IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 19, 2020, accepted July 6, 2020, date of publication July 14, 2020, date of current version July 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3009253

Video Popularity Prediction: An Autoencoder

Approach With Clustering

YU-TAI LIN', CHIA-CHENG YEN “2, AND JIA-SHUNG WANG', (Member, IEEE)

! Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan
2Department of Computer Science, University of California at Davis, Davis, CA 95616, USA

Corresponding author: Jia-Shung Wang (jswang @cs.nthu.edu.tw)

This work was supported by the Ministry of Science and Technology, Taiwan, under Grant MOST 104-2221-E-007-017.

ABSTRACT Autoencoders implemented by artificial neural networks (ANNs) are utilized to learn the latent
space representation of data in an unsupervised manner, and they have been widely used in recommender
systems. For instance, several collaborative denoising autoencoder (CDAE) models have shown that their
performance gains outperform that of the collaborative filtering based (CF-based) models. In this work,
a near-optimal Top-K forecasting solution is proposed for our advanced autoencoder recommender systems.
We propose a method which utilizes CDAE model in predicting the Top-K popular videos in an upcoming
time period. In order to improve the prediction accuracy, we also propose an autoencoder based recommenda-
tion algorithm with the help of K-means clustering that upgrades the performance of the original autoencoder
model. The experimental results show that our method increases significantly the Average Precision (AP)
and Recall values by nearly 30%. We then further utilize our proposed autoencoder model with clustering
in predicting Top-K popular videos. The applications of predicting Top-K popular videos can be used in the
video delivery for the Mobile Edge Computing (MEC) environment to avoid bottleneck in the constricted
capacity of backhaul link. Namely, the performance gain will be upgraded if our proposed method precisely

predicts and caches the Top-K popular videos in advance with the help of a better forecasting model.

INDEX TERMS Top-K ranking and predicting, autoencoder, caching, K-means.

I. INTRODUCTION

To cope with rapid development on e-commerce and online
video platforms, recommender systems become a very impor-
tant way of locating target users and producing e-commerce
recommendations. According to historical transactions of
users and items, methods of recommender systems can sug-
gest a specific set of items for each individual user in a per-
sonalized way. This can be beneficial to diversified users and
items waiting for recommendations. In general, methods for
recommender systems can be roughly categorized into three
ways [1], i.e. content-based methods, collaborative filtering
based (CF-based) methods and hybrid-based methods that
merge content-based and CF-based methods.

The content-based method takes a user’s profile or item’s
description into account in order to recommend target items
with similar properties. On the other hand, the CF-based
method utilizes a user’s previous behavior, i.e. user’s rating

The associate editor coordinating the review of this manuscript and

approving it for publication was Qilian Liang

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

or purchase history and preference data from other users,
to make recommendations. In addition, the hybrid-based
method combines content-based and CF-based methods, and
benefits from their advantages when making recommenda-
tions. In [2], they combined traditional CF i.e. probabilistic
matrix factorization (PMF) [3] with topic modeling. In [4],
they used recurrent neural network (RNN) to capture items’
descriptions and then use CF to make predictions.

Currently, the wireless communication has become more
and more important because people increasingly rely on cell
phones for getting information and recreations. As men-
tioned in [7], global mobile data traffic will continue growing
at a compound annual growth rate (CAGR) of 54 percent
from 2016 to 2021. Mobile video traffic accounting for
over three-fourths (78 percent) of total mobile data traffic
is expected by 2021. To deal with such large amount of
mobile data traffic, heterogeneous and small cell networks
(HetNets) [8] has become a solid solution. However, even
with the help of HetNets, we still face a bottleneck which
is a limited capacity of backhaul link to the core network.

129285

https://orcid.org/0000-0002-8420-9762
https://orcid.org/0000-0002-3630-8010

IEEE Access

Y.-T. Lin et al.: Video Popularity Prediction: An Autoencoder Approach With Clustering

Thus, the emergence of Mobile Edge Computing (MEC) [9]
technology offered a feasible way in which data can be pre-
processed and cached on the edge side (such as small cells).
With the help of MEC, the buffered videos can be delivered by
caches with less network latency. Moreover, network traffic
load can be reduced by caching the most popular video clips
on the edge side. Consequently, predicting the Top-K popular
videos in an upcoming time period and pre-caching them on
the edge side has become an important subject to be solved.

In this work, we first attempt to predict the Top-K pop-

ular videos in an upcoming time period with an innova-
tive recommendation algorithm - the collaborative denoising
autoencoder (CDAE) [5], [6]. In our experiments, the results
show that the CDAE model outperforms the baseline model —
expert-based model [20]. However, we are not satisfied by the
results. Thus, we focus on improving the accuracy of CDAE
with the help of clustering. We found that by clustering users
with similar preferences into same groups and fine-tune the
CDAE model for each group, we can improve the CDAE
model to better fit for each group. In the first step, we train
the original autoencoder model to reveal user-specific vectors
(user-specific vector or feature vector). Then, similar users
can be grouped into the same cluster by means of K-means
with their user-specific vectors. Afterward, for each cluster,
fine-tune the trained autoencoder model separately. Finally,
utilize each fine-tuned model to make recommendations.
The experimental results show that our method increases
significantly the Average Precision (AP) and Recall values by
nearly 30%. We then back to subject of predicting the Top-K
popular videos by applying our new improved model. The
results exhibit a significant improvement in all experiments.

The contributions of this paper are summarized as follows:

1) Propose a refined autoencoder model using a clustering
method to improve the prediction accuracy.

2) Adopt our proposed model in predicting poten-
tial (recent) Top-K popular videos and propose an
ensemble method to calculate the prediction of prefer-
ence of potential Top-K popular videos.

3) Propose a weighted cross entropy loss function to boost
prediction performance in potential Top-K popular
videos

The rest of this paper is organized as follows. We briefly

elaborate CF-based recommender systems, deep learning in
recommender systems, and cluster-centric small cell net-
works in Section II. Our proposed method which combines
autoencoder with clustering and the prediction of the Top-K
popular videos in an upcoming time period is presented in
Section III. The experimental results are revealed and dis-
cussed in Section IV. Finally, conclusion and future works
are drawn in Section V.

Il. RELATED WORK

A. COLLABORATIVE FILTERING BASED RECOMMENDER
SYSTEMS

Collaborative Filtering based (CF-based) methods can
be divided into two categories: memory-based CF and

129286

model-based CF. Memory-based CF, also known as
neighborhood-based CF, makes recommendations via simi-
larity which explores the relationship among users and items.
At first, it analyzes user-item matrix to identify the relation-
ship among items (or users), and calculates the similarity
through associations, then makes a prediction. In [10], they
analyzed various memory-based CF algorithms especially for
item-based CF, and compared them to the basic K-nearest
neighbor approach. According to the experimental results,
they suggested that item-based CF algorithms provide dra-
matically better performance than user-based CF.

On the other hand, model-based CF makes recommen-
dations by modeling ratings. Such models are built using
various data mining and machine learning algorithms to make
recommendations. In [3], they used low-dimensional model
to model a rating matrix, i.e. assuming that a rating matrix R
can be factorized into multiplication of two low-dimensional
matrices, R = UTV. Then, utilize gradient descent to
update model to learn factorization feature. In [5], they
proposed a CF model based on the autoencoder paradigm.
First, autoencoder is used to encode user rating vector into
low-dimensional vector and then, this low-dimensional vec-
tor will be decoded back to rating vector. The key idea of
autoencoder applied to recommender systems is that it can
learn important rating features from users through autoen-
coder. In [6], they also applied autoencoder to recommender
systems. Compared to [5], in their model, a learnable user-
specific vector for each user is included to improve the quality
of recommendation.

In addition to historical interactions of users and items,
recently, the side information has also been considered
to avoid the sparse matrix problem and aid recommender
systems. The knowledge graph (KG) which consists of
nodes (items) and edges (relations) was utilized as the
side information in [11]. KG is able to diversify recom-
mended candidates by consisting diverse types of relations
and increase understanding to recommender systems by con-
necting a user’s records and candidate items. Their proposed
RippleNet which discovers high-order preferences of users on
KG took a user-item pair, and then generated the probability
that this user would like to select this item. The RippleNet was
applied to several types of recommendations and revealed a
better performance compared to cutting-edge baselines.

B. DEEP LEARNING MEET RECOMMENDER SYSTEMS

With thriving of deep learning development in recent years,
deep learning related applications and experiments have been
conducted in many research fields. Similarly, deep learning
techniques can be suitably applied to recommender systems.
In [4], RNN was used to capture descriptions of users or
items and combine them with rating vectors to produce rec-
ommendations. When it comes to CF-based methods, there
are plenty of deep learning implementations, such as autoen-
coder and RNN. In [12], they used autoencoder to encode
user rating into hidden layer and employed CF to calculate
user similarity via input rating and hidden layer features.

VOLUME 8, 2020

Y.-T. Lin et al.: Video Popularity Prediction: An Autoencoder Approach With Clustering

IEEE Access

Then, predict rankings through decoding output of autoen-
coder and CF similarity. In [13], RNN was applied to model
auser’s web session history, and then make recommendations
from the session recordings. Also, recommender networks
using RNN to capture temporal dynamics was proposed
in [14]. That is to say, they fed ratings of each time period
into RNN for training and employed RNN to predict ratings in
an upcoming time period. Their experimental results showed
that the RMSE loss is better than state-of-the-art methods
with the help of modeling the rating temporal dynamics.

Recently, a deep item-based CF [15] utilized deep neural
networks to further consider the nonlinear and higher-order
relationships such as the same genre, actor, director among
items. This approach extracted a similarity (second-order
relation) between two items’ embeddings. Then, they
employed nonlinear neural networks to learn from these
second-order relations and detect the interactive information
(higher-order relation) between any two items which have
interacted. Their results showed that this approach can model
relations among movies more effectively.

Moreover, in [16], they targeted on two demerits of
multi-mode factor models: failure of capturing nonlinear rela-
tions between items, and difficulty of ensuring diversity of
recommendations. They proposed a tensor-based approach
using the Bayesian algorithm and deep neural network for
video recommendations. Their proposed Deep Canonical
PARAFAC Factorization (DCPF) clustered the multi-mode
data along different dimensions. Then, in order to extract
a more robust representation of latent relationships of each
mode for the multi-mode data, a multi-layer factorization
was applied to the matrix. The results demonstrated that the
proposed approach can capture the latent patterns well.

C. CLUSTER-CENTRIC SMALL CELL NETWORKS
Cluster-centric small cell networks (SCNs) [17] grouped
small cells into disjoint clusters to utilize cache space of
every small cell. However, the capacity of the cache space for
each SCs is limited. The backhaul transmission of video data
would become a bottleneck due to frequently cache replace-
ment. Thus, in order to mitigate this problem, predicting
the most popular videos and caching them in advanced are
crucial. In our previous work [18], a clustering method was
used to separate users with a similar preference into the same
group, and then assign groups to set of small cells. We also
shared the caching space among cooperated SCs with the
help of distributed LT codes. The simulation showed that the
backhaul traffic rate can decrease from 38% to 10% if cache
space is acceptable, and decrease from 64% to 33% if cache
space is poor.

lll. THE PROPOSED METHODS

With the user ratings and help of the CDAE [6], the proposed
methods predict potential Top-K videos in an upcoming time
period. The objective of autoencoder is to train the model
that minimizes the difference between the input and the pre-
dicted output. In the training stage, the autoencoder model

VOLUME 8, 2020

learns the latent factor of each user by transforming his/her
input rating into a lower dimensional feature vector, and then
predicts what this user might also prefer. However, prefer-
ences of users have not been considered by previous studies
yet. We assume the preference of each user plays a crucial
role in predicting potential Top-K videos in an upcoming
time period. Hence, we take users’ preferences into account
by adding the latent factor of each user with a preference
vector V,, updated by the optimizer, which minimizes the
weighted loss as shown in Fig. 1. In addition, in our refine-
ment stage, users are classified by their preference vectors V,,
to further improve the prediction of potential Top-K videos.
Note that all symbols are summarized in Table 1.

X
KRS

Yu

FIGURE 1. Collaborative denoising autoencoder model (CDAE) [6].

A. POTENTIAL TOP-K POPULAR VIDEOS PREDICTION
According to the video viewing experience, the most popular
videos either on YouTube or Netflix are fairly static for a
while. Most of them have been on the popular list for weeks.
This indicates that most people are likely to have the same
taste of videos for a short period of time. Based on this obser-
vation, we define a certain time period and use CDAE [6] to
acquire users’ preference at that time period. By aggregating
the prediction of users’ preferences, we are able to infer
Top-K popular videos in an upcoming time period.
As demonstrated in the experimental results, this Top-K fore-
casting method performs near-optimal for four datasets in the
sense of still-in which will be discussed in sub-section IV.B.
In the following sub-section, we elaborate how to predict
Top-K popular videos by our weighted loss function and
CDAE [6].

1) COLLABORATIVE DENOISING AUTOENCODER (CDAE)
As in [6], they proposed an autoencoder model which is con-
sisted of 2 fully connected layers and learnable user-specific
vectors V. V,, represents preference distribution of user u,
see Fig. 1.

Let I be a user set and J be an item set, and ¥Y'*/ be
a history matrix for all user-item ratings. Based on Y/*/,

129287

IEEE Access

Y.-T. Lin et al.: Video Popularity Prediction: An Autoencoder Approach With Clustering

TABLE 1. Summary of notation.

Symbol Definition

1 A user set

J An item set

i A user-item rating history matrix

Vi User-specific vectors which represent preference distribution of
each user

Zy A hidden layer transformation function

Vu The input rating vector of items by user u

Yu The prediction vector of items for user u

Vi The input rating of item i by user u

YVui The prediction of the preference of user « on item 7

u; User i

7 Item j

N, The average number of users who have viewed videos across
time periods

N, The average number of items which have been viewed across
time periods

C, The average number of average view counts for each item by
different users across time periods

Yy’ A N,xN, likelihood score matrix

ki The upper quartile score of video j

S; A set of the scores of the video j which are predicted by different
users and greater than 4;

a; Average score of S;

I; Training loss of user i

Vi True rating of user i to video j

¥ The prediction of user i on video j

W The weight of video j

M. The number of clusters

V. A viewing count set of the cluster’s viewed items

ry The rank of item; in cluster ¢

ne The number of users in cluster ¢

n The number of total users in training time periods

each user’s rating y, = {yu1, Yu2, Yu3, - - - » Yus } can be used
as an input to the model. In [6], they used a fully connected
layer to transform user-item ratings into the hidden layer.
Then, for each user, user-specific vector V,, was added to the
corresponding hidden layer vector individually. The input to
hidden layer transformation function is listed as below:

2u = hW'5, + V, +b) (1

where A(-) is an activation function, W7 is transformation
matrix, and b is a bias. Finally, the second fully connected
layer was used to transform latent vector into output vector.
The transformation function from hidden layer to output layer
is listed as below:

Ju=f W'z + b)) @

where f(-) is also an activation function and W’ is transfor-
mation matrix from hidden layer to output layer and b is a
bias term.

By optimizing transformation matrix W, W’, and user-
specific vector, the model can learn preference of each user
from their viewing history and forecast what user would
prefer in the future.

129288

2) PREDICTION OF TOP-K POPULAR VIDEOS BY CDAE

For each dataset, we have users’ viewing history including
user id, item id (which items he/she has viewed) and the
timestamp (when he/she viewed). The format of each dataset
is expressed as a list of tuples given by

< uj, vj, timestamp >

where u; denotes user i, and v; denotes item j. Then, we sepa-
rate rating history into training set and prediction set consec-
utively. The goal is to use the rating history before separation
point to predict Top-K videos in an upcoming time period.
As shown in Fig. 2, we separate time series data into 3 parts —
training part, prediction part and rest part by a separation
point (the dash line in Fig. 2).

rest part predict Input i rest part

[-

| f

' 1 1 .
Training pren et} After finished epoch £,
rest part predict Input move on to epoch #+1.

Treining iPredict rest part

FIGURE 2. The separation point, training and testing (prediction) time
periods.

In the training stage, a fixed interval of viewing history
(blue and green parts in Fig. 2) is selected for training
an autoencoder model. The latest three time periods in the
training set are selected as prediction inputs (the green part
in Fig. 2). After training, the trained model is utilized to pre-
dict the potential Top-K popular videos in an upcoming time
period (red part in Fig. 2). Since the observation mentioned
above, the users’ preference remains unchanged for a while.
Algorithm 2 selects Top-K videos which are predicted by all
users, and summarize the Top-K popular ones as the most
popular videos in an upcoming time period. This procedure
will be executed continually for the coming time periods. The
detail of procedure is shown in Algorithm 1.

Note that instead of including all rating data before any
separation point into the training set, we only collect data
from a few time periods as the training set. The reason is that,
although the Top-K popular videos within each time period
remain fairly constant, they are still quite dissimilar from
the long-term perspective. If we involved all rating data into
the training set, the autoencoder model would be seriously
disturbed as time moving forwards. Also, we do not pick
initial of separation point too early since it could lead to a
lack of training data and jeopardize the overall performance
of the model prediction.

In practice, a typical user usually rates a relatively small
fraction of movies. In both Table 2 and Fig. 3, the sparsity,
i.e. (view count) / (# of users *x # of items), is prevalent
in every time period. The sparsity means that even for the
Top-K popular videos, videos would be viewed by a small

VOLUME 8, 2020

Y.-T. Lin et al.: Video Popularity Prediction: An Autoencoder Approach With Clustering

IEEE Access

Algorithm 1 Next Time Period Prediction
Input: List of tuples < u;, vj, timestamp> of the rating
history.
Output: Top-K popular videos for each time period.
1. Initialize separation point set S.
2. For each separation point in S do:

3. Separate data into training set and testing set.
4. Train the autoencoder model with training set.
5 Take the latest 3 time periods rating history in

training set as the input for prediction.
6. Use trained autoencoder model to predict potential
Top-K popular videos for each user in an upcoming
time period.

7. Select Top-K popular videos from all users
(Algorithm 2).

8. Move on to the next time period.

9. End For

TABLE 2. Average sparsity across time period.

N, N, C, Avg. sparsity
ITRI 220 885 5 2.07%
Netflix(small) 767 74 17 3.36%
Netflix(1 Year) | 60,699 | 8,330 | 148 0.24%
Video 46 prediction scores
° === mean
08
o
0.6 1
v
§ 04 4 °

0.2 4

0.0

FIGURE 3. Prediction score of video No. 46, Netflix(small) dataset in a
time period.

number of users in each time period. Note that Fig. 3 shows
prediction scores of video No. 46 in a time period and not
every user involved in that time period; thus, the prediction
result shows that some users assign 0 as their rating scores to
video No. 46. Table 2 lists average sparsity of three different
datasets across time periods. N, denotes the average number
of users who have viewed videos across time periods, N,
denotes the average number of items which have been viewed
across time periods, and C, indicates the average number of
average view counts for each item by different users across

VOLUME 8, 2020

time periods. Also, the prediction score of Video #46 using an
autoencoder model in a time period is depicted in Fig. 3. The
mean (average score) is quite low because only a few users
gave the ratings for Video #46; thus, quite a few prediction
scores above some threshold, say 0.4.

Due to the sparsity issue mentioned above, our method
is devised to choose the Top-K popular videos in a time
period. Algorithm 2 shows the detail of selecting the Top-K
popular videos. Based on the autoencoder model with the
training time periods (see Fig. 2), we compute a N, x N,
likelihood score matrix Y’ of the current time period (red
period in Fig. 2). Let Y’ be a score matrix where all elements
are between 0 and 1: {0 szij <1IVO0<i<N,0<j<N,}.
The predicted likelihood, J;;, indicates the probability that
video j would be watched by user i, i.e. if user i is predicted
more likely to watch video j, the prediction score is much
closer to 1 and vice versa. Let k; be the upper quartile score
of the video j. Let S; be a set of the scores of the video j
which are predicted by different users and greater than k;.
Then, compute a; for video j by averaging all scores in S;.
Finally, select the K videos with the highest a; as the Top-K
popular videos for the next time period. Fig. 4 shows the
recalls for various quartile values (e.g., 50%, top 25%, and
top 15%) by using three different models and datasets, which
will be discussed in the next section.

Algorithm 2 The Selection of Top-K Popular Videos

Input: The (predicted) likelihood score matrix ¥’y xn, -
Output: Indices of Top-K popular videos.

1. For each item in the current time period:

2 Assign k; to be the upper quartile score of item j.

3 Generate Set, Sj = {Sj] s 8j25 oo SiM |VSjiSj,' > kj}.
4. Compute the average a; of S, a; = Ziil Sin/M.
5

6

End For
Select these videos that have the highest K scores of
all g; to be Top-K popular videos.

Recall Percentile of prediction data choosing
08

0.75

0.4
ITRI Netflix (small)

Netflix (1year)

M all mean top 25% mean top 15% mean

FIGURE 4. The recalls for various quartile values (e.g., 50%, top 25%, and
top 15%) by using three different models and datasets.

In our model applied to Top-K popular videos predic-
tion, we choose cross entropy loss [6] as our loss function.
Moreover, in order to boost the prediction performance of

129289

IEEE Access

Y.-T. Lin et al.: Video Popularity Prediction: An Autoencoder Approach With Clustering

Top-K popular videos, we propose a weighted loss function /
for optimization and is given by

J
L 9)= 5 x log (3)) = (1-3) x log(1=3)) xw;
3

where /; is the training loss for the user i, y; is the actual
rating given by the user i to the video j, J; is the predicted
rating given by the user i to the video j, and wj is the weight
value for the video j. As exploiting weighted cross entropy
loss function, the proposed model is capable of focusing on
videos which are expected at higher rank in the training phase.

B. PREDICTION REFINEMENT

With CDAE [6], the prediction performance shown in
sub-section IV.D.3 can be refined by clustering users. In the
following sub-section, we introduce the key concept of
CDAE - the user-specific vector. We elaborate how it rep-
resents individual preference for each user in III.B.1, and
how our proposed clustering refinement method improves the
prediction accuracy. We introduce how to apply the proposed
refinement method to predict the top-K potential popular
videos in next time period in I11.B.2.

1) USER-SPECIFIC VECTOR AND CLUSTERING REFINEMENT
As mentioned above, the difference between CDAE [6]
model and original autoencoder model [5] is the additional
user-specific vector which represents preference distribution
of each user. The benefit of adding user-specific vector was
shown in the experiment in [6]. However, we find that the
performance can be improved by clustering techniques. Since
the original CDAE model (non-clustering) was trained to
learn all users’ preferences, it is unable to well fit for a
particular user with a specific preference. Thus, we cluster
users with a similar preference into the same group and then,
fine-tune the trained CDAE model with the users’ viewing
histories in the same group. The fine-tuned model will be
better fit for the users in the group.

In initialization stage, we use Gaussian distribution to ini-
tialize the user-specific vector V,, by a M-dimensional vector,
which has the same dimension as the hidden layer. We, then,
apply them to the autoencoder model according to each user’s
identification. In the update stage, the user-specific vector is
fine-tuned by the optimizer to enable the vectors to have a
better representation of user’s feature of rating distribution.

Fig. 5 shows the similarity of each user-specific vector.
X-axis lists 4 pairs of users (by user ID) from which their
ratings are totally different. That is to say, we believe that the
pairs of users have different tastes of videos. Y-axis represents
cosine similarities. As shown in Fig. 5, their user-specific
vector similarities drop after training. It shows that the CDAE
model can be truly trained and updated the user-specific
vectors to better fit users’ characteristics.

As mentioned above, a user-specific vector represents pref-
erence distribution of each user. Hence, we improve the per-
formance in prediction accuracy by 1) clustering users by

129290

Specify vector similarity changes.

075 ./I/_"/k——.
@ 070
5
= 065
-
=
o
£ (.60
1l
[~}
4]
055
050 - Sfm!lar!ty_orgllnal
== similarity trained
(137, 251) (198, 718) (234, 387) (380, B26)

Mot similar user pair

FIGURE 5. A demonstrated example of changing of similarity with
user-specific vectors (Netflix small dataset).

their preference, and 2) refining the model by each group.
In our work, we utilize the K-means algorithm to categorize
trained user-specific vectors (user-specific vector or feature
vector) and group similar users to boost the performance of
the original autoencoder model [5]. K-means clustering [19]
is one of the most popular unsupervised learning algorithms
so far. K-means can categorize similar users or items into
same clusters via user/item similarity. The K-means algo-
rithm divides a set of n samples into several clusters. This
clustering algorithm aims to choose centroids p that mini-
mizes within-cluster sum of squared criterion:

n . 2
Do mind(li = 1| @

The process is listed in Algorithm 3 and the corresponding
flowchart is shown in Fig. 6. Note that we adopt different
K values to K-means based on the size of users in different
datasets. The detail of how to determine K values will be
elaborated in section IV.C. First, we pre-train CDAE model
by using user-item rating history as an input in order to
get the trained d-dimensional user-specific vector V,,. Then,
apply all user-specific vectors V, into K-means procedure to
organize similar users into groups. Finally, for each group,
we fine-tune the pre-trained autoencoder model to well fit
each group’s rating distribution. In our experimental results

Algorithm 3 Clustering-Based CDAE

Input: User-Item rating history matrix ¥/

Output: Fine-tuned autoencoder models for all groups

1. Pre-train CDAE by using Y/ to train user-specific
vectors V,,

2. Organize similar users into groups using user-specific
vectors V,, by K— means.

3. For each cluster:

4. Fine-tune pre-trained model to fit each group’s
rating distribution.
5. End For

VOLUME 8, 2020

Y.-T. Lin et al.: Video Popularity Prediction: An Autoencoder Approach With Clustering

IEEE Access

l
iPretrain CDAE model user-specific vector

clustering

Y

Fine tuning ‘

Mt

FIGURE 6. The flowchart of the proposed autoencoder model with
clustering.

discussed later, it shows that the performance of our proposed
method is promising for various scale of datasets.

2) PREDICTION OF CLUSTERING BASED TOP-K POPULAR
VIDEOS
In this section, we introduce prediction of Top-K popular
videos by CDAE with clustering refinement. For potential
Top-K videos, our clustering-based prediction approach con-
sists of two procedures (Algorithm 2 and Algorithm 3).
For each separation point, the autoencoder model is trained
with appropriate time periods (see Fig. 4). Then, apply
the K-means algorithm to categorize users by their trained
user-specific vectors. After clustering, we fine-tune the
trained autoencoder model and utilize each cluster’s autoen-
coder model to select their potential Top-K popular videos.
The prediction results are several lists of Top-K popular
videos for all clusters. Eventually, all of these lists are com-
bined by an ensemble method in order to formulate the final
Top-K popular videos.

In general, view counts of videos and their popularity rank-
ing should follow the Zipf’s distribution if the scale is large
enough. Fig. 7 shows our dataset’s popularity distribution

Popularity Distribution

10 —— Netflix small
—ITRI
—— Netflix 1 year
8
®
= 6
b=
3
8
; 4
2
=
2
0

20) 80 80 100
Popularity Ranking %

o

FIGURE 7. Popularity distribution of 3 datasets.

VOLUME 8, 2020

(log-scale). Unfortunately, we observe that the popularity dis-
tribution at every time period does not strictly follow Zipf’s
distribution because the number of viewed videos (delivered
rankings) at every time period is very insufficient. Only in
Netflix (1 Year) dataset, the number of watched videos at
every time period is adequate to enable the popularity dis-
tribution to follow Zipf’s distribution. Our ensemble method
integrates all of lists by using Eq. (5) and Eq. (6) to calculate
score of Top-K popular videos from each cluster. That is
to say, if the number of viewed videos at a time period is
adequate (larger than K), then we use the Zipf’s distribution
to calculate the unified scores. Otherwise, we have to use
the popularity distribution of the training set of the cluster
to calculate scores if the number of viewed videos at a time
period is insufficient.

A ne
scorej = Zc:l ae X Z(rg) X o ®)]
A IV > K
2(r) = H 6)
Py e iflVl =K
Zk=1 Vek

M. denotes number of clusters, r.; denotes rank of item j
in cluster ¢, n. denotes the number of users in cluster c,
n denotes the number of total users in training time periods,
and z(-) denotes ensemble score function for item j in rank r.
Ve = Vo1, V2, ooy Vek|Vel = Ve2 = ... > Vi }, 1S @ viewing
count set of the cluster’s viewed items. In such a way, we can
come up with an overall Top-K popular videos from every
cluster in this time period.

Another challenge for predicting the Top-K popular videos
in an upcoming time period is the unknown (first appear-
ance) videos. It is difficult to predict the new coming videos
since we definitely have no future knowledge. Thus, in case
of some videos being so popular that will be in Top-K
at first appearance, we could not forecast them eventually.
Fig. 8 shows the ratios of new coming videos in Top-K lists
for three datasets. We can observe that there is rather small
ratio of new coming videos in Netflix (small) and Netflix
(1 Year) compared to ITRI dataset. Since videos in Netflix are
all movies or TV series and both of them cannot be produced

New Video in Top List

60%

50%
40%
30%
20%
10%

0%

Top 5/Top 30 Top 10/Top 50 Top 30/Top 100

8

W Netflix (small) B ITRI Netflix (1year)

FIGURE 8. The ratios of new videos in Top-K lists for three datasets.
K = 5, 10, and 30 for Netflix (small) and ITRI. K = 30, 50, and 100 for
Netflix (1 year).

129291

IEEE Access

Y.-T. Lin et al.: Video Popularity Prediction: An Autoencoder Approach With Clustering

in a short-time, the list of top videos remains unchanged for
a while. On the other hand, the ratio of new coming videos
in ITRI dataset exceeds 50% because ITRI data are traces
of some pilot runs with a relatively small number of users.
There are many new videos coming over time even though
some of them will quickly disappear from the ranking. Hence,
the ranking of videos changes at relatively rapid rates.

IV. EXPERIMENTAL RESULTS

In order to highlight the improvement of our proposed
method, our experimental evaluation is twofold: (1) the
improvement of the clustering method compared to the orig-
inal collaborative autoencoder [5] and (2) the accuracy of
prediction for the potential Top-K popular videos. In this
section, the datasets and evaluation metrics are introduced in
sub-sections IV.A and IV.B. Next, we compare results of the
clustering method to the original model in sub-section I'V.C.
Finally, the experimental results of potential Top-K popular
videos are shown in sub-section IV.D.

A. DATASETS

We use four datasets in our experiments: ITRI, Netflix
(small), Netflix (1 Year) and Netflix (large). ITRI has real
traces of some experimental runs, which were collected by the
Industrial Technology Research Institute (ITRI), Taiwan. All
Netflix datasets are from Netflix Prize datasets. We created
a small scale Netflix (small) dataset from Netflix data with
a small group of users, and selected a whole year (2005)
to create Netflix (1 Year) data for evaluating the proposed
Top-K popular videos prediction. We converted Netflix
dataset into < 0, 1 > representation where 1 denotes that a
user has seen this video and 0 indicates that a user has not seen
it yet. This transformation is widely used in previous works
(recommender systems) [8], [19] as an implicit feedback. The
detail of datasets is listed in Table 3.

TABLE 3. The four test datasets.

of # of # of sparsity time
users items ratings elapsed
ITRI 276 989 14072 5.16% 06/19/2016
11/14/2016
Netflix 839 99 8709 10.49% | 01/16/2000
(small) ~
12/31/2005
Netflix 96,684 9,394 | 9,460,526 1.17% 01/01/2005
(8%) ~
12/31/2005
Netflix 256,683 | 13,590 | 42,656,842 | 1.22% 02/28/2004
(large) ~
12/31/2005

B. EVALUATION METRICS

Precision, Recall as well as Mean Average Precision (MAP)
are widely recognized as the classic evaluation metrics of
recommender systems. Precision and Recall suffer from not
being able to evaluate the ranking (prediction) of recom-
mended items. The items that have been adopted should be

129292

recommended in a higher rank and those which have been
unfavorable should be in lower ranks. Accordingly, MAP is
recognized to not only evaluate how many items are truly
adopted by users in the recommending list but also calculate
their rankings.

To assess the refined autoencoder with clustering, we fol-
low the prediction result choosing procedure in [6] where
the fine-tuned autoencoder model would recommend each
user with Top-N highest predicted value items, not includ-
ing the training set. The performance is evaluated by using
Recall@N and AP@N where N = 5 and /0, which means the
N most videos we predict the user would watch for each user.

On the other hand, to assess the performance of our pro-
posed model which predicts the popular videos in an upcom-
ing time period, the prediction accuracy of Top-K popular
videos in an upcoming time period is evaluated by using
Recall@K and Still_in_Recall@K where K = 5, 10, 30, 50,
and 700.

1) PRECISION AND RECALL
Given a Top-N recommendation list Cy | . predicted by each
user, precision and recall is denoted by

| CN ,rec N Ctrue |

Precision@N = m D
CN ree N Corye
Recall@N = 1CMurec 1 Ciruel)
|Ctrue|

where Cy | . is the Top-N videos with the highest predicted
scores of each user and Cy,, represents the set of videos that
user adopted in testing data.

2) MEAN AVERAGE PRECISION (MAP)

Average Precision (AP), as mentioned, can evaluate not only
hit ratio of recommendation but also the video’s ranking of
recommendation. AP@N gives a better credit if videos are
recommended in higher rank appropriately and is defined by

ZZ: | Precision@m x rel(m)
min{N , |Crryel}

where Precision@m are the precision of Top-M highest
ranked item in the recommendation set Cy_ ye, rel(m) equals
to 1 if the item at rank m is adopted; otherwise, rel(m) is 0,
and MAP@N is denoted as mean of AP scores for all users.

AP@N =

©)

3) STILL-IN RECALL

For the prediction of Top-K popular videos in an upcoming
time period, it is difficult to predict the new coming (first
appearance) videos since we definitely have no priori knowl-
edge to forecast them. Thus, in case of some videos being so
popular in Top-K at first appearance, we propose a probable
fair index, called Still_in_Recall@K to gauge the reasonable
recall score. Still-in means that a video is currently in the Top-
K popular list and will remain static in next time period. The
Still_in_Recall@K is defined by

|CK,rec N (Cpresentmcnext)|

Recalls @K =
| (Cprexem anEXt)l

(10)

VOLUME 8, 2020

Y.-T. Lin et al.: Video Popularity Prediction: An Autoencoder Approach With Clustering

IEEE Access

where Ck, . represents the prediction of Top-K popular
videos in an upcoming time period, Cpesens denotes real
Top-K popular videos in the current time period, and Cjexy
denotes real Top-K popular videos in an upcoming time
period. Assume that current Top-5 videos are {a, b, e, g, i},
Top-5 videos in an upcoming time period are {a, b, ¢, d, g},
and the predicted Top-5 videos are {a, ¢, g, f, k}. Then,
the still-in recall is calculated by

Ha,e, g.f,k}N{a, b, e, g}|
Ha, b, e, g}|

Recalls @5 = =0.75

4) F1-SCORE

For the prediction of Top-K popular videos in an upcoming
time period, we also apply F1-Score to evaluate the model’s
performance. As mentioned, recall and precision focus more
on positive and negative samples, respectively. In contrast,
F1-score combines both of them to measure the overall per-
formance. F1-score @K is defined by

2xRecall @K x Precision@K

F1@K = — (11)
Recall @K + Precision@K

C. CLUSTERING BASED CDAE

1) DATA DESCRIPTION AND INITIAL SETTING

Three datasets: ITRI, Netflix (small) and Netflix (large)
datasets are considered for examining refined models in this
section. In ITRI and Netflix (small) datasets, the users are
categorized into 10 clusters because the number of users is
relatively small. In Netflix (large) dataset, users are classified
into 50 clusters. The activation functions in Eq. (1) and (2)
are sigmoid function. The cross entropy is used as our loss
function. In clustering procedure, the user-specific vector and
feature vector are applied to organize the set of users for
comparison.

2) REFINEMENT RESULT IN AP AND RECALL

Fig. 9 to 16 show performance comparisons between non-
clustering CDAE model [6] and two different clustering
refinements (user-specific vector and feature vector) in terms
of AP@N and Recall @N. In this section, the comparisons are

AP@5 3 dataset AP@5
0.4
0.35
03
0.25
02
0.15
0.1
0.05
0

Netflix (large) ITRI Netflix (small)

u Auto-Encoder mOurt proposed clustering refinement (user vector)

Our proposed clustering refinement (feature vector)

FIGURE 9. The comparison of AP@5 between three models.

VOLUME 8, 2020

threefold: (1) small and large datasets, (2) clustering and non-
clustering, and (3) user-specific vector and feature vector.

First, ITRI and Netflix (small) can achieve higher improve-
ment because the distribution of users within the same cluster
in smaller datasets is close to uniform. In ITRI and Netflix
(small), the users within the same cluster are more uniform
than the users within the same cluster in Netflix (large);
therefore, the performance of fine tuning of both datasets are
consequently better than that of Netflix (large). Second, fea-
ture vectors can extract more information from user’s rating
distribution than user-specific vectors because they are capa-
ble of combining users’ rating (input) and the correspond-
ing user-specific vectors. Hence, the clustering refinement
with feature vector has a better performance than that with
user-specific vector.

In Fig. 10, it can be easily observed that in small datasets,
i.e. Netflix (small) and ITRI, the AP@5 of two cluster-
ing refinements can be improved by around 20%. Even in
Netflix (large) dataset, there is about 5% improvement by
using feature vector. Fig. 11 to 16 show AP@10, Recall @5,
Recall@10 of three datasets and their improvements by using
different clustering refinements. Apparently, our proposed
model performs better than the original model [5]. As shown
in Fig. 12, in the ITRI dataset, the improvement can be
increased by 25%, and in the Netflix (large) dataset, it can be

AP@5 Improvement
25.00%

20.00%
15.00%
10.00%
5.00%
0.00% //"

Auto-Encoder Our proposed clustering

refinement (user vector)

Our proposed clustering
refinement (feature vector)

——Netflix (large) —e—ITRI Netflix (small)

FIGURE 10. Improvements of AP@5 between three models.

AP@10 3 dataset AP@10
0.45

0.4
0.35
0.3
0.25
0.2

0.15

0.1
0
Netflix (large) ITRI

Netflix (small)

m Auto-Encoder mOur proposed clustering refinement (user vector)

Our proposed clustering refinement (feature vector)

FIGURE 11. The comparison of AP@10 between three models.

129293

IEEE Access

Y.-T. Lin et al.: Video Popularity Prediction: An Autoencoder Approach With Clustering

AP@10 Improvement
30.00%

25.00%
20.00%
15.00%
10.00%

5.00%

0.00%
Auto-Encoder Our proposed clustering

refinement (user vector)

Our proposed clustering
refinement (feature vector)

——Netflix (large) —e—ITRI —e—Netflix (small)

FIGURE 12. Improvements of AP@10 between three models.

3 dataset Recall@5

Recall@5
0.6
0.5
0.4
0.3
0.2
0

Netflix (large) ITRI Netflix (small)

u Auto-Encoder mOur proposed clustering refinement (feature vector)

= Our proposed clustering refinement (feature vector)

FIGURE 13. The comparison of Recall@5 between three models.

Improvement of Recall@5
30.00%

25.00%
20.00%
15.00%
10.00%

5.00%

0.00%
Auto-Encoder Our proposed clustering

refinement (user vector)

Our proposed clustering
refinement (feature vector)

——Netflix (large) —e—ITRI —e—Netflix (small)

FIGURE 14. Improvements of Recall@5 between three models.

increased by 5.08%. In Fig. 16, by using our proposed model,
the improvement can be increased by 30% and 4.37% in ITRI
dataset and Netflix (large) dataset, respectively.

D. POTENTIAL TOP-K PREDICTION IN AN UPCOMING
TIME PERIOD

1) DATA DESCRIPTION AND INITIAL SETTING

ITRI, Netflix (small) and Netflix (1 Year) datasets are con-
sidered in this section. As mentioned in Fig. 2, in Table 4,
we choose 1 week, 3 months, and 2 weeks as one time period

129294

3 dataset Recall@10

Recall@10

0.8

0.7

0.6

0.5

0.4

0.3

0.2

ST
0

Netflix (large) ITRI Netflix (small)

 Auto-Encoder 1 Our proposed clustering refinement (user vector)

= Our proposed clustering refinement (feature vector)

FIGURE 15. The comparison of Recall@10 between three models.

Improvement of Recall@10
35.00%

30.00%
25.00%
20.00%
15.00%
10.00%

5.00%

-

Our proposed clustering
refinement (user vector)

0.00%

Our proposed clustering
refinement (feature vector)

Auto-Encoder

—a—Netflix (large) —s—=ITRI —*—Netflix (small)

FIGURE 16. Improvements of Recall@10 between three models.

TABLE 4. Time period settings.

Time elapse Time period | Avg. view count
in a time period
ITRI 19/06/2016~14/11/2016 1 week 4,425
Netflix | 16/01/2000~31/12/2005 3 months 1,258
(small)
Netflix | 01/01/2005~31/12/2005 2 weeks 1,232,840
(1 Year)

for ITRI dataset, Netflix (small) dataset, and Netflix (1 Year)
dataset, respectively. Note that 3 months for Netflix (small)
dataset seems long; however, the prediction might be useless
if the view count is quite small. Also, to find out the appro-
priate number of hidden unit that has the best performance,
we have tried various lengths of hidden units ranging from
20 to 100 (20, 40, 60, 80, and 100). Table 4 and Table 5 show
the parameter settings of three datasets. Table 6 shows the
selected hidden unit lengths of model for three datasets.

2) BASELINE MODEL
The baseline model we use as comparisons are 1) the
expert-based model in [20] (called expert-based) and

VOLUME 8, 2020

Y.-T. Lin et al.: Video Popularity Prediction: An Autoencoder Approach With Clustering

IEEE Access

TABLE 5. The initial settings of next time period top-K.

of # of # of Weight
users clusters videos
ITRI 220 10 885 100
Netflix 767 10 74 30
(small)
Netflix 60,699 50 8,330 320
a1y

TABLE 6. The selected lengths of hidden units in three models.

ITRI | Netflix (small) | Netflix (1Y)
Clustering 20 20 80
Non-clustering 20 20 100

2) a brute force approach. In [20], they adopted K best
experts as forecasters to predict next week video solicitations
by calculating each expert’s prediction loss. As suggested
in [20], in this section, we choose the following experts:
Double Exponential Smoothing (DES) expert, Arithmetical
Moving Average (AMA) adjusted expert, Dynamic Basic
(DB) expert, Constant Basic (CB) expert and Geometrical
Moving Average (GMA) adjusted expert. Also, we find that
the best K is setting to 2 (i.e., K = 2). Notice that the
baseline model is a small data analysis, and ours is based on
the massive data analysis. The other baseline we use is brute
force approach i.e. we directly adopt the Top-K videos in the
current time period as the prediction result of Top-K popular
videos. This baseline approach is compared in terms of recalls

TABLE 7. Upcoming time period prediction recall.

and Fl-score of Top-K popular prediction in an upcoming
time period in Table 7 and IX.

3) PREDICTION ACCURACY WITHOUT NEW VIDEOS

Table 7 shows the recalls of Top-K of three datasets in
an upcoming time period. The numerical results show that
both clustering autoencoder and non-clustering autoencoder
model outperform the expert-based model. Furthermore,
the performance of using clustering is constantly better than
that of using non-clustering. It is easily to observe that by
using clustering, Netflix (1 Year) ensures the recall values
at least 0.78 for predicting Top-30, Top-50, and Top-100.
Netflix (small) also approves the recall values around
0.69 and 0.73 for Top-10 and Top-30, respectively when using
clustering. However, the recall values are only 0.61, 0.55, and
0.51 in ITRI because, as mentioned before, ITRI data are
traces of some pilot runs with a relatively small number of
users, and it is harder to predict Top-K eventually.

On the other hand, compared with the other baseline
(brute force), the recalls of the brute force approach in
Netflix (small) and Netflix (1 Year) are close to the recalls
of our refined models. The recalls in Netflix (1 Year) are
slightly better than us. We have found the reason is that
Netflix (1 Year) data are composed of movies and series and
the popularity of movies and series remains fairly static for
weeks or months. However, the ITRI dataset is composed
of YouTube videos in which the popularity does not stay
constant compared to movies and series; thus, the recalls
of brute force approach in ITRI is only around 0.22. When
comparing to brute force approach, our proposed methods
have the ability to capture preferences of users over time and

Top 5 Top 10 Top 30
Netflix (small) clustering 0.583333 0.691667 0.730556
Non-clustering 0.516667 0.646154 0.7179
Expert-based 0.43333 0.546154 0.630769
Brute force 0.583333 0.661538 0.723077
ITRI clustering 0.618182 0.554545 0.515152
Non-clustering 0.563636 0.518182 0.5
Expert-based 0.4 0.316667 0.430556
Brute force 0.200000 0.225000 0.252778
Netflix (1 Year) Top 30 Top 50 Top 100
clustering 0.802564 0.783077 0.786154
Non-clustering 0.772051 0.764615 0.769231
Expert-based 0.689744 0.72 0.738462
Brute force 0.810256 0.796923 0.816154

VOLUME 8, 2020

129295

IEEE Access

Y.-T. Lin et al.: Video Popularity Prediction: An Autoencoder Approach With Clustering

TABLE 8. Upcoming time period prediction still-in recall.

Top 5 Top 10 Top 30
Netflix (small) clustering 0.865833 0.88328 0.931299
Non-clustering 0.7825 0.862937 0.926116
Expert-based 0.548611 0.781471 0.818634
ITRI clustering 1 0.915043 0.8406
Non-clustering 0.954545 0.911255 0.847703
Expert-based 0.75 0.585218 0.70519
Netflix (1 Year) Top 30 Top 50 Top 100
clustering 0.974821 0.951442 0.93148
Non-clustering 0.926119 0.926857 0.911501
Expert-based 0.806105 0.879669 0.861168
TABLE 9. F1 score of upcoming time period top-K prediction.
Top 5 Top 10 Top 30 Top 50 Top 100
Netflix (small) clustering 0.583333 0.691667 0.730556 # #
Netflix (small) non-clustering 0.516667 0.646154 0.7179 # #
Netflix (small) Expert-based 0.43333 0.546154 0.630769 # #
0.583333 0.661538 0.723077 | # #
ITRI clustering 0.618182 0.554545 0515152 | # #
ITRI non-clustering 0.563636 0.518182 0.5 # #
ITRI Expert-based 0.4 0.316667 0.430556 | # #
0.200000 0.225000 0.252778 # #
Netflix (1 Y) clustering # # 0.802564 0.783077 0.786154
Netflix (1 Y) non-clustering # # 0.771795 0.776923 0.767692
Netflix (1 Y) Expert-based # # 0.689744 0.72 0.738462
_ # # 0.810256 | 0.796923 | 0.816154

have better performance to predict the popular videos in an
upcoming time period if the popularity alters more frequently.

The prediction results for all three datasets in an upcoming
time period are not very good at first glance, and ITRI dataset
even gets only around 0.5 in recall. As mentioned before,
the apparent reasoning is the first appearance issue. For exam-
ple, some videos (such as Avengers) which are very popu-
lar will definitely be in the Top-K list when first released.
This will be difficult for our prediction model to predict the
new coming videos if there is no priori knowledge at all.
Therefore, we have to define a fair index, Still_in_Recall @K,
to measure the reasonable recall score. Accordingly, in the
experimental results, we focus on the videos that are in the

129296

Top-K list currently and will be still-in for an upcoming time
period Top-K list together.

4) PREDICTION ACCURACY WITH NEW VIDEOS

Table 8 demonstrates the still-in recalls of Top-K list for
three datasets. It shows that our proposed model (cluster-
ing) performs well in predicting the still-in next time Top-K
popular videos. It is noticeable that prediction recalls can
achieve 0.9 for all three datasets for some Top-K . Particularly,
the prediction recalls (Still_in_Recall@K, K = 5, 10, 30) for
Netflix (1 Year) dataset are all higher than 0.93 when applying
clustering. It also demonstrates that if the video appeared
recently, the model would learn the rating information of the

VOLUME 8, 2020

Y.-T. Lin et al.: Video Popularity Prediction: An Autoencoder Approach With Clustering

IEEE Access

TABLE 10. F1 score of still-in top-K prediction.

Top 5 Top 10 Top 30 Top 50 Top 100
Netflix (small) clustering 0.659061 0.72272 0.8047 # #
Netflix (small) non-clustering 0.596561 0.703384 0.784637 # #
Netflix (small) Expert-based 0.410053 0.571221 0.684379 # #
ITRI clustering 0.625541 0.608304 0.558759 # #
ITRI non-clustering 0.585137 0.607042 0.563188 # #
ITRI Expert-based 0.407738 0.358414 0.414835 # #
Netflix (1 Y) clustering # # 0.870565 0.842823 0.836595
Netflix (1 Y) non-clustering # # 0.8028 0.8027 0.7976
Netflix (1 Y) Expert-based # # 0.720297 0.780357 0.773707
TABLE 11. Prediction recall on various hidden lengths.
Different Hidden Lengths 10 20 40 60 80 100
Top 5 0.533333 | 0.583333 | 0.523077 | 0.523077 | 0.492308 | 0.507692
clustering Top 10 | 0.658333 | 0.691667 | 0.638462 | 0.653846 | 0.630769 | 0.623077
Top30 | 0.727778 | 0.730556 | 0.694872 | 0.712821 | 0.715385 | 0.710256
Netflix (small)
Top 5 0.492308 | 0.516667 | 0.476923 | 0.492308 | 0.492308 | 0.492308
Non-clustering Top 10 | 0.638462 | 0.646154 | 0.653846 | 0.653846 | 0.669231 | 0.669231
Top 30 | 0.710256 0.7179 0.710256 | 0.710256 | 0.715385 | 0.710513
Top 5 0.545455 | 0.618182 | 0.563636 | 0.509091 | 0.545455 | 0.490909
clustering Top 10 | 0.518182 | 0.554545 | 0.545455 | 0.554545 | 0.509091 0.5
Top 30 | 0.506061 | 0.515152 | 0.478788 | 0.484848 | 0.509091 | 0.481818
ITRI
Top 5 0.506061 | 0.563636 0.55 0.477778 | 0.533333 | 0.533333
Non-clustering Top 10 0.5 0.518182 | 0.491667 | 0.491667 | 0.516667 | 0.508333
Top 30 | 0.50303 0.5 0.480556 | 0.533333 0.475 0.483333
Top 30 | 0.774359 | 0.774359 | 0.774359 | 0.805128 | 0.802564 | 0.797436
clustering Top 50 | 0.773846 | 0.770769 | 0.770769 | 0.784615 | 0.783077 | 0.789231
Top 100 | 0.773077 | 0.776154 | 0.776154 | 0.784615 | 0.786154 0.79
Netflix (1Y)
Top30 | 0.73333 | 0.753846 | 0.764103 | 0.769231 | 0.771795 | 0.771795
Non-clustering Top 50 | 0.749231 | 0.763077 | 0.766154 | 0.769231 | 0.773846 | 0.776923
Top 100 | 0.746923 | 0.748718 0.76 0.763077 | 0.765385 | 0.767692

video and would better forecast the temporal dynamics then.
Again, this demonstrates that our Top-K forecasting method
has near-optimal solutions for all these datasets in the sense
of still in.

5) F1 SCORE OF PREDICTION ACCURACY WITH OR
WITHOUT NEW VIDEOS

F1 score which combines both recall and precision is used to
evaluate the overall performance. Table 9 shows the F1 score
for prediction of three datasets in an upcoming time period
and Table 10 shows the F1 score for still-in Top-K prediction

VOLUME 8, 2020

of three datasets. Our proposed method (clustering) out-
performs other methods in the three datasets with different
sizes. Compared to the non-clustering method, the clustering
method has better F1 scores (i.e., higher than 0.8) for still-in
Top-K in the Netflix (1 Year) dataset.

6) PREDICTION RECALL ON HIDDEN LAYERS WITH
DIFFERENT LENGTHS

Table 11 shows the prediction recalls of three datasets with
various lengths of hidden layer. Numbers marked as red are
the best results amongst various lengths. As we can see,

129297

IEEE Access

Y.-T. Lin et al.: Video Popularity Prediction: An Autoencoder Approach With Clustering

in smaller datasets, the values get worse or equal performance
by using a longer hidden vector length. We have found the
reason is that in small datasets, the model can learn enough
information without too much noise by setting hidden vector
as relatively small length (e.g., 20). However, the model
needs larger hidden vector lengths (e.g., 80 and 100) for
large datasets because there is probably much more useful
information which needs to be stored.

V. CONCLUSION AND FUTURE WORK

We propose a method to make use of CDAE in predicting
potential Top-K popular videos. At the beginning, we sepa-
rate data into training data and test data according to separa-
tion point and then, we train the autoencoder model based on
their previous rating history. We utilize the trained model to
predict future potential Top-K popular videos.

In order to improve the prediction accuracy, we propose
an autoencoder with clustering refinement, which categorizes
user-specific vectors (user-specific vector or feature vector)
and refines the original autoencoder model to boost recom-
mendation accuracy. The experimental results demonstrate
that our method increases significantly the Average Precision
(AP) and the Recall values by nearly 30%.

After making a big progress in improving original collabo-
rative autoencoder model, we use our proposed autoencoder
with clustering refinement model to predict potential Top-K
popular videos for each time period. We also firstly separate
data into training data and test data according to separation
point. After training autoencoder model, we cluster users into
groups by their user-specific vectors and fine-tune autoen-
coder model according to each cluster. We, then, utilize our
proposed method, mentioned in sub-section III.A.2, to get
Top-K popular videos for each cluster. Finally, calculate
scores for predicted Top-K popular videos of each cluster
by using the ensemble method to aggregate and obtain the
overall Top-K popular videos of a time period.

In our experiments, we use ITRI, Netflix (small), Netflix
(1 Year), Netflix (large) 4 datasets. For autoencoder refine-
ment with clustering method, the result shows that our pro-
posed method can perform better than the original model in
AP@5 by 9.78% (ITRI), 9.98% (Netflix small) and 4.7%
(Netflix large). For potential Top-K popular videos prediction
in an upcoming time period, the proposed method performs
better than original model in Recall by 7.04% (Netflix small),
3.4% (ITRI) and 0.9% (Netflix 1 Year). As shown in Fig. 8,
the percentages of new coming videos in Top-K lists for
three datasets, it is easily seen that the proposed method
is near optimal. The experimental results in Table 7 and 8
demonstrate that our Top-K forecasting method perform
near-optimal solutions for various datasets.

In our future work, based on the clustering-based improve-
ment to the autoencoder models [5], [6], firstly, we will
apply more complex models [21], [22] to further boost the
performance gain to enhance the prediction of recommenda-
tions. Secondly, in addition to video rating history, we will
apply other environment factors (e.g., sound and picture) to

129298

improve prediction accuracy. Thirdly, our proposed model is
not capable of dealing with temporal dynamics from a rating
history, especially for the first appearance issue. We think that
the mixture of content-based approach would give some hints.

REFERENCES

[1] F. Ricci, L. Rokach, and B. Shapira, Introduction to Recommender Systems
Handbook. Boston, MA, USA: Springer, 2011, pp. 1-35.

[2] C.WangandD. M. Blei, “Collaborative topic modeling for reccommending
scientific articles,” in Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discov-
ery Data Mining, San Diego, CA, USA, 2011, pp. 448-456.

[3] R. Salakhutdinov and A. Mnih, ‘‘Probabilistic matrix factorization,” in

Proc. 21st Annu. Conf. Neural Inf. Process. Syst., Vancouver, BC, Canada,

Dec. 2007, pp. 1257-1264.

H. Wang, X. Shi, and D.-Y. Yeung, “Collaborative recurrent autoencoder:

Recommend while learning to fill in the blanks,” in Proc. 29th Annu. Conf.

Neural Inf. Process. Syst., Barcelona, Spain, Dec. 2016, pp. 415-423.

S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “AutoRec: Autoencoders

meet collaborative filtering,” in Proc. 24th Int. Conf. World Wide Web,

Florence, Italy, May 2015, pp. 111-112.

[6] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, “Collaborative denoising
auto-encoders for Top-N recommender systems,” in Proc. 9th ACM Int.
Conf. Web Search Data Mining, San Francisco, CA, USA, Feb. 2016,
pp. 153-162.

[7] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Update, Cisco Syst., San Jose, CA, USA, 2016.

I. Hwang, B. Song, and S. S. Soliman, “A holistic view on hyper-dense

heterogeneous and small cell networks,” IEEE Commun. Mag., vol. 51,

no. 6, pp. 20-27, Jun. 2013.

[9] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—A key technology towards 5G,” ETSI White Paper, vol. 11,
no. 11, pp. 1-16, 2015.

[10] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Item-based collaborative
filtering recommendation algorithms,” in Proc. 10th Int. Conf. World Wide
Web, Hong Kong, May 2001, pp. 285-295.

[11] H.Wang, F. Zhang, J. Wang, M. Zhao, W. Li, X. Xie, and M. Guo, “Explor-
ing high-order user preference on the knowledge graph for recommender
systems,” ACM Trans. Inf. Syst., vol. 37, no. 3, pp. 1-26, Jul. 2019.

[12] Y. Suzuki and T. Ozaki, ““Stacked denoising autoencoder-based deep col-
laborative filtering using the change of similarity,” in Proc. 31st Int. Conf.
Adv. Inf. Netw. Appl. Workshops (WAINA), Taipei, Taiwan, Mar. 2017,
pp. 498-502.

[13] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, ““Session-based
recommendations with recurrent neural networks,” in Proc. Annu. Int.
Conf. Learn. Represent., San Diego, CA, USA, May 2015, pp. 1-8.

[14] C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing, “Recurrent
recommender networks,” in Proc. 10th ACM Int. Conf. Web Search Data
Mining, Cambridge, U.K., Feb. 2017, pp. 495-503.

[15] F. Xue, X. He, X. Wang, J. Xu, K. Liu, and R. Hong, “Deep item-based
collaborative filtering for Top-N recommendation,” ACM Trans. Inf. Syst.,
vol. 37, no. 3, pp. 1-25, Jul. 2019.

[16] W. Lu, E-L. Chung, W. Jiang, M. Ester, and W. Liu, “A deep Bayesian
tensor-based system for video recommendation,” ACM Trans. Inf. Syst.,
vol. 37, no. 1, pp. 1-22, Jan. 2019.

[17] Z.Chen,J. Lee, T. Q. S. Quek, and M. Kountouris, “Cooperative caching
and transmission design in cluster-centric small cell networks,” IEEE
Trans. Wireless Commun., vol. 16, no. 5, pp. 3401-3415, May 2017.

[18] Y.-T. Chen, C.-C. Yen, Y.-T. Lin, and J.-S. Wang, “Cooperative caching
plan of popular videos for mobile users by grouping preferences,” in Proc.
1IEEE 16th Intl Conf Dependable, Autonomic Secure Comput., Athens,
Greece, Aug. 2018, pp. 762-769.

[19] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” in Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms,
Jun. 2007, pp. 1-4.

[20] N.Ben Hassine, D. Marinca, P. Minet, and D. Barth, “Expert-based on-line
learning and prediction in content delivery networks,” in Proc. Int. Wireless
Commun. Mobile Comput. Conf. (IWCMC), Paphos, Cyprus, Sep. 2016,
pp. 182-187.

[21] A.Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “‘Adversarial
autoencoders,” in Proc. Annu. Int. Conf. Learn. Represent., San Juan,
Puerto Rico, May 2016, pp. 1-7.

[22] D.P.Kingmaand M. Welling, “Auto-encoding variational Bayes,” in Proc.
Annu. Int. Conf. Learn. Represent., Banff, Canada, Apr. 2014, pp. 1-7.

[4

=

[5

[l

[8

—

VOLUME 8, 2020

Y.-T. Lin et al.: Video Popularity Prediction: An Autoencoder Approach With Clustering

IEEE Access

VOLUME 8, 2020

YU-TAI LIN received the B.S. degree in engineer-
ing science from National Cheng Kung University,
Tainan, Taiwan, in 2016, and the M.S. degree in
computer science from National Tsing Hua Uni-
versity, Hsinchu, Taiwan, in 2018. He is currently
working at Synology Inc. as a software engineer.
He received the Research Creativity Award from
the Ministry of Science and Technology for recog-
nizing his research potential in 2016.

CHIA-CHENG YEN received the B.S. degree from
Fu Jen Catholic University, New Taipei, Taiwan,
in 2012, and the M.S. degree from National Tsing
Hua University, Hsinchu, Taiwan, in 2014, all in
computer science. He is currently pursuing the
Ph.D. degree with the Department of Computer
Science, University of California at Davis, CA,
USA. He works with the C3PO Research Group.
His research interests include reinforcement learn-
ing, traffic signal control, cyber-security, and
wireless sensor networks.

gl

JIA-SHUNG WANG (Member, IEEE) received
the B.S. degree in mathematics from National
Taiwan University, Taipei, Taiwan, in 1978, and
the M.S. and Ph.D. degrees in computer science
from National Tsing Hua University, Hsinchu,
Taiwan, in 1983 and 1986, respectively. In 1986,
he joined the Department of Computer Science,
National Tsing Hua University, as an Associate
Professor, where he became a Full Professor,
in 1995. His current research interests include sev-

eral aspects of multimedia networking, video coding, and sensor networks.

129299

