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ABSTRACT This paper considers the reduced-order H∞ filtering problem for singular Markovian jump
systems (SMJSs)with incomplete transition rates (ITRs) by using augmented systemmethod. The considered
conditions in this paper are necessary and sufficient (NS), whereas the existing conditions are mainly
sufficient. To be concrete, by extracting system matrices in the considered system from augmented system,
NS condition for the existence of the full-orderH∞ filtering is provided in terms of linear matrix inequalities
(LMIs). However, it is hard to extend the condition to the existence of the reduced-order H∞ filtering. Thus,
by fixing augmented system matrices, NS condition for the existence of the reduced-order one is presented
to guarantee the desired filtering error system to be stochastically admissible with H∞ performance level.
Furthermore, there are neither complicated matrix transformation nor equality/rank constraints in this paper.
One numerical and one practical examples are illustrated to demonstrate the effectiveness of the achieved
results.

INDEX TERMS Singular Markovian jump system, incomplete transition rates, sufficient and necessary
conditions, reduced-order filtering.

I. INTRODUCTION
Singular systems, also referred to descriptor systems, implicit
systems and generalized state-space systems [1], [2], which
are formed by a set of coupled algebraic and differential
equations. It is a generalized representation of the state-space
system. Thus, singular systems can model various kinds of
practical systems, such as networks, power systems, flexible
robots and so on [3]–[6].

On the other hand, Markovian jump systems (MJSs) rep-
resent a convenient mathematical model to describe system
dynamics in a situation when the system experiences fre-
quent unpredictable parameter variations. MJSs have been
studied both in many practical systems such as chemi-
cal process, manufacturing systems, flight systems and so
on [7], [8] and in theoretical researches [9]. In the past
decades, transition rates (TRs) in the jumping process are
usually assumed to be completely known. However, it is
difficult to implement the practical control systems to accu-
rately estimate the TRs. Therefore, study on the MJSs with
ITRs receives the attention of researchers [10]. When sin-
gular systems experience abrupt changes, which lead to
famous singular MJSs (SMJSs) [11], [12]. Note that the
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research on SMJSs are even more difficult than the regular
MJSs since the properties of stability, regularity and causal-
ity (discrete-time) or non-impulsiveness (continuous-time)
should be taken into account simultaneously. Thus, research
on SMJSs is of significance, and majority of theoretical and
applied results have been widely researched. To name a few,
in [13], the problem of asynchronous H∞ control for SMJSs
with redundant channels under the dynamic event-triggered
scheme is studied. To save the resource of bandwidth lim-
ited network, a dynamic event-triggered scheme has been
proposed. The design of finite-time mixed H∞ and passive
asynchronous filter for T-S fuzzy SMJSs with uncertain tran-
sition rates under the dynamic event-based scheme has been
discussed in [14]. An asynchronous filter is considered such
that the phenomena of asynchronous modes between the
original SMJSs and the considered filter is modelled as a
hidden Markov model. In [15]–[19],H∞ filtering has respec-
tively reported for SMJSs, and some sufficient conditions
on full- and reduced-order H∞ filtering have been derived.
Especillay, the NS full-order H∞ filter condition for SMJSs
has been achieved in [19]. However, the information of all
TRs and estimated state are required. It is hard to extend the
condition in [19] to the reduced-order filtering problems for
SMJSs with ITRs. Thus, how to derive an NS condition on
reduced-order filtering with ITRs constitutes this paper.
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In this paper, the reduced-order H∞ filtering problem is
considered for SMJSs with ITRs. Note that the achieved H∞
filter matrices in [19] depend on all information of TRs and
the estimated state. Thus, its method cannot be extended to
the reduced-order ones for SMJSs with ITRs. In this paper,
with the aid of augmented system method, system matrices
(such as Ai, Bwi) are extracted to construct an augmented
system (Āi = diag{Ai, 0}, B̃wi = [BTwi, 0]

T ). Then, by using
elimination method, the necessary and sufficient (NS) full-
orderH∞ filtering is received for SMJSswith ITRs. The filter
matrices can be computed by a set of LMIs. However, similar
with [19], the full-order NS conditions cannot be extended
to the reduced-order ones due to some special matrix struc-
ture (such as 3i in [19]). In this case, tuning the order of
filter matrices and without separating the augmented system
matrices (i.e. Āi, B̃wi), the NS reduced-order H∞ filtering is
proposed for SMJSswith ITRs. Comparedwith some existing
works, there are neither complicated matrix transformation
nor equality/rank constraints in proposed conditions.

Notation: Throughout this paper, Rn represents the
n-dimensional Euclidean space; XT denotes the transpose
of X ; (�,F,P) is a probability space with � is the sam-
ple F is the algebra of subsets of sample space and P is
the probability measure on F ; ’*’ in LMIs represents the
symmetric term of the matrix; X > 0(< 0) means X is a
symmetric positive(negative) definite matrix; He[X ] means
that X + XT ; λmin(X ) respects the minimum eigenvalue of
X ; E(X ) denotes the mathematical expectation operator of
X ; L2[0,∞) refers to the space of square-integrable vector
functions over [0,∞); |X | denotes the Euclidean norm for
vectors of X ; col[X ,Y ] denotes [XT ,Y T ]T ; diag{. . .} repre-
sent a block diagonal matrix.

II. SYSTEM DESCRIPTION AND PRELIMINARIES
Consider a class of singular Markovian jump systems
(SMJSs), which are defined on a probability space (�,F,P)

Eẋ(t) = A(rt )x(t)+ Bw(rt )w(t),
y(t) = C(rt )x(t),
z(t) = L(rr )x(t),

(1)

where x(t) ∈ Rn is the system state, y(t) ∈ Rp is the
measured output, z(t) ∈ Rq is the signal to be estimated and
w(t) ∈ Rm is the disturbance input that belongs to L2[0,∞),
φ(t) is a compatible vector valued initial function. The matrix
E ∈ Rn×n may be singular and rank(E) = r ≤ n. A(rt ),
B(rt ), Bw(rt ), C(rt ), and L(rt ) are known real constant matri-
ces with appropriate dimensions for each rt ∈ S. rt , t ≥ 0 is
a continuous-time Markovian process with right continuous
trajectories and take values in a finite set S = {1, 2, . . . ,N }
with transition rate matrix 5 , {πij} given by

Pr{rt+σ = j|rt = i} =

{
πijσ + o(σ ), j 6= i
1+ πiiσ + o(σ ), j = i

where σ > 0, limσ→0 o(σ )/σ = 0, and πij ≥ 0, for
j 6= i, is the transition rate from mode i at time t to mode

j at time t + σ and πii = −
∑N

j=1,j 6=i πij. Furthermore, this
paper is concerned with the H∞ filtering for SMJSs with
ITRs. That is, some elements in 5 are unknown. Take a

3 operation modes for example, 5 =

 ? ? π13
π21 ? ?
? ? ?

, where
‘‘?′′ represents unknown element. For convenience, i ∈ S,
we denote
S ik , {j : πij is known for j ∈ S},

S iuk , {j : πij is unknown j ∈ S}.

In addition, if S ik = ∅, π
i
k ,

∑
j∈S ik

πij, and when i ∈ S iuk ,

it is necessary to provide a lower bound π id for it and we have
π id ≤ −π

i
k . And for each possible rt = i, i ∈ S, a matrix

M (rt ) will be denoted by Mi, A(rt ) by Ai, Ad (rt ) by Adi and
so on.
The following preconditions are essential for main results.
Lemma 1: [23] Given a symmetric matrix � ∈ Rn×n, two

matrices 9 ∈ Rn×m and 8 ∈ Rk×n with rank(9) < n and
rank(8) < n. Consider the problem of finding some matrices
G such that

�+9G8+ (9G8)T < 0. (2)

Then (2) is solvable for G if and only if

9⊥�9⊥T < 0, 8⊥�8⊥T < 0. (3)

Lemma 2: [20] Let P be symmetric such that ETL PEL >

0 and Q to be non-singular. Then, PE + UTQV T is non-
singular and its inverse is expressed as (PE +UTQV T )−1 =
P̄ET + V 8̄U , where P̄ = P̄T and Q̄ is nonsingular such that
ETR P̄ER = (ETL PEL)

−1, Q̄ = (V TV )−1Q−1(UUT )−1.
Lemma 3: System (1) with ITRs is stochastically admissi-

ble withH∞ performance if and only if there exist symmetric
matrices P1i, nonsingular matrices Q1i for i ∈ S and j ∈ S iuk
such that

ETL P1iEL > 0, (4) δi1 3T
1iBwi CT

i
∗ −γ 2I 0
∗ ∗ −I

 < 0, if i ∈ S ik , (5)

 δ̄i1 3T
1iBwi CT

i
∗ −γ 2I 0
∗ ∗ −I

 < 0, if i ∈ S iuk , (6)

where

δi1 = He[ATi 31i]+
∑
j∈S ik

πijETP1jE − π ikE
TP1jE,

δ̄i1 = He[ATi 31i]+
∑
j∈S ik

πijETP1jE − π ikE
TP1jE

+π idE
TP1iE − π idE

TP1jE,

31i = P1iE + UTQ1iV T .

and π id is a given lower bound for the unknown diagonal
element.
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Proof: Two steps are given as follows.
Step (I): Connecting with the proof of Lemma 3 in [19],

the sufficiency and necessity of the following inequalities
have been finished.

ETL P1iEL > 0, (7) δi 3T
1iBwi CT

i
∗ −γ 2I 0
∗ ∗ −I

 < 0, (8)

where δi = He[ATi 31i]+
∑N

j=1 πijE
TP1jE .

Step (II): Connecting with the proof of Theorem 1 in [10],
it yields the following two cases.

Case 1: if i ∈ S ik , then
∑N

j=1 πijE
TP1jE in (8) is equivalent

to
∑

j∈S ik
πijETP1jE − π ikE

TP1jE .

Case 1: if i ∈ S ik , then
∑N

j=1 πijE
TP1jE in (8) is equivalent

to
∑

j∈S ik
πijETP1jE−π ikE

TP1jE+π idE
TP1iE−π idE

TP1jE .
Rearranging (8), it yields Lemma 3 of present paper. This is
completed the proof.

III. MAIN RESULTS
In this section, the reduced-order H∞ filter existence condi-
tion for SMJSs (1) with ITRs will be presented.

Firstly, consider the following filter for the estimation of
z(t): {

Ef ẋf (t) = Afixf (t)+ Bfiy(t),
zf (t) = Cfixf (t)+ Dfiy(t),

(9)

where xf (t) ∈ Rn̂(n̂ ≤ n), zf (t) ∈ Rq, Ef ,Afi ∈ Rn̂×n̂, Bfi ∈
Rn̂×p, Cfi ∈ Rq×n̂, Dfi ∈ Rq×p are to be determined. Let
x̃(t) = col[x(t), xf (t)], z̃(t) = z(t)− zf (t). Then, the filtering
error system can be represented as{

Ẽ ˙̃x(t) = Ãix̃(t)+ B̃wiw(t),
z̃(t) = C̃ix̃(t),

(10)

where

Ẽi =
[
E 0
0 Ef

]
, Ãi =

[
Ai 0
BfiCi Afi

]
,

B̃i =
[
Bwi
0

]
, C̃i =

[
Li − DfiCi −Cfi

]
.

Furthermore, define R, S satisfying RẼ = 0 and ẼS = 0 are
both satisfied. Note that the matrices Ãi and C̃i in (10), which
can be written as

Ãi = Āi + FGiHi, C̃i = C̄i + JGiHi. (11)

Associated with Lemma 3, we have the following proposi-
tion:
Proposition 1.: System (10) with ITRs is stochastically

admissible with H∞ performance if and only if there exist
symmetric matrix Pi, nonsingular matrix Qi for i ∈ S and
j ∈ S iuk such that

ẼTL PiẼL > 0, (12)

�1i +9iGi8i + (9iGi8i)T < 0, i ∈ S ik , (13)

�2i +9iGi8i + (9iGi8i)T < 0, i ∈ S iuk , (14)

where

�si =

1si 3T
i B̃wi C̄T

i
∗ −γ 2I 0
∗ ∗ −I

 , s = 1, 2,

1i1 = He[ĀTi 3i]+
∑
j∈S ik

πijẼTPjẼ − π ik Ẽ
TPjẼ,

1i2 = He[ĀTi 31i]+
∑
j∈S ik

πijẼTPjẼ − π ik Ẽ
TPjẼ

+π id Ẽ
TPiẼ − π id Ẽ

TPjẼ,

Gi =
[
Dfi Cfi
Bfi Afi

]
,3i = PiẼ + RTQiST ,

Āi =
[
Ai 0
0 0

]
, B̃wi =

[
Bwi
0

]
, C̄i =

[
Li 0

]
,

9i =

3T
i F
0
J

 ,8i =
[
Hi 0

]
,

F =
[
0 0
0 I

]
, J = [−I , 0],Hi =

[
Ci 0
0 I

]
.

Then, by Lemma 1, (13)⇔

8⊥i �1i8
T⊥
i < 0, (15)

9⊥i �1i9
T⊥
i < 0, (16)

and (14)⇔

8⊥i �2i8
T⊥
i < 0, (17)

9⊥i �2i9
T⊥
i < 0. (18)

Now, we will present a full-order H∞ filtering such that
system (10) is stochastically admissible with H∞ perfor-
mance.
Proposition 2: There exists a full-order H∞ filtering in (9)

such that system (10) is stochastically admissible with H∞
performance γ if and only if there exist symmetric matrices
P1i, P̄1i, nonsingular matrices Q1i, Q̄1i for i ∈ S and j ∈ S iuk
such that [

ETL P1iEL I
I ETR P̄1iER

]
> 0,

if i ∈ S ik , (19)C⊥i δi1C⊥Ti C⊥i 31iBwi C⊥i C
T
i

∗ −γ 2I 0
∗ ∗ −I

 < 0, (20)


δi2 Bwi R11(x) R21(x)
∗ −γ 2I 0 0
∗ ∗ −S11(x) 0
∗ ∗ ∗ −S21(x)

 < 0,

if i ∈ S iuk , (21)C⊥i δ̄i1C⊥Ti C⊥i 3
T
1iBwi C⊥i C

T
i

∗ −γ 2I 0
∗ ∗ −I

 < 0, (22)
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δ̄i2 Bwi R11(x) R̄21(s)
∗ −γ 2I 0 0
∗ ∗ −S11(x) 0
∗ ∗ ∗ −S21(x)

 < 0, (23)

where

δi2 = He[Ai3̄1i]+ πiiEP̄1iET ,

δ̄i2 = He[Ai3̄1i]+ π idEP̄1iE
T ,

R11(x) = [
√
πijEP̄1iER]j∈S ik /{i},

R21(x) =
√
−π ikEP̄1iER,

R̄21(x) =
√
−π id − π

i
kEP̄1iER,

S11(x) = diag{ETR P̄1jER}j∈S ik /{i},

S21(x) = ETR P̄1jER.

Furthermore, if P1i, P̄1i, Q1i, Q̄1i are the solutions of (19)-
(23), then H∞ filter matrices Gi can be given by substituting
the solutions of (19)-(23) into (13), (14), where

3i =

[
31i 3̄−11i −31i

3̄−11i − 01i 31i − 3̄
−1
1i

]
,Pi =

[
P1i P12i
PT12i P3i

]
,

the other notations are defined in Lemma 3 and Proposition 1.
Proof: Recalling 9i and 8i in (13), (14), by a simple

calculation, we can obtain

8⊥i =


[
C⊥i 0

]
0 0[

0 0
]

I 0[
0 0

]
0 I

 , (24)

9⊥i =

[ [
I 0

]
0 0[

0 0
]

I 0

]3−Ti 0 0
0 I 0
0 0 I

 . (25)

Next, we will probe the NS condition for i ∈ S ik as follows.
(The proof process for i ∈ S iuk is similar, which is omitted).

(Necessity). For symmetric matricesPi, P̄i and nonsingular
matrices Qi and Q̄i, we have the following partition

Pi =
[
P1i P12i
PT12i P3i

]
, P̄i =

[
P̄1i P̄12i
P̄T12i P̄3i

]
, (26)

Qi =
[
Q1i Q12i
Q21i Q3i

]
, Q̄i =

[
Q̄1i Q̄12i
Q̄21i Q̄3i

]
. (27)

Then, substituting (24)-(27) into conditions (15) and (16),
which respectively lead to (20) and[

δ̄21i Bwi
∗ −γ 2I

]
< 0, (28)

where

δ̄21i = He[Ai3̄1i]+
∑
j∈S

πijPij − π
i
kPij,

Pij = EP̄1iETP1jEP̄1iET

+He[EP̄1iETP12jEP̄T12iE
T ]

+EP̄12iETP3jEP̄T12iE
T .

Recalling (12), we have ETL P3jEL > 0 and

ETL P1jEL = (ETR P̄1jER)
−1
+ ETL P12jEL

× (ETL P3jEL)
−1(ETL P

T
12jEL). (29)

Further, we get

Pij = EP̄1iER(ETR P̄1jER)
−1(EP̄1iER)T

+ETij (E
T
L P3jEL)

−1Eij, (30)

Eij = ETL P3jEP̄
T
12iE

T
+ ETL P

T
12jEP̄1iE

T . (31)

Thus, condition (28) gives[
δ̃21i Bwi
∗ −γ 2I

]
< 0, (32)

where

δ̃21i = He[Ai3̄1i]+
∑
j∈S

πijEP̄1iER

× (ETR P̄1jER)
−1(EP̄1iER)T − π ikEP̄1iER

× (ETR P̄1jER)
−1(EP̄1iER)T .

By Shur complement, we get (15)⇒ (21).
Next, we shall probe (12) is equivalent to condition (19).

Condition (12) satisfies the following relations:

0 <
[
ETL P1iEL ETL P12iEL
ETL P

T
12iEL ETL P3iEL

]
,

⇔

0 < ETL P3iEL , 0 < ETL P1iEL
−ETL P12iEL(E

T
L P3iEL)

−1ETL P
T
12iEL

= (ETR P̄1iER)
−1,

⇔

0 < ETL P12iEL(E
T
L P3iEL)

−1ETL P
T
12iEL

= ETL P1iEL − (ETR P̄1iER)
−1, 0 < ETR P̄1iER,

which implies condition (19). Summarizing the above discus-
sions, the proof of necessity is completed.

(Sufficiency). Construct Pi and Qi as follows

Pi =
[
P1i P12i
∗ P3i

]
, (33)

Qi =
[
Q1i Q12i
Q12i Q3i

]
, (34)

where

P12i = −P3i,Q12i = −Q3i,

P̃3i = P1i − EL(ETL EL)
−1

× (ETR P̄1iER)
−1(ETL EL)

−1ETL ,

Q̃12i = Q1i − (V TVQ̄1iUUT )−1,

and P1i, P̄1i Q1i, Q̄1i are the same as those Lemma 3. Then,
from (33) and (34),3i in (15) and (16) can be constructed as

3i = PiẼi + RTQiST =
[
31i 312i
312i −312i

]
, (35)
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where 312i = 3̄
−1
1i −31i and 31i, 3̄1i have been defined in

Proposition 2.
In view of Lemma 2, one has 3̄i = P̄iẼT + SQ̄iR, where

R = diag{U ,U}, S = diag{S, S} and

P̄i =
[
P̄1i P̄1i
P̄1i P̄3i

]
, Q̄i =

[
Q̄1i Q̄2i
Q̄2i Q̄3i

]
. (36)

Therefore, we have

3̄T
i Ẽ

TPjẼ3̄i = ẼP̄iẼTPjẼP̄iĒT =
[
Fij ?

? ?

]
, (37)

where Fij = EP̄1iER(ETR P̄1jER)
−1ETR P̄1iE

T and ? indicates
irrelevant matrices. Then, applying (33), (36) and (37) to
conditions (15) and (16), respectively, we have (20) and[

δ211i Bwi
∗ −γ 2I

]
< 0, (38)

where δ211i = He[Ai3̄1i] +
∑

j∈S ik
πijFij − π ikFij. Thus,

we can conclude that (20) and (21) hold if (15) and (16) hold,
respectively.

Further, set P1L = ETL P1iEL , P̄1R = (ETR P̄1iER)
−1, in this

case, condition (19) can be expressed as

0 < P1L − P̄1R, 0 < P̄1R,

⇔

0 <
[

P1L P̄1R − P1L
P̄1R − P1L P1L − P̄1R

]
,

which implies condition (12). Summarizing the above state-
ments, the proof of Proposition 2 is completed.

Based on Theorem 1, we can directly derive the following
NS condition for SMJSs with CTRs.
Corollary 1: There exists a full-order H∞ filter in (9)

such that system (10) is stochastically admissible with H∞
performance γ if and only if there exist symmetric matrices
P1i, P̄1i, nonsingular matricesQ1i, Q̄1i for i ∈ S such that (19)
and C⊥i δ11iC⊥Ti C⊥i 3

T
1iBwi C⊥i L

T
i

∗ −γ 2I 0
∗ ∗ −I

 < 0, (39)

 δ21i Bwi [√πijEP̄iER]j∈S/{i}
∗ −γ 2I 0
∗ ∗ −diag{ETR P̄jER}j∈S/{i}

 < 0, (40)

where

δ11i = He[ATi 31i]+
∑
j∈S

πijETP1jE,

δ21i = He[Ai3̄1i]+ πiiEP̄1iET ,

31i = P1iE + UTQ1iV T , 3̄1i = P̄1iET + VQ̄1iU .

Furthermore, if P1i, P̄1i, Q1i, Q̄1i are the solutions of (19),
(39) and (40), then H∞ filter matrices Gi can be given by
substituting the solutions of (19), (39) and (40) into (13),
where �1i, 3i and 3̄i are defined in Proposition 2.
Remark 1: It is noted that NS full-order H∞ filtering has

been proposed for SMJSs with CTRs in [19]. Since the filter

matrices in [19] are constructed with the TRs, the TRs should
be completely known. Fortunately, the filter matrices can be
directly given by solving Proposition 2 if the TRs is incom-
plete. Thus, the method of present paper is more general than
the result proposed in [19].
Remark 2: It is noted that the methods in Proposition 2 and

[19] cannot be extended to derive the reduced-order one
since some special matrix structure, such as, Ef , 3i, and 3̄i
in Proposition 2 and [19]. To be concrete, i) in [19], filter
parameters Afi, Bfi, Cfi is dependent on full-order n. ii) In
[19] and Proposition 2,3i must be completely known for the
solvability of filter parameters. iii) Ef = E is determined in
[19] and Proposition 2 due to the utilization of Lemma 2.
Thus, without constraints, we will give the following NS
reduced-order H∞ filtering in another insight.
Theorem 1: There exists a reduced-order H∞ filtering in

(9) such that system (10) is stochastically admissible withH∞
performance γ if and only if there exist symmetric matrices
Pi, P̄i, nonsingular matrices Qi, Q̄i for i ∈ S and j ∈ S iuk such
that (12) and

if i ∈ S ik ,

Ni�1iN T
i < 0, (41)

F1i2FT FB̃wi FR1(x) FR2(x)
∗ −γ 2I 0 0
∗ ∗ −S1(x) 0
∗ ∗ ∗ −S2(x)

 < 0, (42)

if i ∈ S iuk ,

Ni�2iN T
i < 0, (43)

F1̄i2FT FB̃wi FR1(x) FR̄2(s)
∗ −γ 2I 0 0
∗ ∗ −S1(x) 0
∗ ∗ ∗ −S2(x)

 < 0, (44)

where

1i2 = He[Āi3̄i]+ πiiẼP̄iẼT ,

1̄i2 = He[Āi3̄i]+ π id ẼP̄iẼ
T ,

R1(x) = [
√
πijẼP̄iẼR]j∈S ik /{i},

R2(x) =
√
−π ik ẼP̄iẼR, R̄2(s) =

√
−π id − π

i
k ẼP̄iẼR,

S1(x) = diag{ẼTR P̄jẼR}j∈S ik /{i}, S2(x) = ẼTR P̄jẼR,

3i = PiẼ + RTQiST , 3̄i = P̄iẼT + SQ̄iR,

and the other notations are defined in Proposition 1.
In this case, inspired by [21], [22], for given any appro-

priately dimensional matrices Ri > 0, Zi and ϒi satisfying
||ϒi|| ≤ 1. 8i, 9i satisfying 8Li8Ri = 8i, 9i9Li9Ri = 9i,
where 8Li, 8Ri and 9Li, 9Ri are any full rank factors of 8i
and 9i. Then, if Pi, P̄i, Qi, Q̄i are the solutions of (12), (41)-
(44). Then reduced-orderH∞ filter parametermatricesGi can
be given by

Gi = 9
+

RiKki8
+

Li + Zi −9
+

Ri9RiZi8Li8
+

Li, i ∈ S ik , (45)

Gi = 9
+

RiKuki8
+

Li + Zi −9
+

Ri9RiZi8Li8
+

Li, i ∈ S iuk , (46)
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where

Wki = (9T
LiR
−1
i 9T

Li −�1i)−1 > 0,

Ski = Ri −9T
Li[Wki −Wki8

T
Ri(8RiWki8

T
Ri)
−1]9Li,

Kki = −R
−1
i 9T

LiWki9
T
Ri(8RiWki8

T
Ri)
−1

+R−1i S1/2i ϒi(8RiWki8
T
Ri)
−1/2,

Wuki = (9T
LiR
−1
i 9T

Li −�2i)−1 > 0,

Suki = Ri −9T
LiWuki[I −8T

Ri(8RiWuki8
T
Ri)
−1]9Li,

Kuki = −R
−1
i 9T

LiWuki9
T
Ri(8RiWuki8

T
Ri)
−1

+R−1i S1/2i Li(8RiWuki8
T
Ri)
−1/2.

Proof: Recalling 9i and 8i in (13) associated with
reduced order n̂, we can obtain

8⊥i =

 Ni 0n,m 0n,q
0m,n+n̂ Im 0m,q
0q,n+n̂ 0q,m Iq

 , (47)

9⊥i =

[
F 0n,m 0n,q

0m,n+n̂ Im 0m,q

]

×

 3−Ti 0n+n̂,m 0n+n̂,q
0m,n+n̂ Im 0m,q
0q,n+n̂ 0q,m Iq

 . (48)

Then we shall will the NS condition for i ∈ S ik as follow,
the proof process for i ∈ S iuk is similar, which is omitted.

Associated with Lemma 3, condition (15) is equivalent to
(41). Next, we need probe the (16) is equivalent to (42).

As the proof of Proposition 2, condition (16) can be written
as (32), connecting with Lemma 3, condition (32) can be
rewritten as [

1̃i21 Bwi
∗ −γ 2I

]
< 0, i ∈ S ik , (49)

where

1̃i21 = He[Āi3̄i]+
∑
j∈S ik

πij5ij − π
i
k5ij,

5ij = ẼP̄iẼR(ẼTR P̄jẼR)
−1(ẼP̄iẼR)T .

Further, by Shur complement to (49), we get (42). Sum-
marizing the above statements, the proof of Theorem 1 is
completed.
Corollary 2: There exists a reduced-order H∞ filtering in

(9) such that system (10) stochastically admissible with H∞
performance γ if and only if there exist symmetric matrices
Pi, P̄i, nonsingular matrices Qi, Q̄i for each i ∈ S such that
(12) and

Ni�1iN T
i < 0, (50)F1i2FT FB̃wi F[√πijẼP̄iẼR]j∈S/{i}

∗ −γ 2I 0
∗ ∗ −diag{ẼTR P̄jẼR}j∈S/{i}

 < 0 (51)

where

F = [In, 0n,n+n̂],Ni = diag{Ni, I }, Ni = [C⊥i , 0n,n̂+q],

1i2 = He[Āi3̄i]+ πiiẼP̄iẼT ,

3i = PiẼ + RTQiST , 3̄i = P̄iẼT + SQ̄iR,

and the other notations are defined in Proposition 1.
In this case, inspired by [21], [22], for given any appro-

priately dimensional matrices Ri > 0, Zi and ϒi satisfying
||ϒi|| ≤ 1. 8i, 9i satisfying 8Li8Ri = 8i, 9i9Li9Ri = 9i,
where 8Li, 8Ri and 9Li, 9Ri are any full rank factors of 8i
and 9i. Then, if Pi, P̄i, Qi, Q̄i are the solutions of (12), (50)
and (51). Then reduced-order H∞ filter matrices Gi can be
given by

Gi = 9
+

RiKi8
+

Li + Zi −9
+

Ri9RiZi8Li8
+

Li, (52)

where

Ki = −R
−1
i 9T

LiWi9
T
Ri(8RiWi8

T
Ri)
−1

+R−1i S1/2i ϒi(8RiWi8
T
Ri)
−1/2,

Wi = (9T
LiR
−1
i 9T

Li −�i)−1,

Si = Ri −9T
Li[Wi −Wi8

T
Ri(8RiWi8

T
Ri)
−1]9Li.

Remark 3:Note that Theorem 1 in [19] and Proposition 2 of
present paper, the attention is focused on system matrices
of the considered system (1). And the first aim is to obtain
31i = P1iE + UTQ1iV T by building matrices 3i. However,
the order 2n cannot be changed in [19] and Proposition 2.
Thus, in Theorem 1 of present paper, we directly focus on
system (10), the Lyapunov decision order is n + n̂, we can
first get matrices3i, the order is also n+n̂. Thus, the reduced-
order H∞ filtering is obtained.
Remark 4: It is well known that reduced-order filter design

is a very important issue in many applications, especially
when fast data processing is necessary with a process of
limited power. Therefore, considerable attention has been
devoted to the study of reduced-order filter design over the
past few years. In some existing works [7], [23], sufficient
conditions for reduced-order H∞ filtering are derived on
equality/rank constraints, which are hard to find a solution
to perfectly satisfy the equality constraints due to its round-
off errors in computation. Furthermore, complicated matrix
transformation and matrix structures inverse the mathemati-
cal derivation. In this paper, the obtained results have neither
complicated matrix transformation nor equality/rank con-
straint, which make the conditions easier to find numerical
solutions than the existing works [7], [23].
Remark 5: In this paper, only the switching probabilities

were considered. However, in practice, there is usually a
restriction to the switching frequency. In this case, by combin-
ing with method in [24], [25]. The present synthesis method
can be extended to deal with singular systems with average
dwell time (ADT) switching.

IV. EXAMPLES
In this section, we will give one numerical and one practical
examples to demonstrate the applicability of the proposed
approaches.
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Example 1: To demonstrate the efficiency of full-orderH∞
filtering in Corollary 1 and Corollary 2 for system (1) with
CTRs, the following parameters are given:

A1 =

 −3 1 0
0.3 −2.5 1
−0.1 0.3 −3.8

 ,B1 =
 1
0
1

 ,
C1 =

[
0.8 0.3 0

]
,L1 =

 0.5
−0.1
1

T ,
A2 =

−2.5 0.5 −0.1
0.1 −3.5 0.3
−0.1 1 −2

 ,B2 =
−0.60.5

0

 ,
C2 =

[
−0.5 0.2 0.3

]
,L2 =

 0
1
0.4

T ,
5 =

[
−0.6 0.6
0.9 −0.9

]
,E =

 1 0 0
0 1 0
0 0 0

 .
TABLE 1. The minimum allowable γ for different methods.

FIGURE 1. Responses of x(t) their estimations.

FIGURE 2. One possible switching signals and responses of z(t) and their
estimations.

A comparison among [15], Corollary 1 and Corollary 2 of
present paper is depicted in Table 1. Obviously, Corol-
lary 1 and Corollary 2 are equivalent for full-order H∞ filter-
ing, which are superior than the method in [15]. Furthermore,
Corollary 2 can be also used to reduced-order filtering while
Corollary 1 can not be. If n̂ = 2 in Corollary 2, the mini-
mum H∞ performance level γ is 0.2754. It concludes that
Corollary 2 is more general than Corollary 1. Next, supposing
γ = 2, by using Corollary 1, the full-order H∞filter matrices

Gi =
[
Dfi Cfi
Bfi Afi

]
can be given by

G1

=


0.0005 0.0001 −0.0002 0.0010
−1.9011 1.5078 0.6197 −1.1988
−0.7221 0.5685 0.2266 −0.0740
0.7099 −0.5585 −0.2269 0.0687

× 103

G2

=


0.8299 0.4125 0.8310 0.1473
59.7086 29.3448 −11.1787 −18.9317
−32.2933 −14.1969 3.1590 10.5842
−14.7964 −7.4667 3.8307 2.5805

 .
With the initial states of x(0) = col[0.2, 0.5, 0], xf (0) =
col[0, 0, 0], r(0) = 1 and w(t) = −0.3sin(5t)e−0.8t . From
Figure 1 and Figure 2, it is seen that proposed full-order H∞
filtering is efficient.
Example 2: To demonstrate the efficiency of reduced-order

H∞ filtering in Theorem 1 for system (1) with ITRs. Consider
a DC motor driving a load that changes randomly [19].{

J v̇i = Ktc(t)− biv(t),
u(t) = Ric(t)+ Kvv(t),

(53)

where v(t), u(t), Kt , Kv, Ri mean the current, the speed of the
shaft, the input voltage, the torque constant, the electromotive
force and the electric resistor, respectively. The coefficient
relations such as Ji = Jm +

Jci
n2
, bi = bm +

bci
n2

hold, where
Jm and Jci are the moments of the motor and the load; bm and
bci are the damping ratios with gear ratio n. In this case that
Jm = 0.5kgm, Jc1 = 50kgm, Jc2 = 150 kgm, bc1 = 100,
bc2 = 240, R1 = R2 = 1�, bm = 1, kt = 2Nm/A, kv =
1Vs/rad , bv1 = bv2 = 0.4 and n = 10, the stabilized DC
motor model with disturbance can be modeled as SMJS (1)
with state x(t) = [v(t), c(t)]T which has the following system
matrices:

A1 =
[
−2 3
−0.52 −0.908

]
,B1 =

[
0
−0.1

]
,

A2 =
[
−1.7 1.5
−1.03 −0.64

]
,B2 =

[
0
−1

]
.

For the system output, we set the following coefficients:

C1 =
[
10 0

]
,C2 =

[
11 0

]
,

L1 =
[
1 0

]
,L2 =

[
1 0

]
.
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Singular matrix is given as E =
[
1 0
0 0

]
and the transition rate

matrix is given as

5 =

[
−0.0193 0.0193

? ?

]
.

Now, a first-order H∞ filter will be designed. Suppose the
required H∞ norm bound is γ = 0.5 and the following
parameters are given as π2

d = −1, Ef = 1, R = ST =

[0, 1, 0], N1 =

 0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

, N2 =

 0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

. Then,
by solving Theorem 1 of present paper, a first-order filter
matrices can be given as

G1 =

[
0.1580 − 0.2322
0.5000 − 1.4643

]
,G2 =

[
0.1192 0.6262
0.4000 − 0.8393

]
.

With initial state x(0) = col[0.2, 0], xf (0) = 0, r0 = 1,
w(t) = 0.1sin(5t)e−0.2t . From Figure 3, it can be observed
that the first-order filter design method is efficient.

FIGURE 3. One possible switching signals, responses of x(t), z(t) and
their estimations.

V. CONCLUSION
In this paper, the reduced-order H∞ filtering problem is con-
sidered for SMJSs with ITRs. By separating augmented sys-
tem matrices, the existence of NS full-orderH∞ filtering was
formulated in terms of strict LMIs. To gap the existence of
NS reduced-orderH∞ filtering for SMJSs, without separating
the augmented system matrices, the NS reduced-order H∞
filtering was successfully derived. The complicated matrix
transformation and equality/rank constraints are avoided in
this paper. Two examples are illustrated to demonstrate the
effectiveness of the achieved results. In the future, extending
themethods in this paper tomore complicated situations, such
as for SMJSs with ADP switching in [24], [25] and time delay
[26] deserves further exploration.
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