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ABSTRACT The fusion of hyperspectral andmultispectral images is an effective way to obtain hyperspectral
super-resolution images with high spatial resolution. A hyperspectral image is a datacube containing two
spatial dimensions and a spectral dimension. The fusion methods based on non-negative matrix factorization
need to reshape the three-dimensional data in matrix form, which will result in the loss of data structure
information. Owing to the non-uniqueness of tensor rank and noise inference, there is a lot of redundant
information in the spatial and spectral subspaces of tensor decomposition. To address the above problems,
this article incorporates smooth and sparse regularization into low-rank tensor decomposition to reformulate
a fusion method, in which the logarithmic sum function is adopted to eliminate the effect of redundant
information and shadows in both spatial and spectral domains. Moreover, the total-variation-based regular-
izer is employed to vertically smooth the spectral factor matrix to suppress the noise. Then, the alternating
direction multiplier method, as well as the conjugate gradient approach, is utilized to design a set of efficient
algorithms by complexity reduction. The experimental results demonstrate that the proposed method can
yield better performance than the state-of-the-art benchmark algorithms in most cases, which also verifies
the effectiveness of incorporated regularizers in low signal-to-noise ratio environments for hyperspectral
super-resolution images.

INDEX TERMS Remote sensing, image fusion, low-rank tensor decomposition, total variation,
super-resolution.

I. INTRODUCTION
Ahyper-spectral image (HSI) is a three-dimensional dat-
acube with abundant spatial and spectral information, which
is widely used to accurately identify substance and clas-
sification in remote sensing [1]–[3]. Generally speaking,
HSIs have high spectral resolution but low spatial resolution
owing to their mutual restriction. Therefore, how to obtain a
hyperspectral super-resolution image is of vital importance
in practical applications. In recent years, as an economical
and effective way, data fusion of low spatial resolution HSI
(LR-HSI) and high spatial resolution multispectral image
(HR-MSI) has become a research hotspot in remote sensing
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[4]–[6]. Many related research results have been obtained
on data fusion of HSIs and MSIs, which can be roughly
divided into four categories, including panchromatic sharp-
ening (pansharpening), deep neural network, subspace-based
fusion, and tensor decomposition.

Pansharpening is extended to fuse the LR-HSI and
HR-MSI by the spectral extension and projection [6],
although it was originally developed for the fusion of
a panchromatic image and an MSI, whose representative
methods include component substitution (CS) [7], [8] and
multi-resolution analysis (MRA) [9]. For instance, the CS-
based pansharpening method [8] was proposed to sharpen
the MSI by adding the spatial details obtained from the
difference of a panchromatic image and a synthetic inten-
sity component. The MRA-based method was designed to
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generate more spatial details from each multispectral band
by multiplying the difference between a panchromatic image
and its low-pass version through a filter, in which the spatial
information can be gained in the wavelet or Laplace pyra-
mid domain. However, spectral distortion is usually caused
by ignoring the inherent correlation between spatial and
spectral signatures, although some methods (i.e. GLP and
SFIM) work very efficiently [6]. With the development of
deep learning, the hyperspectral and multispectral data or
features are trained by building a deep neural network model,
in which the network hyperparameters are determined for the
reconstructed super-resolution image by relevant constraints
[10]–[13]. For example, considering spatial smoothing and
spectral correlation, a hyperspectral image super-resolution
based on convolutional neural network (CNN) [10] was pro-
posed to alleviate the distortion. Yang et al. [11] proposed
a fusion method based on deep CNN, which used the spec-
tral correlation to fuse the two branches of the LR-HSI and
HR-MSI separately. However, these methods need a training
library for data or features, and involve a large number of
hyperparameters adjustments.

The subspace-based fusion methods include Bayesian
inference and spectral unmixing [5]. As mentioned above,
data fusion aims at integrating the observed LR-HSI and
HR-MSI in the subspaces to obtain the hyperspectral
super-resolution image in the original space. Conversely,
the observed LR-HSI and HR-MSI can be generated by spa-
tially and spectrally degrading the target image, respectively,
which is called the observation model. Thus, the subspace-
based fusion method is usually an ill-posed inverse prob-
lem, which needs prior knowledge or regularization to limit
the range of solution. A Bayesian-based method was pro-
posed by adding the priors (eg. Guassian prior) to handle the
fusion problem in the wavelet domain or principal compo-
nent subspace [14]. Wei et al. [15] decomposed the images
on a set of dictionaries by redefining a proper posterior
distribution, and proposed a Bayesian-based sparse repre-
sentation (BSR) algorithm. Incorporating the total variation
regularizer, Simoes et al. [16] developed the hyperspectral
super-resolution (HySure), which was solved by the split
augmented Lagrangian shrinkage algorithm. However, since
these methods generally involve large computation, com-
plexity reduction is required to simplify the Bayesian-based
fusion approaches, such as a Sylvester equation-based fast
fusion [17].

Another subspace method is based on spectral unmixing,
and its representative work is called couple non-negative
matrix factorization (CNMF) [18]. From the viewpoint of
the observational model, CNMF, like Bayesian inference,
was also an inverse problem. As is well known, incorpo-
rating the regularization of endmember and/or abundance
signature is intended to eliminate the ill-posedness. Sparsity-
promoting regularizers were used to yield high-quality fused
images [19]–[22]. Furthermore, joint spatial and spectral reg-
ularization can improve the fused performance [23], [24].
Wu et al. [25] formulated hyperspectral super-resolution as a

global-local rank-regularized least-squares problem, assum-
ing that the spectral-spatial matrices associated with the
whole image and the local areas of the image had low-rank
structures. Veganzones et al. [26] partitioned the image into
patches, and proposed a method to solve the data fusion
problem independently for each patch based on the fact
that the real data HSIs are locally of low rank. Yang et al.
[24] employed total variation and signature-based regulariza-
tion, in which the horizontal and vertical difference matrices
were constructed separately for spatial smoothing. However,
besides the ill-posedness, the spectral-unmixing-based fusion
methods need to convert the datacube of HSI and MSI in
matrix form, which leads to the loss of three-dimensional
structure information.

From the perspective of tensor decomposition, the data of
LR-HSI and HR-MSI can be regarded as three-dimensional
tensors. To take full advantage of data structure information,
it is a better way to utilize the tensor decomposition to fuse
the HSI and MSI [27]–[31]. Tensor models include canonical
polyadic (CP) decomposition, Tucker decomposition, ten-
sor ring, and others. Owing to the low-rank property, ten-
sor decomposition has been widely used in remote sensing,
such as hyperspectral image restoration [32], image smooth
and denoising [33], [34], feature extraction [35], image
compression and reconstruction [36], [37]. For instance,
Xue et al. imposed the nonlocal low-rank regulariza-
tion on tensor decomposition for hyperspectral image
denoising [34]. Certainly, there are also some related
research works on tensor-based image fusion. For example,
Kanatsoulis et al. [27] proposed a coupled tensor factoriza-
tion framework (called STEREO) to overcome the afore-
mentioned problems, which needed little information of the
degradation operators. Xu et al. [28] brought forward a
nonlocal tensor decomposition model for HSI-MSI fusion
by exploring the relationship between the LR-HSI and the
HR-MSI via a coupled CP decomposition. Li et al. [29] rede-
fined the fusion problem as an estimation of the core tensor
and dictionaries of the three modes, and proposed a cou-
pled sparse tensor factorization (CSTF) method. Dian et al.
[38] proposed a novel HSI super-resolution method based
on non-local sparse tensor factorization (called NLSTF)
via Tucker decomposition to further exploit the non-local
spatial self-similarities of the HSI. In order to preserve
spatial–spectral structures in the LR-HSIs and the HR-MSIs
effectively, Zhang et al. [30] put forward an image fusion
method based on spatial–spectral-graph-regularized low-rank
tensor decomposition to preserve the spatial correlation and
the spectral structure in the fused images by deriving two
graphs in the spatial and spectral domains, respectively.
Dian et al. [39] developed a subspace-based low-tensor
method with multi-rank regularization, which fully exploited
the spectral correlations and non-local similarities in the HR-
HSI. He et al. [40], [41] developed a hyperspectral superres-
olution based on a coupled tensor ring model to decompose a
higher-order tensor into a series of three-dimensional tensors.
Xu et al. [42] proposed a super-resolution method using a
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high-order coupled tensor ring for the fusion of LR-HSI and
HR-MSI, which maintained spectral information and a core
tensor in the tensor ring to reconstruct the high-resolution
image. However, coupled tensor decomposition methods
often face a problem of the redundant information caused
by the non-uniqueness of tensor rank, and their performance
decreases rapidly in the low signal-to-noise ration (SNR)
environment.

To address the effect of redundant information and noise,
this article proposes a novel fusion method based on
low-rank Tucker tensor decomposition to fuse the LR-HSI
and HR-MSI for the hyperspectral super-resolution image.
Our main contributions in this article include the aspects
dicussed below. First of all, on the basis of the tensor obser-
vation model, we propose a low-rank tensor fusion method
with total variation and sparse regularization, in which the
logarithmic sum function is incorporated to strengthen the
low-rank property for removing the redundancy of factor
matrices. Then, because of the gradual change in endmember
curves, total variation is utilized to suppress the noise by
smoothing the spectral factor matrix vertically. Next, contain-
ing the weights of three-dimensional factor matrices, the core
tensor is generally sparse, since Tucker decomposition can be
regarded as a higher-order form of singular value decomposi-
tion (SVD). Finally, a set of efficient algorithms is carefully
designed to reduce the computational complexity using the
conjugate gradient (CG) and alternating direction multiplier
method (ADMM) [43]. Three real datasets captured by dif-
ferent sensors are adopted to conduct the exprimental tests,
showing that the proposed method can significantly enhance
the spatial resolution of reconstructed images.

The remainder of this paper is organized as fol-
lows: Section II develops a tensor-based observation model.
Section III reformulates a regularized fusion problem.
Section IV designs the solving algorithms and simplifies the
solutions to reduce the computational complexity. Section V
conducts the experimental tests and evaluates the perfor-
mance of the proposed algorithm. Section VI draws a con-
clusion. In addition, Some key notations are used in the
subsequent sections. R, Rn and Rm×n denote the set of real
number, n-vector and m × n matrices, respectively. R+, Rn

+

and Rm×n
+ represent the set of non-negative real number, n-

vector and m × n matrices, respectively. ‖·‖1 stands for l1-
norm. ‖·‖F denotes Frobenius norm. I stands for the identity
matrix with proper dimensions. vec(C) stands for the vector
of a tensor C.⊗ represents the Kronecker product. [·]+ stands
for the orthogonal projection onto the non-negative orthant of
Euclidean space. � represents the componentwise inequality
operation. ×n denotes the mode-n product. J·K stands for the
simplified form of mode-n product. ‖·‖∗ denotes the nuclear
norm.

II. TENSOR OBSERVATION MODEL
Under the framework of convex optimization, this article
proposes a low-rank tensor fusion method with smooth and
sparse regularization. Firstly, the tensor observation model is

established via Tucker decomposition. Then, the smooth and
sparse regularization is imposed on the factor matrices and
core tensor, respectively.

In this article, the target HR-HSI (called the reference
image) is expressed asZ ∈ RNw×Nh×Na , in which Nw, Nh and
Na denote the sizes of width, height and spectral dimensions,
respectively; Y ∈ Rnw×nh×Na represents the observed LR-
HSI, in which nw, nh and Na represent the sizes of hori-
zontal, vertical and spectral dimensions, respectively; X ∈
RNw×Nh×na represents the observed HR-MSI with the sizes
of Nw, Nh and na. Image fusion aims at fusing the observed
LR-HSI data Y and HR-MSI data X to reconstruct the target
HSI with high spatial and spectral resolution. Conversely,
the data Y and X can be regarded as the spatial and spectral
degradation versions of the reference image Z , respectively.
So the tensor-based observation model is presented as

Y = Z ×1 P1 ×2 P2 + Ey (1)

X = Z ×3 P3 + Ex (2)

where P1 ∈ Rnw×Nw , P2 ∈ Rnh×Nh and P3 ∈ Rna×Na

denote the degraded matrices of three dimensions with the
downsampling factor of spatial dimensions r = Nw

nw
=

Nh
nh
.

According to Tucker model, the reference image Z can be
decomposed as

Z = C ×1 W×2 H×3 A+ Ez
, JC;W,H,AK+ Ez (3)

where W ∈ RNw×rw , H ∈ RNh×rh and A ∈ RNa×ra denote
the factor matrices of width, height and spectral dimensions,
respectively; C ∈ Rrw×rh×ra is the core tensor with the sizes
of rw, rh, ra; Ez is the residual. If equation (3) is substituted
into equations (1) and (2), then the observed tensor model can
be given as

Y = C ×1 (P1W)×2 (P2H)×3 A+ Ey
, JC;P1W,P2H,AK+ Ey (4)

X = C ×1 W×2 H×3 (P3A)+ Ex
, JC;W,H,P3AK+ Ex . (5)

III. REFORMULATION OF FUSION PROBLEM
According to the least square criterion for equations (4) and
(5), a fusion optimization problem based on coupling tensor
decomposition is defined as

min
W,H,A,C

1
2
‖Y − JC;P1W,P2H,AK‖2F

+
1
2
‖X − JC;W,H,P3AK‖2F . (6)

From the perspective of tensor decomposition, the spatial fac-
tor matrices in problem (6) do not satisfy the non-negativity
and sum-to-one constraints; the core tensor contains the
coefficients of each factor matrix, which is usually sparse.
Furthermore, because the non-uniqueness of tensor rank
generally result in the redundant information, this article
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proposes a fusion method based on low-rank tensor decom-
position to eliminate the redundancy and suppress the shadow
and/or noise, in which smooth and sparse regularizers are
imposed on the spectral factor matrix and the core tensor. The
novel fusion problem can be reformulated as

min
W,H,A,C

1
2
‖Y − JC;P1W,P2H,AK‖2F + λwφw(W)

+λhφh(H)+
1
2
‖X − JC;W,H,P3AK‖2F

+λaφa(A)+ λdφd (A)+ λcφc(C) (7)

where φw(W), φh(H) and φa(A) denote the low-rank regular-
izers for the three-dimensional matrices; φd (A) is intended
to regularize the vertical smoothness of the spectral factor
matrix (endmember matrix); φc(C) is the sparse regularizer
of the core tensor; λw, λh, λa, λd and λc are the weights.

A. REGULARIZATION EXPRESSIONS
In this subsection, the expressions of the regualrizers are
defined and then reformulated in matrix form on the purpose
of efficient computation.

1) SPARSE REGULARIZATION
The sparse regularization of core tensor C denotes the number
of non-zero elements, which is written as ‖C‖0. Since the
solution of the l0-norm is an NP-hard problem, it can be deter-
mined approximately by the l1-norm. Hence, as the surrogate
of the l0-norm, the l1-norm of the core tensor is defined as

φc(C) = ‖C‖1 =
nw∑
i=1

nh∑
j=1

na∑
k=1

|cijk | (8)

where |cijk | is the element of C.

2) SPECTRAL SMOOTH REGULARIZATION
The endmember signature curve describes the spectral
reflectance of the endmember, which is usually a smooth (or
piecewise smooth) curve owing to the gradual change [44].
Therefore, the total variation is utilized to smooth the spectral
signature. We have

φd (A) ,
N∑
j=1

∑
{m,n}∈γ

|aj(m)− aj(n)| (9)

where γ denotes the vertical-neighbourhood set, and aj(m) is
themth element of the jth endmember aj. In order to facilitate
matrix operations, equation (9) should be reformulated in
matrix form as

φd (A) = ‖DdA‖1 (10)

where Dd is the first-order vertical difference matrix.

3) LOW-RANK REGULARIZATION
The low-rank regularizer is imposed separately on three fac-
tor matrices W, H and A. Taking the factor matrix W as an
example, the definition and solution method of logarithmic

low rank are given below. As is well known, the rank of W
is equal to the number of its positive singular value, which is
non-convex and hard to solve directly. In general, the nuclear
norm is used to calculate the approximate rank of a matrix.
On that basis, this article adopts the logarithmic sum function
as the surrogate of low-rank property to suppress the small
singular values caused by noise or interference. We take
the factor matrix W as an example to illustrate the solving
procedure. First of all, the nuclear norm ofW is defined as

‖W‖∗ =
∑
i

σi(W) (11)

where σi(W) denotes the ith singular value ofW. From equa-
tion (11), low-rank regularization is to constrict the matrix
rank by minimizing its singular value. Furthermore, the big-
ger singular values in the factor matrix represents the primary
components, while the smaller elements are easily affected
by noise or redundant information. Thus, the logarithmic
sum function [39], [45] can suppress the noise or secondary
components carried in the small singular values, given in
equation (12) as

LogSum(W) =
∑
i

log(σi(W)+ ε) (12)

where ε is a small positive number to avoid the logarithm
of zero. Specifically speaking, each low-rank regularizer of
φw(W) and φh(H) can suppress the effect of spatial redundant
information, and the term φh(A) is employed to remove the
spectral shadow.

4) SOLVING PROCEDURE OF LOW-RANK REGULARIZATION
Given a matrix W0 ∈ Rm×n(m < n) and a weight α,
the optimization problem of nuclear norm regularization is
defined as

min
W
α‖W‖∗ +

1
2
‖W−W0‖

2
F (13)

where W0 = Udiag(σ1, σ2, . . . , σn)VT . Thus, the closed-
form solution ofW is

W = Udiag(w1,w2, . . . ,wn)VT (14)

where wi = max(σi − α, 0).
When the low-rank regularizer is the logarithmic sum func-

tion (12), the optimization problem can be defined as

min
W

α
∑
i

log(σi(W)+ ε)+
1
2
‖W−W0‖

2
F (15)

where 0 < α, 0 < ε < min(
√
α, (α/σ1)). The closed-form

solution of equation (15) is

W = Udiag(q1, q2, . . . , qn)VT (16)

where qi = Qα,ε(σi). The operator Qα,ε(x) is defined as

Qα,ε(x) =


c1 +
√
c2

2
c2 > 0

0 c2 ≤ 0

where c1 = |x| − ε, c2 = c21 − 4(α − ε|x|).
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IV. PROPOSED ALGORITHM
This article proposes a novel fusion method based on
low-rank tensor decomposition with total variation and sparse
regularization (called LRTVS). Incorporating the regulariz-
ers (8), (9) and (12), the non-convex multi-variable fusion
problem (7) can be solved via alternating optimization (AO),
which is decoupled into single-variable convex subproblems.
We have

Wk+1
∈ argmin f (W,Hk ,Ak , Ck )+λwLogSum(W) (17)

Hk+1
∈ argmin f (Wk+1,H,Ak , Ck )+λhLogSum(H) (18)

Ak+1
∈ argmin f (Ak+1,Hk+1,A, Ck )+λaLogSum(A)

+λd‖DdA‖1 (19)

Ck+1 ∈ argmin f (Wk+1,Hk+1,Ak+1, C)+λc ‖C‖1 (20)

where k denotes the iterations, f (W,H,A, C) , 1
2 ‖Y −

JC;P1W,P2H,AK‖2F +
1
2 ‖X − JC;W,H,P3AK‖2F . In sum,

the complete procedure of LRTVS for solving the problem
is summarized in Algorithm 1, in which the factor matrices
W and H are initialized via the dictionary-update KSVD
method (DU-KSVD) [46], and the initial value of the factor
matrix A is obtained via the successive projection algorithm
(SPA) [47].

Algorithm 1 The LRTVS Algorithm for Solving (7)
Input: Y , X , P1, P2, P3;
Initialize: W0, H0, A0, k = 0;
while the stopping criterion is not met do
update C by (20);
updateW by (17);
update H by (18);
update A by (19);
k = k + 1;

end while
Output Zk

= JC;W,H,AK.

A. ESTIMATION OF FACTOR MATRIX W
Since there are two data fitting terms based on the Frobenius
norm and a low-rank regularizer in the objective function of
equation (17), it is difficult to solve directly. Hence, ADMM
is employed to split the variable of W by adding equality
constraints. Equation (17) is reformulated as

min
W

1
2
‖Y − JC;P1W,P2H,AK‖2F

+
1
2
‖X − JC;W,H,P3AK‖2F

+λwLogSum(W), (21)

In general, the tensor needs to be converted into a matrix to
be computed. According to mode product, the subproblem of
(21) can be unfolded in matrix form along mode 1 (horizontal

dimension):

min
W,W1

1
2
‖Y(1) − P1WUw‖

2
F +

1
2
‖X(1) −WVw‖

2
F

+λwLogSum(W1) (22)

s.t.W1 =W

whereUw = (C×2(P2H)×3A)(1),Vw = (C×2H×3(P3A))(1).
The augmented Lagrangian function of equation (22) can be
presented as

L(W,W1,βw1)

=
1
2
‖Y(1) − P1WUw‖

2
F +

1
2
‖X(1) −WVw‖

2
F

+λw
∑
i

log(σi(W1)+ ε)+ βw1
T (W1 −W)

+
η

2
‖W1 −W‖2F (23)

where βw1 is a dual variable, and η is the weight of the
augmented Lagrangian function.

The primal and dual variables W, W1 and βw1 can be
updated in turn until convergence and are written as

Wj+1
∈ arg min

W∈RNw×rw
L(W,Wj

1,βw1
j), (24a)

Wj+1
1 ∈ arg min

W1∈RNw×rw
L(Wj+1,W1,βw1

j), (24b)

βw1
j+1
= βw1

j
+ η(Wj+1

1 −Wj+1), (24c)

where j represents the number of iterations. We take the
Lagrangian function (23) into equation (24a) and (24b) sepa-
rately, and we can get the scaled expressions of two original
variables as

Wj+1
∈ arg min

W∈RNw×rw

1
2
‖Y(1) − P1WUw‖

2
F

+
1
2
‖X(1)−WVw‖

2
F+

η

2
‖Wj

1−W+β
j
w1/η‖

2
F , (25a)

Wj+1
1 ∈ arg min

W1∈RNw×rw
λw

∑
i

log(σi(W1)+ ε)

+
η

2
‖W1 −Wj+1

+ β
j
w1/η‖

2
F . (25b)

1) UPDATE W
Equation (25a) is a convex quadratic programming problem,
but it involves large-scale matrix calculations. Thus, accord-
ing to the least square criterion, a Sylvester equation of W
can be obtained as

PT1 P1WUwUT
w +W(VT

wVw + η I)

= PT1Y(1)UT
w + X(1)VT

w + ηW
j
1 + βw1

j (26)

which can be solved via CG for the solution ofW.

2) UPDATE W1
Equation (25b) is a low-rank decomposition problem. Using
equation (16), we can get the closed-form solution ofW1 as

Wj+1
1 = Ũwdiag(qw1 , qw2 , . . . , qwn )Ṽ

T
w (27)
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where qwi = Qα,ε(σwi ), Ũwdiag(σw1 , σw2 , . . . , σwn )Ṽ
T
w are

SVD decomposition ofWj+1
− βw1

j/η.

3) UPDATE βw1
The dual variable βw1 can be updated by equation (24c).
To sum up, the solving procedure of factor matrix W can

be completed by alternately iterating the primal and dual
variables, as presented in Algorithm 2.

Algorithm 2 ADMMAlgorithm for the Estimation of Factor
MatrixW/H

Input: Y , X , P1, Uw, Vw;
Initilize: W0

1, β
0
w1, j = 0;

while the stopping criterion is not met do
updateW by (26);
updateW1 by (27);
update βw1 by (24c);
j = j+ 1;

end while
Output Wk+1.

B. ESTIMATION OF FACTOR MATRIX H
Since two variables H and W are factor matrices in spatial
dimensions, they have the same solving procedure. The tensor
form of subproblem (18) is written as

min
H

1
2
‖Y − JC;P1W,P2H,AK‖2F

+
1
2
‖X − JC;W,H,P3AK‖2F

+λhLogSum(H). (28)

In the same way asW, problem (28) is unfolded in matrix
form along mode 2 (vertical dimension) as

min
H,H1

1
2
‖Y(2) − P2HUh‖

2
F +

1
2
‖X(2) −HVh‖

2
F

+λhLogSum(H1)

s.t. H1 = H (29)

where Uh = (C ×1 (P1W) ×3 A)(2), Vh = (C ×1 W ×3
(P3A))(2). The ADMM and CG are utilized to obtain the
solution of each variable. The iteration process is shown as

1) UPDATE H
The Sylvester equation of H is expressed as (30), which can
be computed via CG.

PT2 P2HUhUT
h +H(VT

hVh + η I)

= PT2Y(2)UT
h + X(2)VT

h + ηH
j
1 + βh1

j (30)

2) UPDATE H1
According to equation (16), the closed-form solution ofH1 is
presented as

Hj+1
1 = Ũhdiag(qh1 , qh2 , . . . , qhn )Ṽ

T
h (31)

where qhi = Qα,ε(σhi ), and Ũhdiag(σh1 , σh2 , . . . , σhn )Ṽ
T
h is

the SVD form of the matrix Hj+1
− βh1

j/η.

3) UPDATE βh1
The update of dual varible βh1 can be conducted by equation
(32).

βh1
j+1
= βh1

j
+ η(Hj+1

1 −Hj+1) (32)

In sum, the solving algorithm of H is similar to W, so it can
also be solved by Algorithm 2.

C. ESTIMATION OF FACTOR MATRIX A
Besides two data-fitting terms in (33), the low-rank and total
variation regularizers are also introduced to reformulate the
subproblem as

min
A

1
2
‖Y − JC;P1W,P2H,AK‖2F

+
1
2
‖X − JC;W,H,P3AK‖2F

+λaLogSum(A)+ λd‖DdA‖1. (33)

Unfolding equation (33) in matrix form along mode 3 (spec-
tral dimension), the variables can be split by adding three
equality constraints. Thus, equation (33) can be reshaped as

min
A,A1,A2,T

1
2
‖X(3) − P3AVa‖

2
F +

1
2
‖Y(3) − AUa‖

2
F

+λaLogSum(A1)+ λd‖T‖1
s.t. A1 = A,A2 = A,T = DdA2 (34)

where Ua = (C ×1 (P1W) ×2 (P2H))(3), Va = (C ×1 W ×2
H)(3). In the sameway, equation (34) is solved via the ADMM
and CG methods to obtain the solution of all variables, which
are updated in turn as follows:

1) UPDATE A
Because of the high complexity of matrix operations, the CG
method can be used to solve the Sylvester equation (35).

PT3 P3AVaVT
a + A(UT

aUa + 2η I)

= PT3Y(3)VT
a + X(3)UT

a + ηA
j
1 + βa1

j
+ ηAj

2 + βa2
j

(35)

2) UPDATE THE OTHER VARIABLES

Aj+1
1 = = Ũadiag(qa1 , qa2 , . . . , qan )Ṽ

T
a (36a)

Aj+1
2 = (DT

dDd + I)−1[DT
d (T+ βa3/η)+ A− βa2/η]

(36b)

Tj+1 = shrink(DdA2 + βa3/η, λd/η) (36c)

βa1
j+1
= βa1

j
+ η(Aj+1

1 − Aj+1) (36d)

βa2
j+1
= βa2

j
+ η(Aj+1

2 − Aj+1) (36e)

βa3
j+1
= βa3

j
+ η(Tj+1 − DdA

j+1
2 ), (36f)

where qai = Qα,ε(σai ), and Ũadiag(σa1 , σa2 , . . . , σan )Ṽ
T
a is

the SVD of Aj+1
− βa1

j/η. The complete solver of factor
matrix A is displayed in Algorithm 3.
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Algorithm 3 ADMMAlgorithm for the Estimation of Factor
Matrix A

Input: Y ,X ,P1,Ua,Va;
Initilize: A0

1,A
0
2,T

0,β0
a1,β

0
a2,β

0
a3, j = 0;

3: while the stopping criterion is not met do
update A by equation (35);
update A1 by equation(36a);

6: update A2 by equation(36b);
update T by equation(36c);
update βa1 by equation(36d);

9: update βa2 by equation(36e);
update βa3 by equation(36f);
j = j+ 1;

12: end while
Output Ak+1.

D. ESTIMATION OF CORE TENSOR C
The sparse regularizer is imposed on the core tensor C, and
the tensor form of equation (20) is given as

min
C

1
2
‖Y − JC;P1W,P2H,AK‖2F

+
1
2
‖X − JC;W,H,P3AK‖2F + λc‖C‖1 (37)

If c = vec(C), then ‖c‖1 is equivalent to ‖C‖1. After splitting
the variables by the equality constraints, problem (37) can be
converted in vector form as

min
c,c1,c2

1
2
‖y− B1c‖22 +

1
2
‖x− B2c1‖2F + λc‖c2‖1

s.t. c1 = c, c2 = c. (38)

The closed-form solutions of the primal and dual variables
can be updated iteratively by the following equations as

cj+1 = (BT1B1 + 2ηINL)−1(BT1 y+η c
j
1 + β1

j
+η cj2 + β2

j)

(39a)

cj+11 = (BT2B2 + ηINL)−1(BT2 z+ η c
j
− β1

j) (39b)

cj+12 = shrink(cj+1 − β2
j/η, λc/η) (39c)

β1
j+1
= β1

j
+ η(cj+11 − cj+1) (39d)

β2
j+1
= β2

j
+ η(cj+12 − cj+1) (39e)

whereβ1 andβ2 are dual variables,B1 = A⊗(P2H)⊗(P1W),
and B2 = (P3A)⊗H⊗W.
It is found that the bottlenecks of equation (39a) and (39b)

are the computational complexities of (BT1B1 + 2η INL)−1

and (BT2B2 + η INL)−1, respectively. Tensor operators and
the matrix structure of B1 and B2 are utilized to simplify
the solutions. Hence, the optimal computation of (BT1B1 +

2ηINL)−1 in equation (39a) is rewritten as

(BT1B1 + 2ηINL)−1

= {[A⊗ (P2H)⊗ (P1W)]T [A⊗ (P2H)⊗ (P1W)]

+2ηINL}−1

= {ATA⊗HTPT2 P2H⊗WTPT1 P1W+ 2ηINL}−1

= (UB3 ⊗ UB2 ⊗ UB1)(63 ⊗62 ⊗61 + 2ηI)−1

(UT
B3 ⊗ UT

B2 ⊗ UT
B1) (40)

where UBi and 6i (i = 1, 2, 3) are unitary matrices and
diagonal matrices by the SVD decomposition ofWTPT1 P1W,
HTPT2 P2H and ATA, respectively. In the same way, the sim-
plified expression of (BT2B2 + η INL)−1 in (39b) is reformu-
lated as

(BT2B2 + ηINL)−1 (41)

= {[P3A⊗H⊗W]T [P3A⊗H⊗W]+ ηINL}−1

= {ATPT3 P3A⊗HTH⊗WTW+ ηINL}−1

= (ŪB3 ⊗ ŪB2 ⊗ ŪB1)(6̄3 ⊗ 6̄2 ⊗ 6̄1 + ηI)−1

(ŪT
B3 ⊗ ŪT

B2 ⊗ ŪT
B1) (42)

where ŪBi and 6̄i (i = 1, 2, 3) are unitary matrices and
diagonal matrices by the SVD decomposition ofWTW,HTH
and ATPT3 P3A, respectively. The solving procedure of core
tensor C is shown in Algorithm 4.

Algorithm 4 ADMM Algorithm for the Estimation of Core
Tensor C

Input: Y ,X ,B1;
Initilize: c01, c

0
2,β1,β2, j = 0;

while the stopping criterion is not met do
update c by equation (39a);
update c1 by equation(39b) ;
update c2 by equation(39c) ;
update β1 by equation(39d) ;
update β2 by equation(39e) ;
j = j+ 1;

end while
output Ck+1.

V. EXPERIMENTS AND PERFORMANCE EVALUATION
In this article, Wald’s protocol [48] is adopted to design the
experiments for the performance evaluation of the LRTVS
algorithm, which is shown in Figure 1. This simulation
flowchart not only completes the registration of two observed
images, but also provides a comparative reference for perfor-
mance evaluation. Three real datasets, termed as the reference
images Z , are degraded spatially and spectrally to generate
the observed HSIs Y and MSIs X that act as the input
data for fusion algorithms. Then, Algorithm 1 is taken to
integrate the observed data Y and X , in which Algorithms 2,
3 and 4 are called to implement the factor matrices W, H,
A and the core tensor C until convergence for reconstructing
the HR-HSI Ẑ . Thus, the similarity between Ẑ and Z is
measured by such quality evaluation metrics [29], [44] as
degree of distortion (DD), reconstruction signal-to-noise ratio
(RSNR), spectral angle mapper (SAM), root mean squared
error (RMSE), erreur relative globale adimensionnelle de
synthèse (ERGAS), and structural similarity index for measur-
ing image quality (SSIM). The larger the value of RSNR and
SSIM, the better the performance. However, the smaller the
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FIGURE 1. Simulation flowchart based on Wald’s protocol.

values of SAM, DD, RMSE and ERGAS, the less distortion.
In addition, six state-of-the-art methods were taken as the
benchmark, including CNMF [18], BSR [15], HySure [16],
CSTF [29], NLSTF [38], STEREO [27]. Because the pan-
sharpening methods have higher efficiency and much lower
performance than that of the aforementioned coupling-based
algorithms, some algorithms (such as GLP and SFIM) are not
adopted as the benchmark methods. And the deep-learning-
based approaches can also be regarded as the baseline method
owing to the different running environments. All the methods
were tested on a laptop with Intel CPU Core-3210 with
2.5 GHz speed and 16 GB RAM.

A. DATASETS
In this article, three datasets captured by different sensors are
adopted for the performance tests. The first dataset was taken
by the reflective optics system imaging spectrometer (ROSIS)
sensor over Pavia University in northern Italy [49], with
115 spectral bands and spatial resolution of 1.3 meters. After
removing the effect of water vapor absorption, 103 spectral
bands were reserved from 430 nm to 860 nm. At the same
time, the corresponding MSI in the same region was acquired
by the multispectral sensor (IKONOS) [50], with the four
bands covering 445-516, 516-595, 632-698 and 757-853 nm.
Thus, the spectral downsampling matrix is P3 ∈ R4×103.
The second dataset was collected by the AVIRIS (Airborne
Visible/Infrared Imaging Spectrometer) over the Moffett,
California area [51], in which 183 bands were retained.
The corresponding MSI was captured by Landsat TM with
six bands (Landsat 1-5 and 7) ranging from 400 nm to
2500 nm [16], [23], [52]. The spectral downsampling matrix
is P3 ∈ R6×183. The third dataset was obtained by HYDICE
(Hyperspectral digital imagery collection experiment) over
Washington DC Mall [53]. After preprocessing, 191 spectral
bands (from 400 to 2500 nm) were retained, corresponding
to the multispectral sensor Landsat TM band 1-5 and 7. The

spectral downsampling matrix is P3 ∈ R6×191 to generate the
observed multispectral data X .

For these three datasets, the target images are all L =
200 × 200 in size [15], [23]. With a Gaussian kernel of
variance (σ 2

= 2) and blurring factor (r = 5) [54], [55],
we construct P1, P2 ∈ R40×200 as horizontal and vertical
downsampling matrices to generate the LR-HSI data Y by
spatially degrading the reference image Z .

B. PARAMETER SELECTION AND ANALYSIS
In this part, the experimental tests are conducted to deter-
mine the parameters, including the weights of regularizers,
the dimensionality of the core tensor, the iteration numbers
of ADMM and the SNR.

1) REGULARIZATION PARAMETERS
The low-rank regularization in this article is imposed on the
horizontal, vertical and spectral factor matrices with loga-
rithm sum function, in which the weights are λw, λh and
λa. Because of symmetry, the weights of two spatial factor
matrices satisfy λw = λh. Moreover, considering the gradual
properties of the spectral signature [44], the total variation
is adopted to vertically smooth the spectral factor matrix
with the coefficient λd . The weight of the core tensor is λc.
Generally speaking, the regularizationweight is set to balance
the relationship between data-fitting terms and the regularizer
in the objective function [55], which has a strong correlation
with the noise level of the observed image. For example,
the corresponding coefficient can be set to 0.001 when the
SNR is 30 dB. To determine the optimal weights, we test
the RMSE with respect to each weight for three datasets,
as shown in sub-figures 2 (a)∼(d). It can be seen from
these figures that the RMSE performance fluctuates with the
change of the weight for three datasets, while other parame-
ters are set to be a constant value (for instance, 0 or 0.001).
Therefore, we select the parameter values with the minimum
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FIGURE 2. The curves of RMSE performance with respect to the regularization parameters including (a) λa, (b) λc , (c) λd and (d) λw , for
three datasets, i.e. Pavia University (red line with �), Moffett (green line with ◦) and Washington DC (blue line with M).

FIGURE 3. The curves of RMSE performance with respect to the dimensionality of (a) rw , (b) rh and (c) ra, for three datasets, i.e.
Pavia University (red line with �), Moffett (green line with ◦) and Washington DC (blue line with M).

error RMSE of three datasets as λw = λh = 0.1, λa = 0.5,
λd = 0.1, λc = 0.0005.

2) DIMENSIONALITY OF THE CORE TENSOR
A hyperspectral image can be factorized into three factor
matrices (i.e. W, H and A) and a core tensor C via Tucker
tensor decomposition, in which the core tensor contains
the coefficients of factor matrices. Owing to the effect of
noise and shadow in the images, the rank of factor matrices
is inaccurate. When the dimensionality is smaller than the
groundtruth, it will result in serious distortion. Otherwise,
it will lead to redundant information in the factor matrices.
Generally, a larger dimensionality of the factor matrix is set,
and then low-rank regularization is integrated to suppress the
effect of noise or shadow. Therefore, the parameters rw, rh, ra
of factor matrices are also the dimensionalities of the core
tensor, whose RMSE performance is shown in Figure 3. We
can observe that the RMSE is larger when the values of each
dimensionality are smaller. However, with the increase in
the weight, the RMSE performance is gradually stable. For
instance, the RMSE performance is stable when the values of
spatial dimensionalities rw and rh are greater than 120, and
the dimensionality of spectral factor matrix ra is no less than
10 for three datasets. Since the dimensionality of the spectral
factor matrix represents the number of endmembers, it is

robust in the mode-3 expression [18], [24]. In other words,
as long as it is greater than the groundtruth, the fusion method
shows a relatively stable performance, which can be inter-
preted as the shadow effect. Therefore, the dimensionalities
of the core tensor in this article are set to rw = rh = 140, and
ra = 15.

3) STOPPING RULES OF CONVERGENCE
As shown in Algorithm 1, the proposed LRTVS method
decomposes the problem (7) into alternating iterations of
three factor matrices and a core tensor. The stopping rule sat-
isfies the relative difference threshold between the successive
updates of the objective function F0(W,H,A, C) is less than
0.001 [44], [56], as shown in equation (43). The experimental
results show that the increase in iterations has no significant
effect on the convergence in the ADMM-based algorithms,
so they need not run exhaustively. Therefore, the number of
ADMM iterations is set to 20.

F0(Wk+1,Hk+1,Ak+1, Ck+1)− F0(Wk ,Hk ,Ak , Ck )
F0(Wk ,Hk ,Ak , Ck )

≤ 0.001. (43)

4) SNR SETTINGS
The proposed method promotes the vertical smoothing based
on total variation for mode-3 factor matrix A. Thus, in order
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FIGURE 4. Reconstruction and difference images for Pavia University dataset, including (a) the reference image, (b) the difference image, (c1)∼(c7)
the reconstruction images and (d1)∼(d7) the difference images by (1) CNMF, (2) BSR, (3) HySure, (4) CSTF, (5) NLSTF, (6) STEREO, (7) Proposed LRTVS,
respectively.

FIGURE 5. Reconstruction and difference images for Moffett dataset, including (a) the reference image, (b) the difference image, (c1)∼(c7)
representing the reconstruction images and (d1)∼(d7) denoting the difference images by (1) CNMF, (2) BSR, (3) HySure, (4) CSTF, (5) NLSTF, (6)
STEREO, (7) Proposed LRTVS, respectively.

FIGURE 6. Reconstruction and difference images for Washington DC, including (a) the reference image, (b) the difference image, (c1)∼(c7)
representing the reconstruction images and (d1)∼(d7) denoting the difference images by (1) CNMF, (2) BSR, (3) HySure, (4) CSTF, (5) NLSTF, (6) STEREO,
(7) Proposed LRTVS, respectively.

to test the anti-noise performance of the fusion algorithm,
three sets of SNRs for HR-MSI and LR-HSI are designed
to simulate different noise environments, including Case I
(35 dB, 30 dB), Case II (30 dB, 25 dB) and Case III (25 dB,
20 dB).

C. PERFORMANCE COMPARISON AND DISCUSSION
In this section, three datasets, including the Pavia University,
Moffett andWashington DC datasets, are used to test the pro-
posed LRTVS and the benchmark methods for performance

evaluation. First of all, to evaluate the performance of fusion
methods more intuitively, the reconstructed images in the
noise environment of Case II, as well as the corresponding
difference images, are given in Figures 4, 5 and 6. One can
observe that the reconstructed images of the proposed LRTVS
have a high similarity with the reference images, and it is
difficult to distinguish them visually. For three datasets, it can
be seen that the difference images of the proposed LRTVS is
almost the best (i.e. with only noise and less texture), followed
by CSTF and STEREO. Certainly, the reconstruction and
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TABLE 1. Performance comparison for Pavia University dataset.

TABLE 2. Performance comparison for Moffett dataset.

TABLE 3. Performance comparison for Washington DC dataset.

TABLE 4. Runtime comparison of fusion algorithms.
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FIGURE 7. Performance curves in terms of (a) RSNR, (b) RMSE and (c) ERGAS with respect to spectral wavelength (nm) by the
prosposed and benchmark algorithms, including CNMF (black line), BSR (blue dotted line), HySure (brown line), CSTF (blue line),
NLSTF (green line), STEREO (pink line) and proposed LRTVS (thick red line), for Pavia University dataset.

FIGURE 8. Performance curves in terms of (a) RSNR, (b) RMSE and (c) ERGAS with respect to spectral wavelength (nm) by the proposed
and benchmark algorithms, including CNMF (black line), BSR (blue dotted line), HySure (brown line), CSTF (blue line), NLSTF (green line),
STEREO (pink line) and proposed LRTVS (thick red line), for Moffett dataset.

FIGURE 9. Performance curves in terms of (a) RSNR, (b) RMSE and (c) ERGAS with respect to spectral wavelength (nm) by the proposed
and benchmark algorithms, including CNMF (black line), BSR (blue dotted line), HySure (brown line), CSTF (blue line), NLSTF (green line),
STEREO (pink line) and proposed LRTVS (thick red line), for Washington DC dataset.

difference images can only reflect the performance of partial
bands, and the overall performance difference between the
fusion algorithms can be distinguished by the tables and
curves below.

The overall performance of all methods under three noise
conditions for three datasets is shown in tables 1, 2 and 3.
We can see that the performance of all algorithms declines
with an increase in noise level (i.e. the reduction of SNRs).
For the Pavia University and Moffett datasets, the perfor-
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FIGURE 10. Spectral curves of a pixel including (a)∼(h), in which contain a comparison of two fusion methods:
LRTVS (red solid line) and CSTF (blue dotted line).

mance of the proposed LRTVS is obviously better than
the benchmark algorithms. Compared with CSTF, the per-
formance RSNR of the LRTVS algorithm is improved by
2∼5dB, the RMSE decreases by more than 20%, and the per-
formance of other metrics is also improved significantly. For
the Washington DC dataset, except for the metric ERGAS,
the performance of the proposed LRTVS is better than that
of the benchmark methods. Especially, the proposed LRTVS
performs significantly better than CSTF, although both of
them are based on Tucker decomposition.

To test the performance of different bands, the curves of
RSNR, RMSE and ERGAS are drawn in figures 7, 8 and 9.
We can see from figures 7 and 8 that the performance of the
proposed LRTVS is much better than that of the benchmark
algorithms for Pavia University and Moffett datasets. Espe-
cially, compared with the CSTF, the LRTVS’s performance
has been greatly improved, and its curve is relatively smooth.
In figure 9 of the Washington DC dataset, the proposed
LRTVS has obvious advantages over other benchmark algo-
rithms in the band range from 500 nm to 1000 nm, while the
BSR and CNMF algorithms perform well in the other bands.
In conclusion, the proposed LRTVS method in this article
performs better than the baseline algorithms with different
bands in most cases.

The target image is unfolded alongmode 3 (spectral dimen-
sion) to obtain the factor matrix A, which represents the
endmember signature, as does the NMF-basedmethod. Using
the gradual change in endmember signature curves, the total
variation regularization is adopted to vertically smooth the
spectral factor matrix, which can suppress the noise effect in
the reconstructed images. Because both CSTF and LRTVS
are based on Tucker decomposition, they are selected to
verify the validity of the smooth regularization. For theWash-
ington DC dataset, the spectral curves in the pixel with spatial
coordinates of (50, 50) are shown in Figure 10. When the

reflectance of the endmember is large among eight major
endmembers, the spectral curves of the LRTVS and CSTF
algorithms are almost identical, as displayed in sub-figures
(a) and (b). Conversely, when the reflectance value is small,
the spectral curve of the CSTF algorithm changes dramati-
cally by the noise, while the curve of the LRTVS is relatively
smooth, as shown in sub-figures (e) and (f). Thus, the curves
illustrate that the total variation regularizer is effective to
remove the noise.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
The proposed LRTVS method involves the calculation ofW,
H,A, and C. Firstly, the Sylvester equations of factor matrices
W, H and A are solved by using the conjugate gradient
method, whose computational complexities are O(n2wN

2
w),

O(n2hN
2
h ) andO(n2aN

2
a ), respectively. Using the vector-matrix

operator, they can be reduced toO(n2wNw+nwN
2
w),O(n2hNh+

nhN 2
h ) and O(n2aNa + naN

2
a ). For the core tensor C, the com-

plexities of equations (39a) and (39b) are both equal to
O(n3wn

3
hn

3
a), which can be simplified asO(n2wnhna+nwn

2
hna+

nwnhn2a) by Kronecker operators. In addition, the runtime of
the algorithm is an important measure of complexity. The
runtime of the proposed LRTVS and benchmark algorithms
in this article is presented in table 4. We can observe that
the runtime of NLSTF and CSTF algorithms is less, and the
proposed LRTVS is still time-consuming, which needs to be
further improved.

VI. CONCLUSION
Hyperspectral and multispectral data are three-dimensional
data cubes, which need to be reshaped into matrices in the
NMF-based fusion methods. To address the structure loss of
hyperspectral and multispectral data cubes and suppress the
effect of noise and redundant information, this article pro-
poses a low-rank decomposition-based fusion method with
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total variation and sparse regularization to achieve the fusion
of HSIs and MSIs for hyperspectral super-resolution images.
Furthermore, the multi-variable fusion problem is decoupled
into multiple single-variable subproblems via the AO and
mode-n product, which is solved by the ADMM and conju-
gate gradient methods. In addition, tensor operators are used
to simplify the closed-form solutions so as to reduce the com-
putational complexity. The experimental results illustrate that
the proposed LRTVSmethod can improve the performance of
RSNR by 2∼5 dB and drop the RMSE by more than 22%. In
conclusion, the proposed algorithm can not only improve the
spatial resolution of the reconstructed image, but also greatly
enhance the anti-noise aperformance, which fully verifies the
validity of this regularization method.
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