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ABSTRACT Currently, lithium-ion batteries are mainly used as central power components in electric
vehicles. Usually, accurate battery cell modeling and state of charge estimation are required in order to
effectively use the lithium-ion batteries in electrified vehicles. For an elaborate battery cell modeling on a
wide temperature range, we select a temperature-dependent battery cell modeling approach, which relies on
one resistance plus second-order resistance-capacitance equivalent circuit model. In order to corporate some
temperature effects into the modeling, we derive the sixth-order polynomial functions using the curve fitting
algorithm. The functions contribute to the accurate battery cell modeling on the wide temperature range.
For a practical usage of the functions in real-time embedded systems, we propose an offset-based lookup
table technique. In addition, we propose a novel hysteresis voltage unit model for more accurate parameter
estimation of hysteresis voltages. This also leads to more accurate battery cell modeling. Based on the battery
cell modeling, we propose a temperature-dependent estimation method for state of charge. This approach
exploits the extended Kalman filter, which is suitable for nonlinear characteristics such as the hysteresis
effect. Experimental evaluation exhibits that the proposed estimation method outperforms the conventional
approaches in the wide temperature range.

INDEX TERMS Equivalent circuit model, hysteresis model, state of charge, extended Kalman filter,
lithium-ion battery, electrified vehicle.

I. INTRODUCTION
Recently, most fuel economy regulations increasingly require
the automotive industry to reduce the carbon dioxide (CO2)
emission, which is considered one of the most hostile behav-
iors to natural environments. In order to satisfy the regula-
tions, the automotive manufacturers have been looking for
new solutions, which are mainly based on lithium-ion bat-
teries. The batteries usually guarantee high energy density
and long service life. In addition, the lithium-ion batteries
provide a compact size, a lower self-discharge rate, and
various types including rechargeable battery. Therefore, the
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lithium-ion batteries are suitable for especially electrified
vehicles. However, the batteries have a potential safety hazard
since they may make explosions and fires if damaged or
incorrectly charged due to car accidents or electricity chargers
with communication errors, respectively.

A battery management system (BMS) must be employed
in electrified vehicles in order to ensure safe, reliable
and efficient operations of the lithium-ion batteries. The
BMS technologies consist of battery state estimation, cell
management, contactor control, battery monitoring, crash
sensing, and cooling/heating control: The battery state esti-
mation estimates internal properties (SoC, state of health,
internal resistance, capacity, current and power prognosis)
of the battery system. The properties can usually be
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estimated using the cell parameter identification [26]. The
cell management determines the best cell thermal strategy,
which includes the cell balancing and the defective cell detec-
tion. The contactor control realizes the state machine to con-
trol the switch on and off. It also controls the pre-load process
and defines intermediate steps for the contactor switching
sequence, and reports back whether the switch state has been
operated correctly according to the desired switching request.
The battery monitoring checks common battery signals such
as the cell voltage/temperature, battery voltage/temperature,
and SoC against the pre-defined limits. If the battery signals
are monitored outside the pre-defined limits, the correspond-
ing reactions are executed to protect the battery system. The
crash sensing monitors external crash signal, and performs
the appropriate error reaction in electrified vehicles. The
cooling/heating control manages the temperature of battery
cells/modules for overheat prevention within the battery and
battery operation under low temperature environment. The
BMS measures the sensing values (such as cell voltage, tem-
perature, and pack current) from various sensors. Using the
measured values, the BMS monitors the battery conditions
such as fault state or normal state. In order to maintain an
accurate state monitoring, the BMS is required to precisely
estimate the remaining state of charge (SoC) and state of
health (SoH) of a battery [1], [2]. Most electrified vehicle
manufactures require the SoC RMSE and the maximum SoC
error to be less than 1% and 3%, respectively in a wide
temperature range [24], [27], [28]. An elaborate battery-cell
model is of utmost importance in the BMS in order to achieve
such SoC estimation accuracy. Furthermore, a real-time oper-
ation is required in the BMS for the electrified vehicle, which
indicates that the BMS must be implemented as a real-time
embedded system especially in the electrified vehicle. For
the real-time requirement, the battery-cell model usually per-
forms its operations in a real-time micro-processor in order
to predict the SoC. Therefore, the battery-cell model must
satisfy the low complexity and the high estimation accuracy
requirements for the practical usage of lithium-ion batteries
in electrified vehicles [3].

The battery cell models are classified into the electro-
chemical model [4], [5] and the equivalent circuit model
(ECM). In order to design the electro-chemical model,
the behaviors of electrodes and electrolyte must be ana-
lyzed in the lumped battery. This model provides a high
estimation accuracy. However, the model is not suitable for
a real-time system since a huge number of mathematical
operations are required in order to optimize lots of unknown
parameters.

For the low complexity requirement, the ECM is more
widely adopted in most real-time systems. The most pop-
ular example of the ECM can be found in the literatures
of [6]–[8]. In addition, some practical ECMs are based
on the resistance-capacitance (RC) networks. Such ECM
types include one resistance plus first-order RC [9], one
resistance plus second-order RC [10]–[12], and one resis-
tance plus third-order RC [13], [14]. For the lithium-ion

battery in the electrified vehicle, a temperature-dependent
ECM is required. Especially, the temperature-dependent
ECM has been utilized for lithium-ion batteries with an
electrothermal-aging model [29] and lithium-ion battery
charging management considering economic costs of elec-
trical energy loss and battery degradation [30]. The design
of the temperature-dependent model usually relies on the
open circuit voltage (OCV) characteristic curve of the battery,
which depends the SoC and the temperature. The OCV-SoC
curve can be expressed using various mathematical functions
including exponential model, polynomial fitting model, sum
of sine functions model, and Gaussian model under different
temperatures [15]. However, the direct use of the mathemati-
cal functions may hinder a real-time operation. This indicates
that the direct use is not suitable for the BMS in the electrified
vehicle.

In the lithium-ion battery, the hysteresis effect exists during
a charging/discharging cycle. Due to the effect, a differ-
ence can be found in the OCV. The difference is affected
by the history of the battery usage, ambient/cell temper-
ature, and the activities of electrodes and electrolyte in
the battery [16]. For some lithium-ion batteries such as
LiFePo4, the SoC estimation error is amplified if the battery
cell model does not include the hysteresis effect [17]–[19].
In order to reflect the hysteresis effect, the one-state hys-
teresis model was proposed [7]. The hysteresis model
was also adopted in various estimation approaches for the
lithium-ion battery [20]–[22]. However, the conventional
hysteresis model [7] uses a constant value as the maximum
hysteresis voltage. This leads to fail in satisfying the SoC
estimation error requirements. Therefore, the conventional
model is not suitable for lithium-ion battery in the electrified
vehicle.

This paper addresses a temperature-dependent SoC esti-
mation approach for lithium-ion batteries in hybrid elec-
tric vehicles. The estimation technique is available on the
entire temperature range, which covers the range of -20◦C
to 60◦C. For the coverage of the entire temperature range,
we select the temperature-dependent ECM, which includes
one resistance plus second-order RC. In order to corpo-
rate the temperature effects into the ECM, we derive the
sixth-order polynomial functions from the polynomial fit-
ting model [15]. The curve fitting algorithm is utilized in
the derivation. For a practical usage of the mathematical
functions in the real-time BMS, we propose an offset-based
lookup table technique. In order to satisfy the SoC estimation
error requirements, we also propose a novel hysteresis voltage
unit model, where themaximumhysteresis voltage adaptively
changes according to the SoC range. Finally, we propose
the temperature-dependent SoC estimation method, which
is based on the temperature-dependent ECM. In order to
manage the nonlinear characteristics including the hysteresis
effect, the SoC estimation approach exploits the extended
Kalman filter (EKF) [31].

In the paper, the unique contributions can be summarized
as follows:
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• The offset-based lookup table technique for a prac-
tical usage of the mathematical functions in the
real-time BMS

• The novel hysteresis voltage unit model in order to
satisfy the SoC estimation error requirements

• The temperature-dependent SoC estimation method
(which relies on the offset-based lookup table tech-
nique and the hysteresis voltage unit model) suitable for
lithium-ion batteries in electrified vehicles

The proposed SoC estimation utilizes the novel offset-based
lookup table technique for practical cell parameter identifi-
cation. This allows the SoC estimation to be applied in real
applications such as real-time battery management systems.

Experimental evaluation reveals the validity of the pro-
posed SoC estimation technique. The experimental results
show that the presented estimation method gives an excellent
accuracy performance in the entire temperature range. The
results also exhibit that the proposed approach is superior
to the conventional methods in the accuracy performance
especially on the entire temperature range. The experimental
results also guarantee that the proposed method fully satisfies
the SoC estimation error requirements in the entire tempera-
ture range. This indicates that the presented SoC estimation
approach is very suitable for lithium-ion batteries in electri-
fied vehicles. While the algorithm was verified for a hybrid
electric vehicle application, it would likely perform similarly
for an electric vehicle application.

The fractional order model (FCM) [25], which is based on
the online parameter identification, offers higher accuracy in
the terminal voltage prediction. This leads to the improved
SoC accuracy. Therefore, the FCM can be considered a good
candidate for the SoC estimation. However, the FCM requires
some data acquisition time for the parameter identification
stability. Therefore, the proposed offline parameter identifi-
cation technique needs to be used until the initial parameter
identification is stable. After the stability, we can adaptively
utilize the FCM for the SoC estimation.

Recently, some future trends were described in the bat-
tery state estimation domain [33]. Especially, a hybrid
electrochemical-thermal-neural-network model was pro-
posed for co-estimation of lithium-ion battery state of charge
and state of temperature [34].

II. TEMPERATURE-DEPENDENT ECM
Figure 1 illustrates the generalized temperature-dependent
ECM for battery cell modeling [23]. In Figure 1,
UOC (SoC,T ) denotes the OCV, which depends the SoC and
the temperature (T ). In Figure 1, I and Vt denote the input
current and the terminal voltage, respectively. As shown
in Figure 1, the ECM includes n RC networks, each of
which consists of Ri (resistor i) and Ci (capacitor i) in
parallel (i = 1, 2, · · · , n). In Figure 1, R0 represents an
internal resistance. For the cell modeling of the lithium-
ion battery, the circuit elements of Figure 1 are modeled
using the experimental data of the input current (I ) and
the terminal voltage (Vt ). In Figure 1, the circuit elements

FIGURE 1. The generalized temperature-dependent ECM for battery cell
modeling.

includeUOC (SoC,T ), Ro(SoC,T ), R1(SoC,T ),C1(SoC,T ),
R2(SoC,T ), C2(SoC,T ), . . . , and Rn(SoC,T ), Cn(SoC,T ).
In Figure 1, the number (n) of the RC networks also needs to
be determined using the experimental data.

Figure 2 illustrates the experimental behaviors of the input
current and the terminal voltage of the lithium-ion battery
under the discharge pulse test at the temperature of 20◦C.
As shown in the figure, the lithium-ion battery discharges
the current of −6.5 A for 3 minutes and has the rest period
of 30 minutes. Figure 2 also shows that the voltage is accord-
ingly discharged. As indicated in Figure 2, the SoC decreases
as the voltage is discharged. Using the experimental curve of
the voltage discharge, the circuit elements can be modeled.
Figure 3 illustrates the voltage discharge curve of the
lithium-ion battery under the discharge pulse test when the
SoC decreases from 55% to 50% and the temperature is 20◦C.
Note that Figure 3 enlarges a part of the voltage discharge
curve in Figure 2. In Figure 3, the internal resistance (R0)
can be modeled using the voltage drop. In addition, the n
RC networks can be modeled using the RC transient response
in Figure 3.

FIGURE 2. The experimental behaviors of the input current and the
terminal voltage of the lithium-ion battery under the discharge
pulse test @ 20◦C.

VOLUME 8, 2020 129859



E. Choi, S. Chang: Temperature-Dependent SoC Estimation Method Including Hysteresis for Lithium-Ion Batteries

FIGURE 3. The voltage discharge curve of the lithium-ion battery under
the discharge pulse test @ SoC (55% to 50%) and 20◦C.

In order to determine the number (n) of the RC networks,
the RC transient response of Figure 3 is approximated to
a curve fitting models. Figure 4 illustrates the curve fitting
models for the RC transient response. Figure 4 shows the
2 curve fitting models: 1RC network and 2RC network.
In Figure 4, the 1RC network and the 2RC network indicate
the one resistance plus first-order RC [9] and the one resis-
tance plus second-order RC [10]–[12], respectively.

FIGURE 4. The curve fitting models for the RC transient response.

Table 1 exhibits the coefficients of the curve fitting mod-
els. Table 1 also shows the difference between the true RC
transient response and each curve fitting model in terms of

TABLE 1. The coefficients and the RMSE values for the curve fitting
models.

root mean squared error (RMSE). In Table 1, the unit of the
RMSE is V. As indicated in Table 1, the 2RC network exhibits
the lower RMSE value. Usually, more RC elements give
better RMSE performance. In this paper, we select the 2RC
network for the cell modeling of the lithium-ion battery as a
tradeoff between model complexity and RMSE performance.
Therefore, the number (n) of the RC networks is 2 in this
paper for the cell modeling of the lithium-ion battery.

Figure 5 illustrates the selected temperature-dependent
ECM for the cell modeling of the lithium-ion battery, which is
based on the 2RC network. In Figure 5, the elements (R0, R1,
C1, R2, and C2) are modeled as the lookup table forms. The
lookup tables are determined using the model-based parame-
ter estimation by layered technique [13]. The real benefits of
the 2RC network can be summarized as follows:

FIGURE 5. The selected temperature-dependent ECM for the cell
modeling of the lithium-ion battery.

• As shown in Table 1, the 2RC network exhibits much
better RMSE performance than the 1RC network.

• The 2RC network is suitable for real-time SoC
estimation. More RC elements may give better RMSE
performance. However, the number of the elements
accordingly increases in the state vector of (7), which
considerably increases the computational complexity of
EKF for the SoC estimation.

• The 2 RC network satisfies the SoC estimation error
requirements for lithium ion batteries in electrified vehi-
cles, which is shown in Section IV.

Figure 6 illustrates the parameter estimation model for
the determination of the lookup tables in the selected
temperature-dependent ECM of Figure 5. In Figure 6, Meas-
Curr and MeasVolt are the measured current and the mea-
sured voltage, respectively, which are measured using the
discharge pulse test of the lithium-ion battery. In Figure 6,
EstVolt denotes the estimated voltage, which is achieved
using the temperature-dependent ECM of Figure 5. Using the
nonlinear least squares function as an optimization method,
the lookup tables of Figure 6 are determined, which mini-
mize the difference between MeasVolt and EstVolt each SoC.
Figure 7 exhibits a comparison of the measured cell voltage
and the estimated cell voltage at the temperature of 20◦C,
which are achieved using the discharge pulse test and the
selected temperature-dependent ECM, respectively.
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FIGURE 6. The parameter estimation model for the determination of the
lookup tables in the selected temperature-dependent ECM of Figure 5.

FIGURE 7. The voltage discharge curve of the lithium-ion battery under
the discharge pulse test @ SoC (55% to 50%) and 20◦C.

In order to corporate the temperature effects into the
temperature-dependent ECM, the electrical behaviors of the
cell modeling are given as follows:

U̇RC1 = −
URC1
R1C1

+
1
C1
I

U̇RC2 = −
URC2
R2C2

+
1
C2
I

SȯC =
1

3600Cq
I .

(1)

Vt (SoC,T ) = UOC (SoC,T )+ URC1 + URC2 + RoI . (2)

In (1) and (2), URC1 and URC2 denote the voltages of C1
and C2, respective in Figure 5, and Cq represents the battery
capacity (unit: Ah). In (2), UOC (SoC,T ) denotes the OCV at
the specific SoC and temperature (T ).
Figure 8 shows the measured OCV curve, which depends

on SoC and temperature. To determine the OCV-SoC char-
acteristics, we fully charge the cell at the rate of C/10. After
1-hour rest, we discharge the cell with 20 discharge pulses at
the rate of C/10 until the complete discharge (the cell voltage
of 2.7 V). There is 1-hour rest phase between the discharge
pulses. From this discharge, we can achieve a discharge curve.
Then, we charge the cell with 20 charge pulses at the rate of
C/10 until the complete charge (the cell voltage of 4.2 V).
There is 1-hour rest phase between the charge pulses.

FIGURE 8. The OCV-SoC characteristics according to various temperatures.

From this charge, we can achieve a charge curve. Finally,
we determine the OCV-SoC characteristics as the average
of the discharge and the charge curves, which considers the
hysteresis characteristics. The OCV-SoC characteristics of
Figure 8 can be approximated to the curve fitting models.
In this paper, we select the polynomial fitting models [15] as
the curve fitting models. From the polynomial fitting models,
we derive the sixth-order polynomial functions using the
curve fitting algorithm. Therefore, the OCV-SoC behaviors
of Figure 8 are approximated to the sixth-order polynomial
functions, which are given in Table 2. In this Table, the param-
eter S denotes the SoC. As depicted in Table 2, we can
achieve the sixth-order polynomial functions corresponding
to the specific temperatures. Based on the sixth-order poly-
nomial functions of Table 2, the temperature-dependent ECM
can model the lithium-ion battery on a wide temperature
range. However, the direct use of the polynomial functions
hinders real-time operations in embedded systems since the
management of many functions may cause an overload in
memory resource and CPU. In order to satisfy the real-time
requirement, we propose a lookup table approach, which is a
modification of the technique [24]. The conventional lookup

TABLE 2. The sixth-order polynomial functions corresponding to the
specific temperatures for the OCV-SoC behavior.
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table technique [24] exhibits a computational complexity due
to the linear interpolation, which is required in order to pro-
duce the OCV in the cases that the corresponding polynomial
function for a specific temperature is not defined in the table.
In order to avoid the complexity, we define a novel expression
for UOC (SoC,T ) as follows:

UOC (SoC,T ) = UOC (SoC, 20oC)

+UOffset (SoC,T )× (T − 20oC), (3)

where UOC (SoC, 20oC) is the sixth-order polynomial func-
tion at the temperature of 20◦C, and UOffset (SoC,T ) denotes
the offset between UOC (SoC, 20oC) and the measured OCV
at the temperature of T and the same SoC. Based on the
expression of (3), the proposed lookup table can simply
produce the OCV at any temperature and SoC, which can
significantly reduce the memory usage overhead and the CPU
load. The proposed offset-based technique of (3) achieves
some gains over the polynomial functionmethod of Table 2 in
the aspects of the memory usage overhead and the CPU load.
If we use the 7 temperatures of Table 2 and 21 SoC values
(0% to 100% with interval of 5%), the polynomial function
method requires 21 × 7 memory array in the lookup table.
In addition, the polynomial functions exhibit the OCV values
ranging from 3.1 V to 4.2 V in Table 2. On the other hand,
the offset method just requires 21 × 6 memory array in the
lookup table since there is no offset OCV value in the case
of 20◦C in (3). This reduces the memory usage overhead.
The offset method exhibits the offset OCV values ranging
from−0.0051 V to 0.0055 V in (3). Compared with the OCV
values of the polynomial function method, this enables faster
interpolation, which reduces the CPU load.

III. PROPOSED HYSTERESIS VOLTAGE UNIT MODEL
Figure 9 exhibits a comparison of the OCV curves at the
temperature of 20◦C in the cases of charge and discharge
under the same current value. As shown in Figure 9, the OCV
curves are a little different each other. This phenomenon
is called hysteresis. For some lithium-ion batteries such as
LiFePo4, the SoC estimation error is amplified if the battery
cell model does not include the hysteresis effect [17]–[19].
Therefore, the temperature-dependent ECM must employ a
hysteresis voltage in order to reflect the hysteresis effect.

Figure 10 illustrates the temperature-dependent ECM with
the hysteresis voltage (UH ) for the cell modeling of the
lithium-ion battery. Using the one-state hysteresis model [7],
the hysteresis voltage (UH ) can be expressed as follows:

U̇H =exp
(
−

∣∣∣∣ γ I
3600Cq

∣∣∣∣)UH+[1−exp(−∣∣∣∣ γ I
3600Cq

∣∣∣∣)]M ,
(4)

where γ and M denote a positive constant to tune the hys-
teresis rate and a maximum hysteresis voltage, respectively.
The maximum hysteresis voltage is a positive constant and
a negative constant in the cases of charge and discharge,
respectively. In (4), the maximum hysteresis voltage (M ) is

FIGURE 9. The OCV curves at the temperature of 20◦C in the cases of
charge and discharge under the same current value.

FIGURE 10. The temperature-dependent ECM with the hysteresis voltage
for the cell modeling of the lithium-ion battery.

zero if the input current (I ) is small enough. If the hysteresis
voltage (UH ) is included in the temperature-dependent ECM,
the expression of (2) can be extended as follows:

Vt (SoC,T )=UOC (SoC,T )+URC1 + URC2 + UH + RoI .

(5)

As indicated in (5), the voltage Vt (SoC,T ) is affected by
the hysteresis voltage (UH ). In the conventional hysteresis
voltage unit model, the maximum hysteresis voltage (M )
is assumed to be a constant for the entire range of the
SoC [7], [20]–[22]. However, the hysteresis effect is different
each SoC range as shown in Figure 9. Therefore, the con-
ventional model does not satisfy the SoC estimation error
requirements for the lithium-ion battery of the electrified
vehicle.

In order to overcome the limitation of the conventional
model, we propose the novel hysteresis voltage unit model,
where the maximum hysteresis voltage (M ) adaptively
changes according to the SoC range. Figure 11 illustrates the
proposed hysteresis voltage unit model for parameter estima-
tion. In Figure 11, the lookup table (M_LUT) includes the
separate maximum hysteresis each SoC range. In Figure 11,
MeasVolt is the measured voltage. In Figure 11, EstVolt
denotes the estimated voltage, which is calculated using (5).
Using the nonlinear least squares function as an optimization
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FIGURE 11. The proposed hysteresis voltage unit model for parameter
estimation.

method, the parameters (γ and M ) are determined, which
minimizes the difference betweenMeasVolt and EstVolt each
SoC range and each temperature.

Figure 12 exhibits a comparison of the measured
cell voltage and the estimated voltages in the cases
of only temperature-dependent ECM (Estimated Volt),
temperature-dependent ECM with the conventional hystere-
sis model (Estimated Volt – M), and temperature-dependent
ECM with the proposed hysteresis model (Estimated Volt –
M LUT) at the temperature of 20◦C. As shown in Figure 12,
the estimated cell voltage of the proposed case is closer to the
measured cell voltage than those of the other cases.

FIGURE 12. The comparison of the measures cell voltage and the
estimated voltages in the cases of only temperature-dependent ECM
(Estimated Volt), temperature-dependent ECM with the conventional
hysteresis model (Estimated Volt – M), and temperature-dependent ECM
with the proposed hysteresis model (Estimated Volt – M LUT) at the
temperature of 20◦C.

IV. PROPOSED TEMPERATURE-DEPENDENT SoC
ESTIMATION
The temperature-dependent SoC estimation method is based
on the temperature-dependent ECM of Figure 5, which also
relies on the proposed hysteresis model. In the hysteresis

model, the hysteresis effect exhibits nonlinear dynamic char-
acteristics. Therefore, the SoC estimation approach exploits
the extended Kalman filter (EKF), which is very useful for
nonlinear system analysis. For the SoC estimation based on
the EKF, we define the state vector (x) as follows: x =[
URC1 URC2 SoC

]T . Using state vector (x ), the discrete-
time state-space model of (1) can be expressed as follows:

xk+1=


1−

1t
R1C1

0 0

0 1−
1t
R2C2

0

0 0 1

 xk+


1t
C1
1t
C2
1t

3600Cq

 Ik ,
(6)

where1t denotes a sample time. If we consider the hysteresis
voltage (UH ), the state vector (x ) can be extended as follows:

x =
[
URC1 URC2 UH SoC

]T
. (7)

In turn, the state-space model of (6) can be extended as
follows:

xk+1 =


1−

1t
R1C1

0 0 0

0 1−
1t
R2C2

0 0

0 0 Hys(Ik ) 0
0 0 0 1

 xk

+



1t
C1

0

1t
C2

0

0 1− Hys(Ik )
1t

3600Cq
0


[
Ik
M

]
, (8)

where Hys(Ik ) is defined as exp
(
−

∣∣∣ γ I
3600Cq

∣∣∣) in (4). For the
SoC estimation, the EKF consists of prediction and update
phases. In the prediction phase, the EKF performs the steps
of (9) and (10) as follows:

x̂−k = Fk x̂k−1 + Bkuk , (9)

P−k = FkPk−1FTk +Q, (10)

where

Fk =


1−

1t
R1C1

0 0 0

0 1−
1t
R2C2

0 0

0 0 Hys(Ik ) 0
0 0 0 1

 ,

Bk =



1t
C1

0

1t
C2

0

0 1− Hys(Ik )
1t

3600Cq
0


, and uk =

[
Ik
M

]
.
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In (10), Q is defined as Q = E[wkwH
k ], where wk denotes

a zero-mean Gaussian noise vector. For the operations in the
update phase, the observation value (zk ) is defined as follows:

zk = Hk x̂k−1 + Dkuk + vk , (11)

where vk denotes a measurement noise. From (5), the mea-
sured cell voltage (hk ) for the EKF is defined as follows:

hk = f (SoCk )+ URC1,k + URC2,k + UH ,k + RoIk , (12)

where f (SoCk ) denotes the sixth-order function at the tem-
perature of 20◦C in Table 2. In (11), Hk and Dk are defined
as follows:

Hk =
∂hk
∂xT

∣∣∣∣
x̂k
=

[
1 1 1

∂f (SoCk )
∂SoCk

]
,

Dk =
∂hk
∂uT

∣∣∣∣
uk
=
[
Ro 0

]
. (13)

In the update phase, the EKF also performs the steps of (14)
to (17) as follows:

yk = zk − hk . (14)

Kk = P−k H
T
k

(
HkP−k H

T
k + R

)−1
. (15)

x̂k = x̂−k +Kkyk . (16)

Pk = (I−KkHk )P−k . (17)

In (14), R is defined as follows: R = E
[
|vk |2

]
. In order to

estimate the SoC accurately, the EKF repeats the prediction
phase and the update phase.

V. EXPERIMENTAL EVALUATION
The experimental evaluation exhibits the effectiveness of
the proposed temperature-dependent SoC estimation for
lithium-ion batteries in electrified vehicles. We achieved
the experimental results using Simulink (MATLAB-based
Simulation tool). For this evaluation, we consider the fol-
lowing three models: only temperature-dependent ECM
(only 2RC model), temperature-dependent ECM with the
conventional hysteresis model (conventional model), and
temperature-dependent ECM with the proposed hysteresis
model (proposed model).

In order to extract the cell data, we varied the temperature
range from 4.2 V (full charge) to 2.7 V (cut-off), and utilized
a real-world driving profile. We used the urban dynamometer
driving schedule (UDDS) [32] for the real-world driving pro-
file. For the electrified vehicle test, we used the UDDS, which
represents the city driving condition. In our test, the UDDS
test sequence is separated by discharging pulses. There is a
5-minute rest period every test sequence. In the test, the SoC
range is 0% to 100%. If the measured voltage is less than
2.7 V during the test sequence, the cycle is aborted. We used
the following EV battery cell: SK Innovation, a lithium nickel
manganese cobalt (NMC) oxide battery – NMC lithium ion
battery, Ah rating: 6.5Ah, dimensions: 253mm × 172mm ×
5.8mm (width, height, thickness), nominal voltage: 3.7 V,

nominal resistance: 2.65 m�. In the experiment, the test
equipment is described as follows:
• PNE solution battery cycler (PEBC05-100)
• voltage measurement accuracy: 0.05% F.S. (0∼5V)
• current measurement accuracy: 0.1% (measurement
scale)

Figures 13, 14, and 15 illustrate the time-domain measure-
ments for UDDS cycles. In the time-domain measurements,
Figure 13 shows the current measurement for one UDDS
cycle. In Figure 13, we achieved the current profile using
the method of [8]. The method is described as follows [8]:
‘‘The rate profile was generated from a MATLAB ADVISOR
simulation for a vehicle roughly twice the size of the Honda
Insight.’’ The battery was testedwith a UDDS drive cycle cur-
rent profile for a large hybrid electric vehicle as is done in [8].
Prior to performing the first cycle, the battery is discharged
to about 70% SoC to ensure that the upper voltage limit
(4.2 V) is not exceeded. While cyclers can typically regulate
current to prevent exceeding the upper voltage limit during
charging pulses, the cycler used here cannot do so. After
each UDDS cycle, which is approximately charge neutral,
the battery is discharged by about 8% SoC and the UDDS
and discharge cycles are repeated until 0% SoC (2.7 V) is
reached. Figure 14 exhibits a comparison of the measured cell
voltage and the estimated cell voltage as a function of time
for UDDS cycles at 25◦C. Figure 15 shows a comparison of
the measured cell voltage and the estimated cell voltage as a
function of time for UDDS cycles at −20◦C.

FIGURE 13. The current measurement for one UDDS cycle.

Table 3 shows a comparison of the three models at the
entire temperature range (−20◦C ∼ 60◦C) in terms of ter-
minal voltage RMSE. In Table 3, the unit of the RMSE is
mV. In Table 3, the RMSE is used as a performance measure
to quantify the difference between the measured terminal
voltage and the estimated terminal voltage. Table 3 reveals
that the proposed model gives the best performance in the
entire temperature range.

Table 4 exhibits a comparison of the three models at the
entire temperature range in terms of SoC RMSE (unit: %).
In Table 4, the RMSE is used as a performance measure
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FIGURE 14. The comparison of the measured cell voltage and the
estimated cell voltage as a function of time for UDDS cycles at 25◦C.

FIGURE 15. The comparison of the measured cell voltage and the
estimated cell voltage as a function of time for UDDS cycles at −20◦C.

TABLE 3. The comparison of the three models at the entire temperature
range in terms of Terminal Voltage RMSE.

TABLE 4. The comparison of the three models at the entire temperature
range in terms of SoC RMSE.

to quantify the difference between the true SoC and the
estimated SoC. Table 4 indicates that the proposed model

gives the lowest RMSE values in the entire temperature range.
As shown in Table 4, the SoC RMSE of the proposed model
is below 1% in the entire temperature range. This indicates
that the proposed model satisfies the SoC RMSE requirement
(below 1%) for lithium-ion batteries in electrified vehicles.
Note that the other models do not satisfy the SoC RMSE
requirement. Table 5 shows a comparison of the three models
at the entire temperature range in terms of maximum abso-
lute SoC error (unit: %). Table 5 reveals that the proposed
model gives the best performance (in terms of maximum
absolute SoC error) in the entire temperature range. As shown
in Table 5, the maximum absolute SoC error of the proposed
model is below 3% in the entire temperature range. This indi-
cates that the proposed model also satisfies the requirement
(below 3%) of the maximum absolute SoC error for lithium-
ion batteries in electrified vehicles. Note that the other models
do not satisfy the requirement of the maximum absolute
SoC error.

TABLE 5. The comparison of the three models at the entire temperature
range in terms of maximum absolute SoC error.

Figure 16(a) and (b) exhibit a comparison of the three
models at the temperature of 25◦C in terms of SoC curve and
SoC error curve, respectively. For a cell voltage restriction,
we apply a constant current (-50 A) during an initial time
interval (about 180 s) in the experiment of Figure 16. Then,
we apply the UDDS cycle. As indicated in Table 4, the only
2RC model and the proposed model exhibit the best SoC
RMSE performance at the temperature of 25◦C. Figure 16(a)
exhibits that the estimated SoC curve of the proposed model
is closer to the true SoC curve than those of the other models
at the temperature of 25◦C. Figure 16(b) shows that the pro-
posed model converges to the error floor level more rapidly
than the other models. In Figure 16(a), the rapid discharge
is due to the constant current (-50 A) during the initial time
interval (about 180 s).

Figure 17(a) and (b) shows a comparison of the three mod-
els at the temperature of −20◦C in terms of SoC curve and
SoC error curve, respectively. For a cell voltage restriction,
we apply a constant current (−16.7 A) during an initial time
interval (about 180 s) in the experiment of Figure 17. Then,
we apply the UDDS cycle. As indicated in Table 5, all the
models have the largest maximum absolute SoC errors at the
temperature of −20◦C. Figure 17(a) exhibits that the esti-
mated SoC curve of the proposed model is closer to the true
SoC curve than those of the other models at the temperature
of −20◦C. As indicated in Figure 17(b), the proposed model
exhibits the best performance in terms of maximum absolute
SoC error. In Figure 17(a), the rapid discharge is due to the
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FIGURE 16. The comparison of the three models at the temperature
of 25◦C in terms of SoC curve and SoC error curve.

constant current (−16.7 A) during the initial time interval
(about 180 s).

Table 6 exhibits a comparison of the cases of accurate ini-
tial SoC and inaccurate initial SoC for the proposed model at
the entire temperature range in terms of SoCRMSE (unit: %).
For the case of inaccurate initial SoC, the initial SoC includes
the error of 10% in this experimental evaluation. Table 6
indicates that the proposed model renders larger SoC RMSE
values in the entire temperature range due to the inaccurate
initial SoC. However, the larger SoC errors will eventually
vanish in the proposed model, which is verified in Figure 18.

TABLE 6. The comparison of the cases of accurate initial SoC and
inaccurate initial SoC for the proposed model at the entire
temperature range in terms of SoC RMSE.

FIGURE 17. The comparison of the three models at the temperature of
−20◦C in terms of SoC curve and SoC error curve.

Figure 18(a) and (b) exhibit a comparison of the two cases
(accurate initial SoC and inaccurate initial SoC) for the pro-
posed model at the temperature of -20◦C in terms of SoC
curve and SoC error curve, respectively. As shown in Table 6,
the proposed model gives the worst SoC RMSE performance
at the temperature of -20◦C in both cases. Figure 18(a) indi-
cates that the estimated SoC of the inaccurate initial SoC case
is more deviated from the true SoC than that of the accurate
initial SoC case before 1 hour. However, the estimated SoC
curves of both cases are almost identical to the true SoC
after 5 hours in Figure 18(a). Similarly, Figure 18(b) indicates
that the SoC error of the inaccurate initial SoC case is much
larger than that of the accurate initial SoC before 1 hour. Like
the case of Figure 18(a), the SoC errors of both initial SoC
cases almost vanish after 5 hours in Figure 18(b). From the
results of Figure 18(a) and (b), it is revealed that the estimated
SoC will eventually converge to the true SoC in the proposed
model even in the case that the initial SoC includes some
error.

For lithium ion batteries in electrified vehicles, most elec-
trified vehicle manufacturers require the SoC RMSE and the
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FIGURE 18. The comparison of the two cases (accurate initial SoC and
inaccurate initial SoC) for the proposed model at the temperature
of −20◦C in terms of SoC curve and SoC error curve.

maximum SoC error to be less than 1% and 3%, respectively
in the entire temperature range. The experimental results ver-
ify that the proposed model fully satisfies the SoC estimation
error requirements for lithium ion batteries in electrified vehi-
cles. Furthermore, the proposed model allows the estimated
SoC to eventually converge to the true SoC even with the
inaccurate initial SoC.

VI. CONCLUSION
In this paper, we propose the temperature-dependent SoC
estimation approach for lithium-ion batteries in electrified
vehicles. The SoC estimation exploits a battery cell model of
the lithium-ion battery. For the battery cell model, we select
the temperature-dependent ECM, which consists of one resis-
tance plus second-order RC. For the operation of the ECM
on the entire temperature range (−20◦C to 60◦C), we derive
the sixth-order polynomial functions, which belong to the
polynomial fitting model [15]. We also present an offset-
based lookup table technique, which allows a practical usage
of the sixth-order polynomial functions in real-time embed-
ded systems. In addition, we propose the novel hystere-
sis voltage unit model for the temperature-dependent ECM.

This allows the temperature-dependent SoC estimation
method to satisfy the SoC estimation error requirements for
lithium-ion batteries in electrified vehicles. We also propose
the temperature-dependent SoC estimation method based on
the EKF, which is very useful for nonlinear characteris-
tics such as the hysteresis effect or the OCV-SoC curves.
Using the discrete-time state-space model of the temperature-
dependent ECM, we suggest the procedures of the EKF in the
prediction phase and the update phase. The EKF procedures
employ the operations of the temperature-dependent ECM.
The EKF repeats the prediction phase and the update phase
until the SoC is accurately estimated.

The experimental results exhibit that the proposed
approach outperforms the conventional methods on the entire
temperature range in terms of voltage RMSE, SoC RMSE
and maximum absolute SoC error. The results also show that
the proposed method fully satisfies the SoC estimation error
requirements for lithium-ion batteries in electrified vehicles.
Moreover, the experimental results verify that the proposed
technique can eventually produce the accurate SoC estimate
even with inaccurate initial SoC values. From the results, it is
confirmed that the proposed SoC estimation approach is very
suitable for lithium-ion batteries in electrified vehicles.

For the battery health prediction, we need to use addi-
tion model such as empirical exponential and polynomial
model, and deep learning model. Therefore, we have to
incorporate the additional model into the SoC estimation
approach. As further work, we consider the SoC estima-
tion method based on the additional model as well as
the temperature-dependent ECM, which reflects the battery
capacity degradation effect.

REFERENCES
[1] K. W. E. Cheng, B. P. Divakar, H. Wu, K. Ding, and H. F. Ho, ‘‘Battery-

management system (BMS) and SoC development for electrical vehicles,’’
IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 76–88, Jan. 2011.

[2] H. Rahimi-Eichi, U. Ojha, F. Baronti, and M.-Y. Chow, ‘‘Battery manage-
ment system: An overview of its application in the smart grid and electric
vehicles,’’ IEEE Ind. Electron. Mag., vol. 7, no. 2, pp. 4–16, Jun. 2013.

[3] X. Hu, S. Li, and H. Peng, ‘‘A comparative study of equivalent circuit
models for Li-ion batteries,’’ J. Power Sources, vol. 198, pp. 359–367,
Jan. 2012.

[4] A. P. Schmidt, M. Bitzer, Á. W. Imre, and L. Guzzella, ‘‘Experiment-
driven electrochemical modeling and systematic parameterization for
a lithium-ion battery cell,’’ J. Power Sources, vol. 195, no. 15,
pp. 5071–5080, Aug. 2010.

[5] T. Wang, K. J. Tseng, S. Yin, and X. Hu, ‘‘Development of a one-
dimensional thermal-electrochemical model of lithium ion battery,’’ in
Proc. IECON-39th Annu. Conf. IEEE Ind. Electron. Soc., Nov. 2013,
pp. 6709–6714.

[6] G. L. Plett, ‘‘Extended Kalman filtering for battery management systems
of LiPB-based HEV battery packs: Part 1. Background,’’ J. Power Sources,
vol. 134, no. 12, pp. 252–261, 2004.

[7] G. L. Plett, ‘‘Extended Kalman filtering for battery management systems
of LiPB-based HEV battery packs: Part 2. Modeling and identification,’’
J. Power Sources, vol. 134, no. 2, pp. 262–276, Aug. 2004.

[8] G. L. Plett, ‘‘Extended Kalman filtering for battery management systems
of LiPB-based HEV battery packs: Part 3. State and parameter estimation,’’
J. Power Sources, vol. 134, no. 2, pp. 277–292, 2004.

[9] C. Lin, X. Zhang, R. Xiong, and F. Zhou, ‘‘A novel approach to state of
charge estimation using extended Kalman filtering for lithium-ion batteries
in electric vehicles,’’ in Proc. IEEE Conf. Expo Transp. Electrific. Asia–
Pacific (ITEC Asia–Pacific), Aug. 2014, pp. 1–6.

VOLUME 8, 2020 129867



E. Choi, S. Chang: Temperature-Dependent SoC Estimation Method Including Hysteresis for Lithium-Ion Batteries

[10] Y. Hu and S. Yurkovich, ‘‘Linear parameter varying battery model iden-
tification using subspace methods,’’ J. Power Sources, vol. 196, no. 5,
pp. 2913–2923, Mar. 2011.

[11] W. Li, L. Liang,W. Liu, and X.Wu, ‘‘State of charge estimation of lithium-
ion batteries using a discrete-time nonlinear observer,’’ IEEE Trans. Ind.
Electron., vol. 64, no. 11, pp. 8557–8565, Nov. 2017.

[12] Q.-Z. Zhang, X.-Y. Wang, and H.-M. Yuan, ‘‘Estimation for SoC of Li-ion
battery based on two-order RC temperature model,’’ in Proc. 13th IEEE
Conf. Ind. Electron. Appl. (ICIEA), May 2018, pp. 2601–2606.

[13] R. Jackey, M. Saginaw, P. Sanghvi, and J. Gazzari, ‘‘Battery model param-
eter estimation using a layered technique: An example using a lithium iron
phosphate cell,’’ SAE Tech. Paper 2013-01-1547, 2013.

[14] R. Ahmed, J. Gazzarri, S. Onori, S. Habibi, R. Jackey, K. Rzemien,
J. Tjong, and J. LeSage, ‘‘Model-based parameter identification of healthy
and aged Li-ion batteries for electric vehicle applications,’’ SAE Int.
J. Alternative Powertrains, vol. 4, no. 2, pp. 233–247, Apr. 2015.

[15] R. Zhang, B. Xia, B. Li, L. Cao, Y. Lai, W. Zheng, H. Wang, W. Wang,
and M. Wang, ‘‘A study on the open circuit voltage and state of charge
characterization of high capacity lithium-ion battery under different tem-
perature,’’ Energies, vol. 11, no. 9, p. 2408, Sep. 2018.

[16] H. R. Eichi and M.-Y. Chow, ‘‘Modeling and analysis of battery hysteresis
effects,’’ in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Sep. 2012,
pp. 4479–4486.

[17] T. Kim,W. Qiao, and L. Qu, ‘‘Hysteresis modeling for model-based condi-
tion monitoring of lithium-ion batteries,’’ in Proc. IEEE Energy Convers.
Congr. Expo. (ECCE), Sep. 2015, pp. 5068–5073.

[18] F. Baronti, W. Zamboni, N. Femia, R. Roncella, and R. Saletti, ‘‘Exper-
imental analysis of open-circuit voltage hysteresis in lithium-iron-
phosphate batteries,’’ in Proc. IECON-39th Annu. Conf. IEEE Ind. Elec-
tron. Soc., Nov. 2013, pp. 6728–6733.

[19] T. Huria, M. Ceraolo, J. Gazzarri, and R. Jackey, ‘‘Simplified extended
Kalman filter observer for SoC estimation of commercial power-oriented
LFP lithium battery cells,’’ in Proc. SAE World Congr. Int. Symp. Ind.
Electron. (ISIE), Apr. 2013, pp. 366–369.

[20] M. Farag, M. Attari, S. A. Gadsden, and S. R. Habibi, ‘‘Lithium-ion battery
state of charge estimation using one state hysteresis model with nonlinear
estimation strategies,’’World Acad. Sci., Eng. Technol. Int. J.Mater.Metall.
Eng., vol. 11, no. 3, pp. 237–241, Jan. 2017.

[21] Y.Ma, B. Li, G. Li, J. Zhang, and H. Chen, ‘‘A nonlinear observer approach
of SoC estimation based on hysteresis model for lithium-ion battery,’’
IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 168–176, Apr. 2017.

[22] A. Biswas, R. Gu, P. Kollmeyer, R. Ahmed, and A. Emadi, ‘‘Simultaneous
state and parameter estimation of Li-ion battery with one state hysteresis
model using augmented unscented Kalman filter,’’ in Proc. IEEE Transp.
Electrific. Conf. Expo (ITEC), Jun. 2018, pp. 1065–1070.

[23] T. Huria, M. Ceraolo, J. Gazzarri, and R. Jackey, ‘‘High fidelity electrical
model with thermal dependence for characterization and simulation of
high power lithium battery cells,’’ in Proc. IEEE Int. Electr. Vehicle Conf.,
Mar. 2012, pp. 4–8.

[24] G. L. Plett, ‘‘Results of temperature-dependent LiPB cell modeling
for HEV SoC estimation,’’ in Proc. 21th Electr. Vehicle Symp. (EVS),
Apr. 2005, pp. 1–9.

[25] J. Tian, R. Xiong, W. Shen, J. Wang, and R. Yang, ‘‘Online simultaneous
identification of parameters and order of a fractional order battery model,’’
J. Cleaner Prod., vol. 247, Feb. 2020, Art. no. 119147.

[26] K. Liu, K. Li, Q. Peng, and C. Zhang, ‘‘A brief review on key technologies
in the battery management system of electric vehicles,’’ Frontiers Mech.
Eng., vol. 14, no. 1, pp. 47–64, Mar. 2019.

[27] S. Liu, J. Wang, Q. Liu, J. Tang, H. Liu, and Z. Fang, ‘‘Deep-discharging
li-ion battery state of charge estimation using a partial adaptive forgetting
factors least square method,’’ IEEE Access, vol. 7, pp. 47339–47352,
Apr. 2019.

[28] K. Dai, J. Wang, and H. He, ‘‘An improved SoC estimator using
time-varying discrete sliding mode observer,’’ IEEE Access, vol. 7,
pp. 115463–115472, Aug. 2019.

[29] K. Liu, C. Zou, K. Li, and T. Wik, ‘‘Charging pattern optimization for
lithium-ion batteries with an electrothermal-aging model,’’ IEEE Trans.
Ind. Informat., vol. 14, no. 12, pp. 5463–5474, Dec. 2018.

[30] K. Liu, X. Hu, Z. Yang, Y. Xie, and S. Feng, ‘‘Lithium-ion battery charging
management considering economic costs of electrical energy loss and
battery degradation,’’ Energy Convers. Manage., vol. 195, pp. 167–179,
Sep. 2019.

[31] S. Haykin, Adaptive Filter Theory, 4th ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

[32] J. Shen, S. Dusmez, and A. Khaligh, ‘‘Optimization of sizing and bat-
tery cycle life in battery/ultracapacitor hybrid energy storage systems for
electric vehicle applications,’’ IEEE Trans. Ind. Informat., vol. 10, no. 4,
pp. 2112–2121, Nov. 2014.

[33] X. Hu, F. Feng, K. Liu, L. Zhang, J. Xie, and B. Liu, ‘‘State estimation for
advanced battery management: Key challenges and future trends,’’ Renew.
Sustain. Energy Rev., vol. 114, Oct. 2019, Art. no. 109334.

[34] F. Feng, S. Teng, K. Liu, J. Xie, Y. Xie, B. Liu, and K. Li, ‘‘Co-estimation
of lithium-ion battery state of charge and state of temperature based on a
hybrid electrochemical-thermal-neural-networkmodel,’’ J. Power Sources,
vol. 455, Apr. 2020, Art. no. 227935.

EUNSEOK CHOI received the B.S.E.E. and
M.S.E.E. degrees from the Department of Elec-
tronics and Information Engineering, Korea
Aerospace University, Goyang, South Korea,
in 2000 and 2002, respectively, and the Ph.D.
degree from the Department of Electrical and
Computer Engineering, University of Seoul,
Seoul, South Korea, in 2018. He is currently
working at SK Holdings, Seongnam, South Korea,
where he is currently a Model-based Development

Engineer and a Function Leader of the Automotive Application Software
Group. His current research interests include battery cell modeling, renew-
able energy systems, embedded vehicle systems, and real-time locating
systems.

SEKCHIN CHANG received the B.S.E.E. and
M.S.E.E. degrees from the Department of Elec-
tronics and Computer Engineering, Korea Uni-
versity, Seoul, South Korea, in 1991 and 1993,
respectively, and the Ph.D. degree from theDepart-
ment of Electrical and Computer Engineering, The
University of Texas at Austin, Austin, TX, USA,
in 2001. From 1993 to 1998, he was with the Elec-
tronics and Telecommunications Research Insti-
tute (ETRI), Daejon, South Korea. He was also

with Motorola Inc., Austin, from 2000 to 2004. Since February 2004, he has
been with the Department of Electrical and Computer Engineering, Uni-
versity of Seoul, Seoul, where he is currently a Full Professor. His current
research interests include battery cell modeling, renewable energy systems,
real-time embedded systems, and embedded vehicle systems.

129868 VOLUME 8, 2020


