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ABSTRACT An Electrocardiogram (ECG) is a typical method used to detect heartbeat, and an ECG signal
analysis enables the detection of some heart diseases. However, the ECG-based heartbeat detection requires
device attachment, which is not preferred for daily use. A Doppler sensor could be a device used to enable the
non-contact heartbeat detection. In this paper, we propose a Doppler sensor-based ECG signal reconstruction
method by a hybrid deep learning model with Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM). An ECG signal can be reconstructed by relating features of a heartbeat signal obtained
by a Doppler sensor to those of the ECG signal. Thus, we construct the deep learning model that extracts
the spatial and temporal features from the heartbeat signal by CNN and LSTM. Based on the extracted
features, the ECG signal is reconstructed. We conducted experiments to observe heartbeat against 9 healthy
subjects without heart disease. The experimental results showed that our method performed ECG signal
reconstruction with a correlation coefficient of 0.86 between the reconstructed and actual ECG signals, even
without attaching devices. The results indicate that it is possible to remotely reconstruct an ECG signal from
a heartbeat signal via a Doppler sensor.

INDEX TERMS Heartbeat, microwaves, Doppler sensor, ECG, deep learning.

I. INTRODUCTION
Heartbeat is one of the most important biological signals
to grasp our health condition. Thus, the technique of the
heartbeat detection has been required in various fields, e.g.,
the medical field [1], [2], the health care field [3], [4], and
the smart home field [5], [6]. Electrocardiogram (ECG) is a
typical heartbeat detection method. Fig 1 shows an example
of an ECG signal. Once the atrial activation starts, a P-wave
appears, and subsequently, an R-peak appears due to the
ventricular activation. As the ventricle gets relaxed, a T-wave
finally appears. By analyzing the timing when the P-wave,
the T-wave, and the R-peak appear, various heart diseases
can be detected [7]–[9]. However, to detect heartbeat with an
ECG, it is necessary to attach electrodes to a body, which is
not suitable for daily heartbeat detection.

As one of the non-contact heartbeat detection methods,
a Doppler sensor-based method has been studied inten-
sively [10]–[23]. A Doppler sensor is a device that transmits
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microwaves toward a target and receives the microwaves
reflected by the target. At the same time of the reflection,
the microwaves are Doppler-shifted. Thus, it is possible to
measure the velocity and direction of the target’s motion
by analyzing the received signal. Based on this principle,
the use of a Doppler sensor has been investigated in various
fields such as heartbeat detection [10]–[23], respiration detec-
tion [24]–[26], and activity recognition [27]–[29]. However,
the Signal-to-Noise Ratio (SNR) of heartbeat components is
low, compared to those of respiration and slight body move-
ments. Hence, to accurately detect heartbeat, various Doppler
sensor-based heartbeat detection methods have been pro-
posed [10]–[23]. These conventional methods aim to estimate
the beat-to-beat interval (BBI) and the heart rate (HR) and
have been experimentally shown to achieve a high heartbeat
detection accuracy. However, none of the conventional meth-
ods have detected the P-wave, the T-wave, and the R-peak,
though various heart diseases can be identified by analyz-
ing the timings when such features appear. As previously
mentioned, the SNR of the heartbeat components could be
lower due to respiration and slight body movements. Thus,
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FIGURE 1. (a) An illustration of a heart and (b) an ECG signal. (i) A P-wave
appears due to the atrial activation, (ii) an R-peak does due to the
ventricular activation, and (iii) a T-wave does due to the ventricular
relaxation.

detecting the P-wave, the T-wave, and the R-peak is more
difficult than detecting only heartbeat.

In this paper, to detect the P-wave, the T-wave, and the
R-peak via a Doppler sensor, we propose an ECG signal
reconstruction method by a hybrid deep learning model with
Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM). In our method, a deep learning technique is
used to solve a prediction problem, that is obtaining the ECG
signal from the heartbeat signal obtained by a Doppler sensor.
For the automatic feature extraction to reconstruct the ECG
signal, the hybrid model with CNN and LSTM is proposed.
Specifically, the heartbeat signal by a Doppler sensor can be
deformed due to noise. This means that there exist numerous
types of heartbeat signal waveforms. Therefore, we use deep
learning techniques to automatically extract deep features
that are useful for the ECG signal reconstruction, even from
numerous types of the heartbeat signal waveforms. To trans-
form the heartbeat signal to the ECG signal, temporal features
of the heartbeat signal are very important. Hence, we use
LSTM to extract the temporal features, e.g., the P-wave,
the T-wave, and the R-peak appear successively. LSTM is

FIGURE 2. The system model of heartbeat detection with a Doppler
sensor.

a deep learning technique that is useful to extract features
of time sequence data [30], and it has been successfully
applied to signal classification [31], [32] and prediction [33].
However, as aforementioned, a heartbeat signal is likely to
be deformed due to noise. To make the model robust to
this type of deformation, we first extract spatial features by
CNN [34] that has been successful in the fields of image
recognition [35], [36] and the signal classification [37]. After
the spatial feature extraction, we extract temporal features by
applying LSTM to the output of the CNN. An ECG signal is
the final output based on the features extracted by the CNN
and LSTM. Although the use of only CNN or LSTM might
also enable the transformation of the heartbeat signal to the
ECG signal, the use of both CNN and LSTMmakes themodel
robust against the diversity of the heartbeat signal.

The novelty and contribution of this paper are as follows.

• Although ECG signal reconstruction has been conven-
tionally realized by attaching devices, these methods can
make a subject uncomfortable in long-term monitoring
in daily life. In this paper, we propose a non-contact
ECG signal reconstruction via a Doppler sensor.

• We discuss the characteristics of a heartbeat signal by a
Doppler sensor. Based on that, we combine the benefits
of CNN and LSTM, and construct a hybrid deep learning
model that transforms the heartbeat signal to an ECG
signal.

• We show that the proposed method has a good ability
to reconstruct an ECG signal. Additionally, we compare
our ECG signal reconstruction with the ECG signal
reconstruction by attaching devices, and we show the
feasibility of the non-contact ECG signal reconstruction
via a Doppler sensor.

The rest of this paper is organized as follows. In Sections II
and III, we explain the principle of a Doppler sensor and
related works, respectively. We then propose an ECG signal
reconstruction method in Section IV, and evaluate the perfor-
mance of our method in Section V. Finally, we conclude this
paper in Section VI.

II. SYSTEM MODEL OF HEARTBEAT DETECTION WITH
DOPPLER SENSOR
In this section, we describe the system model of heartbeat
detectionwith aDoppler sensor. The fundamental principle of
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a Doppler sensor is to measure the frequency change caused
by the Doppler effect. Fig. 2 shows the system model of
heartbeat detection with a Doppler sensor. Microwaves are
transmitted from a Doppler sensor toward a subject’ chest.
When the chest reflects the microwaves, the phase of the
microwaves is Doppler-shifted by the chest’s displacements
due to the subject’s heartbeat. The Doppler-shift due to the
heartbeat, fDoppler , can be expressed as follows.

fDoppler = ∓
4πvt
λ
×

1
2π t
= ∓

2v
λ
, (1)

where v denotes the speed of the chest displacement. When
the chest moves away from the Doppler sensor, the minus
symbol can be adapted, and vice versa. The Doppler sensor
then receives the reflected microwaves. The received sig-
nal is passed through the low noise amplifier (LNA) and
down-converted into the baseband signalB(t).When the chest
is a distance d from the Doppler sensor, the baseband signal
B(t) can be expressed by the wavelength of the carrier λ as
eq. (2).

B(t) = cos
(
θ +

4πxh(t)
λ
+18(t)

)
, (2)

where θ is the constant phase that is dependent on d and the
carrier frequency f . Additionally, xh(t) is the chest displace-
ment caused by the heartbeat, and 18(t) is the total residual
phase noise through the circuit and the transmission path.
Subsequently, B(t) is demodulated by a quadrature mixer, and
two signals, namely, I (t) and Q(t), which are called in-phase
and quadrature signals, respectively, are obtained as follows.

I (t) = cos
(
θ +

π

4
+

4πxh(t)
λ
+18(t)

)
, (3)

Q(t) = cos
(
θ −

π

4
+

4πxh(t)
λ
+18(t)

)
. (4)

I (t) and Q(t) are then amplified by the operational ampli-
fier (OP-AMP). After the data acquisition (DAQ), the heart-
beat can be detected by applying signal processing to the
digitized I (t) and Q(t) in the digital signal processing (DSP).

III. RELATED WORKS
In this section, we describe other existing researches related
to this work. An ECG is a heartbeat detection method that
has been widely used in the medical field. Features of an
ECG signal, e.g., the P-wave, the T-wave, and the R-peak,
reflect the heart activity, and thus it is possible to detect some
heart diseases by analyzing an ECG signal. Photoplethys-
mography (PPG) is a device that can emit light on a skin
and observe the intensity variation of the reflected light. Since
such intensity variation reflects the heart’s activity, heartbeat
can be detected by analyzing a PPG signal. Some researches
have proposed accurate heartbeat detection methods with a
PPG sensor mounted in wrist-type devices such as smart-
watches [38]–[40]. Additionally, Q. Zhu et al. have proposed
an ECG signal reconstruction method via a PPG signal [41].
In this method, an ECG signal is reconstructed by mapping
the Discrete Cosine Transform (DCT) coefficients of the

FIGURE 3. An example of a spectrogram obtained from a subject holding
his breath.

heartbeat signal by PPG to those of the ECG signal. In
addition to ECG and PPG, Seismocardiogram (SCG) has also
been used for heartbeat detection [42]–[44]. SCG can detect
heartbeat by measuring the chest vibration and can capture
the aortic valve opening and closing behavior, as well as the
mitral valve opening and closing behavior. J. Park et al. have
proposed an ECG signal reconstruction method via an SCG
signal by using a deep learning model with bidirectional-
LSTM [45]. Although these ECG signal reconstruction meth-
ods have been experimentally shown to be able to reconstruct
the ECG signal, PPG and SCG essentially require the device
attachment.

Many researches have investigated the heartbeat detec-
tion via a Doppler sensor to achieve non-contact heart-
beat detection without device attachment. Some conven-
tional methods estimate the HR based on frequency anal-
ysis by (i) Fast Fourier Transform (FFT) [10], [11], (ii)
Wavelet Transform (WT) [12], [13], (iii) Multiple Signal
Classification (MUSIC) [14], [15], and DCT [16]. In con-
trast, by detecting a heartbeat signal over the signal obtained
through the extended signal processing, the conventional
methods [17]–[23] estimate the BBI. Experimental results
have shown that these conventional methods have achieved
high HR and BBI estimation accuracies. However, there is no
conventional method that can detect the P-wave, the T-wave,
and the R-peak, though capturing these features would enable
the detection of various diseases. Taking into account that the
SNR of the heartbeat components is likely to get degraded
due to noise, e.g., respiration and slight body movements, it is
more challenging to capture the P-wave, the T-wave, and the
R-peak than detecting only heartbeat.

IV. PROPOSED METHOD
In this section, to detect the P-wave, the T-wave, and the
R-peak via a Doppler sensor, we propose an ECG signal
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FIGURE 4. Examples of raw in-phase and quadrature signals, and the ones filtered by BPF with the passband of [8.0,30] Hz.

reconstruction method by a hybrid deep learning model with
CNN and LSTM. In what follows, to better understand our
proposed method, we first show how heartbeat components
appear over a received signal of a Doppler sensor. We then
explain the algorithm of the proposed method.

A. HEARTBEAT SIGNAL BY DOPPLER SENSOR
Frequency components due to heartbeats can be divided into
two components corresponding to the HR and just one heart-
beat. In terms of the HR, the frequency components due to
heartbeats typically range from 0.5 Hz to 2.0 Hz, correspond-
ing to 30 beats per minute (bpm) and 120 bpm, respectively.
In contrast, the chest’s displacement due to heartbeat, xh, can
be expressed as eq. (5) [46].

xh(t) = ν cos{ωt + γ sin(�t)} e−
(t−b)2
c , (5)

where ω and � are the parameters used to determine the
peak location of a heartbeat signal, and ν and γ are the
parameters used to determine the magnitude of the peak.
Additionally, b and c are the constant parameters. Based
on this model, the previous research [22] has generated the
simulated heartbeat signal obtained by a Doppler sensor, and
has shown that the frequency components due to the heartbeat
signal are distributed in the higher frequency band. Fig. 3
shows an example of a spectrogram obtained from a subject
holding his breath. This spectrogram is calculated by Short
Time Fourier Transform (STFT) with a 256 ms-time window
and a 5 ms-step size. Also, the sampling rate of the Doppler
sensor is 1000 Hz, and the number of points in FFT is 1024.
From this figure, it can be seen that the spectrum due to

each heartbeat appears in the frequency band higher than
2 Hz. Specifically, in our preliminary research [23], we have
confirmed that the frequency components due to the heartbeat
are mainly distributed from 8.0 Hz to 30 Hz. To associate
features of the heartbeat signal with those of the ECG signal,
the heartbeat components in such a high frequency band are
essential. Fig. 2 shows examples of raw in-phase and quadra-
ture signals and the ones filtered by Band Pass Filter (BPF)
with a passband of [8.0, 30] Hz. For a better comparison,
an ECG signal is also shown in Fig. 2(c), and the amplitudes
of the signals are scaled in Figs. 2(b) and (c). From these
figures, we can see the heartbeat signal corresponding to the
ECG signal over the filtered in-phase and quadrature signals.
However, we can also see that the waveform of the heartbeat
signals is not always the same. Thus, in our proposed method,
an ECG signal is reconstructed from such a heartbeat signal
by relating the features of these two signals to each other
based on a deep learning technique.

B. ALGORITHM OF PROPOSED METHOD
In the proposed method, after detecting heartbeat’s timing by
a heartbeat detection method via the Doppler sensor with a
sampling rate of 1000 Hz, a heartbeat signal is segmented by
a 1.2 s-time window that is centered at the detected timing.
Here, the length of the time window should be set to includes
at least one heartbeat, which is very important for reconstruct-
ing an ECG signal. In fact, as the heart rate gets lower, the tim-
ing when the T-wave appears is likely to be delayed. Based on
this fact, we selected a 1.2 s-time window that is long enough
to meet this condition. Although a subject who has an ECG
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signal longer than 1.2 s may exist, it is possible to change
the window length used in our method. More specifically,
as aforementioned, the I (t) and the Q(t) filtered by BPF with
the passband of [8.0, 30] Hz are segmented as the heartbeat
signal. The segmented I (t) and Q(t) are then input to a deep
learning model. In the proposed method, an ECG signal is
reconstructed by a hybrid model with CNN and LSTM. CNN
is a deep learning technique that has the great ability of spatial
feature extraction [34]. Typically, CNN has two operations:
(i) the convolutional operation and (ii) the pooling operation.
Here, let x li,j and wp,q denote the elements of the feature map
in the layer l and the convolutional filter with the kernel size
ofP×Q, respectively.With the stride size of the convolutional
filter s, the convolutional operation is performed as

ui,j =
P−1∑
p=0

Q−1∑
q=0

xsi+p,sj+qwp,q. (6)

With the activation function of Rectified Linear Units (ReLU),
the enhancement of the extracted feature ui,j is performed,
and the element of the feature map in the next layer x l+1i,j is
obtained as

x l+1i,j = ReLU(ui,j). (7)

The pooling operation is performed to reduce the training
time by reducing the elements of the feature map, in general.
The max pooling algorithm is a typical one used to reduce the
size of the feature map, and is used in our proposed model.
The max pooling algorithm with the pooling area O in the
layer l is performed as

x l+1i,j = max
(p,q)∈O

x lp,q. (8)

In contrast, LSTM is one of Recurrent Neural Net-
work (RNN) that has been broadly used to analyze time
sequence data, and it provides excellent performance of the
temporal feature extraction [30]. LSTM typically consists
of 4 blocks: (i) the LSTM block, (ii) the input gate, (iii) the
forget gate, and (iv) the output gate. Now, let y and h denote
input data and hidden states, respectively, and letW , R, p, and
b denote the weight from the previous layer, the weight from
the hidden layer in the previous time, the peephole weight,
and the bias, respectively. The forward-propagation of LSTM
is operated as follows.

z−t = Wzyt + Rzht−1 + bz, (9)

zt = tanh(z−t ), (10)

i−t = Wiyt + Riht−1 + pi � ct−1 + bi, (11)

it = sigmoid(i−t ), (12)

f −t = Wf yt + Rf ht−1 + pf � ct−1 + bf , (13)

f t = sigmoid(f −t ), (14)

ct = it � zt + f t � ct−1, (15)

o−t = Woyt + Roht−1 + po � ct−1 + bo, (16)

ot = sigmoid(o−t ), (17)

H t
= ot � tanh(ct ), (18)

where ‘‘�’’ is the Hadamard product, and the subscripts ‘‘z’’,
‘‘i’’, ‘‘f ’’, and ‘‘o’’ denote the LSTM block, the input gate,
the forget gate, and the output gate, respectively.

Fig. 5 shows the architecture of the proposed deep learning
model. In the proposed method, the segmented I (t) and Q(t)
is concatenated, which is an input with the size of 2 × 800.
First, the input is fed into CNN to extract spatial features over
the heartbeat signal. This operation makes the model robust
against the deformation of the heartbeat signal. Specifically,
the convolutional operation by 8 filters with the kernel size of
2×50 is performed, and then the max pooling operation with
the kernel size of 1×2 is performed, where the convolutional
filter strides by 1 sample, and the pooling area strides without
the overlap. Subsequently, the convolutional operation by
8 filters with the kernel size of 2× 25 is performed, and then
the max pooling operation with the kernel size of 2 × 2 is
performed. Here, the strides of the convolutional filter and
the pooling area are the same as mentioned above. To relate
the temporal features of the heartbeat signal to those of the

FIGURE 5. The architecture of the proposed deep learning model.
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ECG signal, the extracted feature maps are then input to
LSTM with 256 hidden layers. Specifically, the output of
the CNN can be regarded as the sequence data with a size
of 176 × 8 (data length × dimension of features), which
is an input to LSTM. Through the fully connected layers
with 1024 units, the ECG signal is finally output based on
the features obtained by the CNN and LSTM. Here, it is
worth mentioning that these parameters used in the model,
e.g., the number of filters and the kernel size, should be set
considering the over-learning and the reconstruction accuracy
of the ECG signal. These can also be adjusted depending on
the diversity and the number of training data.

V. EXPERIMENTAL EVALUATION
In this section, we first explain the specification of the exper-
iments and then present the experimental results.

A. EXPERIMENTAL SPECIFICATION
To evaluate the ECG signal reconstruction accuracy of the
proposed method, we carried out experiments to collect test-
ing and training data. TABLE 1 lists the experimental spec-
ification. We carried out our experiments using a 24 GHz
Doppler sensor with the sampling rate of 1000 Hz. We
observed heartbeat of 9 subjects for 180 s, and all the subjects
were healthy, and do not have abnormalities related with the
heart. During the observation, the subjects were lying up
on the floor with the natural breathing. The Doppler sensor
was attached on the ceiling, and the distance between the
Doppler sensor and the subject was 2.5 m. At the same time
as the Doppler sensor is used, to collect the actual ECG
signal, we observed the subject’s heartbeat by an ECG with
a sampling rate of 250 Hz. Also, as the loss function to train
the proposed model, we used theMean Squared Error (MSE).
The optimizer used to train the model was ‘‘Adam’’, and
the number of epochs and the batch size were 40 and 128,
respectively.

As the performance metric, we calculated the correlation
coefficient κ between the reconstructed and actual ECG

TABLE 1. The specification of the experiment.

signals as

κ =

M∑
m=1

(vm − ṽ)(rm − r̃)√√√√ M∑
m=1

(vm − ṽ)2

√√√√ M∑
m=1

(rm − r̃)2

, (19)

where M denotes the number of samples over the recon-
structed and actual ECG signals. vm and rm denote the
m-th samples over the reconstructed and actual ECG sig-
nals, respectively. ṽ and r̃ denote the mean values of the
reconstructed and actual ECG signals, respectively. In addi-
tion to the correlation coefficient, for the better evaluation
of the proposed method, we detected the R-peaks based
on the Pan-Tompkins algorithm [47]. This algorithm can
detect the R-peak based on an adaptive threshold determined
by a signal level. Although it might be possible to detect
the R-peak by other algorithm such as the maximum peak
detection algorithm, we used the Pan Tompkins algorithm,
because it can detect the R-peak accurately, according to pre-
vious research related to the SCG-based ECG signal recon-
struction [45]. Taking into account that the P peak typically
appears within 0.3 s before the R-peak, we thus detected
the P peak as the maximum one that appeared within 0.3 s
before the R-peak. We finally detected the T peak as the max-
imum one that appeared after the R-peak. As the performance
metric, we calculated the Average Absolute Error (AAE)
between the timings when such peaks appeared over the
reconstructed and actual ECG signals. Precisely, against each
peak, the AAE was calculated as

AAE =
1
N

N∑
n=1

|tpred(n)− ttrue(n)|, (20)

where N denotes the number of the collected ECG signals,
nmeans the n th ECG signal, and tpred and ttrue denote the pre-
dicted and ground truth timings, respectively. Furthermore,
we measured the P-peak to R-peak interval (PRI), R-peak to
T-peak interval (RTI), and P-peak to T-peak interval (PTI),
and we calculated the Root Mean Squared Error (RMSE)
between these intervals over the reconstructed and actual
ECG signals as

RMSE =

√√√√ 1
N

N∑
n=1

|PPIpred(n)− PPItrue(n)|2, (21)

where PPIpred and PPItrue denote the peak intervals measured
over the reconstructed and actual ECG signals, respectively.

B. ECG SIGNAL RECONSTRUCTION ACCURACY
TABLE 2 lists the dataset collected through the experiments.
In the evaluation of the experiments, we used the hold-out
validation to evaluate our proposed method. The data from
one set of subjects were used as the testing data, while the
other set of subjects were used as the training data, which
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TABLE 2. Dataset. N denotes the number of the collected heartbeat
signals.

FIGURE 6. The training and validation losses.

was repeated for all the subjects. Also, we tried to select the
parameters of the deep learning model so that the validation
loss wasminimized. As for the number of the epochs, we set it
based on the convergence of the validation loss. Fig. 6 shows
the training and validation losses. From this figure, it can be
seen that the validation loss converges at about 0.015 after the
epoch 30. In contrast, the training loss decreases slowly even
after the epoch 30. In fact, when the training loss continues
to decrease in such a way, which leads to the over-learning.
Based on this fact, we set the epoch as 40.

Fig. 7 shows examples of the reconstructed and actual
ECG signals. In these examples, for a better comparison,
the amplitudes of these two signals are scaled. From these
examples, it can be seen that the ECG signal is reconstructed
by our proposed method so that the P, R and T peaks could be
detected. We can also say that detecting the P peak might be
difficult, compared to the R and the T peaks. This is because

FIGURE 7. Examples of the reconstructed and actual ECG signals.

the SNR of the P-wave is low, which makes it challenging to
train the proposed deep learning model.

TABLE 3 lists the correlation coefficients κ , the AAEs,
and the RMSEs of the proposed method. As seen from this
table, our proposed method reconstructs the ECG signal with
an average correlation coefficient of 0.86. In general, as the
HR gets lower, one period of the ECG signal grows longer,
indicating that our method can reconstruct the ECG signal,
regardless of the HR. In terms of the AAE, the average AAEs
of the P, R, and T peaks are 28.3 ms, 17.8 ms, and 30.3 ms,
respectively. From these results, we can say that our method
reconstructs R-peak accurately, compared with the P and T
ones. The SNRs of the P and T-waves are typically lower than
that of the R-peak, and the P and T-wave components over the
heartbeat signal by the Doppler sensor are sensitive to noise,
e.g., respiration and body movements. Thus, the AAEs of the
P and T peaks are lower than that of the R-peak. When a
subject has lower HR, the timing when the T-wave appears
tends to be delayed. This fact makes it difficult to reconstruct
the T-wave, which could be solved by further extending the
diversity of the training data. As a result, the RMSEs of
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TABLE 3. The correlation coefficients κ , the AAEs, and the RMSEs of the proposed method.

the PRI, RTI, and PTI are 31.6 ms, 33.9 ms, and 47.2 ms,
respectively. The required accuracies of the PRI, RTI, and
PTI measurements depend on the usage of these intervals.
In our future work, we will further improve the ECG signal
reconstruction accuracy according to real applications.

C. PERFORMANCE COMPARISON WITH OTHER
EXISTING METHODS
TABLE 4 lists the performance comparison of the proposed
and the other existing ECG signal reconstruction methods.
The three methods in Table 4 use different datasets and
sensors, i.e., PPG, SCG, and a Doppler sensor. Thus, the per-
formance comparison among thesemethods is not necessarily
fair. However, to show the ability of the proposed non-contact
ECG reconstruction method, it would be beneficial to com-
pare our method with the ones that use the contact sensors.
The method [41] reconstructs the ECG signal by the linear
transform of the DCT coefficients of the PPG signal to those
of the ECG signal. The SCG-based method [45] reconstructs
the ECG signal by associating the SCG signal to the ECG
signal through bidirectional-LSTM. From this table, it can be
seen that the PPG-based ECG signal reconstruction method
achieves a high correlation coefficient of 0.96, while our

TABLE 4. The performance comparison of the proposed and the other
existing ECG signal reconstruction methods.

proposed method achieves the correlation coefficient of 0.86.
Additionally, the AAEs of the P, R, and T peaks by the
SCG-basedmethod are 20ms, 13ms, and 16ms, respectively.
In contrast, our method’s AAEs for the P, R, and T peaks are
28 ms, 17 ms, and 30 ms, respectively. Although the ECG
signal reconstruction accuracy of the conventional methods
are higher than that of ours, the experimental results show that
ourmethod can reconstruct the ECG signal without the device
attachment even in the situation where a subject is 2.5 m away
from a Doppler sensor. These results are worth noting, and
in our future work, we will try to improve our method to
achieve as high an ECG signal reconstruction accuracy as the
conventional ones.

D. LIMITATION OF PROPOSED METHOD
Our method might not always achieve the good performance
of the ECG signal reconstruction, in particular for the types of
ECG signal waveforms that are not considered for the training
of the model. When a subject has a heart disease that can
affect the ECG signal waveform, it is necessary to include
such a type of the ECG signal waveform in the training data.
Thus, to make our model further robust to the diversity of the
ECG signal waveform, numerous training data are essential.
Additionally, our method can be applied after the heartbeat
detection. When heartbeat is not detected due to noise such
as respiration and body movements, it is impossible to recon-
struct the ECG signal. Even when the heartbeat is detected,
the performance of the ECG signal reconstruction could be
degraded due to the large deformation of the heartbeat signal
waveform. This issue could also be solved by increasing the
diversity of the training data.

VI. CONCLUSION
In this paper, we proposed a Doppler sensor-based Elec-
trocardiogram (ECG) signal reconstruction method by a
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hybrid deep learning model with Convolutional Neural Net-
work (CNN) and Long Short-Term Memory (LSTM). As the
ECG signal reconstruction method, there exist the ones with
the attaching devices, i.e., Photoplethysmography (PPG) and
Seismocardiogram (SCG). In contrast, to reconstruct an ECG
signal without requiring device attachment, we constructed a
deep learning model that outputs the ECG signal by extract-
ing the spatial and the temporal features from a heartbeat
signal by a Doppler sensor. Although detecting the P-wave,
the T-wave, and the R-peak with a Doppler sensor is more
complicated than detecting only heartbeat, because of the low
Signal-to-Noise Ratio (SNR) of the heartbeat components,
we experimentally confirmed that our proposal performs the
ECG signal reconstruction well. In our future work, it is nec-
essary to improve our ECG signal reconstruction accuracy,
according to the accuracy required by applications.
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