numerically integrate (7) with these feasible points as initial
points to identify corresponding local optima. Among them,
98 points converge to the saddle points, which all escape to
adjacent local optima through SVPM, and the rest all con-
verge to the adjacent local optimal solutions. Figure 11 shows
the convergence region of each local optimal solution with
different colors.

4) CASE118MOD TEST
It should be noted that in large-scale cases, it is very difficult
to calculate the decomposition points [15]. The QGS has
good robustness and strong search ability, which can gen-
erate widely distributed feasible points, and as the number
of searching increases, it can efficiently search for feasible
points located in multiple or all feasible components. There-
fore, the step of searching the decomposition points can be

FIGURE 11. The convergence domain of each local optimal solution.
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omitted. Choose integral initial points randomly as dispers-
edly as possible in the whole space, for example, by Latin
hypercube sampling [19], with which integrate QGS (8) to
the feasible points of (2), and then integrate (7) with these
feasible points until the trajectories approach the local optima
of (2). It takes a little longer time to implement this method,
but the optimization effect can also be guaranteed.

There are two disconnected feasible components and three
local optimal solutions in the 118-bus case. The optimization
process is shown in Figure 12. After the QGS calculating
39 feasible points of (2) and repeating the process above,
all 3 local optimal solutions are identified, and 33 points
converge to LOS1, 2 points converge to LOS2, and 3 points
converge to LOS3, and 1 point converges to saddle point
(cyan). The trajectory falling into the SD is marked in red
and the trajectory escaping from the SD to LOS1 by SVPM
is marked in blue and amplified in Figure 12.

FIGURE 12. The process of optimization for case118mod test.

B. ALGORITHM COMPARISON
This section, we will compare the calculation effect of the
proposed algorithm with interior point method (IPM). The
IPM solvers adopted the MIPS solver based on the primal-
dual interior point method and the IPOPT solver based on
the prediction-corrected interior point method. The all 18 test
cases which are from school of mathematical, university of
Edinburgh (see website [23]) are used to verify the effec-
tiveness of the proposed algorithm, which contains many
types and is extensive and persuasive. For IPM solvers, the
maximum number of experiments for each case is 10000
(including the number of divergence and convergence to sad-
dle points), and if all the local optimal solutions cannot be
found within 10000 times or all are found, then experiment
will stop. ForMIPS and IPOPT, iteration calculation from the
random initial point to the stagnation of (4) or to infeasible
points(divergence) is considered as an experiment. For the
proposed algorithm, integration calculation from the random
initial point to one equilibrium of (7) is considered as an

experiment, if all local optima are found or the same solution
is found for consecutive times, then experiment will stop.
The total calculation time includes the time of calculating
the decomposition points and integrating QGS and PGS. The
results are shown in Table 1.

TABLE 1. Comparison of the results.

It can be seen from Table 1 that the proposed algorithm
can identify all or most of the local optimal solutions of the
above cases within the effective time. For some cases, such as
WB3,WB5 and case30, the calculation effect of the proposed
method is about the same as that of IPM, but for most cases
above, especially for the cases with many extreme points and
large-scale cases, the proposed method can identify far more
local optima (see deep red column in Table 1) within much
less time (see pink column) compared with IPM.

The qualitative interpretation is as follows: it can be seen
from detailed case analyses in A of section V that the conver-
gence regions of the local optima are continuous, with similar
sizes and smooth boundaries, which are different from the
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fractal structure of Newton method [25], and there is only
one local optimal solution in each convergence region [14],
which is regular and orderly. The inherent good convergence
of PGS (7) and the numerical improvement measures can
ensure the trajectories of (7) approach to local optima as
long as the initial feasible points fall into the corresponding
convergence regions. Besides, the decomposition points can
help locate all disconnected feasible components to ensure
the initial feasible points are widely distributed so that the
search space of local optima can be expanded. Moreover, the
good robustness of system (8) can also generate widely dis-
tributed feasible points with random initial points and expand
the search space. Besides, stability region theory [14]–[15]
indicates that the trajectories of system (7) are much more
likely to converge to local optima than converge to saddle
points and other invalid points, and the SVPMcan help escape
from saddle points to adjacent local optima, even if the trajec-
tories of (7) converge to saddle points. The good property of
related dynamic systems and design of the proposed method
are conducive to identifying most or all local optima in a
shorter time compared with IPM with random initialization.

VI. CONCLUSION
In this paper, the method based on nonlinear dynamics is
applied to identify multiple local optima for OPF problem.
Combined with the RGS to locate the disconnected feasible
components, the QGS to generating feasible points that are
widely distributed, and the PGS (7) which has fine global
convergence and adjacent convergence, as well as the numer-
ical improvement measures to enhance the numerical conver-
gence of PGS (7) and adapt to OPF problem, this algorithm
can efficiently identify multiple or even all local optima
within effective time. The slack variable perturbation method
enables the optimization algorithms to escape from the saddle
points and reach the local optima again, especially suitable for
OPF problem which has many saddle points. Multiple IEEE
test cases verify the effectiveness of the proposed method.

Further researches will focus on the following three
aspects:

Firstly, this method can efficiently handle the optimization
problems, which are differentiable. For problems with non-
differentiable objective functions and constraints, the subdif-
ferential or the generalized gradient [26] can be adopted to
form the elements of Jacobian matrix DH(X) at the nondif-
ferentiable points, which will enlarge the application range of
the proposed algorithm.

Secondly, this paper mainly focused on the design of the
optimization, so the OPF model (1) adopts the concise and
classical mathematical form, which is relatively preliminary.
In future studies, various OPF problems need to be con-
sidered. For example, considering reactive power optimiza-
tion, dynamic economic dispatching, and the optimization of
power systems with renewable energies represented by wind
power and photovoltaics.

Thirdly, for constrained optimization problems, with the
unified form (2), the various swarm algorithms which have

good global optimization characteristics can be adopted to
search the promising solutions, and on the basis, the proposed
method which have good adjacent convergence property can
search the higher-quality local optimal solutions through fine
tuning. This hybrid design can achieve better optimization
effect [24].
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