

Received June 20, 2020, accepted July 7, 2020, date of publication July 14, 2020, date of current version August 4, 2020. *Digital Object Identifier* 10.1109/ACCESS.2020.3009129

# **Reduced-Order Filtering for Singular Markovian Jump Systems With Incomplete Transition Rates**

### **SHAOQING ZHANG**

Shenyang Aircraft Design and Research Institute, Shenyang 110035, China e-mail: shaoqing\_c\_z@126.com

**ABSTRACT** This paper considers the reduced-order  $H_{\infty}$  filtering problem for singular Markovian jump systems (SMJSs) with incomplete transition rates (ITRs) by using augmented system method. The considered conditions in this paper are necessary and sufficient (NS), whereas the existing conditions are mainly sufficient. To be concrete, by extracting system matrices in the considered system from augmented system, NS condition for the existence of the full-order  $H_{\infty}$  filtering is provided in terms of linear matrix inequalities (LMIs). However, it is hard to extend the condition to the existence of the reduced-order  $H_{\infty}$  filtering. Thus, by fixing augmented system matrices, NS condition for the existence of the reduced-order one is presented to guarantee the desired filtering error system to be stochastically admissible with  $H_{\infty}$  performance level. Furthermore, there are neither complicated matrix transformation nor equality/rank constraints in this paper. One numerical and one practical examples are illustrated to demonstrate the effectiveness of the achieved results.

**INDEX TERMS** Singular Markovian jump system, incomplete transition rates, sufficient and necessary conditions, reduced-order filtering.

### I. INTRODUCTION

Singular systems, also referred to descriptor systems, implicit systems and generalized state-space systems [1], [2], which are formed by a set of coupled algebraic and differential equations. It is a generalized representation of the state-space system. Thus, singular systems can model various kinds of practical systems, such as networks, power systems, flexible robots and so on [3]–[6].

On the other hand, Markovian jump systems (MJSs) represent a convenient mathematical model to describe system dynamics in a situation when the system experiences frequent unpredictable parameter variations. MJSs have been studied both in many practical systems such as chemical process, manufacturing systems, flight systems and so on [7], [8] and in theoretical researches [9]. In the past decades, transition rates (TRs) in the jumping process are usually assumed to be completely known. However, it is difficult to implement the practical control systems to accurately estimate the TRs. Therefore, study on the MJSs with ITRs receives the attention of researchers [10]. When singular systems experience abrupt changes, which lead to famous singular MJSs (SMJSs) [11], [12]. Note that the

The associate editor coordinating the review of this manuscript and approving it for publication was Bing Li<sup>(b)</sup>.

research on SMJSs are even more difficult than the regular MJSs since the properties of stability, regularity and causality (discrete-time) or non-impulsiveness (continuous-time) should be taken into account simultaneously. Thus, research on SMJSs is of significance, and majority of theoretical and applied results have been widely researched. To name a few, in [13], the problem of asynchronous  $H_{\infty}$  control for SMJSs with redundant channels under the dynamic event-triggered scheme is studied. To save the resource of bandwidth limited network, a dynamic event-triggered scheme has been proposed. The design of finite-time mixed  $H_{\infty}$  and passive asynchronous filter for T-S fuzzy SMJSs with uncertain transition rates under the dynamic event-based scheme has been discussed in [14]. An asynchronous filter is considered such that the phenomena of asynchronous modes between the original SMJSs and the considered filter is modelled as a hidden Markov model. In [15]–[19],  $H_{\infty}$  filtering has respectively reported for SMJSs, and some sufficient conditions on full- and reduced-order  $H_{\infty}$  filtering have been derived. Especillay, the NS full-order  $H_{\infty}$  filter condition for SMJSs has been achieved in [19]. However, the information of all TRs and estimated state are required. It is hard to extend the condition in [19] to the reduced-order filtering problems for SMJSs with ITRs. Thus, how to derive an NS condition on reduced-order filtering with ITRs constitutes this paper.

In this paper, the reduced-order  $H_{\infty}$  filtering problem is considered for SMJSs with ITRs. Note that the achieved  $H_{\infty}$ filter matrices in [19] depend on all information of TRs and the estimated state. Thus, its method cannot be extended to the reduced-order ones for SMJSs with ITRs. In this paper, with the aid of augmented system method, system matrices (such as  $A_i$ ,  $B_{wi}$ ) are extracted to construct an augmented system  $(\bar{A}_i = diag\{A_i, 0\}, \tilde{B}_{wi} = [B_{wi}^T, 0]^T)$ . Then, by using elimination method, the necessary and sufficient (NS) fullorder  $H_{\infty}$  filtering is received for SMJSs with ITRs. The filter matrices can be computed by a set of LMIs. However, similar with [19], the full-order NS conditions cannot be extended to the reduced-order ones due to some special matrix structure (such as  $\Lambda_i$  in [19]). In this case, tuning the order of filter matrices and without separating the augmented system matrices (i.e.  $\bar{A}_i, \tilde{B}_{wi}$ ), the NS reduced-order  $H_{\infty}$  filtering is proposed for SMJSs with ITRs. Compared with some existing works, there are neither complicated matrix transformation nor equality/rank constraints in proposed conditions.

**Notation:** Throughout this paper,  $\mathcal{R}^n$  represents the *n*-dimensional Euclidean space;  $X^T$  denotes the transpose of X;  $(\Omega, F, P)$  is a probability space with  $\Omega$  is the sample F is the algebra of subsets of sample space and P is the probability measure on F; '\*' in LMIs represents the symmetric term of the matrix; X > 0(< 0) means X is a symmetric positive(negative) definite matrix; He[X] means that  $X + X^T$ ;  $\lambda_{\min}(X)$  respects the minimum eigenvalue of X;  $\mathcal{L}_2[0, \infty)$  refers to the space of square-integrable vector functions over  $[0, \infty)$ ; |X| denotes the Euclidean norm for vectors of X; col[X, Y] denotes  $[X^T, Y^T]^T$ ;  $diag\{\ldots\}$  represent a block diagonal matrix.

### **II. SYSTEM DESCRIPTION AND PRELIMINARIES**

Consider a class of singular Markovian jump systems (SMJSs), which are defined on a probability space  $(\Omega, F, P)$ 

$$\begin{cases} E\dot{x}(t) = A(r_t)x(t) + B_w(r_t)w(t), \\ y(t) = C(r_t)x(t), \\ z(t) = L(r_r)x(t), \end{cases}$$
(1)

where  $x(t) \in \mathbb{R}^n$  is the system state,  $y(t) \in \mathbb{R}^p$  is the measured output,  $z(t) \in \mathbb{R}^q$  is the signal to be estimated and  $w(t) \in \mathbb{R}^m$  is the disturbance input that belongs to  $\mathcal{L}_2[0, \infty)$ ,  $\phi(t)$  is a compatible vector valued initial function. The matrix  $E \in \mathbb{R}^{n \times n}$  may be singular and  $rank(E) = r \leq n. A(r_t)$ ,  $B(r_t), B_w(r_t), C(r_t)$ , and  $L(r_t)$  are known real constant matrices with appropriate dimensions for each  $r_t \in \mathbb{S}$ .  $r_t, t \geq 0$  is a continuous-time Markovian process with right continuous trajectories and take values in a finite set  $\mathbb{S} = \{1, 2, ..., N\}$ with transition rate matrix  $\Pi \triangleq \{\pi_{ij}\}$  given by

$$Pr\{r_{t+\sigma} = j | r_t = i\} = \begin{cases} \pi_{ij}\sigma + o(\sigma), & j \neq i\\ 1 + \pi_{ii}\sigma + o(\sigma), & j = i \end{cases}$$

where  $\sigma > 0$ ,  $\lim_{\sigma \to 0} o(\sigma)/\sigma = 0$ , and  $\pi_{ij} \ge 0$ , for  $j \ne i$ , is the transition rate from mode *i* at time t to mode

*j* at time  $t + \sigma$  and  $\pi_{ii} = -\sum_{j=1, j \neq i}^{N} \pi_{ij}$ . Furthermore, this paper is concerned with the  $H_{\infty}$  filtering for SMJSs with ITRs. That is, some elements in  $\Pi$  are unknown. Take a 3 operation modes for example,  $\Pi = \begin{bmatrix} ? & ? & \pi_{13} \\ \pi_{21} & ? & ? \\ ? & ? & ? \end{bmatrix}$ , where "?" represents unknown element. For convenience,  $i \in \mathbb{S}$ , we denote

$$S_k^i \triangleq \{j : \pi_{ij} \text{ is known for } j \in \mathbb{S}\},\$$

 $S_{uk}^i \triangleq \{j : \pi_{ij} \text{ is unknown } j \in \mathbb{S}\}.$ 

In addition, if  $S_k^i = \emptyset$ ,  $\pi_k^i \triangleq \sum_{j \in S_k^i} \pi_{ij}$ , and when  $i \in S_{uk}^i$ , it is necessary to provide a lower bound  $\pi_d^i$  for it and we have  $\pi_d^i \leq -\pi_k^i$ . And for each possible  $r_t = i$ ,  $i \in \mathbb{S}$ , a matrix  $M(r_t)$  will be denoted by  $M_i$ ,  $A(r_t)$  by  $A_i$ ,  $A_d(r_t)$  by  $A_{di}$  and so on.

The following preconditions are essential for main results.

*Lemma 1:* [23] Given a symmetric matrix  $\Omega \in \mathcal{R}^{n \times n}$ , two matrices  $\Psi \in \mathcal{R}^{n \times m}$  and  $\Phi \in \mathcal{R}^{k \times n}$  with  $rank(\Psi) < n$  and  $rank(\Phi) < n$ . Consider the problem of finding some matrices *G* such that

$$\Omega + \Psi G \Phi + (\Psi G \Phi)^T < 0.$$
<sup>(2)</sup>

Then (2) is solvable for G if and only if

$$\Psi^{\perp} \Omega \Psi^{\perp T} < 0, \quad \Phi^{\perp} \Omega \Phi^{\perp T} < 0.$$
(3)

Lemma 2: [20] Let P be symmetric such that  $E_L^T P E_L > 0$  and Q to be non-singular. Then,  $PE + U^T Q V^T$  is nonsingular and its inverse is expressed as  $(PE + U^T Q V^T)^{-1} = \bar{P}E^T + V\bar{\Phi}U$ , where  $\bar{P} = \bar{P}^T$  and  $\bar{Q}$  is nonsingular such that  $E_R^T \bar{P}E_R = (E_L^T P E_L)^{-1}, \bar{Q} = (V^T V)^{-1}Q^{-1}(UU^T)^{-1}$ .

*Lemma 3:* System (1) with ITRs is stochastically admissible with  $H_{\infty}$  performance if and only if there exist symmetric matrices  $P_{1i}$ , nonsingular matrices  $Q_{1i}$  for  $i \in S$  and  $j \in S_{uk}^i$  such that

$$E_L^T P_{1i} E_L > 0, \tag{4}$$

$$\begin{vmatrix} \delta_{i1} & \Lambda_{1i}^{*} B_{wi} & C_{i}^{*} \\ * & -\gamma^{2} I & 0 \\ * & * & -I \end{vmatrix} < 0, \quad if \ i \in S_{k}^{i}, \tag{5}$$

$$\begin{bmatrix} \bar{\delta}_{i1} & \Lambda_{1i}^T B_{wi} & C_i^T \\ * & -\gamma^2 I & 0 \\ * & * & -I \end{bmatrix} < 0, \quad if \ i \in S_{uk}^i, \qquad (6)$$

where

$$\begin{split} \delta_{i1} &= He[A_i^T \Lambda_{1i}] + \sum_{j \in S_k^i} \pi_{ij} E^T P_{1j} E - \pi_k^i E^T P_{1j} E, \\ \bar{\delta}_{i1} &= He[A_i^T \Lambda_{1i}] + \sum_{j \in S_k^i} \pi_{ij} E^T P_{1j} E - \pi_k^i E^T P_{1j} E \\ &+ \pi_d^i E^T P_{1i} E - \pi_d^i E^T P_{1j} E, \\ \Lambda_{1i} &= P_{1i} E + U^T Q_{1i} V^T. \end{split}$$

and  $\pi_d^i$  is a given lower bound for the unknown diagonal element.

*Proof:* Two steps are given as follows.

Step (I): Connecting with the proof of Lemma 3 in [19], the sufficiency and necessity of the following inequalities have been finished.

$$E_L^T P_{1i} E_L > 0, (7)$$

$$\begin{bmatrix} \delta_i & \Lambda_{1i}^T B_{wi} & C_i^T \\ * & -\gamma^2 I & 0 \\ * & * & -I \end{bmatrix} < 0,$$
(8)

where  $\delta_i = He[A_i^T \Lambda_{1i}] + \sum_{j=1}^N \pi_{ij} E^T P_{1j} E$ . Step (II): Connecting with the proof of Theorem 1 in [10], it yields the following two cases.

Case 1: if  $i \in S_k^i$ , then  $\sum_{j=1}^N \pi_{ij} E^T P_{1j} E$  in (8) is equivalent to  $\sum_{j \in S_k^i} \pi_{ij} E^T P_{1j} E - \pi_k^i E^T P_{1j} E$ .

Case 1: if  $i \in S_k^i$ , then  $\sum_{j=1}^N \pi_{ij}E^T P_{1j}E$  in (8) is equivalent to  $\sum_{j\in S_k^i} \pi_{ij}E^T P_{1j}E - \pi_k^i E^T P_{1j}E + \pi_d^i E^T P_{1i}E - \pi_d^i E^T P_{1j}E$ . Rearranging (8), it yields Lemma 3 of present paper. This is completed the proof.

### **III. MAIN RESULTS**

In this section, the reduced-order  $H_{\infty}$  filter existence condition for SMJSs (1) with ITRs will be presented.

Firstly, consider the following filter for the estimation of z(t):

$$\begin{cases} E_f \dot{x}_f(t) = A_{fi} x_f(t) + B_{fi} y(t), \\ z_f(t) = C_{fi} x_f(t) + D_{fi} y(t), \end{cases}$$
(9)

where  $x_f(t) \in \mathcal{R}^{\hat{n}}(\hat{n} \le n), z_f(t) \in \mathcal{R}^q, E_f, A_{f\hat{i}} \in \mathcal{R}^{\hat{n} \times \hat{n}}, B_{f\hat{i}} \in \mathcal{R}^{\hat{n} \times p}, C_{f\hat{i}} \in \mathcal{R}^{q \times \hat{n}}, D_{f\hat{i}} \in \mathcal{R}^{q \times p}$  are to be determined. Let  $\tilde{x}(t) = col[x(t), x_f(t)], \tilde{z}(t) = z(t) - z_f(t)$ . Then, the filtering error system can be represented as

$$\begin{aligned}
\tilde{E}\tilde{\tilde{x}}(t) &= \tilde{A}_{i}\tilde{x}(t) + \tilde{B}_{wi}w(t), \\
\tilde{z}(t) &= \tilde{C}_{i}\tilde{x}(t),
\end{aligned}$$
(10)

where

$$\tilde{E}_{i} = \begin{bmatrix} E & 0 \\ 0 & E_{f} \end{bmatrix}, \tilde{A}_{i} = \begin{bmatrix} A_{i} & 0 \\ B_{fi}C_{i} & A_{fi} \end{bmatrix},$$
$$\tilde{B}_{i} = \begin{bmatrix} B_{wi} \\ 0 \end{bmatrix}, \tilde{C}_{i} = \begin{bmatrix} L_{i} - D_{fi}C_{i} & -C_{fi} \end{bmatrix}.$$

Furthermore, define *R*, *S* satisfying  $R\tilde{E} = 0$  and  $\tilde{E}S = 0$  are both satisfied. Note that the matrices  $\tilde{A}_i$  and  $\tilde{C}_i$  in (10), which can be written as

$$\tilde{A}_i = \bar{A}_i + FG_iH_i, \ \tilde{C}_i = \bar{C}_i + JG_iH_i.$$
(11)

Associated with Lemma 3, we have the following proposition:

Proposition 1.: System (10) with ITRs is stochastically admissible with  $H_{\infty}$  performance if and only if there exist symmetric matrix  $P_i$ , nonsingular matrix  $Q_i$  for  $i \in \mathbb{S}$  and  $j \in S_{uk}^i$  such that

$$\tilde{E}_L^T P_i \tilde{E}_L > 0, \qquad (12)$$

$$\Omega_{1i} + \Psi_i G_i \Phi_i + (\Psi_i G_i \Phi_i)^T < 0, \quad i \in S_k^i,$$
(13)

$$\Omega_{2i} + \Psi_i G_i \Phi_i + \left(\Psi_i G_i \Phi_i\right)^T < 0, \quad i \in S^i_{uk}, \quad (14)$$

where

$$\begin{split} \Omega_{si} &= \begin{bmatrix} \Delta_{si} & \Lambda_i^T \tilde{B}_{wi} & \bar{C}_i^T \\ * & -\gamma^2 I & 0 \\ * & * & -I \end{bmatrix}, \ s = 1, 2, \\ \Delta_{i1} &= He[\bar{A}_i^T \Lambda_i] + \sum_{j \in S_k^i} \pi_{ij} \tilde{E}^T P_j \tilde{E} - \pi_k^i \tilde{E}^T P_j \tilde{E}, \\ \Delta_{i2} &= He[\bar{A}_i^T \Lambda_{1i}] + \sum_{j \in S_k^i} \pi_{ij} \tilde{E}^T P_j \tilde{E} - \pi_k^i \tilde{E}^T P_j \tilde{E} \\ &+ \pi_d^i \tilde{E}^T P_i \tilde{E} - \pi_d^i \tilde{E}^T P_j \tilde{E}, \\ G_i &= \begin{bmatrix} D_{fi} & C_{fi} \\ B_{fi} & A_{fi} \end{bmatrix}, \ \Lambda_i = P_i \tilde{E} + R^T Q_i S^T, \\ \bar{A}_i &= \begin{bmatrix} A_i & 0 \\ 0 & 0 \end{bmatrix}, \ \tilde{B}_{wi} = \begin{bmatrix} B_{wi} \\ 0 \end{bmatrix}, \ \bar{C}_i = \begin{bmatrix} L_i & 0 \end{bmatrix}, \\ \Psi_i &= \begin{bmatrix} \Lambda_i^T F \\ 0 \\ J \end{bmatrix}, \ \Phi_i = \begin{bmatrix} H_i & 0 \end{bmatrix}, \\ F &= \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix}, \ J = [-I, 0], \ H_i = \begin{bmatrix} C_i & 0 \\ 0 & I \end{bmatrix}. \end{split}$$

Then, by Lemma 1, (13)  $\Leftrightarrow$ 

$$\Phi_i^{\perp} \Omega_{1i} \Phi_i^{T\perp} < 0, \tag{15}$$

$$\Psi_i^{\perp}\Omega_{1i}\Psi_i^{i\perp} < 0, \tag{16}$$

and  $(14) \Leftrightarrow$ 

 $\left[ C_i \right]$ 

$$\Phi_i^{\perp} \Omega_{2i} \Phi_i^{T\perp} < 0, \tag{17}$$

$$\Psi_i^{\perp}\Omega_{2i}\Psi_i^{T\perp} < 0.$$
<sup>(18)</sup>

Now, we will present a full-order  $H_{\infty}$  filtering such that system (10) is stochastically admissible with  $H_{\infty}$  performance.

Proposition 2: There exists a full-order  $H_{\infty}$  filtering in (9) such that system (10) is stochastically admissible with  $H_{\infty}$  performance  $\gamma$  if and only if there exist symmetric matrices  $P_{1i}$ ,  $\bar{P}_{1i}$ , nonsingular matrices  $Q_{1i}$ ,  $\bar{Q}_{1i}$  for  $i \in \mathbb{S}$  and  $j \in S_{uk}^i$  such that

$$\begin{bmatrix} E_L^T P_{1i} E_L & I \\ I & E_R^T \bar{P}_{1i} E_R \end{bmatrix} > 0,$$
  
$$if \ i \in S_k^i, \quad (19)$$
  
$$\stackrel{\bot \delta_{i1} C_i^{\perp T}}{*} \quad C_i^{\perp} \Lambda_{1i} B_{wi} \quad C_i^{\perp} C_i^T \\ * \quad -\gamma^2 I \quad 0 \end{bmatrix} < 0, \quad (20)$$

$$\begin{bmatrix} * & * & -I \\ \delta_{i2} & B_{wi} & R_{11}(x) & R_{21}(x) \\ * & -\gamma^2 I & 0 & 0 \\ * & * & -S_{11}(x) & 0 \\ * & * & * & -S_{21}(x) \end{bmatrix} < 0,$$
  
*if*  $i \in S_{i,i}^i$ , (21)

$$\begin{bmatrix} C_i^{\perp} \bar{\delta}_{i1} C_i^{\perp T} & C_i^{\perp} \Lambda_{1i}^T B_{wi} & C_i^{\perp} C_i^T \\ * & -\gamma^2 I & 0 \\ * & * & -I \end{bmatrix} < 0, \qquad (22)$$

VOLUME 8, 2020

### **IEEE**Access

$$\begin{bmatrix} \delta_{i2} & B_{wi} & R_{11}(x) & R_{21}(s) \\ * & -\gamma^2 I & 0 & 0 \\ * & * & -S_{11}(x) & 0 \\ * & * & * & -S_{21}(x) \end{bmatrix} < 0,$$
(23)

where

$$\begin{split} \delta_{i2} &= He[A_i\bar{\Lambda}_{1i}] + \pi_{ii}E\bar{P}_{1i}E^T, \\ \bar{\delta}_{i2} &= He[A_i\bar{\Lambda}_{1i}] + \pi_d^i E\bar{P}_{1i}E^T, \\ R_{11}(x) &= [\sqrt{\pi_{ij}}E\bar{P}_{1i}E_R]_{j\in S_k^i}/\{i\}, \\ R_{21}(x) &= \sqrt{-\pi_k^i}E\bar{P}_{1i}E_R, \\ \bar{R}_{21}(x) &= \sqrt{-\pi_d^i - \pi_k^i}E\bar{P}_{1i}E_R, \\ \bar{R}_{21}(x) &= diag\{E_R^T\bar{P}_{1j}E_R\}_{j\in S_k^i}/\{i\}, \\ S_{21}(x) &= E_R^T\bar{P}_{1j}E_R. \end{split}$$

Furthermore, if  $P_{1i}$ ,  $\bar{P}_{1i}$ ,  $Q_{1i}$ ,  $\bar{Q}_{1i}$  are the solutions of (19)-(23), then  $H_{\infty}$  filter matrices  $G_i$  can be given by substituting the solutions of (19)-(23) into (13), (14), where

$$\Lambda_{i} = \begin{bmatrix} \Lambda_{1i} & \bar{\Lambda}_{1i}^{-1} - \Lambda_{1i} \\ \bar{\Lambda}_{1i}^{-1} - \Gamma_{1i} & \Lambda_{1i} - \bar{\Lambda}_{1i}^{-1} \end{bmatrix}, P_{i} = \begin{bmatrix} P_{1i} & P_{12i} \\ P_{12i}^{T} & P_{3i} \end{bmatrix},$$

the other notations are defined in Lemma 3 and Proposition 1.

*Proof:* Recalling  $\Psi_i$  and  $\Phi_i$  in (13), (14), by a simple calculation, we can obtain

$$\Phi_i^{\perp} = \begin{bmatrix} \begin{bmatrix} C_i^{\perp} & 0 \end{bmatrix} & 0 & 0 \\ \begin{bmatrix} 0 & 0 \end{bmatrix} & I & 0 \\ \begin{bmatrix} 0 & 0 \end{bmatrix} & 0 & I \end{bmatrix},$$
(24)

$$\Psi_i^{\perp} = \begin{bmatrix} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} & \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \Lambda_i^{-T} & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix}.$$
(25)

Next, we will probe the NS condition for  $i \in S_k^i$  as follows. (The proof process for  $i \in S_{uk}^i$  is similar, which is omitted).

(Necessity). For symmetric matrices  $P_i$ ,  $\overline{P}_i$  and nonsingular matrices  $Q_i$  and  $\overline{Q}_i$ , we have the following partition

$$P_{i} = \begin{bmatrix} P_{1i} & P_{12i} \\ P_{12i}^{T} & P_{3i} \end{bmatrix}, \ \bar{P}_{i} = \begin{bmatrix} \bar{P}_{1i} & \bar{P}_{12i} \\ \bar{P}_{12i}^{T} & \bar{P}_{3i} \end{bmatrix},$$
(26)

$$Q_{i} = \begin{bmatrix} Q_{1i} & Q_{12i} \\ Q_{21i} & Q_{3i} \end{bmatrix}, \ \bar{Q}_{i} = \begin{bmatrix} \bar{Q}_{1i} & \bar{Q}_{12i} \\ \bar{Q}_{21i} & \bar{Q}_{3i} \end{bmatrix}.$$
 (27)

Then, substituting (24)-(27) into conditions (15) and (16), which respectively lead to (20) and

$$\begin{bmatrix} \bar{\delta}_{21i} & B_{wi} \\ * & -\gamma^2 I \end{bmatrix} < 0, \tag{28}$$

where

$$\begin{split} \bar{\delta}_{21i} &= He[A_i\bar{\Lambda}_{1i}] + \sum_{j\in\mathbb{S}} \pi_{ij}\mathfrak{P}_{ij} - \pi_k^i\mathfrak{P}_{ij},\\ \mathfrak{P}_{ij} &= E\bar{P}_{1i}E^T P_{1j}E\bar{P}_{1i}E^T \\ &\quad + He[E\bar{P}_{1i}E^T P_{12j}E\bar{P}_{12i}^TE^T] \\ &\quad + E\bar{P}_{12i}E^T P_{3j}E\bar{P}_{12i}^TE^T. \end{split}$$

Recalling (12), we have  $E_L^T P_{3j} E_L > 0$  and

$$E_L^T P_{1j} E_L = (E_R^T \bar{P}_{1j} E_R)^{-1} + E_L^T P_{12j} E_L \times (E_L^T P_{3j} E_L)^{-1} (E_L^T P_{12j}^T E_L).$$
(29)

Further, we get

$$\mathfrak{P}_{ij} = E\bar{P}_{1i}E_R(E_R^T\bar{P}_{1j}E_R)^{-1}(E\bar{P}_{1i}E_R)^T + \mathfrak{E}_{ij}^T(E_L^TP_{3j}E_L)^{-1}\mathfrak{E}_{ij},$$
(30)

$$\mathfrak{E}_{ij} = E_L^T P_{3j} E \bar{P}_{12i}^T E^T + E_L^T P_{12j}^T E \bar{P}_{1i} E^T.$$
(31)

Thus, condition (28) gives

$$\begin{bmatrix} \tilde{\delta}_{21i} & B_{wi} \\ * & -\gamma^2 I \end{bmatrix} < 0, \tag{32}$$

where

$$\begin{split} \tilde{\delta}_{21i} &= He[A_i\bar{\Lambda}_{1i}] + \sum_{j\in\mathbb{S}} \pi_{ij}E\bar{P}_{1i}E_R \\ &\times (E_R^T\bar{P}_{1j}E_R)^{-1}(E\bar{P}_{1i}E_R)^T - \pi_k^iE\bar{P}_{1i}E_R \\ &\times (E_R^T\bar{P}_{1j}E_R)^{-1}(E\bar{P}_{1i}E_R)^T. \end{split}$$

By Shur complement, we get  $(15) \Rightarrow (21)$ .

Next, we shall probe (12) is equivalent to condition (19). Condition (12) satisfies the following relations:

$$\begin{array}{l} 0 < \begin{bmatrix} E_{L}^{T} P_{1i}E_{L} & E_{L}^{T} P_{12i}E_{L} \\ E_{L}^{T} P_{12i}^{T}E_{L} & E_{L}^{T} P_{3i}E_{L} \end{bmatrix}, \\ \Leftrightarrow \\ 0 < E_{L}^{T} P_{3i}E_{L}, 0 < E_{L}^{T} P_{1i}E_{L} \\ - E_{L}^{T} P_{12i}E_{L}(E_{L}^{T} P_{3i}E_{L})^{-1}E_{L}^{T} P_{12i}^{T}E_{L} \\ = (E_{R}^{T}\bar{P}_{1i}E_{R})^{-1}, \\ \Leftrightarrow \\ 0 < E_{L}^{T} P_{12i}E_{L}(E_{L}^{T} P_{3i}E_{L})^{-1}E_{L}^{T} P_{12i}^{T}E_{L} \\ = E_{L}^{T} P_{1i}E_{L} - (E_{R}^{T}\bar{P}_{1i}E_{R})^{-1}, 0 < E_{R}^{T}\bar{P}_{1i}E_{R}, \end{array}$$

which implies condition (19). Summarizing the above discussions, the proof of necessity is completed.

(Sufficiency). Construct  $P_i$  and  $Q_i$  as follows

$$P_i = \begin{bmatrix} P_{1i} & P_{12i} \\ * & P_{3i} \end{bmatrix}, \tag{33}$$

$$Q_i = \begin{bmatrix} Q_{1i} & Q_{12i} \\ Q_{12i} & Q_{3i} \end{bmatrix}, \tag{34}$$

where

$$\begin{split} P_{12i} &= -P_{3i}, Q_{12i} = -Q_{3i}, \\ \tilde{P}_{3i} &= P_{1i} - E_L (E_L^T E_L)^{-1} \\ &\times (E_R^T \bar{P}_{1i} E_R)^{-1} (E_L^T E_L)^{-1} E_L^T, \\ \tilde{Q}_{12i} &= Q_{1i} - (V^T V \bar{Q}_{1i} U U^T)^{-1}, \end{split}$$

and  $P_{1i}$ ,  $\bar{P}_{1i}$   $Q_{1i}$ ,  $\bar{Q}_{1i}$  are the same as those Lemma 3. Then, from (33) and (34),  $\Lambda_i$  in (15) and (16) can be constructed as

$$\Lambda_i = P_i \tilde{E}_i + R^T Q_i S^T = \begin{bmatrix} \Lambda_{1i} & \Lambda_{12i} \\ \Lambda_{12i} & -\Lambda_{12i} \end{bmatrix}, \quad (35)$$

VOLUME 8, 2020

where  $\Lambda_{12i} = \bar{\Lambda}_{1i}^{-1} - \Lambda_{1i}$  and  $\Lambda_{1i}$ ,  $\bar{\Lambda}_{1i}$  have been defined in Proposition 2.

In view of Lemma 2, one has  $\bar{\Lambda}_i = \bar{P}_i \tilde{E}^T + S \bar{Q}_i R$ , where  $R = diag\{U, U\}, S = diag\{S, S\}$  and

$$\bar{P}_i = \begin{bmatrix} \bar{P}_{1i} & \bar{P}_{1i} \\ \bar{P}_{1i} & \bar{P}_{3i} \end{bmatrix}, \quad \bar{Q}_i = \begin{bmatrix} \bar{Q}_{1i} & \bar{Q}_{2i} \\ \bar{Q}_{2i} & \bar{Q}_{3i} \end{bmatrix}.$$
(36)

Therefore, we have

$$\bar{\Lambda}_{i}^{T}\tilde{E}^{T}P_{j}\tilde{E}\bar{\Lambda}_{i} = \tilde{E}\bar{P}_{i}\tilde{E}^{T}P_{j}\tilde{E}\bar{P}_{i}\bar{E}^{T} = \begin{bmatrix} \widetilde{\mathfrak{F}}_{ij} & \star \\ \star & \star \end{bmatrix}, \quad (37)$$

where  $\mathfrak{F}_{ij} = E\bar{P}_{1i}E_R(E_R^T\bar{P}_{1j}E_R)^{-1}E_R^T\bar{P}_{1i}E^T$  and  $\star$  indicates irrelevant matrices. Then, applying (33), (36) and (37) to conditions (15) and (16), respectively, we have (20) and

$$\begin{bmatrix} \delta_{211i} & B_{wi} \\ * & -\gamma^2 I \end{bmatrix} < 0, \tag{38}$$

where  $\delta_{211i} = He[A_i \overline{\Lambda}_{1i}] + \sum_{j \in S_k^i} \pi_{ij} \mathfrak{F}_{ij} - \pi_k^i \mathfrak{F}_{ij}$ . Thus, we can conclude that (20) and (21) hold if (15) and (16) hold, respectively.

Further, set  $P_{1L} = E_L^T P_{1i} E_L$ ,  $\bar{P}_{1R} = (E_R^T \bar{P}_{1i} E_R)^{-1}$ , in this case, condition (19) can be expressed as

$$\begin{array}{l} 0 < P_{1L} - \bar{P}_{1R}, 0 < \bar{P}_{1R}, \\ \Leftrightarrow \\ 0 < \begin{bmatrix} P_{1L} & \bar{P}_{1R} - P_{1L} \\ \bar{P}_{1R} - P_{1L} & P_{1L} - \bar{P}_{1R} \end{bmatrix} \end{array}$$

which implies condition (12). Summarizing the above statements, the proof of Proposition 2 is completed.

Based on Theorem 1, we can directly derive the following NS condition for SMJSs with CTRs.

Corollary 1: There exists a full-order  $H_{\infty}$  filter in (9) such that system (10) is stochastically admissible with  $H_{\infty}$ performance  $\gamma$  if and only if there exist symmetric matrices  $P_{1i}, P_{1i}$ , nonsingular matrices  $Q_{1i}, Q_{1i}$  for  $i \in \mathbb{S}$  such that (19) and

$$\begin{bmatrix} C_i^{\perp} \delta_{11i} C_i^{\perp T} & C_i^{\perp} \Lambda_{1i}^T B_{wi} & C_i^{\perp} L_i^T \\ * & -\gamma^2 I & 0 \\ * & * & -I \end{bmatrix} < 0, \quad (39)$$

$$\begin{bmatrix} \delta_{21i} & B_{wi} & [\sqrt{\pi_{ii}} E \bar{P}_i E_R]_{i \in \mathbb{S}} / \{i\} \end{bmatrix}$$

$$\begin{bmatrix} 0_{211} & D_{M1} & (\sqrt{M_{j}}D_{1}/D_{K}) \in \mathbb{S}/\{i\} \\ * & -\gamma^{2}I & 0 \\ * & * & -diag\{E_{R}^{T}\bar{P}_{j}E_{R}\}_{j\in\mathbb{S}}/\{i\} \end{bmatrix} < 0, \quad (40)$$

where

$$\delta_{11i} = He[A_i^T \Lambda_{1i}] + \sum_{j \in \mathbb{S}} \pi_{ij} E^T P_{1j} E,$$
  

$$\delta_{21i} = He[A_i \bar{\Lambda}_{1i}] + \pi_{ii} E \bar{P}_{1i} E^T,$$
  

$$\Lambda_{1i} = P_{1i} E + U^T Q_{1i} V^T, \ \bar{\Lambda}_{1i} = \bar{P}_{1i} E^T + V \bar{Q}_{1i} U.$$

Furthermore, if  $P_{1i}$ ,  $\bar{P}_{1i}$ ,  $Q_{1i}$ ,  $\bar{Q}_{1i}$  are the solutions of (19), (39) and (40), then  $H_{\infty}$  filter matrices  $G_i$  can be given by substituting the solutions of (19), (39) and (40) into (13), where  $\Omega_{1i}$ ,  $\Lambda_i$  and  $\bar{\Lambda}_i$  are defined in Proposition 2.

*Remark 1:* It is noted that NS full-order  $H_{\infty}$  filtering has been proposed for SMJSs with CTRs in [19]. Since the filter

matrices in [19] are constructed with the TRs, the TRs should be completely known. Fortunately, the filter matrices can be directly given by solving Proposition 2 if the TRs is incomplete. Thus, the method of present paper is more general than the result proposed in [19].

Remark 2: It is noted that the methods in Proposition 2 and [19] cannot be extended to derive the reduced-order one since some special matrix structure, such as,  $E_f$ ,  $\Lambda_i$ , and  $\Lambda_i$ in Proposition 2 and [19]. To be concrete, i) in [19], filter parameters  $A_{fi}$ ,  $B_{fi}$ ,  $C_{fi}$  is dependent on full-order *n*. ii) In [19] and Proposition 2,  $\Lambda_i$  must be completely known for the solvability of filter parameters. iii)  $E_f = E$  is determined in [19] and Proposition 2 due to the utilization of Lemma 2. Thus, without constraints, we will give the following NS reduced-order  $H_{\infty}$  filtering in another insight.

*Theorem 1:* There exists a reduced-order  $H_{\infty}$  filtering in (9) such that system (10) is stochastically admissible with  $H_{\infty}$ performance  $\gamma$  if and only if there exist symmetric matrices  $P_i, \bar{P}_i$ , nonsingular matrices  $Q_i, \bar{Q}_i$  for  $i \in \mathbb{S}$  and  $j \in S_{uk}^i$  such that (12) and

$$if \ i \in S_k^i, \qquad (41)$$

$$\begin{bmatrix} F \Delta_{i2} F^T & F \tilde{B}_{wi} & F R_1(x) & F R_2(x) \\ * & -\gamma^2 I & 0 & 0 \\ * & * & -S_1(x) & 0 \\ * & * & * & -S_2(x) \end{bmatrix} < 0, \qquad (42)$$

$$if \ i \in S_{uk}^i, \qquad (43)$$

$$\begin{bmatrix} F \tilde{\Delta}_{i2} F^T & F \tilde{B}_{wi} & F R_1(x) & F \bar{R}_2(s) \\ * & -\gamma^2 I & 0 & 0 \\ * & * & -S_1(x) & 0 \\ * & * & * & -S_2(x) \end{bmatrix} < 0, \qquad (44)$$

where

$$\begin{split} \Delta_{i2} &= He[\bar{A}_i\bar{\Lambda}_i] + \pi_{ii}\tilde{E}\bar{P}_i\tilde{E}^T,\\ \bar{\Delta}_{i2} &= He[\bar{A}_i\bar{\Lambda}_i] + \pi_d^i\tilde{E}\bar{P}_i\tilde{E}^T,\\ R_1(x) &= [\sqrt{\pi_{ij}}\tilde{E}\bar{P}_i\tilde{E}_R]_{j\in S_k^i}/\{i\},\\ R_2(x) &= \sqrt{-\pi_k^i}\tilde{E}\bar{P}_i\tilde{E}_R, \bar{R}_2(s) = \sqrt{-\pi_d^i - \pi_k^i}\tilde{E}\bar{P}_i\tilde{E}_R,\\ S_1(x) &= diag\{\tilde{E}_R^T\bar{P}_j\tilde{E}_R\}_{j\in S_k^i}/\{i\}, S_2(x) = \tilde{E}_R^T\bar{P}_j\tilde{E}_R,\\ \Lambda_i &= P_i\tilde{E} + R^TQ_iS^T, \bar{\Lambda}_i = \bar{P}_i\tilde{E}^T + S\bar{Q}_iR, \end{split}$$

and the other notations are defined in Proposition 1.

\*

In this case, inspired by [21], [22], for given any appropriately dimensional matrices  $R_i > 0$ ,  $Z_i$  and  $\Upsilon_i$  satisfying  $||\Upsilon_i|| \leq 1. \Phi_i, \Psi_i$  satisfying  $\Phi_{Li}\Phi_{Ri} = \Phi_i, \Psi_i\Psi_{Li}\Psi_{Ri} = \Psi_i$ , where  $\Phi_{Li}$ ,  $\Phi_{Ri}$  and  $\Psi_{Li}$ ,  $\Psi_{\underline{R}i}$  are any full rank factors of  $\Phi_i$ and  $\Psi_i$ . Then, if  $P_i$ ,  $\bar{P}_i$ ,  $Q_i$ ,  $\bar{Q}_i$  are the solutions of (12), (41)-(44). Then reduced-order  $H_{\infty}$  filter parameter matrices  $G_i$  can be given by

$$G_{i} = \Psi_{Ri}^{+} K_{ki} \Phi_{Li}^{+} + Z_{i} - \Psi_{Ri}^{+} \Psi_{Ri} Z_{i} \Phi_{Li} \Phi_{Li}^{+}, \quad i \in S_{k}^{i}, \quad (45)$$
  

$$G_{i} = \Psi_{Ri}^{+} K_{uki} \Phi_{Li}^{+} + Z_{i} - \Psi_{Ri}^{+} \Psi_{Ri} Z_{i} \Phi_{Li} \Phi_{Li}^{+}, \quad i \in S_{uk}^{i}, \quad (46)$$

where

$$\begin{split} W_{ki} &= (\Psi_{Li}^{T}R_{i}^{-1}\Psi_{Li}^{T} - \Omega_{1i})^{-1} > 0, \\ S_{ki} &= R_{i} - \Psi_{Li}^{T}[W_{ki} - W_{ki}\Phi_{Ri}^{T}(\Phi_{Ri}W_{ki}\Phi_{Ri}^{T})^{-1}]\Psi_{Li}, \\ K_{ki} &= -R_{i}^{-1}\Psi_{Li}^{T}W_{ki}\Psi_{Ri}^{T}(\Phi_{Ri}W_{ki}\Phi_{Ri}^{T})^{-1} \\ &\quad + R_{i}^{-1}S_{i}^{1/2}\Upsilon_{i}(\Phi_{Ri}W_{ki}\Phi_{Ri}^{T})^{-1/2}, \\ W_{uki} &= (\Psi_{Li}^{T}R_{i}^{-1}\Psi_{Li}^{T} - \Omega_{2i})^{-1} > 0, \\ S_{uki} &= R_{i} - \Psi_{Li}^{T}W_{uki}[I - \Phi_{Ri}^{T}(\Phi_{Ri}W_{uki}\Phi_{Ri}^{T})^{-1}]\Psi_{Li}, \\ K_{uki} &= -R_{i}^{-1}\Psi_{Li}^{T}W_{uki}\Psi_{Ri}^{T}(\Phi_{Ri}W_{uki}\Phi_{Ri}^{T})^{-1} \\ &\quad + R_{i}^{-1}S_{i}^{1/2}L_{i}(\Phi_{Ri}W_{uki}\Phi_{Ri}^{T})^{-1/2}. \end{split}$$

*Proof:* Recalling  $\Psi_i$  and  $\Phi_i$  in (13) associated with reduced order  $\hat{n}$ , we can obtain

$$\Phi_{i}^{\perp} = \begin{bmatrix} N_{i} & 0_{n,m} & 0_{n,q} \\ 0_{m,n+\hat{n}} & I_{m} & 0_{m,q} \\ 0_{q,n+\hat{n}} & 0_{q,m} & I_{q} \end{bmatrix}, \quad (47)$$

$$\Psi_{i}^{\perp} = \begin{bmatrix} F & 0_{n,m} & 0_{n,q} \\ 0_{m,n+\hat{n}} & I_{m} & 0_{m,q} \end{bmatrix} \times \begin{bmatrix} \Lambda_{i}^{-T} & 0_{n+\hat{n},m} & 0_{n+\hat{n},q} \\ 0_{m,n+\hat{n}} & I_{m} & 0_{m,q} \\ 0_{q,n+\hat{n}} & 0_{q,m} & I_{q} \end{bmatrix}. \quad (48)$$

Then we shall will the NS condition for  $i \in S_k^i$  as follow, the proof process for  $i \in S_{uk}^i$  is similar, which is omitted.

Associated with Lemma 3, condition (15) is equivalent to (41). Next, we need probe the (16) is equivalent to (42).

As the proof of Proposition 2, condition (16) can be written as (32), connecting with Lemma 3, condition (32) can be rewritten as

$$\begin{bmatrix} \tilde{\Delta}_{i21} & B_{wi} \\ * & -\gamma^2 I \end{bmatrix} < 0, \quad i \in S_k^i,$$
(49)

where

$$\begin{split} \tilde{\Delta}_{i21} &= He[\bar{A}_i\bar{\Lambda}_i] + \sum_{j \in S_k^i} \pi_{ij}\Pi_{ij} - \pi_k^i\Pi_{ij}, \\ \Pi_{ij} &= \tilde{E}\bar{P}_i\tilde{E}_R(\tilde{E}_R^T\bar{P}_j\tilde{E}_R)^{-1}(\tilde{E}\bar{P}_i\tilde{E}_R)^T. \end{split}$$

Further, by Shur complement to (49), we get (42). Summarizing the above statements, the proof of Theorem 1 is completed.

Corollary 2: There exists a reduced-order  $H_{\infty}$  filtering in (9) such that system (10) stochastically admissible with  $H_{\infty}$  performance  $\gamma$  if and only if there exist symmetric matrices  $P_i$ ,  $\bar{P}_i$ , nonsingular matrices  $Q_i$ ,  $\bar{Q}_i$  for each  $i \in \mathbb{S}$  such that (12) and

$$\mathcal{N}_{i}\Omega_{1i}\mathcal{N}_{i}^{T} < 0, \quad (50)$$

$$\begin{bmatrix} F\Delta_{i2}F^{T} & F\tilde{B}_{wi} & F[\sqrt{\pi_{ij}}\tilde{E}\bar{P}_{i}\tilde{E}_{R}]_{j\in\mathbb{S}}/\{i\} \\ * & -\gamma^{2}I & 0 \\ * & * & -diag\{\tilde{E}_{R}^{T}\bar{P}_{j}\tilde{E}_{R}\}_{j\in\mathbb{S}}/\{i\} \end{bmatrix} < 0 \quad (51)$$

where

$$F = [I_n, 0_{n,n+\hat{n}}], \mathcal{N}_i = diag\{N_i, I\}, N_i = [C_i^{\perp}, 0_{n,\hat{n}+q}],$$

$$\Delta_{i2} = He[\bar{A}_i\bar{\Lambda}_i] + \pi_{ii}\tilde{E}\bar{P}_i\tilde{E}^T, \Lambda_i = P_i\tilde{E} + R^TQ_iS^T, \ \bar{\Lambda}_i = \bar{P}_i\tilde{E}^T + S\bar{Q}_iR$$

and the other notations are defined in Proposition 1.

In this case, inspired by [21], [22], for given any appropriately dimensional matrices  $R_i > 0$ ,  $Z_i$  and  $\Upsilon_i$  satisfying  $||\Upsilon_i|| \le 1$ .  $\Phi_i$ ,  $\Psi_i$  satisfying  $\Phi_{Li}\Phi_{Ri} = \Phi_i$ ,  $\Psi_i\Psi_{Li}\Psi_{Ri} = \Psi_i$ , where  $\Phi_{Li}$ ,  $\Phi_{Ri}$  and  $\Psi_{Li}$ ,  $\Psi_{Ri}$  are any full rank factors of  $\Phi_i$  and  $\Psi_i$ . Then, if  $P_i$ ,  $\bar{P}_i$ ,  $Q_i$ ,  $\bar{Q}_i$  are the solutions of (12), (50) and (51). Then reduced-order  $H_\infty$  filter matrices  $G_i$  can be given by

 $G_i = \Psi_{Ri}^+ K_i \Phi_{Li}^+ + Z_i - \Psi_{Ri}^+ \Psi_{Ri} Z_i \Phi_{Li} \Phi_{Li}^+,$ 

where

$$\begin{split} K_{i} &= -R_{i}^{-1}\Psi_{Li}^{T}W_{i}\Psi_{Ri}^{T}(\Phi_{Ri}W_{i}\Phi_{Ri}^{T})^{-1} \\ &+ R_{i}^{-1}S_{i}^{1/2}\Upsilon_{i}(\Phi_{Ri}W_{i}\Phi_{Ri}^{T})^{-1/2}, \\ W_{i} &= (\Psi_{Li}^{T}R_{i}^{-1}\Psi_{Li}^{T} - \Omega_{i})^{-1}, \\ S_{i} &= R_{i} - \Psi_{Li}^{T}[W_{i} - W_{i}\Phi_{Ri}^{T}(\Phi_{Ri}W_{i}\Phi_{Ri}^{T})^{-1}]\Psi_{Li}. \end{split}$$

*Remark 3:* Note that Theorem 1 in [19] and Proposition 2 of present paper, the attention is focused on system matrices of the considered system (1). And the first aim is to obtain  $\Lambda_{1i} = P_{1i}E + U^T Q_{1i}V^T$  by building matrices  $\Lambda_i$ . However, the order 2n cannot be changed in [19] and Proposition 2. Thus, in Theorem 1 of present paper, we directly focus on system (10), the Lyapunov decision order is  $n + \hat{n}$ , we can first get matrices  $\Lambda_i$ , the order is also  $n+\hat{n}$ . Thus, the reduced-order  $H_{\infty}$  filtering is obtained.

*Remark 4:* It is well known that reduced-order filter design is a very important issue in many applications, especially when fast data processing is necessary with a process of limited power. Therefore, considerable attention has been devoted to the study of reduced-order filter design over the past few years. In some existing works [7], [23], sufficient conditions for reduced-order  $H_{\infty}$  filtering are derived on equality/rank constraints, which are hard to find a solution to perfectly satisfy the equality constraints due to its roundoff errors in computation. Furthermore, complicated matrix transformation and matrix structures inverse the mathematical derivation. In this paper, the obtained results have neither complicated matrix transformation nor equality/rank constraint, which make the conditions easier to find numerical solutions than the existing works [7], [23].

*Remark 5:* In this paper, only the switching probabilities were considered. However, in practice, there is usually a restriction to the switching frequency. In this case, by combining with method in [24], [25]. The present synthesis method can be extended to deal with singular systems with average dwell time (ADT) switching.

### **IV. EXAMPLES**

In this section, we will give one numerical and one practical examples to demonstrate the applicability of the proposed approaches.

(52)

*Example 1:* To demonstrate the efficiency of full-order  $H_{\infty}$  filtering in Corollary 1 and Corollary 2 for system (1) with CTRs, the following parameters are given:

$$A_{1} = \begin{bmatrix} -3 & 1 & 0 \\ 0.3 & -2.5 & 1 \\ -0.1 & 0.3 & -3.8 \end{bmatrix}, B_{1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix},$$

$$C_{1} = \begin{bmatrix} 0.8 & 0.3 & 0 \end{bmatrix}, L_{1} = \begin{bmatrix} 0.5 \\ -0.1 \\ 1 \end{bmatrix}^{T},$$

$$A_{2} = \begin{bmatrix} -2.5 & 0.5 & -0.1 \\ 0.1 & -3.5 & 0.3 \\ -0.1 & 1 & -2 \end{bmatrix}, B_{2} = \begin{bmatrix} -0.6 \\ 0.5 \\ 0 \end{bmatrix}$$

$$C_{2} = \begin{bmatrix} -0.5 & 0.2 & 0.3 \end{bmatrix}, L_{2} = \begin{bmatrix} 0 \\ 1 \\ 0.4 \end{bmatrix}^{T},$$

$$\Pi = \begin{bmatrix} -0.6 & 0.6 \\ 0.9 & -0.9 \end{bmatrix}, E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

**TABLE 1.** The minimum allowable  $\gamma$  for different methods.



**FIGURE 1.** Responses of x(t) their estimations.



**FIGURE 2.** One possible switching signals and responses of z(t) and their estimations.

A comparison among [15], Corollary 1 and Corollary 2 of present paper is depicted in Table 1. Obviously, Corollary 1 and Corollary 2 are equivalent for full-order  $H_{\infty}$  filtering, which are superior than the method in [15]. Furthermore, Corollary 2 can be also used to reduced-order filtering while Corollary 1 can not be. If  $\hat{n} = 2$  in Corollary 2, the minimum  $H_{\infty}$  performance level  $\gamma$  is 0.2754. It concludes that Corollary 2 is more general than Corollary 1. Next, supposing  $\gamma = 2$ , by using Corollary 1, the full-order  $H_{\infty}$  filter matrices  $G_i = \left[ \frac{D_{fi} | C_{fi}}{B_{fi} | A_{fi}} \right]$  can be given by

 $G_1$ 

|       | 0.0005   | 0.0001   | -0.0002  | 0.0010 ]   |     |
|-------|----------|----------|----------|------------|-----|
| =     | -1.9011  | 1.5078   | 0.6197   | -1.1988    | 103 |
|       | -0.7221  | 0.5685   | 0.2266   | -0.0740 ×  | 10  |
|       | 0.7099   | -0.5585  | -0.2269  | 0.0687     |     |
| $G_2$ |          |          |          | _          |     |
| =     | 0.8299   | 0.4125   | 0.8310   | 0.1473     | ٦   |
|       | 59.7086  | 29.3448  | -11.1787 | 7 -18.9317 | 7   |
|       | -32.2933 | -14.1969 | 3.1590   | 10.5842    | ·   |
|       |          | -7.4667  | 3.8307   | 2.5805     |     |
|       | _        |          |          |            | _   |

With the initial states of x(0) = col[0.2, 0.5, 0],  $x_f(0) = col[0, 0, 0]$ , r(0) = 1 and  $w(t) = -0.3sin(5t)e^{-0.8t}$ . From Figure 1 and Figure 2, it is seen that proposed full-order  $H_{\infty}$  filtering is efficient.

*Example 2:* To demonstrate the efficiency of reduced-order  $H_{\infty}$  filtering in Theorem 1 for system (1) with ITRs. Consider a DC motor driving a load that changes randomly [19].

$$J\dot{v}_i = K_t c(t) - b_i v(t),$$
  

$$u(t) = R_i c(t) + K_v v(t),$$
(53)

where v(t), u(t),  $K_t$ ,  $K_v$ ,  $R_i$  mean the current, the speed of the shaft, the input voltage, the torque constant, the electromotive force and the electric resistor, respectively. The coefficient relations such as  $J_i = J_m + \frac{J_{ci}}{n^2}$ ,  $b_i = b_m + \frac{b_{ci}}{n^2}$  hold, where  $J_m$  and  $J_{ci}$  are the moments of the motor and the load;  $b_m$  and  $b_{ci}$  are the damping ratios with gear ratio n. In this case that  $J_m = 0.5 kgm$ ,  $J_{c1} = 50 kgm$ ,  $J_{c2} = 150 kgm$ ,  $b_{c1} = 100$ ,  $b_{c2} = 240$ ,  $R_1 = R_2 = 1\Omega$ ,  $b_m = 1$ ,  $k_t = 2Nm/A$ ,  $k_v = 1Vs/rad$ ,  $b_{v1} = b_{v2} = 0.4$  and n = 10, the stabilized DC motor model with disturbance can be modeled as SMJS (1) with state  $x(t) = [v(t), c(t)]^T$  which has the following system matrices:

$$A_{1} = \begin{bmatrix} -2 & 3\\ -0.52 & -0.908 \end{bmatrix}, B_{1} = \begin{bmatrix} 0\\ -0.1 \end{bmatrix}, A_{2} = \begin{bmatrix} -1.7 & 1.5\\ -1.03 & -0.64 \end{bmatrix}, B_{2} = \begin{bmatrix} 0\\ -1 \end{bmatrix}.$$

For the system output, we set the following coefficients:

$$C_1 = \begin{bmatrix} 10 & 0 \end{bmatrix}, C_2 = \begin{bmatrix} 11 & 0 \end{bmatrix}$$
$$L_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}, L_2 = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

Singular matrix is given as  $E = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$  and the transition rate matrix is given as

$$\Pi = \begin{bmatrix} -0.0193 & 0.0193\\ ? & ? \end{bmatrix}.$$

Now, a first-order  $H_{\infty}$  filter will be designed. Suppose the required  $H_{\infty}$  norm bound is  $\gamma = 0.5$  and the following parameters are given as  $\pi_d^2 = -1$ ,  $E_f = 1$ ,  $R = S^T = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$ 

$$[0, 1, 0], \mathcal{N}_1 = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \mathcal{N}_2 = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$
 Then

by solving Theorem 1 of present paper, a first-order filter matrices can be given as

$$G_1 = \begin{bmatrix} 0.1580 & -0.2322 \\ 0.5000 & -1.4643 \end{bmatrix}, G_2 = \begin{bmatrix} 0.1192 & 0.6262 \\ 0.4000 & -0.8393 \end{bmatrix}$$

With initial state x(0) = col[0.2, 0],  $x_f(0) = 0$ ,  $r_0 = 1$ ,  $w(t) = 0.1sin(5t)e^{-0.2t}$ . From Figure 3, it can be observed that the first-order filter design method is efficient.



**FIGURE 3.** One possible switching signals, responses of x(t), z(t) and their estimations.

### V. CONCLUSION

In this paper, the reduced-order  $H_{\infty}$  filtering problem is considered for SMJSs with ITRs. By separating augmented system matrices, the existence of NS full-order  $H_{\infty}$  filtering was formulated in terms of strict LMIs. To gap the existence of NS reduced-order  $H_{\infty}$  filtering for SMJSs, without separating the augmented system matrices, the NS reduced-order  $H_{\infty}$ filtering was successfully derived. The complicated matrix transformation and equality/rank constraints are avoided in this paper. Two examples are illustrated to demonstrate the effectiveness of the achieved results. In the future, extending the methods in this paper to more complicated situations, such as for SMJSs with ADP switching in [24], [25] and time delay [26] deserves further exploration.

#### REFERENCES

- [1] L. Dai, Singular Control Systems. London, U.K.: Springer-Verlag, 1989.
- [2] Y. Tian and Z. Wang, "Extended dissipativity analysis of singular Takagi–Sugeno fuzzy systems with time delay via two improved techniques," *Int. J. Syst. Sci.*, vol. 2, pp. 1–11, Jun. 2020, doi: 10.1080/ 00207721.2020.1784494.

IEEE Access

- [4] Y. Tian and Z. Wang, "Stability analysis for delayed neural networks based on the augmented Lyapunov-krasovskii functional with delay-producttype and multiple integral terms," *Neurocomputing*, vol. 410, pp. 295–303, Oct. 2020, doi: 10.1016/j.neucom.2020.05.045.
- [5] Y. Wang, T. Zhang, J. Ren, and J. Li, "Network–based integral sliding mode control for descriptor systems with event–triggered sampling scheme," *Int. J. Robust Nonlinear Control*, vol. 29, no. 10, pp. 2757–2776, Jul. 2019, doi: 10.1002/rnc.4545.
- [6] Y. Tian and Z. Wang, "A new integral inequality approach for extended dissipative filters design of singular Markovian jump systems with discrete and distributed delays," *Circuits, Syst., Signal Process.*, vol. 39, no. 6, pp. 2900–2921, Jun. 2020.
- [7] Y. Tian and Z. Wang, "Extended dissipativity analysis for Markovian jump neural networks via double-integral-based delay-product-type Lyapunov functional," *IEEE Trans. Neural Netw. Learn. Syst.*, early access, Jul. 23, 2020, doi: 10.1109/TNNLS.2020.3008691.
- [8] J. Ren, Y. Tian, and Q. Zhang, "Stability analysis and controller synthesis of continuous-time nonhomogeneous Markovian jump systems with state and input delays," *J. Franklin Inst.*, May 2020, doi: 10.1016/j. jfranklin.2020.05.015.
- [9] Y. Tian, Y. Wang, and J. Ren, "Stability analysis and control design of singular Markovian jump systems via a parameter-dependent reciprocally convex matrix inequality," *Appl. Math. Comput.*, vol. 386, Dec. 2020, Art. no. 125471, doi: 10.1016/j.amc.2020.125471.
- [10] L. Zhang and J. Lam, "Necessary and sufficient conditions for analysis and synthesis of Markov jump linear systems with incomplete transition descriptions," *IEEE Trans. Autom. Control*, vol. 55, no. 7, pp. 1695–1701, Jul. 2010.
- [11] Z. Wu, H. Su, and J. Chu, "Delay-dependent filtering for singular Markovian jump time-delay systems," *Signal Process.*, vol. 90, no. 6, pp. 1815–1824, Jun. 2010.
- [12] Z. Wu, H. Su, and J. Chu, "Delay-dependent  $H_{\infty}$  control for singular Markovian jump systems with time delay," *Optim. Contr. Appl. Met.*, vol. 30, no. 5, pp. 443–461, Mar. 2010.
- [13] Y. Wang, G. Zhuang, and F. Chen, "A dynamic event-triggered H<sub>∞</sub> control for singular Markov jump systems with redundant channels," *Int. J. Syst. Sci.*, vol. 51, no. 1, pp. 158–179, Jan. 2020.
- [14] Y. Wang, G. Zhuang, X. Chen, Z. Wang, and F. Chen, "Dynamic event-based finite-time mixed  $H_{\infty}$  and passive asynchronous filtering for T–S fuzzy singular Markov jump systems with general transition rates," *Nonlinear Anal., Hybrid Syst.*, vol. 36, May 2020, Art. no. 100874, doi: 10.1016/j.nahs.2020.100874.
- [15] G. Wang, P. Zhang, and Q. Zhang, "A generalized Robust H<sub>∞</sub> filtering for singular Markovian jump systems and its applications," *Int. J. Robust Nonlinear Control*, vol. 24, no. 18, pp. 3491–3507, Dec. 2014.
- [16] C. F. Morais, J. M. Palma, P. L. D. Peres, and R. C. L. F. Oliveira, "An LMI approach for H<sub>∞</sub> and H<sub>∞</sub> reduced-order filtering of uncertain discrete-time Markov and Bernoulli jump linear systems," *Automatica*, vol. 95, pp. 463–471, Sep. 2018.
- [17] L. Rong, X. Peng, L. Liu, and B. Zhang, "Improved reduced-order fault detection filter design for polytopic uncertain discrete-time Markovian jump systems with time-varying delays," *Complexity*, vol. 2018, pp. 1–15, Oct. 2018, doi: 10.1155/2018/9489620.
- [18] H. Peng, R. Q. Lu, P. Shi, and Y. Xu, "Reduced-order filtering for networks with Markovian jumping parameters and missing measurements," *Int. J. Control*, vol. 92, no. 12, pp. 2737–2749, Dec. 2019.
- [19] C. Park, N. Kwon, and P. Park, "Optimal  $H_{\infty}$  filtering for singular Markovian jump systems," *Syst. Control Lett.*, vol. 118, pp. 22–28, Mar. 2018.
- [20] Y. Xia, E.-K. Boukas, P. Shi, and J. Zhang, "Stability and stabilization of continuous-time singular hybrid systems," *Automatica*, vol. 45, no. 6, pp. 1504–1509, Jun. 2009.
- [21] T. Iwasaki and R. E. Skelton, "All controllers for the general  $H_{\infty}$  control problem: LMI existence conditions and state space formulas," *Automatica*, vol. 30, no. 8, pp. 1307–1317, Aug. 1994.
- [22] P. Gahinet and P. Apkarian, "A linear matrix inequality approach to  $H_{\infty}$  control," *Int. J. Robust Nonlinear Control*, vol. 4, no. 4, pp. 421–448, 1994.
- [23] S. Xu and J. Lam, "Reduced-order filtering for singular systems," Syst. Control Lett., vol. 56, no. 1, pp. 48–57, Jan. 2007.

## IEEE Access

- [24] J. Zhou, Y. Wang, X. Zheng, Z. Wang, and H. Shen, "Weighted H<sub>∞</sub> consensus design for stochastic multi-agent systems subject to external disturbances and ADT switching topologies," *Nonlinear Dyn.*, vol. 96, no. 2, pp. 853–868, Feb. 2019.
- [25] J. Zhou, Y. Liu, J. Park, Q. Kong, and Z. Wang, "Fault-tolerant antisynchronization control for chaotic switched neural networks with time delay and reaction diffusion," *Discrete Continuous Dyn. Syst.-S*, to be published, doi: 10.3934/dcdss.2020357.
- [26] Y. Tian and Z. Wang, "A new multiple integral inequality and its application to stability analysis of time-delay systems," *Appl. Math. Lett.*, vol. 105, Jul. 2020, Art. no. 106325, doi: 10.1016/j.aml.2020.106325.



**SHAOQING ZHANG** received the B.E., M.E., and Ph.D. degrees from the Harbin Institute of Technology. He is currently working with the Shenyang Aircraft Design and Research Institute, Aviation Industry Corporation of China. His research interests include unmanned aerial combat control and sensor networks.

...