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ABSTRACT In this paper, we examine the performance of four authoritative DNS server implementations
(BIND, NSD, Knot DNS, and YADIFA). In our tests, we apply the measurement procedure defined in
Section 9 of RFC 8219. Our aim is threefold: to provideDNS operators with ready to usemeasurement results
to support their selection of the best fitting authoritative DNS server implementation for their needs, to assist
researchers and DNS64 server developers in finding a suitable authoritative DNS server implementation
for their DNS64 benchmarking measurements, and to advance the theory and practice of benchmarking
DNS servers. We examine how the different conditions such as the number of active CPU cores, the size
of the zone file, the applied timeout, and the type of the processor influence the performance of the tested
authoritative DNS server implementations. The performance of all four tested DNS servers scales up more
or less well with the number of CPU cores, except for YADIFA. The increase of the size of the zone file
causes significant degradation only in the performance of BIND, which shows different anomalies described
in the paper. The change of the timeout from 250ms (required by RFC 8219) to 100ms usually causes only
a small performance degradation. We point out that NSD and Knot DNS can achieve an order of magnitude
higher performance than BIND and YADIFA.

INDEX TERMS Benchmarking, DNS, DNS64, performance.

I. INTRODUCTION
DNS (Domain Name System) is an integral part of all com-
monly used Internet services, but it seems to be inconspic-
uous, when everything goes smooth. However, a failure or
delay in DNS resolution results in poor QoE (Quality of
Experience) for the users.

Although the performance of different authoritative DNS
server implementations is an important issue, it still lacks of
a standard benchmarking methodology. In this paper, we pro-
pose one. Whereas BIND is considered the de facto industry
standard DNS server, and it was the most widely used one
in 2004 [1], some other DNS implementations (e.g. NSD
or Knot DNS) can provide multiple times higher authorita-
tive DNS server performance than BIND. For a DNS server
operator, higher performance results in less costs considering
both CAPEX (Capital Expenditures, here: the price of the
hardware) and OPEX (Operating Expenditure, here: the com-
puting power requirement and thus, also the electricity bill).
High performance can also be a kind of mitigation against
DoS (Denial of Service) attacks [2].

As for a special usage of authoritative DNS servers, they
are needed for benchmarking DNS64 [3] servers. (DNS64 is
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an important IPv6 transition technology [4], which is used
together with stateful NAT64 [5] to enable IPv6-only clients
to communicate with IPv4-only servers [6].) In section 9 of
RFC 8219 [7], we defined a benchmarking methodology for
DNS64 servers. This measurement procedure requires the
use of an authoritative DNS server that can provide DNS
resolution at 220% of the maximum testing rate of DNS64
servers. (Please refer to [8] for more details.) Thus, finding
a sufficiently high performance authoritative DNS server is
a prerequisite for performing DNS64 benchmarking tests.
In 2017 we benchmarked three different DNS64 servers, and
we had to choose an authoritative DNS server with high
enough performance. Due to time constraint, then we have
selected the first suitable one, which was YADIFA [9]. How-
ever, we considered the performance comparison of the dif-
ferent authoritative DNS servers an interesting research topic,
especially, because we have found that there was a gap in
research papers concerning both a standard methodology for
benchmarking authoritative DNS servers and also measure-
ment results. Although our original motivation was to support
DNS64 benchmarking, we contend that the comparison of
the performance of various authoritative DNS server imple-
mentations is even more important for DNS server operators
due to the before mentioned cost and DoS mitigation issues.
Therefore, we have set a threefold goal.
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1. To provide DNS operators with ready to use mea-
surement results to support their selection of the most
proper authoritative DNS server implementation for
their needs.

2. To assist researchers and DNS64 server developers
in finding a suitable authoritative DNS server imple-
mentation for their DNS64 measurements depending
on their required testing rate and available hardware
resources.

3. To advance the theory and practice of benchmarking
DNS servers.

In this paper, we examine the performance of four authori-
tative DNS server implementations (BIND, NSD, Knot DNS,
and YADIFA) under different conditions including zone files
of various sizes and different number of CPU cores.

The remainder of this paper is organized as follows.
Section II surveys the available methods for benchmark-
ing authoritative DNS servers and points out that the
RFC 8219 compliant one suits better for the needs of DNS
server operators than the other examined ones. Section III
gives an introduction to the used measurement program, dis-
closes our considerations behind the selection of the DNS
server implementations to be tested, presents the test setups,
and explains the types of measurements as well as their most
important parameters and settings. Section IV discloses and
evaluates our high number of results. Section V contains a
brief discussion and our future plans. Section VI concludes
our paper.

II. METHOD FOR BENCHMARKING AUTHORITATIVE DNS
SERVERS
A. SURVEY OF RELATED WORKS
We were looking for both a standard method for bench-
marking authoritative DNS servers and research papers with
performance measurement results of the major authoritative
DNS server implementations, but we have not found any of
them. The majority of our hits were either about how to mea-
sure the performance of DNS servers operating at different
parts of the world, like Sekiya et al. [10], or about the per-
formance comparison of the operating (public) DNS servers,
like Kesavan [11]. We have found only few related research
papers. One of them gives a survey of the related papers,
and it shows (in its Section 3.1) that they do not contain
usable performance measurement results of different DNS
server implementations [12]. It also summarizes the then (in
2014) available DNS performance measurement techniques
in three groups: DNS performance testing software tools,
traffic generator hardware appliances, and general purpose
testing software. It mentions three DNS performance testing
software tools: dnsperf and resperf of Nominum and
queryperf of ISC and it also discloses their limitations as
well as the limitations of the two other types of solutions.

Possible other methods include the use of tcpreplay
for sending DNS queries on the basis of a pcap file and
tcpdump for collecting the replies [13]. Although this

method was actually used for benchmarking DNS resolvers,
it can also be used for benchmarking different authoritative
DNS server implementations.

Several software tools for DNS performance or security
testing and also some benchmarking tests with actual results
are listed at this web page [14].

We have found some technical publications (not peer
reviewed research papers) describing practically usablemeth-
ods for benchmarking authoritative DNS servers and also
containing measurement results.

One of them is an NLnet Lab article from 2013 [15]. They
used 5 computers to replay DNS queries at predefined rates
and to collect the replies by tcpdump. They compared the
performance of NSD to that of BIND, Knot DNS and YAD-
IFA, and characterized their performance by the proportion of
the successfully answered queries as a function of the query
rate. As no timeout value was mentioned, we believe that
they were concerned only if a query was answered or not.
Unfortunately, their results are outdated today.

Another one is a still ongoing project and a still updated
online article of the developers of Knot DNS aimed to
compare the performance of several authoritative DNS
servers [16]. They used the same measurement method as
in [15] thus also lacking of timeout value. They characterized
the performance of the authoritative DNS servers by their
response rate. The results are graphs showing the number
of received answers as a function of the number of sent
queries, as illustrated in Fig. 1. (Alternatively, the results
can also be viewed as response rate percentage, as in [15].)
Whereas we admit that these graphs can be useful for DNS
server developers, we contend that for a DNS operator, it is
redundant, whether a given DNS server can answer 40% or
80% of the queries at a given rate: the DNS server is unusable
in both cases. We consider that the lack of timeout value is
another serious problem from the DNS operators’ point of
view: a response is completely useless for the users if it comes
more than a second later than the query was sent: the client
software will timeout and resend the query.1 Although we
contend that the results of ourmeasurementmethod described
in Section II.B are more suitable for DNS operators than
that of the method used in [16], we have found their results
valuable and we used them in Section III.B.

The developers of the YADIFA DNS server implemen-
tation have also published their performance comparison
results of YADIFA 1.0.0, NSD 3.2.10, Knot DNS 1.0.5,
and BIND 9.9.1. [17]. They also used tcpreplay and no
timeout was mentioned. The date of their measurements has
not been disclosed, but their results are now outdated due to
the old software versions and obsolete hardware.

Section 9 of RFC 8219 [7] defined a benchmarking
methodology for DNS64 servers in 2017. Please refer to [8]

1The one second timeout is our experimental result, measured by using
Firefox under Windows 7 [8] and now confirmed under Windows 10. Other
software may behave somewhat differently, however, ‘‘human timeout’’ (that
is, our patience) does not allow significantly higher timeout value than a few
seconds for the majority of the client software.
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for more details and considerations behind the method
described in the RFC. They both state that during the self-test
of the Tester, the AuthDNS (authoritative DNS server) sub-
system of the Tester should be benchmarked with the same
method as the DNS64 servers, but with a different time-
out value. Thus it can be said that RFC 8219 has implic-
itly defined a benchmarking method for authoritative DNS
servers (although it was intended for a special purpose only).
As for tools, none of the before mentioned ones comply with
the requirements of RFC 8219. As far as we know, the only
RFC 8219 compliant DNS/DNS64 tester is Dániel Bakai’s
dns64perf++ [18].

B. SELECTED BENCHMARKING METHOD
To support DNS64 benchmarking with our results, we had to
perform RFC 8219 compliant benchmarking measurements.
We shall examine, whether the conditions of RFC 8219 are
appropriate, when the results are intended to support DNS
operators in their authoritative DNS server selection.

The measurement procedure of the DNS64 benchmarking
test defined in RFC 8219 follows RFC 2544 both in its
wording and in its spirit:

• The Tester sends AAAA record requests at a constant
rate for at least 60 seconds, it receives the replies, and
checks if they are valid (they contain an AAAA record
and arrived within timeout time).

◦ If the number of valid replies is equal with the num-
ber of queries sent, then the query rate is increased
and the test is rerun.

◦ If the number of valid replies is less than the number
of queries sent, then the query rate is decreased and
the test is rerun.

In practice, a binary search is used to find the highest rate
at, at which the number of valid replies is equal with the num-
ber of queries sent (as it is usually done by RFC 2544 com-
pliant commercial testers, too).

For benchmarking DNS64 servers, the timeout time was
chosen as 1 second, and 0.25s was specified for bench-
marking the authoritative DNS server subsystem during the
self-test of the Tester [8]. Let us consider, whether this 250ms
timeout is a good one, when our results are intended to
support DNS operators. Although, DNS is used by many
types of applications, in a typical case, it is used for resolving
domain names for web browsers. A typical URL looks like
‘‘http://acme.com’’, and the resolver (local caching only DNS
server) has already cached the IP address of the DNS server
responsible for the ‘‘com’’ domain, thus only one request and
reply is needed. In this case, the maximum 250ms response
time of the authoritative DNS server is acceptable. There may
be cases, when multiple subdomains are used (like in the
case of the URL: ‘‘http://www.hit.bme.hu’’) and thus more
requests and replies are needed, thus a shorter timeout is
required, therefore, we have checked our results using 100ms
timeout, too.

The absolutely 0% loss required by RFC 8219 results is
no problem, when the results are intended to support DNS
operators, but this criterion might be too strict. In some cases,
we also apply other criteria, which allow e.g. 0.01% or 0.1%
packet loss.

As formeasurement traffic, RFC 8219 requires all different
queries to eliminate the effect of caching. We followed this
approach, which often required the usage of huge zone files,
see Section III.D.2 for details.

III. MEASUREMENTS
In this section, first, we give an introduction to
dns64per++, the measurement program used for testing,
second, we give our considerations, why the given four
DNS implementations were selected, third, we describe our
different measurement setups, finally, we disclose the details
of our measurements.

A. INTRODUCTION TO DNS64PERF++

A detailed description of the original dns64perf++ mea-
surement program can be found in our open access paper [18],
thus we mention only a few things, which are necessary to
understand the rest of our current paper. However, we must
give somewhat deeper description of its new properties,
which were developed later and have not been published yet.

Thedns64perf++ program has beenwritten in C++14
and it is a command line tool running under Linux. It performs
one test: it sends queries at the required rate, receives and
validates the replies. The binary search is done by a bash shell
script, which performs it at least 20 times as required by RFC
8219.

To be able to send all different queries during a
given test, dns64perf++ uses the following inde-
pendent namespace: {000..255}-{000..255}-{000..255}-
{000..255}.dns64perf.test.

When DNS64 testing is done, a subset of this namespace
is used, and it has to be resolved to the corresponding IPv4
addresses by authoritative DNS server. The namespace to be
used by the tester is described by the corresponding IPv4 net-
work using CIDR (Classless Inter-Domain Routing) notation.
For example, 10.0.0.0/8 identifies the following namespace:

10-{000..255}-{000..255}-{000..255}.dns64perf.test.
As dns64perf++ sends queries for AAAA records,

when an authoritative DNS server is benchmarked (called
the ‘‘self-test of the tester’’ in RFC 8219 terminology), the
authoritative DNS server has to be configured to provide
AAAA records.

In this paper, we refer to the size of the zone file with the
mask of the corresponding IPv4 network, e.g. ‘‘/8’’.

The original test program used a self-correcting timing
algorithm, which caused significant inaccuracies at higher
than 50,000qps (queries per second) rates. This problem
was investigated and the timing algorithm was replaced by
a simpler one [19], which is now included in its mainline
version [20].
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The original test program used only two threads, one for
sending and one for receiving. Now, it can use n times two
threads, providing much higher performance. It is also able
to use a high number of different source ports for sending the
queries, which proved to be a prerequisite of benchmarking at
high query rates, see Section III.E.1. Originally, it used IPv6
and as transport protocol (for sending queries and receiving
replies), which was completely adequate for benchmarking
DNS64 servers. Now it can use also IPv4, which permits
testing up to higher rates.

During our preliminary measurements, we have observed
that its threads were moved among the CPU cores by
the scheduler during the execution of the tests. Therefore,
we have added a new feature that sets the affinity of the
threads so that the sender threads and the receiver threads
are pinned to cores 0 – (n − 1) and to cores n − (2n − 1),
respectively. The modified files are available from [21].

We note thatdns64perf++was designed towork in two
phases. First, the requests are sent and the replies are received
and the relevant information (e.g. sending and receiving
timestamps) are stored in huge arrays. This is done by n
times two threads. Then, the evaluation is done as a sequential
process. At high rates (e.g. 1-2 million queries per second),
the execution time is dominated by the second phase. Thus,
the execution time highly depends on the actual rates. For
example, when the performance of a DNS or DNS64 server
is a few times 10,000qps, the initial range can be [0, 50,000].
The execution time of the required 20 repetitions of the binary
search consisting of 16 steps each is typically 6-8 hours.
On the other hand, when the performance of a DNS server
is about 3,000,000qps, the initial range can be [0, 3,300,000].
The execution time of the required 20 repetition of the binary
search consisting of 22 steps each is about a day. (Both,
because the binary search requires more steps, and because
the execution of a 60s long test lasts for several minutes
due to the sequential evaluation process.) These numbers are
important, when a high number of measurements are required
e.g. due to testing with all possible parameter combinations.

B. SELECTED AUTHORITATIVE DNS SERVER
IMPLEMENTATIONS
As for authoritative DNS server implementations to be tested,
we have considered only free software [22] (also called open
source [23]) for the same reasons given in [24].

ISC BIND [25] is the de facto industry standard DNS
server, thus even if we knew that other implementations had
higher performance, we considered important to include it.

NSD [27] was selected because of our good experience
with it: its single core performance was found higher than
the 16-core performance of BIND [9].

Knot DNS [26] was selected on the basis of the perfor-
mance measurement results of its developers [16].

YADIFA [28] was included because RFC 8219 mentions
it, and according to our previous experience it outperformed
BIND [9].

TABLE 1. The building elements of the test systems.

As for further free software DNS implementations,
we have also considered PowerDNS [29], but we did not
select it. The results of the Knot DNS developers showed
that PowerDNS could not comply with the 0% loss crite-
rion of RFC 8219 even at 100,000qps rate (please see the
original, interactive version of our Fig. 1: it could answer
only 99,450 queries per second [16], and it produced 1.7%
loss at 400,000qps rate, which we consider unacceptable for
authoritative DNS server function). Unbound is also a well-
known high performance recursive DNS server, but it does
not have an authoritative DNS server function.

FIGURE 1. Response rate of different authoritative DNS servers [16].

C. TEST SYSTEMS FOR BENCHMARKING
The benchmarking experiments were carried out in the NICT
StarBED, Japan.We used two types of servers (N nodes and P
nodes), because they both had their advantages over the other
one. The N nodes were Dell PowerEdge C6620 servers with
16 physical cores, and their clock frequencies could be set to
a fixed value, which was an important advantage [8]. The P
nodes were Dell PowerEdge R430 servers with 32 physical
cores, which was also important, when the performance was
examined as a function of the number of CPU cores.

We used four test systems with the same logical construc-
tion as shown in Fig. 2. The components of the four test
systems are detailed in Table 1.

As we have pointed out performance differences among
our three test systems consisting N nodes during our earlier
tests [9], we performed the same kinds of tests of each exam-
inedDNS implementation using the very same computers and
used the different test systems for different kinds of tests.

As for the settings of the computers, hyper-threading was
disabled in the BIOS of all computers to ensure stable
results [8]. To make always the DUT (Device Under Test)
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FIGURE 2. Measurement setup for all types of measurements.

the bottleneck, Turbo Mode was disabled in the DUTs and
enabled in the Testers. The clock frequencies of the N series
DUTs (n015 and n018) was set to fixed 2GHz using the same
BIOS setting as in [9]. However, we could not do the same
with the P series DUTs (p102 and p104), finding no such
settings in their BIOS.

TS2 (Test System 2) and TS3 were our primary testbeds,
which we used for the scale-up tests. TS1 and TS4 were their
‘‘back-ups’’, they were added to offload some measurements
(e.g. zone file size tests and also scale up tests of DNS servers
with lower performance) from TS2 and TS3 and thus speed
up experimentation.

We need to mention another difference between the two
types of nodes: their cores are enumerated differently, which
also influences their apparent NUMA (Non-Uniform Mem-
oryAccess) architecture. In theN series nodes, CPU cores 0-7
(called cpu0 - cpu7 under Linux) belong to the first physical
CPU and NUMA node 0, and cores 8-15 belong to the second
physical CPU and NUMA node 1. In the P series nodes, the
even number cores (cores 0, 2, 4, . . . 28, 30) belong to the first
physical CPU and NUMA node 0, and the odd number cores
(cores 1, 3, 5, . . . 29, 31) belong to the second physical CPU
and NUMA node 1. Thus, in both cases, the first physical
CPU is NUMA node 0 and the second physical CPU is
NUMA node 1, the only difference is the order, in which the
cores are enumerated by the Linux kernel. However, this order
may make a difference, when the first n number of cores are
enabled during the tests (see its effect for the scale up tests in
Section IV).

D. TYPES OF TESTS AND THEIR MOST IMPORTANT
PARAMETERS
The performance of the examined four authoritative DNS
server implementations may depend on several factors, such

as the number of active CPU cores of the DUT, the size of
the zone file, the timeout value, and the hardware type of the
DUT. The number of all combinations of their possible values
were too high to use them all. Hence, we used those combi-
nations, which we found meaningful during our preliminary
tests.

1) SCALE UP TEST
The aim of these tests was to examine, how the performance
of the four tested DNS server implementations scaled up
as the number of CPU cores were increased. Following our
earlier practice, we doubled the number of active CPU cores
starting from one (instead of increasing them one by one) to
reduce the necessary number of tests [9].

TABLE 2. The maximum query rate as a function of the zone file size.

In order to support RFC 8219 compliant DNS64 bench-
marking tests, we needed to ensure all different domain
names for a 60s long test at all used query rates. It means
that we had to choose large enough zone files for our tests.
(Table 2 shows the number of entries and the maximum
usable query rate of a 60s long test as a function of the
zone file size.) To fulfill this requirement, we performed
preliminary measurements to assess the performance of the
DNS implementations using various number of CPU cores
in order to be able to determine the necessary zone file size
for the scale up tests. Both Knot DNS and NSD performed
over 1.5Mqps and 2.5Mqps using TS2 and TS3, respectively.
Therefore, we had to use /5 and /4 size zone files for their
scale up tests on TS2 and TS3, respectively. Our preliminary
tests showed that BIND and YADIFA could not achieve
higher performance than 260,000qps, thus a /8 size zone file
was enough for them and their performance was measured
using T1 and TS4.

Generally, the zero loss criterion of RFC 8219 was used,
but in some cases we have experienced that the results of
the 20 measurements were very much scattered, and when
we have examined the measurement log files, we saw that the
tests failed due to a low number of missing replies. In these
cases we also used 99.99% valid answers as acceptance cri-
terion.

2) ZONE FILE SIZE TEST
The aim of these tests was to examine, how the size of the
used zone file influenced the performance of the four tested
DNS server implementations. We performed these tests by
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doubling the size of the zone file (four times) from /8 to /4.
In addition to that, the low performance of BIND allowed it
to be tested with smaller zone files (from /11 to /9), too. For
these tests, we used TS1 and TS4.

Our approach was to execute these tests using only a
single CPU core, to reduce the performance of the tested
DNS servers thus enabling the usage of smaller zone files.
It was successful with both BIND and NSD. However, the
single core results of Knot DNS and YADIFA were too much
scattered, thus they were unsuitable for examining how the
size of the used zone file influenced the performance of these
DNS implementations.

For testing Knot DNS, we used 99.99% and 99.9%
valid answers as acceptance criterion with TS1 and TS4,
respectively.

For testing YADIFA, we used eight CPU cores, as its
performance was still moderate enough allowing the usage
of a ‘‘/8’’ size zone file.

3) TIME-OUT TESTS
The aim of these tests was to examine, how the specified
timeout value influenced the performance of the four tested
DNS server implementations. Our preliminary results showed
that the applied 250ms and 100ms values resulted in very little
differences (please see the actual values later), thus only a few
tests were performed to check the validity of this observation
in various critical working points. (All four tests systemswere
used.)

E. OTHER RELEVANT PARAMETERS
1) USAGE OF HIGH NUMBER OF DIFFERENT SOURCE PORT
NUMBERS
When authoritative DNS servers are used in real life, the
requests usually arrive from different source IP addresses and
also from different source ports. (Even if the majority of the
requests comes from a few recursive servers, the source port
numbers used by a given recursive DNS server must be differ-
ent to comply with the requirements of the RFC 5452 [30].)

When authoritative DNS servers are used to support
DNS64 benchmarking, the requests are coming from the
same IP address, but the source ports should be still dif-
ferent for the same reason as above. (In the case of the
major DNS64 implementations, namely BIND, PowerDNS
and Unbound [31], we have checked that they complied with
this rule [32].)

Neither RFC 8219, nor our paper on the benchmarking
methodology for DNS64 servers [8] mentions the usage of
high number of different source port numbers as requirement
for the Tester, but now we contend that they should have done
so.We consider it important for both theoretical and practical
point of view.

Under ‘‘theoretical’’ we mean that the usage of high num-
ber of different source ports is necessary for proper testing,
because the tested DNS / DNS64 implementations may use
the SO_REUSEPORT socket option for distributing the traffic

among their multiple threads or processes [33]. (This socket
option is supported since Linux kernel version 3.9.) A Tester
without the capability of using a high number of source
ports is simply not suitable for benchmarking of those DNS /
DNS64 implementations that use the aforementioned socket
option.

Under ‘‘practical’’ we mean that multi-core operating sys-
temsmay use also source port numbers in the hash function to
distribute the interrupts evenly among the CPU cores, which
is a prerequisite for receiving several millions of packets per
second [34]. We used the following command to distribute
the interrupts evenly among the CPU cores:
ethtool -N interface rx-flow-hash udp4 sdfn

In this case, the source and destination IP addresses and port
numbers are included in the hash function. As the other three
numbers are constants during the tests, the interrupts cannot be
distributed among the CPU cores without using a high number of
different source port numbers and the capacity of the single core
used by the interrupts becomes a bottleneck.

In all our measurements, we used the highest possible num-
ber of threads in dns64perf++, it means that 8 thread pairs
on n014 and n017, and 16 thread pairs on p101 and p103.
We used 4,000 different port numbers by each sending threads
of dns64perf++, thus altogether 32,000 or 64,000 different
source ports were used. (We note that the mainline version of
dns64perf++ starts the source port numbers from 10,000,
thus we have changed it to 1024 in the source code.)

2) TO OPTIMIZE OR NOT TO OPTIMIZE?
On the one hand, one can argue that it is fair to consider the
very best results of each tested DNS server implementations,
suggesting that they should be optimized for benchmarking. This
would include their recompilation and fine tuning.

However, on the other hand, this could be a never ending game:
different tests would require different settings, and one could
never be sure, if the best performance has already been found or
not. Such optimization would also require a very deep knowledge
of all tested implementations, which we do not have. Our most
important argument against such tuning is that the results would
be irrelevant for the majority of their users because the users
usually use them as they are included in their favorite Linux
distribution.

Therefore, we also used them as they were installed using
Debian 9.6.

3) CONFIGURATION SETTINGS OF THE DNS SERVERS
In general, we have made only the absolutely necessary changes
to the default configuration files of the DNS servers, whichmeans
the setting of the zone name and zone file. In the case of NSD,
we had to make further changes, because otherwise it would have
used only a single CPU core. The new settings were:
server:
server-count: n # = no. of active cores
reuseport: yes # enable SO_REUSEPORT
The other three DNS implementations automatically usedmul-

tiple threads.
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4) SETTING THE NUMBER OF ACTIVE CPU CORES AT THE
DUT
The number of active CPU cores at the DUT was set by using the
maxcpus = n kernel parameter.

We note that first, we tried using the method for switching the
CPU cores on and off on the fly described in [9], but then we
have received scattered measurement results using the N nodes.
Then we used the above mentioned method (with rebooting the
operating system), but there were still problems with the scat-
tered results. Then our colleague, Gábor Horváth, who teaches
Computer Architecture at the Budapest University of Technology
and Economics, advised us to completely power off the node (not
only reboot it). It was done by using the ‘‘Hard Reset (Restart)’’
power control action of the ‘‘Dell Remote Manager Controller’’
of the given N node, which has solved the issue. We have used
this power control action always, when the number of active CPU
cores were changed. We have not tested whether it was necessary
or not, rather we used its equivalent ‘‘Power Cycle System (cold
boot)’’ with the P nodes. We plan to investigate this phenomenon
later on.

5) HARDWARE PARAMETERS AND SOFTWARE VERSION
NUMBERS
For the repeatability of our results, we give the most important
hardware parameters and software version numbers.

The N nodes were Dell PowerEdge C6620 servers with two
Intel Xeon E5-2650 2GHz CPUs, having 8 cores each, and 16×
8GB 1333MHz DDR3 RAM. We used one of their Intel 10G 2P
X520 (fiber) network adapters.

The P nodes were Dell PowerEdge R430 servers with two Intel
Xeon E5-2683 v4 2.1GHz CPUs, having 16 cores each, and 12×
32GB 2400MHz DDR4 RAM.We used one of their Intel 10G 2P
X540 (copper) network adapters.

The version numbers of the tested DNS servers were the
following:

• BIND 9.10.3-P4-Debian
• NSD 4.1.14
• Knot DNS 2.4.0
• YADIFA 2.2.3-6237

The earlier installed Debian Linux systems were upgraded to
9.6 on all nodes. As the update of Debian does not update the
Linux kernel, the kernel release was 4.9.0-4-amd64 and 4.9.0-8-
amd64 on the N nodes and on the P nodes, respectively.

As for dns64perf++ [20], its multiport branch was used
(commit d6fa119 on Oct 8 2018) with our aforementioned mod-
ifications (adding affinity, and starting the source ports from
1024). It was compiled by clang 3.8.1-24 enabling packet sending
over IPv4 by using the ‘‘IPV4=1’’ make parameter.

IV. RESULTS AND EVALUATION
During the presentation and discussion of the results, first,
we focus on the behavior each DNS server separately, and com-
pare them in the end.

We usually begin the discussion of each DNS server with some
general information about it. Next, the scale up test results are

presented and discussed, and we deal with the zone file size test
after them. The timeout test is not handled separately, it was rather
integrated with the scale up and/or the zone file size tests.

As for summarizing function of the results of the 20 mea-
surements, RFC 8219 requires to use median, and as for index
of dispersion of the results, it requires the presentation of 1st
percentile and 99th percentile, which are the minimum and max-
imum values, when we have less than 100 measurement results.
When the given authoritative DNS implementation is intended to
be used to support DNS64 benchmarking, then the 1st percentile
should to be taken into consideration, so that the insufficient
performance of the authoritative DNS server may not impact the
DNS64 measurement results. When the results are intended to
support DNS server operators, then we recommend to use the
median.

In [9], we have introduced another measure as follows:

dispersion =
99th percentile− 1st percentile

median
· 100% (1)

It can be used to judge the quality of the results. If it is low (e.g.
below 5%) then the results are consistent. Its higher and higher
values indicate more and more scattered results.

Unfortunately, scattered results may be either an inherent prop-
erty of a given DNS server implementation, or they may come
from somewhere else and thus indicate for example a hardware
issue or even a bug or performance deficiency in themeasurement
software, dns64perf++. After the evaluation of the results,
we show that the performance of dns64perf++ is definitely
enough up to 3.3 million queries per second rate, when it is
executed by a P node with Turbo Mode enabled.

A. BIND
Before the presentation of the results, we need to touch an impor-
tant feature of BIND. When BIND is started, it provides sev-
eral pieces of useful information through syslog. Among others,
it writes the following two lines:
found n CPUs, using n worker threads
using m UDP listeners per interface

The number of the worker threads equals the number of the
active CPU cores, but it uses a special heuristic to set the number
of the UDP listeners.

• When there are 1 or 2 active CPU cores, then the number of
the UDP listeners equals the number of the CPU cores.

• When the number of the active CPU cores is 4 or higher,
then the number of the UDP listeners equals the half of the
number of the CPU cores.

This heuristic has significant consequences on the perfor-
mance of BIND.

1) SCALE UP TEST
The authoritative DNS server performance results of BIND as
a function of the number of active CPU cores using a ‘‘/8’’
size zone file measured by TS1 (Test System 1, the DUT is an
N node) are presented in Table 3. The performance of BIND
visibly scales up very well from one to two cores, but there is
conspicuous glitch at four cores. The bottleneck is deliberately
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TABLE 3. Authoritative DNS server performance as a function of the number of CPU cores, BIND, ‘‘/8’’, TS1, 0.25s (0.1s).

TABLE 4. Authoritative DNS server performance as a function of the number of CPU cores, BIND, ‘‘/8’’, TS4, 0.25s (0.1s).

TABLE 5. Authoritative DNS server performance as a function of the number of CPU cores, BIND, ‘‘/5’’, TS2, 0.25s.

the number of UDP listeners (two). At higher number of cores, the
performance of BIND scales up well again. The five performance
results measured using 250ms timeout are complemented with
two results measured using 100ms timeout. Let us consider first
the single CPU core result in the last but one column of the
table. Due to the smaller timeout value, the median has decreased
by 12% from 19,792qps to 17,409qps and the dispersion of the
results increased from 1.6% to 5.9%. As for the result of the
16-core test with 100ms timeout, the value of the median did not
change significantly (the slight increase must be a measurement
error), only the dispersion increased from 1.78% to 2.78%. The
second behavior can be explained by the fact that with four cores
and above, the bottleneck is the number of receivers, and thus if
a request is successfully received, then it will be replied soon,
thus the smaller timeout does not influence the achievable rate,
which is also confirmed by our TS4 results below. (We mean it
for the median. Of course, random events in the measurement
system may influence the 1st percentile more, when the timeout
is smaller).

The results measured by TS4 (the DUT is a P node) are
presented in Table 4. Similar tendencies can be observed: BIND
scales up well, and there is a glitch at 4 cores. However, there are
significant differences, too. Especially at 4 and 8 cores, there is
high (more than 10%) dispersion, which is also significant (more
than 5%) at 1 core. The high dispersion could be attributed to the
varying CPU clock frequency of the P nodes, but the dispersion
is low (less than 1%) at two cores. The last two columns of the
table show our results with 100ms timeout using 1 or 32 cores.
The decrease of the medians is negligible in both cases (in our
opinion it is very likely less than the error of the measurements).

Comparing the results of TS1 and TS4, we can see that the
performance gain of the newer system highly depend on the
number of CPU cores used. With a single core, the median

performance grows by 42.5% from 19,792qps to 28,205qps,
whereas the increase from 140,372qps to 153,736qps is only
9.5% with 16 cores, which we consider inconsistent.

We have executed the scale up test measurements also with a
‘‘/5’’ size zone file using TS2. The results are shown in Table 5.
The tendencies are very similar to that of the results produced by
TS1, since both DUTs were N nodes.

The results measured by TS3 using a ‘‘/4’’ size zone file are
presented in Table 6. Here, the situation is even worse than in the
case of TS4 in two aspects.

1. There is a high dispersion at 2 cores, which is caused
by a single outlier. We have performed this test 4 times,
and always there was a single outlier, which fell in the
12,300qps – 15,500qps range.

2. The performance sharply falls back at 4 cores.
We attribute this phenomenon to design problems of BIND

and did not invest any more effort into its investigation for the
following reasons:

1. Similar problem is identified in the next subsection.
2. As we have pointed it out in [9], BIND had also a seri-

ous performance problem, when it was used as a DNS64
server. (Its performance did not scale up over 4 cores at
all. We have reported it to the developers as [ISC-Bugs
#46924] in 2017, but we have not received any reply so
far.)

3. As it is shown later in this paper, BIND was significantly
outperformed by other DNS implementations.

Thus, we believe that it is not worth the effort to do a deeper
analysis of the anomalies of BIND.

2) ZONE FILE SIZE TEST
The authoritative DNS server performance results of BIND as a
function of the size of the zone file measured by TS1 using a
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TABLE 6. Authoritative DNS server performance as a function of the number of CPU cores, BIND, ‘‘/4’’, TS3, 0.25s.

TABLE 7. Authoritative DNS server performance as a function of zone file size, BIND, 1 CPU core, TS1, 0.25s.

TABLE 8. Authoritative DNS server performance as a function of zone file size, BIND, 1CPU core, TS4, 0.25s.

TABLE 9. Authoritative DNS server performance as a function of the number of CPU cores, NSD, ‘‘/5’’, TS2, 0.25s (0.1s).

single CPU core are presented in Table 7. The overall tendency is
exactly, what we expected on the basis of the previous results: the
performance decreases as the size of the zone file increases. It can
be easily explained by computer architectural causes. Consider-
ing, that BIND uses somewhat more than 4GB memory, when
it loads a /8 zone file and the CPU has only 20MB cache, the
explanation has nothing to do with caching but the reason can be
the decreasing TLB (Translation Lookaside Buffer) coverage.

However, similarly to the scale up test, we can also observe
a glitch: when the size of the zone file is doubled from ‘‘/7’’ to
‘‘/6’’ the performance shows a significant increase. We surmise
that there can be some kind of technology change behind, which
is somewhat ill positioned by an inappropriate heuristic. (Such as
changing form a linked list representation to a B-tree representa-
tion at too high number of elements in date storage and retrieval.
But that is intended to be a simile only, nothing more.)

The results measured by TS4 are presented in Table 8. Similar
tendencies can be observed: the performance globally decreases
as the zone file size increases, but there is a glitch at the ‘‘/4’’ size
zone file. We have also performed a measurement with a ‘‘/3’’
size zone file and its performance result was about one third of
the performance measured with a ‘‘/4’’ size zone file.

B. NSD
Unlike the other three authoritative DNS server implementa-
tions, NSD does not use multiple threads, it rather uses multiple

processes. We set the server-count value always to the
number of the active CPU cores. When NSD was started using n
number of active CPU cores, NSD always started n+2 processes
listening on port 53, however, only n of them were taking part in
the service of the DNS queries.

1) SCALE UP TEST
The authoritative DNS server performance results of NSD as a
function of the number of active CPU cores using a ‘‘/5’’ size
zone file measured by TS2 are presented in Table 9. NSD scales
up well up to four CPU cores. However, significant problems
can be observed at 8 cores, were the dispersion of the results is
15.07%. We have investigated its cause and found that some of
the tests failed due to very small differences between the number
of the sent requests and the number of the valid answers (less than
0.01%). Therefore, we have repeated our tests with the 99.99%
acceptance criterion. The results, which are shown in Table 10,
confirmed our hypothesis: the dispersion has decreased at any
number of cores, although in a different measure. For the results
of 1-4 cores, the performance increase over the results in Table 9
is very small (below 3% concerning any of the values). Although
the increase of the 1st percentile is significant at 16 cores, it does
not really matter, because DNS64 benchmarking, for which the
1st percentile is used, does not tolerate packet loss. The increase
of the median, which we consider important for DNS operators
is only 5.67% (from 1,454,661qps to 1,537,105qps).
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TABLE 10. Authoritative DNS server performance as a function of the number of CPU cores, NSD, ‘‘/5’’, TS2, 0.25s (0.1s) ACCEPTANCE CRITERION: 99.99%,
non-RFC 8219 compliant!

TABLE 11. Authoritative DNS server performance as a function of the number of CPU cores, NSD, ‘‘/4’’, TS3, 0.25s.

TABLE 12. Authoritative DNS server performance as a function of the number of CPU cores, NSD, ‘‘/4’’, TS3, 0.25s (0.1s) ACCEPTANCE CRITERION: 99.99%,
non-RFC 8219 compliant!

TABLE 13. Authoritative DNS server performance as a function of zone file size, NSD, 1 CPU core, TS1, 0.25s (0.1s).

The authoritative DNS server performance results of NSD as a
function of the number of active CPU cores using a ‘‘/4’’ size
zone file measured by TS3 are presented in Table 11. Unfor-
tunately, the results of the newer and higher performance DUT
are lower than that of the older one from 1 to 8 cores, but
the situation changes at 16 cores. For an easier comparison of
the performance of the two systems we have performed our
measurements with the 99.99% acceptance criterion (to reduce
the dispersion of the results). The results are shown in Table
12. Unfortunately the dispersion remained very high at 2 cores
(30.43%), which was caused by the low 1st percentile value
(198,338qps). The dispersion was low at any other number of
cores, thus we could check the effect of the timeout change.
When the timeout value was decreased from 250ms to 100ms,
the median changed from 3,099,333qps to 2,954,180qps, which
is only a 4.7% decline. Now, let us return to the performance
comparison of the two types of nodes. We consider the median
values of the results of the 99.99% acceptance criterion tests of
TS2 and TS3, shown in Table 10 and Table 12, respectively. The
medians are approximately the same at a single core (177,735qps
and 178,255qps). At two cores, the result of TS2 is 327,515qps,
which is a good scale up (84% growth), whereas the result of TS3
is 277,996qps, which is a significantly lower scale up (only 56%
growth). We attribute this difference to the fact that the cores of

the two types of CPUs are enumerated in a different order, as we
detailed it at the end of Section III.C. It means that core 0 and
core 1 belong to the same physical CPU (and NUMA node) in
the DUT of TS2, whereas they belong to two different physical
CPUs (and NUMA nodes) in TS3. Let us check our hypothesis:
what happens, when the CPU (and NUMA) situation changes in
TS2 from homogeneous to heterogeneous and it does not change
in TS3 (as it is already heterogeneous in both cases). The median
grows only by 41% from 8 cores (1,089,275qps) to 16 cores
(1,537,105qps) in TS2. The increase of the median from 16 cores
(1,740,020qps) to 32 cores (3,099,333qps) is still 78% in TS3,
which is nearly the double of the before mentioned 41%. Thus,
we consider our hypothesis as confirmed.

2) ZONE FILE SIZE TEST
The authoritative DNS server performance results of NSD as
a function of the size of the zone file using a single CPU
core measured by TS1 and TS4 are presented in Table 13 and
Table 14, respectively. They are in a complete agreement
that the performance of NSD shows no significant decrease as
the size of the zone file increases. They both confirm that
the 100ms timeout value caused no change in the measured
performance comparing to measurements with 250ms timeout
value.
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TABLE 14. Authoritative DNS server performance as a function of zone file size, NSD, 1CPU core, TS4, 0.25s (0.1s).

TABLE 15. Authoritative DNS server performance as a function of the number of CPU cores, Knot DNS, ‘‘/5’’, TS2, 0.25s (The results with 16 CPU cores
were limited by the performance of the Tester!).

TABLE 16. Authoritative DNS server performance as a function of the number of CPU cores, Knot DNS, ‘‘/5’’, TS2, 0.25s (0.1s) ACCEPTANCE CRITERION:
99.99%, non-RFC 8219 compliant! (The results with 16 CPU cores were limited by the performance of the Tester!)

C. KNOT DNS
According to the Knot DNS server documentation, the
udp-workers directive, which should be placed into the
server section of the configuration file, can be used to set
the number of UDP workers (threads). In accordance with our
approach disclosed in Section III.E.2, we did not set it, thus its
default value was used, which is an ‘‘auto-estimated optimal
value based on the number of online CPUs’’ [26].

1) SCALE UP TEST
The authoritative DNS server performance results of Knot DNS
as a function of the number of active CPU cores using a ‘‘/5’’
size zone file measured by TS2 are presented in Table 15. Unfor-
tunately, the performance of the Tester was unsatisfactory for
the tests with 16 cores (high number of received packets were
reported to be lost by the Ethernet interface). For this reason,
the values in this column of the table do not reflect the true
performance of Knot DNS. We exclude them from the detailed
analysis, but we still present them to show that they are higher
than the results of NSD. The performance of Knot DNS scales
up well up to 8 cores (and very likely up to 16 cores, too)
considering both the median and the 1st percentile, but the results
are very scattered from 1 to 4 CPU cores, which was caused by a
small number of lost replies, as confirmed by our measurements
using 99.99% acceptance criterion, shown in Table 16. In the
last column of this table, we included the 100ms timeout values
measured with 8 cores (as the results with 16 cores are limited
by the performance of the Tester). The lower timeout value does
not have a significant influence on the performance of Knot DNS
(the very small increase from 1,167,716qps to 1,168,724qps is
deliberately a measurement error).

The authoritative DNS server performance results of Knot
DNS as a function of the number of active CPU cores using a
‘‘/4’’ size zone file measured by TS3 are presented in Table 17.
The most salient problem is the 99,999qps 1st percentile value
at 2 cores. This test was executed three times and this value
occurred each time, thus it is not a once happened random event,
but an inherent property of Knot DNS, which we must count
on if Knot DNS is used for DNS64 benchmarking. However,
it is caused by a few missing answers, and thus it is absent
from Table 18, which shows the result with 99.99% acceptance
criterion measurements. Otherwise Knot DNS scaled up well.
We would like to point out that although Knot DNS produced
highly scattered results with TS2 from 1 to 4 cores, and its results
with TS3 are extremely scattered at 2 cores, they are much better
with higher numbers of cores. Considering TS3, the dispersion is
under 10% from 4 to 32 cores and it is quite low at 4 and 32 cores.
We note that its excellent results at 32 cores made it possible for
us to check the performance of dns64perf++, please refer to
Section IV.F for more details.

2) ZONE FILE SIZE TEST
Due to the high dispersion of the results of Knot DNS at any
number of CPU cores, the zone file size test was executed with
the 99.99% acceptance criterion using Test System 1. The bar was
lowered to 99.9% with Test System 4 to produce non-scattered
results. By doing so we do not state that the 99.9% reply rate
would be acceptable for anyone, we used this value to be able to
produce non-scattered results for the comparison.

The authoritative DNS server performance results of Knot
DNS as a function of the size of the zone file using a single CPU
core measured by TS1 and TS4 are presented in Table 19 and
Table 20, respectively. Although there are some fluctuations, both
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TABLE 17. Authoritative DNS server performance as a function of the number of CPU cores, Knot DNS, ‘‘/4’’, TS3, 0.25s.

TABLE 18. Authoritative DNS server performance as a function of the number of CPU cores, Knot DNS, ‘‘/4’’, TS3, 0.25s (0.1s) ACCEPTANCE CRITERION:
99.99%, non-RFC 8219 compliant!

TABLE 19. Authoritative DNS server performance as a function of zone file size, KNOT DNS, 1 CPU core, TS1, 0.25s (0.1s)ACCEPTANCE CRITERION: 99.99%,
non-RFC 8219 compliant!

TABLE 20. Authoritative DNS server performance as a function of zone file size, Knot DNS, 1CPU core, TS4, 0.25s (0.1s) ACCEPTANCE CRITERION: 99.9%,
non-RFC 8219 compliant!

TABLE 21. Authoritative DNS server performance as a function of the number of CPU cores, YADIFA, ‘‘/8’’, TS1, 0.25s.

tables show that neither the size of the zone file nor the timeout
value have significant effect on the performance of Knot DNS.

D. YADIFA
1) SCALE-UP TESTS
The authoritative DNS server performance results of YADIFA
as a function of the number of active CPU cores using a ‘‘/8’’
size zone file measured by TS2 are presented in Table 21.
At 1 and 2 cores, the results are very much scattered (disper-
sion is more than 20%). They improve at 4 cores (dispersion is
4.4%), and the dispersion is only 0.44 at 8 cores, where YADIFA
reaches its highest performance. Its performance not only scales
up poorly, but it also significantly degrades at 16 cores, which we
consider a fundamental problem.

Table 22 shows the results of YADIFA produced by TS4.
They are even worse in the sense that they are always very

scattered. We have included them only to show their quality and
the performance degradation of YADIFA at 32 cores.

We have also executed the benchmarking tests with TS2 and
TS3, using ‘‘/5’’ and ‘‘/4’’ size zone files, respectively, but we
do not include their results because they are very similar to that
of TS1 and TS4 and thus they would not lead to any further
conclusion.

Because of the poor scale up of YADIFA, we did not see any
point in producing more non-RFC 8219 compliant results, thus
we did not test it with non-zero frame loss criterion.

2) ZONE FILE SIZE TEST
The authoritative DNS server performance results of YADIFA as
a function of the size of the zone file using 8 CPU cores measured
by TS1 are presented in Table 23. They show that neither the
increase of the size of the zone file, nor the decrease of the timeout
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TABLE 22. Authoritative DNS server performance as a function of the number of CPU cores, YADIFA, ‘‘/8’’, TS4, 0.25s.

TABLE 23. Authoritative DNS server performance as a function of zone file size, YADIFA, 8 CPU cores, TS1, 0.25s (0.1s).

value from 250ms to 100ms causes a significant change in the
performance a YADIFA.

E. COMPARISON
As for their performance, the examined four authoritative DNS
server implementations evidently fall into two categories. BIND
and YADIFA have shown moderate performance (less than
300,000qps), whereas NSD and Knot DNS gave an excellent
performance, reaching 2-3 million qps depending on the given
conditions. Thus we concentrate on the latter two.

1) OUR RECOMMENDATION FOR AUTHORITATIVE DNS
SERVER OPERATION
We contend that a DNS service may be acceptable for many
ISPs and their users if a single query is lost from 10,000 queries,
therefore, we used the median values from Table 10 (NSD, TS2),
Table 16 (Knot DNS, TS2), Table 12 (NSD, TS3), and Table 18
(Knot DNS, TS3) for comparison. (For those DNS operators,
who prefer higher standards, we recommend the usage of our
comparison in the next subsection.) Our final results are shown
in Fig. 3. Both implementations performed excellently, whereas
NSD was somewhat better at low number of cores (1-4), Knot
DNS was somewhat better at high number of cores (8-32). As for
their performance, we recommend the usage of both servers.

When selecting a DNS server implementation, operators need
to consider several factors, including the following ones:
• Functionality (e.g. authoritative, recursive, DNSSEC,

DNS64)
• Performance
• Security, reliability, maturity of the code
• Documentation and support
• Experience with the software
As both NSD and Knot DNS are used with some root DNS

servers, we believe that they are both suitable for DNS server
operators, too. We hope that our results will encourage DNS
server operators to upgrade from BIND and thus achieve higher
performance and/or save costs.

2) OUR RECOMMENDATION FOR DNS64 BENCHMARKING
To support DNS64 benchmarking, only the results of
RFC 8219 compliant measurements can be used and the 1st
percentiles should be taken into consideration, therefore, we used
the 1st percentile values from Table 9 (NSD, TS2), Table 15

FIGURE 3. Comparison of NSD and Knot DNS for DNS server operation.
(The N node result of Knot DNS at 16 cores is limited by Tester
performance.)

(Knot DNS, TS2), Table 11 (NSD, TS3), and Table 17 (Knot
DNS, TS3) for comparison. Our final results are shown in Fig. 4.
Both implementations performed excellently. As for TS2 (DUT:
Dell PowerEdge C6620), NSD performed significantly better
with 1-4 cores, and Knot DNS produced higher results with 8-
16 cores. On TS3 (DUT: Dell PowerEdge R430) NSD performed
significantly better on 1-2 number of cores, their performance
was similar on 4-16 number of cores, and Knot DNS performed
significantly better on 32 cores.

Considering the actual performance of existing DNS64
servers [9], any of them and even BIND orYADIFAwould do, but
when high performance is needed (e.g. when testing a new, high
performance DNS64 implementation), then it is worth selecting
either NSD or Knot DNS, depending on the actual hardware envi-
ronment. We also note that NSD requires a significant amount of
time for starting as it builds its own database, for which it needs
large amount of disk space, e.g. nearly 200GB for a ‘‘/4’’ size
zone file.

F. CHECKING THE PERFORMANCE OF DNS64PERF++

The excellent performance of Knot DNS (using all 32 cores of
a P node) made it possible for us to check the performance
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FIGURE 4. Comparison of NSD and Knot DNS for DNS64 benchmarking.
(The N node result of Knot DNS at 16 cores is limited by Tester
performance.)

of dns64perf++. TS4 was used, however, Turbo Mode was
enabled in the DUT, too. We found that dns64perf++ could
send and receive packets reliably at 3.3 million qps rate.

Without this test we could not be sure that the results in the last
column of Table 17 and in the last two columns of Table 18 reflect
the performance of Knot DNS or that of our tester program
dns64perf++.

V. DISCUSSION AND FUTURE WORK
On the one hand, the number of processes of NSD were set
exactly to the number of active CPU cores. Whereas it worked
well with low number of active CPU cores, the situation was dif-
ferent with higher number of cores. On the other hand, Knot DNS
used an auto-estimated optimal number of threads. Although it
did not seem to work well at a low number of active CPU cores,
it was excellent at 32 cores. As the number of CPU cores is
continuously growing, it seems that the developers of Knot DNS
follow a good approach.

We note that the selected RFC 8219 compliant benchmarking
method using the latest version of dns64perf++ is not only
the most suitable one for benchmarking DNS servers for DNS
operators, but it is also the most economic one. Whereas the other
solutions used five additional computers for testing a single server
(please refer to [15] and [16]), we needed only a single computer
as Tester, though we admit that Turbo Mode was enabled on the
Tester and it was disabled on the DUT to make it the bottleneck.
Disabling Turbo Mode was important also from analytical point
of view. We mean it as follows. When Turbo Mode is enabled,
a few number of cores may operate at the maximum turbo fre-
quency, however, when all cores are enabled and have high load,
their clock frequency is limited by the power budget determined
by TDP (Thermal Design Power). Thus, when Turbo Mode is
enabled, the doubling of the number of online CPUs does not
always double the available computing power.

We contend that the usage of high number of different source
ports is a very important condition for a proper testing of DNS or
DNS64 servers, thus we are considering to initiate an update to
RFC 8219. We are also examining the possibility of writing and
Internet Draft on benchmarking methodology for DNS servers
(possibly including both authoritative and recursive ones).

We are also considering to examine the computing power rela-
tive performance of the best performingDNS servers according to
the methodology defined in [9] to assist energy efficiency aware
DNS server administrators with another important factor for their
DNS implementation selection.

To make dns64perf++ even better, we plan the following
improvements:

• Enable it for using different local IP addresses for each
thread pairs, thus provide each thread pair with 64,000
source ports (potentially).

• Test different placements using CPU affinity. (E.g. to place
the sender and corresponding receiver on neighboring
cores.)

• Parallelize the processing of the information in the second
phase, which may significantly decrease execution time at
high rates (e.g. over 1 million qps).

We also plan to test and document the new features of
dns64perf++ in a research paper.

VI. CONCLUSION
We have surveyed the available methods for benchmarking
authoritative DNS servers, and found that the one we defined in
RFC 8219 for a special purpose (to support DNS64 benchmark-
ing) is the most appropriate one also for examining the perfor-
mance of the authoritative DNS servers for real authoritative DNS
server usage (with some additions or modifications, such testing
also with 100ms timeout and allowing a small non-zero loss rate,
like 0.01%).

We have carefully examined how the performance of BIND,
NSD, Knot DNS, and YADIFA depends on different factors, such
as the number of active CPU cores, the size of the zone file, the
CPU architecture, and the timeout value.

We have provided ready to use measurement results for select-
ing the most suitable DNS implementation both for authoritative
DNS server usage and for DNS64 benchmarking.
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