
Received July 4, 2020, accepted July 9, 2020, date of publication July 14, 2020, date of current version July 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3009217

Impact of Stemming and Word Embedding on
Deep Learning-Based Arabic Text Categorization
HUDA ABDULRAHMAN ALMUZAINI AND AQIL M. AZMI
Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Corresponding author: Aqil M. Azmi (aqil@ksu.edu.sa)

This work was supported by the Deanship of Scientific Research at King Saud University through the initiative of DSR Graduate Students
Research Support.

ABSTRACT Document classification is a classical problem in information retrieval, and plays an important
role in a variety of applications. Automatic document classification can be defined as content-based
assignment of one or more predefined categories to documents. Many algorithms have been proposed
and implemented to solve this problem in general, however, classifying Arabic documents is lagging
behind similar works in other languages. In this paper, we present seven deep learning-based algorithms
to classify the Arabic documents. These are: Convolutional Neural Network (CNN), CNN-LSTM (LSTM=
Long Short-Term Memory), CNN-GRU (GRU = Gated Recurrent Units), BiLSTM (Bidirectional LSTM),
BiGRU, Att-LSTM (Attention-based LSTM), and Att-GRU. And for word representation, we applied the
word embedding technique (Word2Vec). We tested our approach on two large datasets–with six and eight
categories–using ten-fold cross-validation. Our objective was to study how the classification is affected
by the stemming strategies and word embedding. First, we looked into the effects of different stemming
algorithms on the document classification with different deep learning models. We experimented with
eleven different stemming algorithms, broadly falling into: root-based and stem-based, and no stemming.
We performed ANOVA test on the classification results using the different stemmers, which helps assure if
the results are significant. The results of our study indicate that stem-based algorithms perform slightly better
compared to root-based algorithms. Among the deep learning models, the Attention mechanism and the
Bidirectional learning gave outstanding performance with Arabic text categorization. Our best performance
is F-score = 97.96%, achieved using the Att-GRU model with stem-based algorithm. Next, we looked
into different controlling parameters for word embedding. For Word2Vec, both skip-gram and bag-of-words
(CBOW) perform well with either stemming strategies. However, when using a stem-based algorithm,
skip-gram achieves good results with a vector of smaller dimension, while CBOWrequires a larger dimension
vector to achieve a similar performance.

INDEX TERMS Arabic document classification, deep learning, stemming strategies, word embedding,
statistical significance.

I. INTRODUCTION
The Internet is full of information in many different forms,
includingmillions of textual documents. This large volume of
data posts a challenge, even for simple tasks, such as infor-
mation retrieval (IR). A possible solution is to organize the
textual data into different categories. Manual classification is
out of question, and the alternative is to automate the task.
Automatic document classification is used to discover the

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Zakarya .

basic information of documents automatically, thus saving
human time and effort. Automatic text classification (TC),
or document classification which we use interchangeably,
is the assignment of the document to a pre-determined set of
categories based on its contents.

With a population of around 445 million, Arabic lan-
guage users constitute the fastest-growing language group
with regards to the number of Internet users. According to
a study in (www.internetworldstats.com/stats7.htm), during
the last two decades, Arabic language Internet users have
grown by 9348%. In the same statistics, the next two language

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 127913

https://orcid.org/0000-0002-4496-4317
https://orcid.org/0000-0002-0983-2861
https://orcid.org/0000-0001-7070-6699


H. A. Almuzaini, A. M. Azmi: Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization

user groups experienced a growth of 3653.4% and 3356%
(for Russian and Indonesian languages, respectively) in the
same period. While most of the research to date has tackled
the problem for the English language, the work on Arabic
document classification is lagging behind. There are many
reasons for this, as we will see in Section II-B. Needless to
say,many authors have concluded that constructing automatic
Arabic TC is a challenge [1]–[3].

Developing a classification system for the Arabic lan-
guage involves understanding the syntactic structure of the
words, so that we can manipulate and represent the words
in a way that makes their classification more precise. The
pre-processing step (e.g., removing stop-words, or stemming)
plays a critical role in many Arabic natural language process-
ing (NLP) applications, including classification. Moreover,
it helps reduce the dimensionality and thus reduce the classi-
fication time.

Deep learning (DL) is a sub-area of machine learning that
uses multi-layered artificial neural networks to deliver high
accuracy in diverse tasks such as object detection, speech
recognition, natural language processing, etc. Word2vec is
a word embedding technique that uses a shallow neural
network [4]. Word2Vec maps words into continuous vec-
tors, and as it turns out, it is one of the most popular
models for word similarity tasks, and text classification.
It has been successfully used for raw text classification in
English [5]–[7], and other languages, such as Chinese [8], [9].

Given the importance of stemming and word embedding to
TC, we would like to see their impact on textual classification
using DL algorithms. This study involves seven different DL
models: Convolutional Neural Network (CNN), CNN-Long
Short Term Memory (CNN-LSTM), CNN-Gated Recurrent
Units (CNN-GRU), Bidirectional LSTM (BiLSTM), Bidirec-
tional GRU (BiGRU), Attention-based LSTM (Att-LSTM),
and Attention-based GRU (Att-GRU); and eleven different
stemming strategies broadly falling into root-based, stem-
based, or no stemming. We are not aware of any comparable
study that combined so many DL models along with so
many stemming algorithms to assess a single Arabic NLP
application. Summarizing our contributions:
• We explore how the TC using the different DL models
for the documents in the Arabic language is affected by
the different stemming strategies.

• We investigate which of the studied DL models is best
suited for the task of Arabic TC.

• We studied the impact of word embedding, using
Word2Vec, and how this improves TC.

• We use analysis of variance (ANOVA) test to confirm
the significance of the TC results.

More specifically, we conducted two groups of experi-
ments, one for stemming strategies, and the other to identify
appropriate parameters for Word2Vec. When conducting an
experiment on, for example stemming strategies, we fixed
the parameters of word embedding. The same goes for the
other experiment, where we fixed the stemming algorithm to
one from each stemming strategy. As we will discuss later

(see Section III) most of the studies limit their comparison
by using a single candidate algorithm from each stemming
approach. On the other hand, in this study, we compared
the performance of TC using ten different stemming algo-
rithms, five of which are root-based [10]–[14], five are light
stemmer [15]–[19], and no stemming. As we stated earlier,
stemming impacts the performance of NLP applications,
TC included. We experimented using two large corpora,
and among the different DL models, only CNN-LSTM and
CNN-GRU where effected by the stemming algorithms. So,
we have an interesting conclusion. Stemming had little or no
impact on the performance of classifying Arabic documents
when using some of the deep learning models. We achieved
our best performance for Arabic TC using Att-GRU, BiGRU,
and BiLSTM, in order.

The rest of this paper is organized as follows: Section II
presents the background about text classification, and stem-
ming algorithms. In Section III, we review related studies.
In Section IV, we discuss our proposed system. Section V is a
discussion of the experiments and results. Finally, Section VI
concludes the paper, and outlines possible future work.

II. BACKGROUND
In this Section we briefly outline the textual classification,
challenges facing the classification when using Arabic lan-
guage, and stemming algorithms.

A. TEXTUAL CLASSIFICATION
Text classification (TC)—also text tagging, or text
categorization—is the process of classifying text into orga-
nized groups. It uses NLP to automatically analyze text, and
then assigns a set of pre-defined tags or categories based
on the content. Some of the areas that may benefit from
TC are: sentiment analysis, topic detection, and language
identification etc.

Classifying a text involves three stages. First, the pre-
processing step. This step usually requires cleaning the
text (e.g., removing punctuation mark, stop word, numer-
als). Stemming is applied at this step. The second step
involves representing the document in vector form to extract
its features. Different techniques have been proposed, such
as Latent Semantic Analysis [20], Bag-of-Words [21], and
Word2Vec [4], or at character level using n-gram [22]. In the
third step, we train and test the classifier. There are two
approaches for training the classifier, the traditional method
and the deep learning method. In the traditional method,
following the conversion of the documents to feature vector,
we use a typical classifier (e.g., Support Vector Machine,
K Nearest Neighbors, Naïve Bayes). More recently, deep
learning (DL) methods have received considerable attention
for the classification task. In DL architecture, a multi-layer
neural network are used, where the input is the document
features vector. One drawback is that DL requires large
training data to give satisfactory results. Examples of
DL models that achieved remarkable classification results

127914 VOLUME 8, 2020



H. A. Almuzaini, A. M. Azmi: Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization

TABLE 1. Example of an Arabic word which has different affixes attached to a root word, ‘‘negotiate’’. The full meaning ‘‘to negotiate with them’’.
Source: [28].

are: the CNN [5], character level CNN [23], and Deep Belief
Networks (DBN) [24].

A subproblem of TC is hierarchical textual classification,
where the document is classified into a predefined multi-level
categories. The hierarchical TC aims at organizing the mass
of information as a tree structure in which a document that
belongs to a topic at a certain level also belongs to all of its
parent topics, ancestors, etc [25]. For example, under a 3-level
categorization, a document may be classified as ‘‘health
→ diseases → cancer’’, another document is classified as
‘‘health→ diseases→ heart’’ etc. There are advantages for
such hierarchical classification, such as improving retrieval
time. Hierarchical TC is outside the scope of our work.

B. CHALLENGES TO CLASSIFYING DOCUMENTS
IN ARABIC
Developing an accurate system for categorizing text from the
large number of Arabic documents accessible on the Internet
is very challenging. These challenges arise from the ambigu-
ity due to the lack of diacritical markings in Modern Stan-
dard Arabic (MSA), the Arabic language’s rich and complex
morphology, the wide spread use of synonyms, the nature
of the language itself—Arabic is a highly inflectional and
derivational language—etc.

The Arabic orthographic system uses small diacritical
markings to represent different short vowels. There are a total
of thirteen different diacritics, and these are used to clarify
the sense and meaning of the word. In MSA, the written text
is devoid of these markings, as it is assumed the reader will
disambiguate the meaning. However, this is not true for the
machines [26]. Just to give an idea, consider the undiacritized
word . It has more than one meaning depending on
the diacritics, ‘‘necklace’’, ‘‘knots’’, ‘‘contract’’, ‘‘decade’’,
‘‘pact’’, and ‘‘complicated’’. Some of the words share the
exact same diacritical marking, but have different meaning
which can only be realized through context. For example,
the word means ‘‘year’’, but it may also mean ‘‘public’’.

In addition, the plural, dual, and singular forms in Arabic
vary according to gender. In Arabic, there are linguistic rules
for each type, and some words have irregular plural forms.
Moreover, the letter waw at the beginning of an Arabic
word poses a challenge, since it may be the proposition
‘‘and’’ or an original letter part of the word. For example,
the letter waw is proposition in ‘‘and sat’’, while it is
original lexeme in ‘‘stood up’’.

C. STEMMING ALGORITHMS
Commonly referred to as stemmers. Stemming is a compu-
tational procedure which reduces all words with the same
root (or the same stem, in case prefixes are left untouched)
to a common form, usually by stripping each word of its
derivational and inflectional suffixes. A stemming algorithm
reduces the words ‘‘chocolates’’, ‘‘chocolatey’’, or ‘‘choco’’
to the root word, ‘‘chocolate’’; and the words ‘‘retrieval’’,
‘‘retrieved’’, ‘‘retrieves’’ are reduced to the stem ‘‘retrieve’’.
Here, we want to reduce different forms of a word to a core
root or stem. This provides more convenience when handling
words that share the same core meaning, thus playing an
important role in the field of information retrieval (IR). In IR,
grouping words with the same root (or stem) increases the
success with which documents can be matched against a
query [27].

For the English language, a simple stemming that involves
the stripping of suffixes is sufficient for the purpose of IR.
For Arabic, however, the stripping of suffixes alone would not
be sufficient [29]. In Arabic, there are four kinds of affixes:
antefixes, prefixes, suffixes and postfixes that can be attached
to words [28]. Table 1 provides an example of a complex
Arabic word with all affixes. There are two main stemming
approaches in Arabic: root-based stemming, and stem-based
(or light) stemming.

In the root-based stemming technique we perform heuristic
and linguistic morphological analysis to extract the root of a
word. This technique can be further divided into three cat-
egories: dictionary-based, nondictionary-based, and hybrid
(see Figure 1). An example of dictionary-based is the Khoja
stemmer [11], which uses—as the name implies—a dictio-
nary file of Arabic roots. The nondictionary-based algorithms
are further classified into three different approaches: pattern-
based, statistical-based, and rule-based. The pattern-based
algorithm uses the Arabic pattern (or a template) to match
a word, then extract the root. For instance, the word

‘‘school’’ matches the pattern , resulting in the
triliteral root : d r s. Some of the algorithms that fall
under this approach are [12], [30], [31]. Ref [32] developed
an algorithm that is statistical-based stemmer. The algorithm
uses the idea of assigning weights to the letters in order to
extract the root without consulting lists of prefixes, suffixes,
patterns, or roots. Then, we have algorithms that utilize lin-
guistic rules to extract the root, such as those in [10], [14],
[33], [34]. The last approach under the root-based stemmer

VOLUME 8, 2020 127915



H. A. Almuzaini, A. M. Azmi: Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization

FIGURE 1. Stemming approaches.

is the hybrid method. In hybrid methods, we extract the
root using a combination of rules, patterns, and/or lookup
dictionary of roots, e.g. [13], [35], [36].

In light stemming we reduce the word by removing pre-
fixes and suffixes. This method does not deal with pat-
terns and infix (letters added within the root). Occasionally,
the resultant word may not be a valid one, but it is suffi-
cient for the objective of IR. For example, ‘‘studies’’
whose stem is , is not a valid Arabic word. Works that
tackle light stemming includes [15]–[19], [37], [38]. The
author in [17] uses snowball, a programming language ded-
icated for stemming in different human languages. Ref [18],
on the other hand, used lexicon resources to improve the
stemming.

III. RELATED WORK
For the Arabic language, most of the stemming algorithms
have been tested on IR, but few works have looked at their
impact on automatic TC. Arabic is a morphologically rich
language, and from a single root we can derive many dif-
ferent words. For example, from the root letters :d r
s we can drive the words ‘‘study’’, ‘‘school’’,

‘‘teacher’’ (masc.), ‘‘teachers’’ (fem.),
‘‘teachers’’ (masc.) etc. An analysis of Arabic text in a

newspaper indicates that there are more words occurring once
and there are more distinct words than those found in English
text of identical size, when no stemming is involved [39].
Given that, extracting the roots of the words found in a
document will reduce the dimensionality, and may improve
the accuracy of IR. However, many word variants do not
share the same semantic meaning even though they may
share the root. Thus, in the pre-processing stage for IR,
the root extraction methods may increase a word’s ambi-
guity, in which case the light stemming methods may be a
better choice. Ref [15] investigated the effectiveness of two
different stemming techniques of Arabic texts on IR. The
first technique was root-based, and the second technique, was
light stemming. For the first technique, they used a modified
Khoja’s algorithm [11] to extract the roots; and for the second
technique the authors used their own light stemmer. The latter
technique relied on removing the most frequently occurring
suffix and prefix, and normalization. The authors evalu-
ated the performance of no stemming, light stemming, and
root-based stemming algorithms. For anArabic query system,

they reported a degraded performance when no stemming
is involved, while light stemming significantly boasted the
system performances compared to one using the root-based
stemmer.

In [40], the authors investigated the impact of the
root-based stemmer vs light stemmer for text mining tasks.
In the pre-processing step, the authors applied [11] and [37]
stemming algorithms, respectively. They also used the Latent
Semantic Analysis (LSA) model for measuring the semantic
similarity between Arabic words. The experiments demon-
strated that using light stemming improved the performance
compared to using the root-based stemming algorithm. The
authors attributed this to the occasional loss of sense when
words were reduced to their root form.

Ref [1] studied the effectiveness of light stemming
vs heavy stemming (root-based) for Arabic text catego-
rization. For the experiment, the authors used a dataset
of 15,000 documents classifying them into three categories.
Using the K-Nearest Neighbors (KNN) classifier, the authors
experimented with both the heavy stemmer [32] and the
light stemmer [15]. They concluded that better accuracy was
achieved when light stemming was used as opposed to heavy
stemming.

Reference [24] proposed a three-stage technique for clas-
sifying Arabic documents into multiple categories. A root
extraction algorithm was applied in the pre-processing stage.
Then, a combination of Markov and fuzzy C-means was used
for clustering. In the third stage, the DBN was used to build
the Arabic classification model for each resulting cluster.
The experiment was conducted on 12,000 randomly selected
documents from two different datasets. The authors reported
an F-score of 91.02%.

Reference [41] studied the effect of stemming techniques
on Arabic document classification. For the pre-processing
step, the authors picked three stemmers, one root-based [30],
and two stem-based [19], [42]. They used traditional classi-
fication algorithms, namely, Naïve Bayesian (NB), Support
Vector Machines (SVM), and KNN. The experiments were
performed on open source Arabic corpora (OSAC) [43]. The
corpus consists of 5,070 documents divided into six cate-
gories. The best performance of micro-F1 = 94.64% was
reported using SVM with stemmer in [19].

To encode documents for classification, [44] uti-
lized the Restricted Boltzmann Machine (RBM). For
the pre-processing step, the authors applied Khoja’s
stemmer [11], and [45] a light stemmer. After training the
document representations using RBM, they classified the
documents using Decision Tree (DT), NB, and SVM. They
used OSAC corpus [43], the authors reported their best
accuracy of 75.1% using light stemmer.

Learning effective document representation can enhance
document classification. In [46], the authors proposed a
technique that combines document embedding representa-
tion with Arabic WordNet to learn the word sense disam-
biguation. For the pre-processing step, the root of the words
was extracted using the Khoja stemmer [11]. After learning

127916 VOLUME 8, 2020



H. A. Almuzaini, A. M. Azmi: Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization

the documents representation, the documents were classified
using the multi-layer perceptron classifier. This proposed
method yield an F-score of 90%.
The proposed technique in [47] focused on feature

selection for Arabic TC. They applied the modified Khoja’s
stemmer, followed by four different feature selection met-
rics (Chi-square, information gain, mutual information, and
improved Chi-square) to select the best features. The size of
features ranged between 20 and up to 1400. For classification
they used DT and SVM. The authors tested their scheme on
OSAC corpus [43], and reported their best performance using
improved Chi-square feature selection, achieving F-score
of 90.50%. This was achieved when using 900 features.
When less or more features are selected, the F-score drops.
For instance, the F-score = 83.8% and 88% for 100 and
1400 features respectively, using improved Chi-square.

Some recent researches explored the effects of different
stemming approaches on TC and text mining tasks. In [48]
compared three different stemmers [11], [16], [49] on TC
task. For classification the authors used SVM and NB. The
system was tested on 2,000 documents collected from roy-
anews.com. They reported the best result of F-score = 92%
using the stemmer [49].

The study in [50] used the stemmer [51] to assess Arabic
TC task. They used TF-IDF to extract the features from
the documents. For classification, the authors used Logis-
tic Regression, SVM, and CNN. The system was tested
on 111,728 documents collected from three different online
newspapers. They reported their highest accuracy score
of 92% using the CNN model. While [52] compared two
stemmers [49], [53] to see which one is better suited for
Arabic TC. Using two different classifiers, SVM and NB,
and a dataset of 1000 news articles from alghad.com, they
reported their best performance ofF-score = 90%when used
with the stemmer [49].

In [54] devised a TC model to detect violence in Arabic
tweets using different feature reduction methods. For classifi-
cation they usedKNN, Bayesian boosting, and bagging SVM.
In addition, the authors used two different stemmers (a heavy
and a light stemmer), and n-gram words without stemming.
They collected a total of 12,500 tweets covering four different
regions of Saudi Arabia. Experimentally, the authors reported
their highest accuracy of 86.61% using SVM bagging with
tri-gram. A further boosting of accuracy to 90.59% was
achieved using information gain and some reduction features.

Reference [55] studied the impact of stemming on sen-
timent analysis using SVM, NB, and Maximum Entropy.
For the sake of comparison, the authors used different
stemmers [11], [16], [30], [42], [56]. Their highest reported
precision was 90%.

Some of the research studies did not use stemming at all,
such as [57], who instead utilized the Part of Speech (POS)
feature. After several experiments, they concluded that a
higher number of features allowed them to reach a higher
classification score. The POS method achieved a classifica-
tion accuracy of 91%when the number of features was 2,000.

Reference [25] used Markov chains to solve the problem
of hierarchical Arabic TC into three-level deep categories
(see Section II-A). The top level had eight categories. The
authors used a corpus containing 11,191 documents compiled
from Alqabas newspaper. All the documents were at last
800 characters long. The corpus was split into 9711 docu-
ments (≈ 86.8%) for training, and 1480 documents for test-
ing. The authors reported an accuracy of 90.29% for the first
level categorization, with subsequent levels having accuracy
of 77.09% and 63.33% (respectively).

Table 2 summarizes all the reviewed works. The above
studies confirm that the preprocessing step is a challenging
and a crucial stage when dealing with Arabic documents.
Stemming is likely to impact the quality of classification.
Though there are so many stemmers for the Arabic lan-
guage, with new ones consistently being devised, in the
end most of the published works that studied the effect of
stemming picked a single candidate algorithm, one from
each approach. A root-based stemming, which is typi-
cally Khoja [11], and another for light stemming, mostly
Light10 [16].

IV. PROPOSED SYSTEM
One of our objectives was to automatically classify the
Arabic documents into a set of pre-defined categories. For
the pre-processing step, we experimented with eleven dif-
ferent stemmers, five of which are root-based stemmers,
five are stem-based (light) stemmers, and the no stemming.
Three of the five root-based stemmers were recommended
by [58] as they are known to outperform others. These three
are [10]–[12]. The other two, namely those by [13], [14],
were proven to perform well in different NLP tasks. For light
stemming we picked those algorithms that were developed
recently, such as [15]–[19]. For our experiment we contacted
the authors of all the aforementioned stemmers to share the
source code. Only three agreed and shared the source, [11],
[17], [18] for whichwe are grateful. ARLSTem [19], source is
also freely available, but as it is in python, we re-implemented
it in java. As for the other six stemming algorithms, we imple-
mented the stemmers based on the description found in their
respective published works, namely [10], [12]–[16].

Algorithm 1 Framework of Our Proposed System
Input: Raw document D

1 begin
2 Clean document D (remove special symbols,

stop-words, numerals, etc)
3 Apply stemming algorithm on D
4 Create a list of distinct words in document D
5 Use word embedding by transforming D into feature

vector using Word2Vec model
6 Classify D using a deep learning model
7 end

VOLUME 8, 2020 127917



H. A. Almuzaini, A. M. Azmi: Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization

TABLE 2. Summary of related works along with the list of stemmers used therein.

For the Arabic document classification, we implemented
seven different deep-learning models. For a thorough com-
parison of stemmers, we evaluate the model’s classification
performance using the different stemmers. Algorithm 1 sum-
marizes our proposed system. There are three main steps: pre-
processing, word embedding that transforms the document
into feature vector usingWord2Vec model, and finally a deep
learning-based classifier. We go over each step in more detail
below.

A. PREPROCESSING
In this step, we cleaned the text by removing punctuation
marks, stop-words, numerals, non-Arabic words, and single
letter words. Then, we applied the stemmer. Each word in the
document was reduced to its root (or stem) form based on
stemming algorithm. This was followed by creating a dictio-
nary of all distinct words in the document. The dictionary was
used to encode the documents in embedding model. Com-
pared to light stemming, using the root-based stemmer results

in a lower number of words in the dictionary. More words
in the dictionary means a larger document representation.
Table 6 shows the number of words in the dictionary using
different stemming algorithms.

B. WORD EMBEDDING
Word embedding is a technique used to represent the words
of the document, where each word—in the vocabulary—is
represented by a real valued vector. In this representation,
words with similar meaning will have a similar representa-
tion. For word embedding, we used Word2Vec [4]. It is an
efficient algorithm in terms of space and time. Word2Vec
is a two-layer neural network, where the input is the doc-
ument and the output are a continuous feature vector of a
pre-specified dimension. There are two main learning algo-
rithms in Word2Vec: continuous skip-gram or continuous
bag-of-words (CBOW). In the skip-gram method, we pre-
dicted the surrounding context words given the center word,

127918 VOLUME 8, 2020



H. A. Almuzaini, A. M. Azmi: Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization

FIGURE 2. Neural network with three convolutional layers for document classification. Conv1D is the convolutional layer, and for pooling layer we
use max pooling.

while in CBOW we predicted the current word using a win-
dow of surrounding words. For instance, in the CBOWmodel
we maximized the probability of a word being in a specific
content in,

Pr(wi |wi−d ,wi−d+1, . . . ,wi−1,wi+1,. . . ,wi+d−1,wi+d ),

(1)

wherewi is a word at position i and d is the size of thewindow.
Thus, it yields a model that is contingent on the distributional
similarity of words. The dimension of word embedding can
vary based on different applications, and it usually ranges
from 50 to 300.

C. DEEP-LEARNING MODELS
In this Section we will take a short glimpse at the different
deep learning models that we used for Arabic TC. Alto-
gether, there are seven different models. In designing the
different models, the first layer is the word embedding layer
(see Section IV-B).

Convolutional Neural Network (CNN). Figure 2 shows
our proposed model, consisting of three layers of CNN,
and max pooling. Typically, CNN is made up of a
sequence of layers, where the output of a layer feeds
into the next layer. The layers are: convolutional layer,
pooling layer, and the fully connected layer [59]. The
embedding layer is followed by the CNN layer with
three filters (each with a varying window sizes). Then,
we have two CNN layers with a single filter, which are
passed to a dense (fully connected) layer with soft-max
activation whose output is the probability distribution
over labels.

CNN-Long Short-Term Memory (CNN-LSTM). It com-
bines CNN and forward LSTM. See Figure 3 for our
proposed model. LSTM is a kind of Recurrent Neural
Network that can capture sequential information, such as
the context of a sentence [60]. The first Layer following
the embedding layer is a single CNN layer which is fol-
lowed by the pooling layer. The CNN is used for feature
extraction of the input text. Then, the resulted features
are passed to the single LSTM layer with 100 memory
units and tanh activation to support sequence prediction.
We perform 20% dropout that is followed by a dense
layer with soft-max activation.

FIGURE 3. The CNN-LSTM (long short-term memory) model.

CNN-Gated Recurrent Units (CNN-GRU). The GRU is
pretty similar to LSTM, but with less gates than a LSTM,
making it a little speedier in the training process [61].
As we the mentioned in previous model, we utilize CNN
as feature extraction layer with pooling. It is followed by
the GRU layer with 60memory cells and tanh activation,
and finally, a dense layer with soft-max activation. There
are no dropout in our implementation, since it works
better without the dropout layer. Figure 4 illustrates our
proposed model.

FIGURE 4. The CNN-GRU (Gated Recurrent Units) model.

Bidirectional LSTM (Bi-LSTM). The LSTM in CNN-
LSTM is a forward LSTM, which can predict the class
label based on the past (previous tokens). However,
a word in the sentence is related to previous and next
tokens. This makes it useful to learn the full context
from both directions. The Bi-LSTM consists of two
LSTMs, one to pass the text from left to right (forward
LSTM), and another to pass the text from right to left
(backward LSTM) [62]. This way, the model learns
from past and future information. We implemented the
Bi-LSTM using 100 memory units (forward and Back-
ward LSTMs) after encoding the text with embedding
layer. The output of those two LSTMs are fully con-
nected to a dense layer with soft-max activation. For our
proposed model, see Figure 5.

Bidirectional GRU (Bi-GRU). It is the same as Bi-LSTM
but with the GRU layer instead of LSTM. Figure 6
shows our proposed model. After transforming the text
to embedding representation, it is fed to the Bi-GRU

VOLUME 8, 2020 127919



H. A. Almuzaini, A. M. Azmi: Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization

FIGURE 5. The bidirectional LSTM model. All inputs Token1, Token2, . . .
to the model are stemmed.

FIGURE 6. The bidirectional GRU model. All inputs are stemmed.

model with 100 memory cells connected to a dense layer
with soft-max activation.

Attention-based LSTM (Att-LSTM). The attention is a
great mechanism to concentrate on the useful infor-
mation of the input data for a specific task, such as
translation, visual identification of objects, text clas-
sification, etc. The attention model takes n arguments
(which represent the hidden states of the LSTM hs) and
context vector ct to generate the attention vector at . The
attention vector at that contains the relevant part of the
text is given by Eq. (2).

at = f (ct , ht ) = tanh(Wc[ct ; ht ]),

ct =
∑
s

αtsh̄s,

αts =
exp(score(ht , h̄s))∑s
s′=1 exp(score(ht , h̄s′ ))

, (2)

where ht represents the last hidden state. The atten-
tion weights αts is calculated according to Luong’s
score [63] but with many-to-one attention (sequence to
label instated of sequence to sequence in case of trans-
lation). Figure 7 is our implementation of the attention
model described above. After the embedding layer, there
is a single LSTM layer with 100 memory units and tanh
activation. The resulted hidden states are connected to

FIGURE 7. The attention-based LSTM model. All inputs are stemmed.

the attention model, and at the end there is a dense layer
with soft-max activation.

Attention-based GRU (Att-GRU). It is the same attention
mechanism described in Att-LSTM. The GRU layer has
64 memory cells connected to the attention model. The
output of the attention model is connected to a dense
layer with soft-max activation, Figure 8.

FIGURE 8. The attention-based GRU model. All inputs are stemmed.

V. EVALUATION AND RESULTS
For convenience we will break down this Section into
subsections covering: (i) our data set, (ii) the setup for
the experiments and the metrics used for the evaluation,
(iii) experimenting with the different stemming algorithms,
and (iv) experimenting with word embedding parameters.

A. THE DATA SETS
For the experiments we picked two different datasets.
The first dataset is the ANT v1.1 (Arabic News Texts)
Corpus [64],1 and the second dataset is the Saudi Press
Agency (SPA) corpus.2 The ANT Corpus containing
10,161 documents containing a total of 1.474 million words,

1Compiled from Jawhara FM radio station in Tunisia. Free download from
https://github.com/antcorpus/antcorpus.data/releases/tag/v1.1.

2The official Saudi Press Agency: http://www.spa.gov.sa. We downloaded
the documents covering the four-month period starting in September 2018.

127920 VOLUME 8, 2020



H. A. Almuzaini, A. M. Azmi: Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization

and is divided into nine categories: culture, diverse, economy,
international news, local news, politics, society, sports, and
technology. The SPA corpus covers six categories: general,
culture, sports, economic, social, and politics. Table 3 sum-
marizes the dataset used in this work. Though both cor-
pora share some categories, each had its own. For example,
the ANT corpus has the ‘‘technology’’ category, which is
missing in the SPA corpus, while the latter has the ‘‘general’’
category which is not in ANT. Since the ANT corpus has
nine categories versus six in SPA, we decided to drop one of
the categories from ANT, and used only eight. In addition,
‘‘local news’’ is the largest category in the ANT corpus
containing 4832 documents. We decided to use one-third of
the documents in this category, in order to be in par with the
‘‘international news’’ category in the same corpus.

TABLE 3. Details of the ANT [64] and SPA corpora.

B. EXPERIMENTAL SETUP AND EVALUATION METRICS
We performed two sets of experiments: (a) evaluate the differ-
ent stemmers, and (b) evaluate the word embedding. Further
details follow.

(a) The first set of experiments looks at the effect of
different stemming algorithms with the different deep
learning models on the document classification task.
The DL models are: CNN, CNN-LSTM, CNN-GRU,
BiLSTM, BiGRU, Att-LSTM, and Att-GRU. For
each DL model we conduct hyper parameter tuning
experiment to find the best parameters to train the
individual model. Then, we fix this parameter for that
DL model. It will be the same parameter for all exper-
iments involving the evaluation of the different stem-
ming algorithms on that model. Table 4 summarizes
the fixed parameters of each model. For learning the
word vectors representation, we use a single setting for
the Word2Vec model. The same setting is used for all
DL models, which is: use the skip-gram method with
window of size 5, and set the dimension of the feature
vector to 60.

(b) The second set of the experiments looks at word
embedding. In particular, we focus on the different

TABLE 4. The hyper parameter values used for each of the deep
learning (DL) model.

parameters and study how they affect the classifica-
tion. This experiment was applied on the CNN model
only.

All the experiments were performed using 10-fold cross-
validation. Cross-validation (CV) is a statistical method used
to assess the machine learning models. Generally, in k-fold
CV, the dataset is randomly divided into k groups, or folds,
of equal size (more or less). One of the folds is used as a
validation set, and the other k − 1 folds are used for training.
The process is repeated k times, each time picking a different
fold for validation [66, p. 181]. In practice, one performs k-
fold CV using k = 5 or k = 10, as these are shown to yield
test error rate estimates that balances between high bias and
high variance [66, p. 184].

We have different DL models, and different stemming
algorithms. We need to answer the question, does the stem-
ming impacts the classification results of a DL model. Some
models performance will be indifferent to the stemming,
i.e. whether we use stemming or not, the model’s behavior
remains the same, and other models will be affected by
the stemming. For this, we will use ANOVA (analysis of
variance), a statistical method which compares the samples
on the basis of their means [67]. ANOVA uses F tests to
statistically determine if the means are significantly different
from each other (we have eleven groups corresponding to
eleven different stemming algorithms classification results).
Our null hypothesis will be ‘‘the sample means are equal’’.
We then use the F statistic when deciding to support or reject
the null hypothesis. In ANOVA, if the F value > F critical
(for a specific α) then we reject the null hypothesis. For the
one-way ANOVA, the F value is given by Eq. (3),

F value =
between-group variability
within-group variability

. (3)

For all the experiments we fixed α = 0.05. To calculate
the F critical we use an F distribution Table.3

We report the performance of document classification
using precision, recall, and F-score. These measures are
defined using the confusion matrix. A confusion matrix is
a table that is used to describe the performance of a binary
classification model on a set of test data for which the true
values are known. For classification tasks, the terms true

3See for example, https://www.stat.purdue.edu/~jtroisi/STAT350
Spring2015/tables/FTable.pdf.

VOLUME 8, 2020 127921



H. A. Almuzaini, A. M. Azmi: Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization

positive (TP), true negative (TN), false positive (FP), and false
negative (FN) compare the results of the classifier with known
judgments. The terms true and false refer to whether that
prediction corresponds to the actual judgment and the terms
positive and negative refer to the classifier’s prediction. The
four outcomes can be formulated in a 2× 2 confusion matrix
(see Table 5).

TABLE 5. Confusion matrix.

The precision (P) measures the exactness of a classifier,
while recall (R) measures the completeness of a classifier.
We can combine P and R to produce a single metric called
F1 (which has been referred to earlier as the F-score), which
is the weighted harmonic mean of both measures. The three
measures are given by Eq. (4),

P =
TP

TP+ FP
,

R =
TP

TP+ FN
,

F1 =
2PR
P+ R

. (4)

However, when we have multiple class labels—as in our
case—thenwe need to redefine themeasures in Eq. (4). In this
case, averaging the measures can give a better view of the
general results. For instance, we have the micro-, the macro-
and the weighted-averagedmeasures. Themicro-average will
aggregate the contributions of all the categories to compute
the average metric, whereas the macro-average will compute
the metric independently for each category and then take
the average (hence treating all categories equally). However,
we decided to use the weighted-average for all the measures.
The weighted-average considers the class labels imbalance,
as in our corpus. It is calculated by computing the metric
independently for each category and then taking their average
weighted by the number of true instances for each category.
This may result in an F-score that is not between precision
and recall. In subsequent discussion, weighted-F1 or just
plain F-score will refer to weighted average F-score.

C. EXPERIMENTING WITH DIFFERENT STEMMING
ALGORITHMS
We conducted eleven experiments using each of the seven
DL models on two different datasets, a total of 154 experi-
ments. For each experiment, we used a different stemming
algorithm (we had ten stemmers altogether), and no stemming
for the last experiment.

In Section IV-A we mentioned that the number of words
in the vocabulary file (dictionary) is less when a root-based

stemmer is used as opposed to a light stemmer. Table 6
shows the number of tokens in the vocabulary file for each
stemmer when applied to the SPA corpus. Some observations:
although [10] is a root-based stemmer, it yields a larger
vocabulary than other root-based stemmers. We attribute this
to the fact that—by design—no root finding is attempted for
non-Arabic words, e.g. ‘‘electronic’’, which is left
untouched. Furthermore, in the case of [18], a light stemmer,
the number of tokens exceeds the case when no stemming
is applied. This is because the stemmer often produces more
than one stem. That is, in some cases the stemmer generates
more than one stem for a single word. As we eluded to ear-
lier, more words in the vocabulary means a larger document
representation when using word embedding.

TABLE 6. Resultant number of tokens in the vocabulary file for the
SPA corpus when using different stemmers.

Tables 7-8 summarizes the performance of classifying the
documents in ANT and SPA corpora (respectively). All the
values reported in the Tables are average weighted F-score.
The performance of the document classifier depends on the
stemming algorithm. Whereas the extraction of the wrong
root or stem can result in the appearance of a wrong word
in a wrong context, which may affect the representation of
the word, and consequently the accuracy of the classifica-
tion. However, among all the deep learning models, the light
stemming algorithms generally yield better results compared
to those that used root-based stemming algorithms in the
context of document classification. In general, the best per-
formance was achieved by BiGRU model for the ANT cor-
pus with stem-based algorithms, while for the SPA corpus
the Att-GRU model yield the best result irrespective of the
stemming approach. Overall, the best classification result
for the SPA corpus was weighted-F1 = 97.96% (Att-GRU
model with light stemmer [15]), while for ANT corpus it was
weighted-F1 = 83.63% (BiGRU model with stemmer [16]).
Given that SPA has twice as many documents as ANT, this
confirms the fact that deep learning algorithms scalewell with
the amount of data fed.

Performance wise, the weakest models were CNN-LSTM,
and CNN-GRU on both copra. This shows that using CNN
for feature extraction may not be as effective for Arabic TC.
On the other hand, LSTM or GRU models performed well

127922 VOLUME 8, 2020



H. A. Almuzaini, A. M. Azmi: Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization

TABLE 7. Classification results expressed using weighted-F1 for classifying ANT corpus using various DL models with different stemmers.

TABLE 8. Classification results for the SPA corpus.

either with bidirectional or with attention mechanism. What
surprised us was the degraded performance by CNN-LSTM
and CNN-GRU on the SPA corpus when used with the light
stemmer [18]. For CNN-LSTM, the performance dropped
from mid 90’s (using any of the other stemming algorithms)
to 75.4%, and for CNN-GRU it is even worse where it drops
to≈ 52%.We attribute this to the stemming algorithm in [18]
which often produced more than one stem for a word,4 and
this affected the word embedding learning and consequently
the CNN feature extraction process. The same stemming
algorithm performed well with other models, e.g. BiGRU and
Att-GRU. This proves that learning the full context from both
directions or using the attention mechanism to concentrate on
the useful information efficiently does improve the result.

We now answer one of the questions raised in the paper.
Does stemming impact the performance of Arabic TC when
using a deep learning model? We will use ANOVA test on
the 10-fold F-score results for all eleven different stemming
algorithms. Table 9 lists the F value and F critical of the
ANOVA test, recalling that we set α = 0.05 (Section V-B).
For the ANT corpus, the F value is greater than F critical
for the four models: CNN-LSTM, CNN-GRU, BiLSTM, and

4There is a version that produces a single stem per word, but we were
unsuccessful in contacting the authors.

BiGRU.We therefore reject the null hypothesis and claim that
at least one of the stemming algorithms significantly affected
the classification result. However, for the other three models
(e.g., CNN), the stemming algorithms where of no use and
its impact on the classification was insignificant. For the SPA
corpus, there is a clear evidence that the stemming algorithms
had an impact on the classification. This is true for all the
models except for BiLSTM and BiGRU.

There is an interesting observation here. From Tables 7-8,
we note that the range of F-score is narrow indeed, and
this is true for both corpora and for all but two models
(i.e. CNN-LSTM and CNN-GRU). In the case of the ANT
corpus, the F-score ranges between 79.01% and 83.63%,
while for the SPA corpus it ranges between 94.61% and
97.96%. What is more interesting is that the performance of
no-stemming is somewhere in between. This goes counter to
the general belief that stemming is a necessary step in any
Arabic NLP application. We believe that when using deep
learning algorithms and word embedding, the impact of stem-
ming is minuscule, and we may still get a great performance
without it. For instance, we get F-score = 97.82% using
Att-GRU without resorting to any stemming. However, if we
are concerned about the training time then it is better to do
stemming as it reduces the size of the vocabulary. Note that
the fastest trainingmodels were CNN-LSTMandCNN-GRU,

VOLUME 8, 2020 127923



H. A. Almuzaini, A. M. Azmi: Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization

TABLE 9. ANOVA test (α = 0.05) for both corpora for the 10-fold result among all ten stemming algorithms.

FIGURE 9. The F1 score of classifying documents of each label using different stemmers on
the two corpora. Baseline stands for ‘‘no stemming’’.

although they resulted in the worst performance among all
the models. Whereas, the models BiLSTM and BiGRU had
the largest training time. The CNN model had a reasonable
training time and with a fairly well performance, followed by
Att-GRU and Att-LSTM.

Tables 10-11 shows the classification results for each
label for the ANT and SPA corpora (respectively), using
the best performing model for each dataset. For each cat-
egory, the results are reported in terms of F1 score (see
Eq. (4)). For the ANT corpus (Table 7) for example, using the
stemmer [13] for the category ‘‘culture’’ theF1 = 77%, while

for the category ‘‘international news’’ the score is F1 = 91%.
The number of documents in category ‘‘culture’’ is 124 (see
Table 3). The weighted-F1 score for this stemmer is 82.5%.

Figure 9 plots the results presented in Tables 10 and-11,
ordering them into the category (label). Within each label,
we list the F1 score of the document classification into
that particular label using different stemmers: no stemming
(baseline), [10], [12] etc. For the SPA corpus (Figure 9b),
the results are very much consistent, and the classifier has
done an equally good job in classifying documents into dif-
ferent categories. What is more interesting is that the use of

127924 VOLUME 8, 2020



H. A. Almuzaini, A. M. Azmi: Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization

TABLE 10. Classification results of individual categories for the ANT corpus on BiGRU model. Values under each category are expressed using the F1 score.

TABLE 11. The classification results of individual categories for the SPA corpus using Att-GRU model.

TABLE 12. Comparison of our system’s performance vs [24] (uses deep belief network). Both systems use a different root-based stemmer. Each system
uses a different dataset. The performance measure of the other system is as reported by the respective author.

the stemmer has little impact on the performance. However,
for the ANT corpus (Figure 9a), there is a difference in
performance between labels. We note the best performance
has been for the ‘‘sports’’ and ‘‘international news’’ cate-
gories, while the worst performance was for the ‘‘local news’’
and ‘‘technology’’ categories. Even within a category, e.g.
‘‘culture’’, the performance varies between stemmers which
ranges between 56% (no stemming) and 80% (e.g., [12]).

Finally, we wanted to compare the performance with Jin-
dal [24], another deep-learning based classifier for Arabic
documents. Table 12 summarizes the performance of both
systems. For stemming, the author used a root-based stem-
mer, but did not provide any further detail. So, to be fair,
we report the performance of our system using the root-based
stemmer [14], though it is not our best reported performance.
Clearly our system tops the performance of the other system
by approximately 7%.

D. EXPERIMENTING WITH WORD EMBEDDING
PARAMETERS
This is the second set of experiments where we looked into
appropriate parameters for the Word2Vec word embedding
algorithm. We confined this experiment to CNN model only.
The parameters that can be controlled are: dimension of the
vector, the learningmethod (skip-gram or bag-of-words), size
of thewindow (number of neighboringwords), and the cut-off
occurrences for words in the vocabulary (less frequently
occurring words are ignored).We conducted two experiments
to identify which word embedding parameters affect the clas-
sification process. In the first experiment, we explored the
two learning methods, skip-gram and bag-of-words (CBOW)
for Word2Vec, with different vector dimensions. In the sec-
ond experiment, we explored the size of the window. For
both experiments, we picked two stemming algorithms, one
root-based [10] and the other is stem-based [16], both yield

VOLUME 8, 2020 127925



H. A. Almuzaini, A. M. Azmi: Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization

TABLE 13. Effect of vector dimensions on the F -score of document classification using the two learning methods for Word2Vec.

TABLE 14. Effect of window sizes on the F -score of document
classification.

good performance with CNN model. The experiments were
performed using 10-fold cross-validation on the SPA cor-
pus. All the reported performances are measured in terms of
weighted-F1.
The objective of the first experiment was to look at which

of the two learning methods is more appropriate while—at
the same time—trying different dimensions for the vector.
Table 13 shows the results of the first experiment when using
vectors of dimension 50, 60, 100, and 300 expressed in terms
of weighted-F1 score. For this experiment, we fixed the other
two parameters as follows. Fixed the size of windows to 5
(a typical value) and set the cut-off frequency to one (no
word was left out). From Table 13, we can observe that both
methods (skip-gram and CBOW) yielded a comparable and
good performance for Arabic document classification. If we
had used the stem-based approach in the pre-processing step,
the skip-grammethod would have worked well with a smaller
vector dimension.While CBOW requires a larger sized vector
to achieve a high success rate. In case of the root-based
method, we achieved the best values when the dimension
of the vector was 100, and this was true for both methods.
Although the small vector dimension in the skip-grammethod
works well with stem-based, it leads to ambiguity when using
the root-based stemmer for both methods.

In the second experiment, we looked at the effect of win-
dow size on the classification process. Table 14 shows the
effect of different window sizes in each method on the classi-
fication process, where we fixed the dimension of the vector
to 60. We tested for windows of sizes 2, 5, and 8. As we
mentioned earlier, windows of size 5 are typical. We note that
using larger sized windows did not improve the classification.
For stem-based, a smaller sized window is a good choice, but
not so for the root-based stemmer. Evidently, the best choice
is a size 5 window. It works well with both methods using
either stemming approach.

VI. CONCLUSION
In this work, we studied the effect of stemming strate-
gies and word embedding on the performance of Arabic

document classification using various deep learning mod-
els. The following models were explored: CNN, CNN-
LSTM,CNN-GRU, Bidirectional LSTM,Bidirectional GRU,
Attention-based LSTM, and Attention-based GRU. And for
the stemming strategies we investigated three of them:
no stemming, root-based (five different algorithms), and
stem-based (five different algorithms). While for word
embedding, we used Word2Vec. For testing, we used two
large datasets, one with six predefined categories and the
other with eight. For testing we used 10-fold cross-validation.

For the first group of experiments, we conducted a total
of 154 experiments (seven models × eleven stemming algo-
rithms × two corpora). For these experiments we fixed
the word embedding parameters. In the second group of
experiments, we use the CNN model and picked two stem-
ming algorithms that preformed well with CNN model (one
root-based and the other stem-based), we then looked into
the effect of different parameter settings controlling the
Word2Vec used to classifying the documents. Summarizing
the challenges and lessons learned (not in any particular
order):
• There is a lack of research into Arabic NLP, and the
absence of cooperation among researches in the field
aggravates the problem. In this work, we had to imple-
ment many of the stemming algorithms ourself follow-
ing the description in their respective papers.

• Deep learning models have a steep learning curve. And
the size of the vocabulary affects the learning time,
proportionally. We performed all the experiments in this
work using 10-fold cross-validation. This contributed
extra time to finish the experiments. For instance,
the BiGRUmodel with stemmer [18] took over 75 hours
on a system with Nvidia Tesla K80 GPU having 12GB
memory.

• Label or class imbalance in the training set is a major
issue in text classification task. This was the case of the
publicly available ANT corpus. However, we kept this
in mind when compiling our data set from the official
SPA (Saudi Press Agency), where we tried to retain
proportionate classes.

• Experimental results show that stem-based (or light
stemmers) algorithms generally yield a slightly better
performance compared to the root-based (or heavy stem-
mers).

• Looking at the small differences in the performance
between the three stemming strategies (no stemming,
root-based, or light stemming), we can safely claim
that the stemming step is optional for Arabic text

127926 VOLUME 8, 2020



H. A. Almuzaini, A. M. Azmi: Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization

classification task, as not much was gained from using
stemming phase. One thing to keep in mind, stemming
helps reduce the training time as the system has to learn
less vocabulary.

• We believe in the fact that simple model is more appro-
priate for a rich morphological language such as Arabic.
During the construction of different deep learning mod-
els, we found that adding more layers did not improve
the results. This was specially true for the models based
on LSTM and GRU.

• Using bidirectional learning or attention mechanism
with LSTM and GRU significantly improves the clas-
sification result, whereas using CNN model as feature
extraction layer before LSTM and GRU is ineffective.
Nevertheless, using the standalone CNN model can
achieve satisfactory classification results.

• For the embedding layer (Word2Vec), we found that it
was better to use skip-gram with the stem-based algo-
rithm, as we can get good results using a vector of
dimension 50 ∼ 60. To achieve a comparable perfor-
mance using CBOW (bag-of-words) and the root-based
algorithm,we needed a vector of dimension 100. In addi-
tion, for Word2Vec, the best window size is 5.

For future work, we intend to experiment with Arabic
multi-label classification problem using the proposed models
in this work. We also intend to look into Graph Convolutional
Networks (GCN), yet another successful deep learning archi-
tecture for NLP tasks, for Arabic document classification
problem.

REFERENCES
[1] R. Duwairi, M. Al-Refai, and N. Khasawneh, ‘‘Stemming versus light

stemming as feature selection techniques for arabic text categorization,’’
in Proc. Innov. Inf. Technol. (IIT), Nov. 2007, pp. 446–450.

[2] A. M. El-Halees, ‘‘Arabic text classification using maximum entropy,’’
Islamic Univ. J., vol. 15, no. 1, pp. 1–11, Dec. 2007.

[3] F. Harrag and E. El-Qawasmah, ‘‘Neural network for arabic text classifi-
cation,’’ in Proc. 2nd Int. Conf. Appl. Digit. Inf. Web Technol., Aug. 2009,
pp. 778–783.

[4] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of
word representations in vector space,’’ 2013, arXiv:1301.3781. [Online].
Available: http://arxiv.org/abs/1301.3781

[5] Y. Kim, ‘‘Convolutional neural networks for sentence classification,’’
in Proc. Conf. Empirical Methods Natural Lang. Process. (EMNLP),
Aug. 2014, pp. 1746–1751.

[6] J. Lilleberg, Y. Zhu, and Y. Zhang, ‘‘Support vector machines and
Word2vec for text classification with semantic features,’’ in Proc. IEEE
14th Int. Conf. Cognit. Informat. Cognit. Comput. (ICCI*CC), Jul. 2015,
pp. 136–140.

[7] M. Hughes, I. Li, S. Kotoulas, and T. Suzumura, ‘‘Medical text classifi-
cation using convolutional neural networks,’’ Stud Health Technol. Inf.,
vol. 235, pp. 246–250, May 2017.

[8] Z.-T. Yang and J. Zheng, ‘‘Research on chinese text classification based
on Word2vec,’’ in Proc. 2nd IEEE Int. Conf. Comput. Commun. (ICCC),
Oct. 2016, pp. 1166–1170.

[9] D. Zhang, H. Xu, Z. Su, and Y. Xu, ‘‘Chinese comments sentiment clas-
sification based on word2vec and SVMperf,’’ Expert Syst. Appl., vol. 42,
no. 4, pp. 1857–1863, Mar. 2015.

[10] S. Ghwanmeh, G. Kanaan, R. Al-Shalabi, and S. Rabab’ah, ‘‘Enhanced
algorithm for extracting the root of arabic words,’’ in Proc. 6th Int. Conf.
Comput. Graph., Imag. Visualizat., Aug. 2009, pp. 388–391.

[11] S. Khoja and R. Garside, ‘‘Stemming arabic text,’’ Dept. Comput., Lan-
caster Univ., Lancaster, U.K., Tech. Rep., 1999.

[12] R. Alshalabi, ‘‘Pattern-based stemmer for finding arabic roots,’’ Inf. Tech-
nol. J., vol. 4, no. 1, pp. 38–43, Jan. 2005.

[13] M. Hadni, A. Lachkar, and S. A. Ouatik, ‘‘A new and efficient stemming
technique for arabic text categorization,’’ in Proc. Int. Conf. Multimedia
Comput. Syst., May 2012, pp. 791–796.

[14] A. Al-Rjoub, ‘‘A new approach for Arabic root extraction,’’ M.S. thesis,
Dept. MSc Comput. Sci., Jordan Univ. Sci. Technol., Irbid, Jordan, 2007.

[15] M. Aljlayl and O. Frieder, ‘‘On arabic search: Improving the retrieval
effectiveness via a light stemming approach,’’ in Proc. 11th Int. Conf. Inf.
Knowl. Manage. CIKM, 2002, pp. 340–347.

[16] L. S. Larkey, L. Ballesteros, and M. E. Connell, ‘‘Light stemming for Ara-
bic information retrieval,’’ inArabic ComputationalMorphology. Springer,
2007, pp. 221–243.

[17] A. Chelli. (2016). Arabic Stemmer. [Online]. Available: https://www.
arabicstemmer.com/

[18] Y. Jaafar, D. Namly, K. Bouzoubaa, and A. Yousfi, ‘‘Enhancing arabic
stemming process using resources and benchmarking tools,’’ J. King Saud
Univ. Comput. Inf. Sci., vol. 29, no. 2, pp. 164–170, Apr. 2017.

[19] K. Abainia, S. Ouamour, and H. Sayoud, ‘‘A novel robust arabic light
stemmer,’’ J. Experim. Theor. Artif. Intell., vol. 29, no. 3, pp. 557–573,
May 2017.

[20] D. Laham, ‘‘Latent semantic analysis approaches to categorization,’’ in
Proc. 19th Annu. Conf. Cognit. Sci. Soc., 1997, p. 979.

[21] M. Davenport, ‘‘Introduction to modern information retrieval,’’ J. Med.
Library Assoc. (JMLA), vol. 100, no. 1, p. 75, 2012.

[22] W. B. Cavnar and J. M. Trenkle, ‘‘N-gram-based text categorization,’’
in Proc. 3rd Annu. Symp. Document Anal. Inf. Retr. (SDAIR-94), 1994,
pp. 161–175.

[23] X. Zhang, J. Zhao, and Y. LeCun, ‘‘Character-level convolutional networks
for text classification,’’ in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 649–657.

[24] V. Jindal, ‘‘A personalized Markov clustering and deep learning approach
for arabic text categorization,’’ in Proc. ACL Student Res. Workshop, 2016,
pp. 145–151.

[25] F. S. Al-Anzi and D. AbuZeina, ‘‘Beyond vector space model for hierar-
chical arabic text classification: A Markov chain approach,’’ Inf. Process.
Manage., vol. 54, no. 1, pp. 105–115, Jan. 2018.

[26] A. M. Azmi and E. A. Aljafari, ‘‘Universal Web accessibility and the
challenge to integrate informal arabic users: A case study,’’ Universal
Access Inf. Soc., vol. 17, no. 1, pp. 131–145, Mar. 2018.

[27] D. Harman, ‘‘How effective is suffixing?’’ J. Amer. Soc. Inf. Sci., vol. 42,
no. 1, pp. 7–15, Jan. 1991.

[28] Y. Kadri and J.-Y. Nie, ‘‘Effective stemming for Arabic information
retrieval,’’ in Proc. Challenge Arabic NLP/MT Conf., Londres, U.K.,
Oct. 2006, pp. 68–74.

[29] I. A. Al-Kharashi and M. W. Evens, ‘‘Comparing words, stems, and roots
as index terms in an arabic information retrieval system,’’ J. Amer. Soc. Inf.
Sci., vol. 45, no. 8, pp. 548–560, Sep. 1994.

[30] K. Taghva, R. Elkhoury, and J. Coombs, ‘‘Arabic stemming without a
root dictionary,’’ in Proc. Int. Conf. Inf. Technol., Coding Comput. (ITCC),
vol. 2, Apr. 2005, pp. 152–157.

[31] A. Nehar, D. Ziadi, H. Cherroun, and Y. Guellouma, ‘‘An efficient stem-
ming for arabic text classification,’’ in Proc. Int. Conf. Innov. Inf. Technol.
(IIT), Mar. 2012, pp. 328–332.

[32] H. M. Al-Serhan, R. Al Shalabi, and G. Kannan, ‘‘New approach for
extracting arabic roots,’’ in Proc. Arab Conf. Inf. Technol. (ACIT), 2003,
pp. 42–59.

[33] H. M. Harmanani, W. T. Keirouz, and S. Raheel, ‘‘A rule-based extensible
stemmer for information retrieval with application to Arabic,’’ The Int.
Arab J. Inf. Technol., vol. 3, no. 3, pp. 265–272, 2006.

[34] M. Momani and J. Faraj, ‘‘A novel algorithm to extract tri-literal arabic
roots,’’ in Proc. IEEE/ACS Int. Conf. Comput. Syst. Appl., May 2007,
pp. 309–315.

[35] Q. Yaseen and I. Hmeidi, ‘‘Extracting the roots of arabic words without
removing affixes,’’ J. Inf. Sci., vol. 40, no. 3, pp. 376–385, Jun. 2014.

[36] M. N. Al-Kabi, S. A. Kazakzeh, B. M. Abu Ata, S. A. Al-Rababah, and
I. M. Alsmadi, ‘‘A novel root based arabic stemmer,’’ J. King Saud Univ.
Comput. Inf. Sci., vol. 27, no. 2, pp. 94–103, Apr. 2015.

[37] L. S. Larkey, L. Ballesteros, and M. E. Connell, ‘‘Improving stemming for
Arabic information retrieval: light stemming and co-occurrence analysis,’’
in Proc. 25th Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retr. (SIGIR
’02), 2002, pp. 275–282.

[38] A. Chen and F. Gey, ‘‘Building an arabic stemmer for information
retrieval,’’ in Proc. 11th Text Retr. Conf. (TREC), 2002, pp. 631–639.

VOLUME 8, 2020 127927



H. A. Almuzaini, A. M. Azmi: Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization

[39] A. Goweder and A. D. Roeck, ‘‘Assessment of a significant Arabic
corpus,’’ in Proc. Arabic NLP Workshop ACL/EACL, 2001, pp. 73–79.

[40] H. Froud, ‘‘A comparative study of root -based and stem -based approaches
for measuring the similarity between arabic words for arabic text mining
applications,’’ Adv. Comput., Int. J., vol. 3, no. 6, pp. 55–67, Nov. 2012.

[41] Y. A. Alhaj, J. Xiang, D. Zhao, M. A. A. Al-Qaness, M. Abd Elaziz,
and A. Dahou, ‘‘A study of the effects of stemming strategies on arabic
document classification,’’ IEEE Access, vol. 7, pp. 32664–32671, 2019.

[42] T. Zerrouki. (2017). Tashaphyne Arabic Light Stemmer. Accessed:
Aug. 25, 2019. https://pypi.org/project/Tashaphyne/

[43] M. K. Saad and W. M. Ashour, ‘‘OSAC: Open source arabic corpora,’’ in
Proc. 6th Int. Symp. Elect. Electron. Eng. Comput. Sci. (EEECS), 2010,
pp. 1–6.

[44] F.-Z. El-Alami and S. O. El Alaoui, ‘‘An efficient method based on deep
learning approach for Arabic text categorization,’’ in Proc. Int. Arab Conf.
Inf. Technol. (ACIT), 2016, pp. 1–7.

[45] M. Sawalha and E. Atwell, ‘‘Comparative evaluation of Arabic language
morphological analysers and stemmers,’’ in Proc. Int. Conf. Comput. Lin-
guistics (COLING), 2008, pp. 107–110.

[46] F.-Z. El-Alami and S. O. El Alaoui, ‘‘Word sense representation based-
method for arabic text categorization,’’ in Proc. 9th Int. Symp. Signal,
Image, Video Commun. (ISIVC), Nov. 2018, pp. 141–146.

[47] S. Bahassine, A. Madani, M. Al-Sarem, and M. Kissi, ‘‘Feature selection
using an improved chi-square for arabic text classification,’’ J. King Saud
Univ. Comput. Inf. Sci., vol. 32, no. 2, pp. 225–231, Feb. 2020.

[48] T. Kanan, O. Sadaqa, A. Almhirat, and E. Kanan, ‘‘Arabic light stemming:
A comparative study between P-stemmer, khoja stemmer, and light10
stemmer,’’ in Proc. 6th Int. Conf. Social Netw. Anal., Manage. Secur.
(SNAMS), Oct. 2019, pp. 511–515.

[49] T. Kanan, R. Kanaan, O. Al-Dabbas, G. Kanaan, A. Al-Dahoud, and
E. Fox, ‘‘Extracting named entities using named entity recognizer for
Arabic news articles,’’ Int. J. Adv. Stud. Comput., Sci. Eng., vol. 5, no. 11,
pp. 78–84, 2016.

[50] S. Boukil, M. Biniz, F. E. Adnani, L. Cherrat, and A. E. E. Moutaouakkil,
‘‘Arabic text classification using deep learning technics,’’ Int. J. Grid
Distrib. Comput., vol. 11, no. 9, pp. 103–114, Sep. 2018.

[51] S. Boukil, F. El Adnani, A. E. El Moutaouakkil, L. Cherrat, and
M. Ezziyyani, ‘‘Arabic stemming techniques as feature extraction applied
in arabic text classification,’’ in Proc. Int. Conf. Adv. Inf. Technol., Services
Syst. Springer, 2017, pp. 349–361.

[52] M. Elbes, A. Aldajah, and O. Sadaqa, ‘‘P-stemmer or NLTK stemmer
for arabic text classification?’’ in Proc. 6th Int. Conf. Social Netw. Anal.,
Manage. Secur. (SNAMS), Oct. 2019, pp. 516–520.

[53] S. Bird, E. Klein, and E. Loper,Natural Language ProcessingWith Python:
Analyzing Text With the Natural Language Toolkit. Newton, MA, USA:
O’Reilly Media, 2009.

[54] H. ALSaif and T. Alotaibi, ‘‘Arabic text classification using feature-
reduction techniques for detecting violence on social media,’’ Int. J. Adv.
Comput. Sci. Appl., vol. 10, no. 4, pp. 77–87, 2019.

[55] A. Oussous, A. A. Lahcen, and S. Belfkih, ‘‘Impact of text pre-processing
and ensemble learning on arabic sentiment analysis,’’ in Proc. 2nd Int.
Conf. Netw., Inf. Syst. Secur. NISS, 2019, pp. 1–9.

[56] M. K. Saad and W. M. Ashour, ‘‘Arabic morphological tools for text
mining,’’ in Proc. 6th Int. Conf. Electr. Comput. Syst. (EECS), 2010.

[57] A. Al-Thubaity, A. Alqarni, and A. Alnafessah, ‘‘Do words with certain
part of speech tags improve the performance of arabic text classification?’’
in Proc. 2nd Int. Conf. Inf. Syst. Data Mining ICISDM, 2018, pp. 155–161.

[58] E. Al-Shawakfa, A. Al-Badarneh, S. Shatnawi, K. Al-Rabab’ah, and
B. Bani-Ismail, ‘‘A comparison study of some arabic root finding algo-
rithms,’’ J. Amer. Soc. Inf. Sci. Technol., vol. 61, no. 5, pp. 1015–1024,
May 2010.

[59] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[60] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[61] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using RNN
encoder–decoder for statistical machine translation,’’ inProc. Conf. Empir-
ical Methods Natural Lang. Process. (EMNLP), 2014, pp. 1724–1734.

[62] A. Graves, A.-R.Mohamed, andG. Hinton, ‘‘Speech recognition with deep
recurrent neural networks,’’ inProc. IEEE Int. Conf. Acoust., Speech Signal
Process., May 2013, pp. 6645–6649.

[63] T. Luong, H. Pham, andC.D.Manning, ‘‘Effective approaches to attention-
based neural machine translation,’’ in Proc. Conf. Empirical Methods
Natural Lang. Process., 2015, pp. 1412–1421.

[64] A. Chouigui, O. B. Khiroun, and B. Elayeb, ‘‘ANT corpus: An arabic news
text collection for textual classification,’’ inProc. IEEE/ACS 14th Int. Conf.
Comput. Syst. Appl. (AICCSA), Oct. 2017, pp. 135–142.

[65] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimiza-
tion,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/abs/
1412.6980

[66] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to
Statistical LearningWith Applications in R, vol. 112. NewYork, NY, USA:
Springer-Verlag, 2013.

[67] R. A. Fisher, ‘‘XV.—The correlation between relatives on the supposition
of Mendelian inheritance,’’ Trans. Roy. Soc. Edinburgh, vol. 52, no. 2,
pp. 399–433, 1919.

HUDA ABDULRAHMAN ALMUZAINI received the B.Sc. degree in com-
puter science from Qassim University, and the M.Sc. degree in computer
science from King Saud University, Riyadh, Saudi Arabia, where she is
currently pursuing the Ph.D. degree. She is also a Lecturer with the Depart-
ment of Computer Science, Imam Mohammad ibn Saud Islamic University,
Riyadh. Her research interests include natural language processing and deep
learning.

AQIL M. AZMI received the B.S.E. degree in
electrical & computer engineering (ECE) from the
University of Michigan, Ann Arbor, MI, USA,
and the M.Sc. degree in electrical engineering
and the Ph.D. degree in computer science from
the University of Colorado, Boulder, CO, USA.
He is currently Professor with the Department of
Computer Science, King Saud University, Saudi
Arabia. His current research interests include nat-
ural language processing, computational biology,

bioinformatics, image understanding and processing, and digital humanities
specifically critical analysis of historical and religious texts.

127928 VOLUME 8, 2020


