
Received June 29, 2020, accepted July 11, 2020, date of publication July 14, 2020, date of current version July 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3009318

A Systematic Review of Hyper-Heuristics on
Combinatorial Optimization Problems
MELISSA SÁNCHEZ , JORGE M. CRUZ-DUARTE , (Member, IEEE),
JOSÉ CARLOS ORTÍZ-BAYLISS , (Member, IEEE), HECTOR CEBALLOS ,
HUGO TERASHIMA-MARÍN , (Senior Member, IEEE),
AND IVAN AMAYA , (Member, IEEE)
School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico

Corresponding author: Ivan Amaya (iamaya2@tec.mx)

This work was supported in part by the Consejo Nacional de Ciencia y Tecnología (CONACyT) Basic Science Project under Grant 287479,
and in part by the ITESM Research Group with Strategic Focus in Intelligent Systems.

ABSTRACT Hyper-heuristics aim at interchanging different solvers while solving a problem. The idea is
to determine the best approach for solving a problem at its current state. This way, every time we make a
move it gets us closer to a solution. The problem changes; so does its state. As a consequence, for the next
move, a different solver may be invoked. Hyper-heuristics have been around for almost 20 years. However,
combinatorial optimization problems date from way back. Thus, it is paramount to determine whether the
efforts revolving around hyper-heuristic research have been targeted at the problems of the highest interest
for the combinatorial optimization community. In this work, we tackle such an endeavor. We begin by
determining the most relevant combinatorial optimization problems, and then we analyze them in the context
of hyper-heuristics. The idea is to verify whether they remain as relevant when considering exclusively works
related to hyper-heuristics. We find that some of the most relevant problem domains have also been popular
for hyper-heuristics research. Alas, others have not and few efforts have been directed towards solving them.
We identify the following problem domains, which may help in furthering the impact of hyper-heuristics:
Shortest Path, Set Cover, Longest Path, and Minimum Spanning Tree. We believe that focusing research on
ways for solving them may lead to an increase in the relevance and impact that hyper-heuristics have on
combinatorial optimization problems.

INDEX TERMS Combinatorial problems, hyper-heuristics, job-shop scheduling, longest path, NP-hard
problems, optimization, set cover, shortest path, systematic review, vehicle routing.

I. INTRODUCTION
Optimization is present in all natural phenomena and living
species, including modern human behavior. It is hard to think
of a service or product from our daily routine that disre-
gards optimization. For example, vehicles we use for moving
around require parts that must be manufactured following a
schedule that minimizes costs and improves efficiency.More-
over, such parts must be designed in a way that makes them
safe but not cumbersome. Besides, if electronics are involved,
a proper cooling scheme must be implemented for the device.
And, of course, other examples abound: flight route plan-
ning, automatic movie recommendations, and examinations
timetabling, just to name a few. Even a simple part of our
routine can be subject to optimization. For example, coffee

The associate editor coordinating the review of this manuscript and

approving it for publication was Her-Terng Yau .

brewing can be optimized to get the amount of water and
coffee that makes the most out of each bean, or simply the
one that minimizes costs without hindering flavor.

The literature contains examples of how to tackle opti-
mization problems through diverse methodologies; some of
them, quite ingenious and others rather rudimentary. Besides,
technology advances rather fast, which allows formore robust
solutions to the same problems. However, for better or for
worse, it also paves the way for new optimization problems.
Still, solutions to these new problems can be achieved by
proposing new methods or by adapting ones from the liter-
ature. Nevertheless, to do so, researchers and practitioners
must have access to a global vision of what is currently
available.

So, there must be a way to navigate the plethora of paths.
Fig. 1 shows a simple organization of problems and solvers,
where the colored paths indicate those we target on this work.

128068 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-4067-2488
https://orcid.org/0000-0003-4494-7864
https://orcid.org/0000-0003-3408-2166
https://orcid.org/0000-0002-2460-3442
https://orcid.org/0000-0002-5320-0773
https://orcid.org/0000-0002-8821-7137
https://orcid.org/0000-0002-1187-1771


M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

FIGURE 1. A simple tree representation of available optimization
problems and solvers. Highlighted roots indicate the elements we target
on this work.

On the one hand, an optimization problem deals with
finding the best configuration of variables within a delimited
feasible region, such that one or more goals are maximized
(orminimized).When only a goal is considered, the optimiza-
tion problem is considered to be single-objective; otherwise,
it is multi-objective. These types of problems share similar
characteristics, but we do not delve on the multi-objective
problem type because it has been recently revised [1], [2].
Therefore, single-objective problems can be split, most sim-
plistically, into two categories concerning the nature of their
domains, i.e., continuous and discrete. The former are usually
present in practical engineering scenarios, e.g., for finding
the channel width that minimizes entropy generation rate
in a heat sink for electronic thermal management applica-
tions [3], and for assessing the thermophysical properties
of a sample from its electric field distribution [4]. Litera-
ture is prolific about these problems, and also about those
that consider both kinds of variables, e.g., [5]. However,
the interaction of this type of problems and hyper-heuristics
has not been extensively studied yet [6]. An initial work
on this direction is the research by Cruz-Duarte et al. [7],
which presented a preliminary study to apply hyper-heuristic
models to continuous functions. Authors aimed at creating a
strategy based on a hyper-heuristic for tailoring population-
based metaheuristics and including search operators from
well-known techniques as building blocks to generate new
ones. Their approach was tested through four benchmark
continuous functions with varying number of dimensions.
They obtained diverse configurations of metaheuristics that
showed promising results. Because of this, we do not deepen
on them. Instead, we center our attention on Combinatorial
Optimization Problems (COPs). An instance of a COP usu-
ally requires finding a valid permutation of values for each
variable. Hence, solving a COP may relate to finding a subset
of items, such that one parameter is maximized while the
other one remains below a given threshold [8]. The current
literature describes plenty of COPs that are mainly linked
to industrial production, resource management, and vehicle
routing, among others. Therefore, the need to delve deeper
into these problems is evident, as is their relevance in future
research and applications.

We center our study in the relation between Combina-
torial Optimization Problems (COPs) and hyper-heuristics.

According to literature, this is a more mature field, as we will
try to demonstrate it in later sections. Less explored topics
regarding hyper-heuristics are, for example, multi-objective
optimization [1], [2] and continuous optimization [7].
Examples of the former include the work of Gómez
and Terashima-Marín [9], where authors proposed an
approach for applying hyper-heuristics to a bi-objective two-
dimensional bin packing problem, based on evolutionary-
learning mechanism to produce sets of variable-length rules
representing hyper-heuristics. The two conflicting objectives
considered are the number of bins to accommodate the pieces
and the total time required to complete the task. The proposed
framework integrates three well-studiedmulti-objective algo-
rithms such as the NSGA–II [10], the SPEA2 [11], and
the GDEA 3 [12]. Maashi et al. [13] also reported a learn-
ing selection-choice-function-based hyper-heuristic to solve
multi-objective optimization problems. Particularly, their
work combines three well-known multi-objective optimiza-
tion algorithms (NSGA–II, SPEA2 and MOGA [14]) using
them as a low-level heuristics to solve benchmark multi-
objective problems.

On the other hand, there is a wide variety of solvers
that deal with the optimization problems described above.
Nonetheless, those can be grouped within exact or approxi-
mate approaches—which are also known as traditional (hard)
or modern (soft) methods [15]–[17]. Hard methods follow
a mathematical procedure and provide the best solution for
the problem. However, they become too complex or com-
putationally costly for big problems, so they become unfea-
sible to scale up. Therefore, modern methods seek to solve
the problem with a low computing burden. Unfortunately,
the latter sacrifice optimality since this approach cannot
guarantee it. Heuristics are a representative example of this
approach. In general, a heuristic approximates a solution via
loosely defined rules or based on trial-and-error. Heuristics
are grouped into three categories according to their level
of sophistication [6], as described next. Low-level ones (or
just heuristics) are the simplest, which can be defined by
single rules or direct actions over the search domain. Besides,
higher-level methods, known as metaheuristics (MHs), are
designed for finding a solution through one or more low-
level heuristics that guide the search. Such mechanisms pro-
vide some degree of intelligence, even though the search
usually contains one or more stochastic components. Tradi-
tionally, biological and natural processes have inspired MHs,
such as the collective behavior of fish [18] and bees [19],
or the annealing of metals [20]. In fact, many authors put
them under the umbrella of Simulation Optimizationmethods
because they carry out simulations (with creative analogies)
to approach the solution [21]. Metaheuristics are problem-
independent and have been employed to solve many hard
computational problems (NP-hard) [22]–[26]. Even so, some
work may be required for coding the problem into the meta-
heuristic scheme. For example, Particle Swarm Optimiza-
tion [27] implements a real-valued codification for each
design variable. So, the algorithmmust be adapted for dealing

VOLUME 8, 2020 128069



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

with discrete variables [28]. Nonetheless, MHs have a draw-
back: they explore the solution space for each problem, so the
whole process must be repeated when solving a new problem
instance. In other words, no information is preserved across
problem instances.

Various approaches that seek to combine low-level heuris-
tics have appeared to surmount such an issue [29]–[31].
One of such approaches is known as Hyper-heuristics (HHs).
Their idea is to try and circumvent the No-Free-Lunch (NFL)
theorem [32] by learning how to combine heuristics when
solving a single instance of a problem. Hence, HHs seek to
integrate simple and computationally cheap approaches for
conquering a problem [33]. A basic difference between MHs
and HHs is that the former explores the solution space of
a problem, whereas the latter focuses on the solver space.
So, a HH does not solve a problem directly. Instead, at each
step of the solution process, it selects a heuristic for deal-
ing with such a step. Even when this has proven fruitful
[34]–[40], it leads to the algorithm selection problem [41].
Moreover, HHs have been traditionally classified into selec-
tion and generation ones. In the former, selecting the heuristic
to apply is done directly. In the latter, selection takes place
at a deeper level. In generation HHs, then, each one of the
available heuristics is decomposed into building blockswhich
are then combined for creating new heuristics. Both models
have already been implemented in many applications [6].

Despite all the contributions in the literature regarding
HHs and COPs, we have not found any investigation that
deepens into the relationship between the focus given to
hyper-heuristics and the most researched applications on
combinatorial optimization. Although there are significant
efforts that strive to discuss the newest advancements in
hyper-heuristics [42], they fail detail whether those relate to
problem domains with the highest interest from the research
community. So, we carry this review out to fill this knowledge
gap. We do so by analyzing the behavior of the most relevant
applications regarding COPs, and whether they remain the
same when tackled through HHs.

II. FUNDAMENTALS
This section presents some fundamental concepts about com-
binatorial optimization problems and hyper-heuristics. Our
goal is that the following text serves to guide researchers less
familiar with hyper-heuristics into quickly grasping the idea
behind this approach.

A. AN OVERVIEW OF SOME COPs
We start by presenting some concepts about a few combinato-
rial optimization problems. It is important to remark that it is
unfeasible to summarize them all here. So, we select some
exemplary ones, and mention their main highlights. Even
so, the first problem, i.e., Balanced Partition, is discussed
in more detail. The reason is that this domain will be used
in II-C for showing the way in which hyper-heuristics can be
used to solve combinatorial optimization problems. Also, and
striving to enhance our scope, we provide references for other

COPs so that the interested reader can easily find information
about them. This will be shown in Table 2, which will be
presented in Sect. IV-A.

1) BALANCED PARTITION (BP)
Imagine a problem where a set of items, S, needs to be split
into two subsets, S1 and S2, in such a way that the sums of
their respective items are as close as possible. This is known
as the Balanced Partition (BP) problem. A straightforward
application of such a problem is load balancing within a dual-
core processor. Of course, this could be extended to the case
of more than two subsets. But, for the sake of brevity we will
refrain from doing so.

A solution to the BP problem is given by any item dis-
tribution across sets. Moreover, an optimal solution to the
problem is one with minimum difference across sets. Since
item ordering is unimportant, there are 2n candidate solutions
that must be evaluated, as only a few of them may yield
the optimal solution. So, if we have an instance given by
S = [1, 1, 2], there are eight possible item combinations
representing solutions. But, only two of them yield an optimal
split, either by setting S1 = [1, 1], S2 = [2] or by setting
S1 = [2], S2 = [1, 1].
One way of solving this kind of problems is to assign all

items to a subset, e.g., S1, and then move items to the other
until 50% or more of the load rests on S2. Such movements
can be ruled by a low-level heuristic, e.g., by selecting the
largest or the smallest items. These are known as the Max
and Min heuristics, and will be used throughout the example
given in Sect. II-C. This process, however, has a drawback: a
stopping criterion must be included to avoid moving all items
to S2. For BP problems, it is evident that such a criterion
relates to the relative load in S2. In fact, this value can be
defined as a ‘feature’ of the problem, which maps the current
state of the instance to a single value, as shown in Eq. 1,
where Ski represents item k from subset Si. In doing so, a value
of 0.5 and beyond would indicate that no more items should
be moved, as the target subset contains 50% or more of the
load from the whole system. Bear in mind that additional
features can be used to improve the mapping of the problem.
Some examples include normalized versions of the average
item size at each subset, as well as their standard deviation
or the median value. The intuition backing up these ideas
rests on assessing the spread within the instance, as a way
of mapping solution progress.

F1 =

∑N2
j=1 S

j
2∑N1

i=1 S
i
1 +

∑N2
j=1 S

j
2

. (1)

Since there are many candidate solutions for a single
instance, a way for comparing among them is required. So,
a metric of solution quality, Q, can be defined as the absolute
value of the difference among set totals, as shown in Eq. 2.
This way, lower values of Q represent better solutions. Also,
this metric allows for a straightforward extension to multiple
problem instances, as the average Q can be calculated for

128070 VOLUME 8, 2020



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

assessing the quality of a solver over a set of instances.

Q =

∣∣∣∣∣∣
N1∑
i=1

S i1 −
N2∑
j=1

S j2

∣∣∣∣∣∣ (2)

2) CONSTRAINT SATISFACTION
A Constraint Satisfaction Problem (CSP) is defined by a set
of variables, X , and a set of constraints, C . Each variable
x ∈ X has a non-empty domain, D(x), of dx possible values.
Each constraint, c ∈ C , specifies the forbidden combinations
of values for some subset of variables. The solution of a
CSP can either be the solution itself (i.e., the values for each
variable so that all constraints are satisfied), or evidence that
no solution is possible. Many COPs, such as scheduling,
timetabling, rostering, and cutting stock can be formulated as
CSPs. Some examples of problems represented as CSPs can
be found at [43]–[45]. Nonobe and Ibaraki present some ideas
suggesting that if an algorithm for CSPs can solve all those
problems, then it could be considered as a ‘‘general solver’’,
and be used for various problems in real applications [46].

In CSPs, the ordering in which variables are considered
for assignment affects the complexity of the search. For this
reason, finding methods that efficiently order these variables
is paramount and represents an opportunity for improving the
search in CSPs. In this regard, hyper-heuristics have been
used to control heuristic usage throughout the search [47].
Other recent works include dynamic algorithm portfolios
such as CP-Hydra [48], [49] and ACE [50]; as well as hyper-
heuristic approaches [51], [52]. There is also a growing inter-
est in automated feature selection for learning purposes [53].

3) BIN PACKING
The Bin Packing Problem (BPP) consists of packing a set
of items by minimizing the number of bins used [54], [55].
In general, the BPP is an exciting problem since many other
optimization problems such as the cutting stock problem [56]
and the knapsack problem [57] can be modeled as BPPs [58].
There is a wide variety of versions for this problem. Some
cover aspects such as the number of dimensions of the bins
and items. Others, address specific constraints on the type of
items that can be packed together or in specific bins.

A mathematical formulation of the BPP [59] is shown in
(3). In this formulation, N =

⋃n
i i stands for the set of

n pieces (or bins), while yi ∈ {0, 1} is a binary variable
indicating whether the bin i ∈ N has been used, and xij
indicates whether the piece j ∈ N is packed into bin i.

max

{
n∑
i=1

yi

}

s.t.
n∑
j=1

wjxij ≤ yi, ∀ i ∈ N

n∑
i=1

xij = 1, ∀ j ∈ N (3)

Concerning hyper-heuristics, the literature contains
interesting applications for BPP. Burke et al. [60] explored
generation hyper-heuristics for the BPP (in up to three dimen-
sions) by using a genetic programming implementation. Their
results proved that it is indeed possible to produce packing
heuristics with a higher level of generality than that of human-
made heuristics. Sim et al. explored how immune systems can
be used to produce hyper-heuristics for the one-dimensional
BPP [61]. Their results were comparable to the ones obtained
by state-of-the-art methods and also proved that this type of
hyper-heuristic is a reliable strategy for addressing dynamical
datasets. Later on, López-Camacho et al. [62] proposed a
unified hyper-heuristic framework for both, creating and
testing hyper-heuristics on one and two-dimensional BPP.
In their work, the authors used a genetic algorithm to map
the instance state to one suitable heuristic, thus representing
a hyper-heuristic.

4) KNAPSACK
The Knapsack Problem (KP), in its classical formulation,
consists of a set S =

⋃n
i i of n items. Each item i has two

properties: profit pi ≥ 0 and weight wi > 0. Moreover, there
is a knapsack with a limited capacity c > 0. It is custom-
ary to express the KP as an integer programming problem,
where the objective is to identify the selectivity of an item
xi ∈ {0, 1}. This implies finding whether an item must be
placed into the knapsack (xi = 1) or be left behind (xi = 0).
Solving the simplest version of the knapsack problem, when
wi = pi ∀ i ∈ S, implies finding a subset of items S1 =
{i ∈ S : xi = 1} such that their total weight remains within
the capacity of the knapsack. This problem is described as
follows,

max

{
n∑
i=1

wixi

}
s.t.

n∑
i=1

wixi ≤ c. (4)

Otherwise, when wi 6= pi ∀ i ∈ S, an optimal solution
requires that the profit given by S1 is maximum. In doing so,
the problem can be stated as

max

{
n∑
i=1

pixi

}
s.t.

n∑
i=1

wixi ≤ c. (5)

The KP is a well-studied COP. The chief reason is that it
has a wide range of applications, which include [63]: cargo
loading, cutting stock, allocation, and cryptography. Exact
methods for solving the KP guarantee finding the optimal
solution. However, they require that such a solution exists
and that enough run time is given. Dynamic programming
and branch and bound are included in this category. Unfortu-
nately, exact methods can only solve small instances because
of the exponential growth in the solution space (2n). Aside
from exact methods, literature also describes approximate
ones. Among them, we can highlight those commonly known
as heuristics. With them, finding the optimal solution is not
guaranteed. But it is feasible to find one acceptable one,
according to some specific performance metric. One way of

VOLUME 8, 2020 128071



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

solving the KP with heuristics is to select items (one at a
time) until the knapsack is filled. Some common heuristics
include selecting the item with the maximum profit, or the
one with the minimum weight. More complex heuristics are
also feasible, such as the onewith themaximum ratio between
profit and weight.

Regarding hyper-heuristics, we can mention the work of
Drake et al. [64]. They implemented a genetic-programming
approach for the automatic generation of constructive heuris-
tics for the multi-dimensional version of the KP, obtaining
promising results. Also related to generation hyper-heuristics,
Burke et al. [60] addressed heuristic generation for the KP by
using a genetic programming implementation. Their results
obtained outstanding results on unseen instances, what sup-
ports the idea that their approach produces heuristics that gen-
eralize better than their human-designed counterparts. The
work by Duhart et al. [65] also stands out, where authors
solved theKP using hyper-heuristics produced byAnt Colony
Optimization.

5) JOB SHOP SCHEDULING
The Job Shop Scheduling Problem (JSSP) is paramount for
industries in general, as it offers the ability to craft effi-
cient production programs that can be tailored to customer
demands. This problem is detailed as follows. Let J =⋃n

i=1 ji be a set of n jobs that must be processed on a set
of m machines, i.e., M =

⋃m
k=1 mk . Likewise, let ai,k ∈ Ai

be an activity (operation) of job ji that needs to be processed
uninterruptedly by machine mk . Also, each job has to be pro-
cessed sequentially and may require one or more machines,
i.e., ai,k → ai,r ∀ ai,k , ai,r ∈ Ai. So, a job ji comprises a set
of at most m activities Ai =

⋃m
k=1 ai,k , where each activity

has a processing time that depends on the machine, i.e., pi,k ,
and a start time ti,k ≥ 0. The set of all activities is given by
A =

⋃n
i=1 Ai. Thence, a schedule s from the space of all pos-

sible schedules S comprises a set of starting times ti,k for all
the activities, such that it satisfies all constraints and vouches
for the completion of all jobs, i.e., s =

⋃n
i=1

⋃m
k=1 ti,k ∈ S.

For the most simple conditions, there are #S = n!m possible
schedules [66]. Subsequently, let Cs =

⋃n
i=1

⋃m
k=1 ci,k be

a set of completion times for all the activities, since ci,k =
ti,k+pi,k with i, k = arg{ai,k}, ∀ai,k ∈ A. Therefore, the goal
in a JSSP can be stated as to find an optimum schedule s∗.
For example, one that minimizes the time spent for complet-
ing all jobs, given by the makespan Cmax = (max{Cs} :
∀ai,j ∈ A). So, a JSSP can be mathematically formulated as
follows [67], [68]:

s∗ = argmin
S
{Cmax}

s.t. ti,r − ti,k ≥ pi,k , if ai,k→ai,r , ∀ai,k , ai,r ∈ A,

(ti,k − tl,k ≥ pl,k ) ∨ (tl,k − ti,k ≥ pi,k ),

∀ai,k , al,k ∈ A,

ti,k ≥ 0, ∀ai,k ∈ A. (6)

Naturally, more elaborated problems can be stated by chang-
ing the sources of production demand, type of machines, per-
formance index, characteristics of a production environment,
processing characteristic of the operation, kind of plan, and
resource constraints [69], [70]. Despite seeming like an easy
task, the standard version of the JSSP is considered to be NP-
complete [71]. This means there is currently no algorithm that
can optimally solve all JSSPs in polynomial time, albeit sev-
eral solution techniques have been proposed. Some examples
include Memetic Algorithm [72], Tabu Search [73], Genetic
Programming [74], and Deep Reinforcement Learning [75].
Moreover, should such an algorithm be discovered, it could
be used to solve all NP problems, as they can be transformed
into the NP-complete domain.

Hyper-heuristics have also been used for tackling
JSSPs [76]. For example, Chaurasia et al. implemented an
Evolutionary Algorithm with guided mutation as HH for
solving the JSSP, assuming nowaiting time between activities
for each job [77]. The authors claimed that this approach
surmounted other well-known methodologies in 80% of their
experiments. Another example rests on the work of Garza-
Santisteban et al., who presented a hyper-heuristic model
powered by Simulated Annealing for dealing with JSSP
instances of different sizes [39]. They reported that such a
model was able to outperform a synthetic Oracle, obtained
from several low-level heuristics, in almost 30%. Besides
them, Lara-Cárdenas et al. utilized Neural Networks for
boosting the performance of various HHs reported in the
literature in JSSP applications [78].

B. AN OVERVIEW OF HYPER-HEURISTICS
Hyper-heuristics are a fairly recent approach at solving
optimization problems. The idea behind a hyper-heuristic
is to combine the nature of some available solvers into a
more powerful one that outperforms them. Initially, hyper-
heuristics (HHs) were classified from two perspectives: their
nature and the nature of their available solvers. This process
led to the definition of four categories, as perspectives are not
mutually exclusive [6]. Based on its nature, a hyper-heuristic
can pursue the ‘selection’ of low-level solvers (LLS), or the
‘generation’ of new LLS based on the building blocks of
the available ones. Now, let us remember that LLS tackle
combinatorial optimization problems (COPs). So, they can
be used for ‘building’ the solution one step at a time, or
to ‘modify’ existing ones. Therefore, they are known as
constructive and perturbative heuristics, respectively. In this
way, the four categories of hyper-heuristics become: selection
constructive, selection perturbative, generation constructive,
and generation perturbative. It is important to remark that
Drake et al. recently expanded upon these categories, also
providing perspectives related to the feedback, the number
of objectives, and the way parameters are set, among oth-
ers [79]. It is unfeasible to pretend covering all kinds of hyper-
heuristics in this manuscript. But, the interested reader is
referred to [6], [79].

128072 VOLUME 8, 2020



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

When properly trained, hyper-heuristics can provide out-
standing results. We show an example of how this is
achieved in Sect. II-C. So, for now we will mention some
relevant works from the literature where hyper-heuristics
have been used. Most of them target COPs. For exam-
ple, Zhong et al. used a hyper-heuristic approach for gen-
erating schedules of mobile heat sinks in wireless sensor
networks [80]. The authors followed a genetic program-
ming (GP) approach with access to five low-level heuris-
tics and the four basic arithmetic operations to link them.
They tested their hyper-heuristic approach in stationary and
dynamic networks, finding that it was able to outperform
human-proposed heuristics and reach values similar to the
reference ones, but in shorter times. Another example worth
mentioning is that of Toledo et al. [81]. The authors focused
on the Orienteering Problem with Hotel Selection (OPHS).
In this problem, a tour spanning several days must be built,
in such a way that points of interests and hotels are selected
efficiently. Toledo et al. laid out a hyper-heuristic model
powered by Large Neighborhood Search. They found results
of good quality in acceptable computational times. In fact,
they were able to reach the best solution for about 55% of the
instances they analyzed.

Notwithstanding, some efforts have been pursued towards
extending hyper-heuristics to the continuous domain. For
example, Miranda et al. developed an approach for fus-
ing automatic algorithm selection and generation hyper-
heuristics [82]. Their goal was to provide a hyper-heuristic
model with lowered computational cost. To do so, the authors
reused previously built algorithms in similar problems. They
found that their proposed approach could drastically speedup
the process since their selection method only required a frac-
tion of the time it would take to tailor a new solver. Similarly,
Cruz-Duarte et al. presented a work where they decomposed
10 well-known metaheuristics into 22 low-level search oper-
ators [7]. By merging this information, their hyper-heuristic
model created ‘new’ metaheuristics with a different number
of search operators (i.e., cardinality). The authors tested their
approach under several scenarios with standard test func-
tions. They found that their proposed approach allows finding
good sequences of operators, promoting a better exploration
and exploitation of the search space. Also, they detected
an increased demand for solvers with higher cardinality as
problems grew in dimensions.

C. AN EXAMPLE OF HYPER-HEURISTICS IN COPs
We nowmigrate to discussing a simple, but useful, illustrative
example of how a hyper-heuristic works when solving a COP.
To do so, we select the Balanced Partition (BP) domain, as the
process is rather straightforward. Bear in mind that, despite
this, hyper-heuristic models are broad in scope and, so, they
can be applied with ease to other COPs. One example of such
broadness is found in the different models that can be derived
based on the feedback used by the hyper-heuristic, as recently
stated by Drake et al. [79]. This way, hyper-heuristic models
can improve as instances are received (online learning), or

they can be trained on a set of instances and then used to
solve new problems (offline learning). However, they can also
pursue a mixed learning approach, or even have no learning
at all. Nonetheless, the following examples are restricted to
the case of offline hyper-heuristics, mainly for simplicity. So,
online hyper-heuristics are beyond the scope of this section.

Let us assume, for the sake of clarity, that we need to solve
the following three problem instances:

Instance 1: 10 1 1 1 1 1 1 1 1 1 1 1 1
Instance 2: 10 9 8 1 1 2 2 1 1 1 1 1 1
Instance 3: 10 3 4 2 10 10 1 1 1 1 1 1 1

 Items (7)

Recall the heuristics mentioned in Sect. II-A1. An instance
is solved either by selecting the largest items (Max heuristic)
or by selecting the smallest ones (Min heuristic). So, for the
first instance both heuristics yield a perfect split, i.e., Q = 0,
However, the former performs poorly in the second instance,
yielding a solution with Q = 15. Conversely, the latter
provides a high-quality solution (Q = 1). For the final
instance, none of them are particularly good, though Max
performs worse (Q = 14 vs. Q = 6). Therefore, Max yields
an average quality of Q = 9.67 across all instances. Hence,
Min represents a better alternative, rendering Q = 2.33. This
means that there is room for improvement in some instances.
So, a hyper-heuristic may represent a better approach, and we
now focus on them.

1) A RULE-BASED HH MODEL
In this kind of hyper-heuristics, a set of rules guides the
decisions of the solver that will be employed. One way to
represent such rules is in the form of a selection matrix,
where each row represents a different rule. So, the rule most
similar to the current problem state is used. Such a simi-
larity metric can be given by the Euclidean distance, with
closest elements being more alike. Moreover, the problem
state and the rules must be represented somehow. Hence,
it is customary to utilize a feature vector that maps different
properties of the problem domain. Notice that feature vectors
constitute the columns of the selection matrix. For the sake
of simplicity, this example considers a single feature (F1),
which was previously defined (see Eq. 1). Additionally, each
rule must include an action that will be taken if such a rule
is selected. So, a rule is given by Nf + 1 elements, where Nf
is the number of features considered in the model. This way,
in a hyper-heuristic with two rules the selection matrix (i.e.,
the selector) has two rows (each rule) and two columns (one
feature plus the action to take).

Because of the rules-problem interaction, a ‘‘zone of influ-
ence’’ appears for each selector. Each region provides an
overview of the feature values that will lead to each decision.
In our case, the plot is given by a straight line, as we only con-
sider a single feature. Different portions of this line indicate
different actions to take should the feature take that value.

With this information, we can proceed to the example,
which is more detailed version of the one previously com-
mented in [35]. Figure 2 shows a selector (left) and its

VOLUME 8, 2020 128073



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

FIGURE 2. An example of (a) a rule-based selection hyper-heuristic and
(b) its corresponding zone of influence.

corresponding zone of influence (right). Thus, should F1 be
below 0.25, Max will be used for selecting an item. Other-
wise, Min will be employed. Bear in mind that this selector
was calculated intuitively. But, real applications consider
problem instances so complicated that the selector cannot be
created in this fashion. So, a learning stage is required, e.g.,
by using metaheuristics to optimize the performance of the
hyper-heuristic. Let us now retrace the path that the hyper-
heuristic follows when solving the last instance. Since subset
2 begins empty, the initial feature value is 0/46 = 0. So,
the first item is selected with Max, and the value 10 is moved
from subset 1 to subset 2. In the next step, F1 = 10/46 =
0.217. Since 0.217 < 0.250, Max is used once again. Hence,
another item with a value of 10 is moved to subset 2. Now,
F1 becomes 0.435. Since the feature falls within the zone
of influence of the Min heuristic, the smallest item (value
of 1) is moved to subset 2. Because our selector only contains
two rules, and considering that F1 continually increases, all
subsequent decisions will be made with the Min heuristic.
In the end, our hyper-heuristic provides a solution where
subset 1 contains the items {3, 4, 2, 10, 1, 1, 1, 1} while sub-
set 2 keeps {10, 10, 1, 1, 1}. In other words, it provides a
perfectly balanced solution (i.e., Q = 23 − 23 = 0).
By following a similar approach for solving the other two
instances, solutions with Q = 0 and Q = 1 can be achieved.
This yields an average performance metric of 0.33, whilst
standalone heuristics yielded worse values (2.33 and 9.67).
So, the hyper-heuristic approach provides a solution that is,
overall, seven times better than the best available heuristic.
But, the fascinating element is that such performance level
is achieved without needing to create a new heuristic, nor
by exploiting the solution domain. It is achieved by properly
mixing available solvers that do not necessarily perform well
over the whole set of problems. This is the charm of hyper-
heuristics: they combine solvers to conquer a problem.

2) A SEQUENCE-BASED HH MODEL
In the prior case, it was necessary to identify a set of features
for mapping the current problem state. So, hyper-heuristic
performance is biased to the ability of such features for dif-
ferentiating among problem states. The most straightforward
example is to think of a feature, F2, given by a constant,
e.g., F2 = 0.5. Including such a feature in the previous
model may hinder performance, as this feature will map all
states to the same value (i.e., 0.5), thus inhibiting any instance
differentiation (from this perspective, at least).

Let us then migrate to another hyper-heuristic model, one
that does not require features. In this model, we are interested
in identifying the right combinations of heuristics instead
of general rules. Therefore, this model may perform better
under a more restricted set of instances, where they behave
similarly. In other words, the idea is to find something akin to
rules-of-thumb. This way, the model becomes rather simple,
as it only needs to represent the actions that will be taken.
Thus, it can be stated as an action vector. Here, each element
represents an action that will be taken at a different step in the
solution-building process.

Despite its apparent simplicity, this modeling leads to dif-
ferent versions with varying performance. One reason rests in
the length of the action vector. In a general case, it is expected
that a hyper-heuristic has fewer elements than the number of
decisions it will make when solving an instance. Otherwise,
it will be akin to tuning the model for a given instance,
whichmay overfit the general behavior of the instance set. So,
repetitions must be accounted for somehow. Figure 3 shows
three different arrangements for such looping schema. The
first one determines the number of times that the sequence
will be repeated when solving the instance, and then expands
each action in the sequence given by the model, said several
times. Sánchez et al. followed such an approach [83]. To
account for the fact that the sequenceswill seldombe repeated
an integer number of times, the authors began increasing the
number of repetitions of each action backward. So, the last
actions in the sequence are repeated one more time than the
others.

FIGURE 3. Overview of a sequence-based hyper-heuristic model and the
effect of three different looping schema on the decisions taken when
building a solution, assuming that the hyper-heuristic always requires
seven steps to build the solution.

The previous approach requires knowing the number
of steps needed for finding the solution beforehand. This
assumption holds for some problem domains, such as the one-
dimensional Bin Packing Problem, where all items must be
packed. But, it does not apply to Balanced Partition, where the
number of steps depends on the relative contribution of each
selected item. Figure 3 shows other approaches that can be
pursued, where each action is only used once (i.e., the ones on
the rightmost part). Throughout the first steps of the solution,
both strategies behave in the same way. However, after the
sequence ends, they diverge. In the first case, the sequence
is swept again from the beginning, i.e., it is restarted. In
the second one, it is reflected and thus swept decreasingly.
Each process is repeated until the instance is solved. In doing

128074 VOLUME 8, 2020



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

so, different action sequences can be generated, which should
yield varying performance, depending on the selected looping
style. Nonetheless, both approaches can be used in cases
where the number of steps required for finding a solution is
unknown.

Let us now see how such approaches behave when solving
the troublesome instance from our example, i.e., the third
one. Also, assume that the hyper-heuristic will be given by
the Min-Max sequence. In other words, the first item will be
moved following theMin heuristic. So, an itemwith the value
of one is selected. Then, the biggest item will be moved (Max
heuristic). It signifies that an item valued at 10 is selected.
Afterward, the selection process will change depending on
the considered looping criterion. If the sequence begins anew
(i.e., a restart scheme), the Min heuristic will be used, and
another item with unitary value will be moved. Then, an item
with a value of 10 will be selected (Max heuristic). After
another renewal, Min is employed once more, and a solution
with a perfect split is achieved. Should the other looping
criterion be used (i.e., a reflect scheme), the solution pro-
cess would be slightly different. Prior to making the third
choice, the sequence is reflected, so the last action (i.e.,
Max) is repeated. So, an item with a value of 10 is selected.
Subsequently, Min is used, and an item valued at one is
moved. At this point, the sequence is reflected once again,
thus repeating the selection with the Min heuristic. Hence,
another item valued at one is chosen. Once again, this leads to
a perfect split, thus ending the solution process. In summary,
in using these sequence-based hyper-heuristics optimal solu-
tions were achievedwith a process quitemore straightforward
than with the rule-based model. Both approaches lead to the
same solution, though in a slightly different order. Moreover,
when solving the other instances, these models also perform
correctly, yielding Q = 0 and Q = 1 for the first two
instances, respectively. Despite this, and as with rule-based
hyper-heuristics, the model does not perform properly under
some conditions. For example, consider that the model is
reversed, i.e., the sequence to use is Max-Min. Once again,
both looping methods yield the same solution for the third
instance. But, the quality worsens and becomes Q = 18,
meaning that both heuristics outperformed hyper-heuristics
(an undesired scenario). Even so, for the remaining instances,
performance is better, yielding Q values for the first two
instances of 0 and 3, respectively. Therefore, it is crucial to
consider a proper training stage, where appropriate values can
be found for the hyper-heuristicmodel. Nonetheless, it is once
again evident that hyper-heuristics can outperform low-level
heuristics simply by learning when to use them.

D. SOME HYPER-HEURISTIC FRAMEWORKS
In Section II-C1, we depicted an example of a selection hyper-
heuristic through a selection matrix. However, we provided
no details on how to produce such a matrix or any other simi-
lar hyper-heuristic. Hence, this section briefly describes three
hyper-heuristic frameworks from the literature. For the sake
of brevity, we only describe their most relevant aspects, as an

introductory material. However, for the interested reader,
we provide precise citations where such frameworks (or their
variations) are detailed.

1) A GENETIC ALGORITHM FRAMEWORK FOR HEURISTIC
SELECTION
A popular hyper-heuristic framework is based on genetic
algorithms to produce selection hyper-heuristics [33], [84],
[85]. From now on, we refer to it simply as GAHH.

In GAHH, a genetic algorithm evolves a population of
selection hyper-heuristics. When the evolutionary process
finishes, the best individual represents the resulting (best)
hyper-heuristic. GAHH is an offline approach. Hence,
the hyper-heuristic is ready for deployment, only after the
evolutionary process ends. Also, GAHH encodes hyper-
heuristics into the chromosomes. So, each chromosome rep-
resents a set of rules with the form condition→ action. The
condition within a rule defines the problem state (given by
features that characterize the problem). The corresponding
action is the heuristic to apply if such a condition is met.
As with the example from Section II-C1, the rule which
condition is closest to the current problem state is the one
that fires (it determines the heuristic to apply). Closeness is
usually calculated through the Euclidean distance.

The genetic algorithm maintains a population of chromo-
somes, where each chromosome contains two or more rules,
as defined in the example from Section II-C1. However, these
rules are not represented as amatrix, but as a single vector (the
unrolled rules in the matrix). The representation of this chro-
mosome can be either binary or real-valued, but the genetic
operators must be updated accordingly. Since the features that
characterize the problem domain should be normalized, their
values must lie within a well-known interval, given by the
minimum and maximum value of each feature considered for
the process. Although the genetic operators should guarantee
to produce values in such a range, sometimes allowing the
values to lie outside the interval has proved beneficial for
the hyper-heuristic process [85], [86]. As part of the imple-
mentation of the genetic algorithm, the genetic operators
should also consider affecting the number of rules in the
chromosome, since most of the applications of GAHH allow
the chromosome to increase or decrease the rules encoded
within them. The evolutionary process iteratively takes place
until it meets a termination criterion (usually, the number of
iterations). Although there is no restriction, literature shows
that a recurring approach uses a steady-state genetic algo-
rithm. Thus, a maximum of two chromosomes are replaced
per iteration.

2) A GENETIC PROGRAMMING FRAMEWORK FOR
HEURISTIC GENERATION
Hyper-heuristics initially gained popularity mainly because
of their capability to switch heuristics throughout the search
process. Nowadays, however, they are also used to pro-
duce new heuristics based on the ‘components’ of existing
heuristics —the criteria such heuristics use to make their

VOLUME 8, 2020 128075



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

decisions [64], [87]–[89]. In this regard, the vast majority
of works have relied on genetic programming to implement
generation hyper-heuristics. From this point on, we will refer
to this framework as GPHH.

GPHH represents heuristics as functions, which are
evolved by using tree-like structures (customary in genetic
programming). Such an evolution is done through genetic
operators adapted to tree-like structures. Moreover, func-
tions represent interactions between terminals, and they can
choose among a set of available operations. Then, GPHH
requires two sets: terminals (that represent the features that
characterize the problem state) and operations (that define
the interactions between such features). On the one hand,
features are usually problem-dependent, since they describe
the problem state of a particular domain. On the other hand,
operations vary from one implementation to another. The
most common ones are the basic arithmetical operations:
addition, subtraction, multiplication, and protected division
(to avoid errors if the divisor is zero). Other popular choices
include minimum andmaximum, as well as conditionals such
as the IF-THEN-ELSE statement. Although less frequently
used, some implementations have also included the power
and root as available operations. All the functions produced
by GPHH must comply with a valid grammar—proposed for
each particular implementation. Such a grammar guarantees
that the operations receive values they can handle in order to
produce a feasible result.

As described before, GPHH evolves functions (in a tree-
like structure), and those functions are treated as heuristics.
In practice, those heuristics are functions that combine fea-
tures through the available operations. Then, the result of
evaluating one heuristic is a real value, which can be used
to determine the next step to take in the search. For example,
let us imagine that GPHH is employed to create heuristics for
the JSSP (as described in Section II-A5). In such a scenario,
a function (that represents a heuristic) will produce a value for
each available activity. Then, the activity with the smallest
value should be added to the schedule. Please note that the
way functions represent heuristics changes from one imple-
mentation to the next. Here, we only present one idea within
the umbrella of possibilities that have been implemented in
literature.

3) HYPER-HEURISTICS FLEXIBLE FRAMEWORK
Literature contains but a few works that attempt to reduce the
effort of developing and testing hyper-heuristics, particularly
for inexperienced users. The most significant contributions
work as software libraries or modules [29], [90]. HyFlex is
an example of such frameworks, which stands out due to its
impact on the community [29]. It is an object-oriented frame-
work for the implementation and comparison of different
hyper-heuristics employing problem-independent operators.
HyFlex has been used for both research and competitions—
as in the two editions of the Cross-Domain Heuristic Search
Challenge (CHeSC), in 2011 and 2013.

Contrary to what we discussed in the previous frame-
works, HyFlex works as an iterative method that attempts to
improve random initial solutions by using different operators
classified as local-search, mutation, crossover, and ruin-and-
recreate. Internally, it keeps a list of available heuristics for
each of the implemented problem domains. Hence, calling
heuristics from different domains becomes transparent for
the user. When one problem domain is requested to use
one heuristic that is not implemented, HyFlex ignores the
call, and the hyper-heuristic moves on to the next decision.
From a general perspective, HyFlex works as a perturbative
solver. So, features decide among different heuristics without
relating to the problem itself. Instead, they relate to the change
in the value of their objective function, which is problem-
dependent and always produces a real-valued number. Then,
HyFlex incorporates both, operators and features, that are
problem-independent. This allows the user to create hyper-
heuristics that work for any of the supported problem domains
with no additional changes. At the moment, HyFlex includes
six problem domains: boolean satisfiability, one-dimensional
bin packing, permutation flow shop, personnel scheduling,
traveling salesman, and vehicle routing.

III. METHODOLOGY
This work aims at determining whether the Combinatorial
Optimization Problems (COPs) of highest interest to the
research community are the same as those within Hyper-
heuristics (HHs) research. In doing so, we intend to provide
waypoints for future research works on HHs, which align
with relevant combinatorial optimization problems. There-
fore, we investigate the literature about two broad research
areas: COPs and HHs. Also, we search for sub-areas with the
highest impact and those with the most significant research
potential. We start by supplying an overview of the leading
research topics in combinatorial optimization and gradually
focus the search to better understand the kind of publications
that impact the academic community. Then, we analyze the
role that hyper-heuristics play within these topics. Moreover,
we aim at identifying trends and gaps to generate a qualitative
analysis of future paths for hyper-heuristic research. There-
fore, our methodological approach is organized into the five
stages shown in Fig. 4, whichwe describe below. Thismethod
was designed to adopt a reproducible, scientific, and transpar-
ent process for anyone who wants to follow it.

Our study begins with a quantitative data collection of pre-
vious publications to find relevant combinatorial optimiza-
tion problems. Afterward, our approach shifts to a deductive
data analysis, where we focus on finding meaningful param-
eters of the collected data. By using them, we filter the list
to the ten most relevant problems. Later on, we measure
their impact and influence with a citation overview spanning
over the past four years. We then repeat the analysis, but
restricting search results to hyper-heuristics striving to detect
whether the combinatorial problems of higher interest prevail.
Finally, we determin the five most relevant authors, journals,

128076 VOLUME 8, 2020



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

FIGURE 4. Five-stage methodology we follow throughout this work.

and institutions for each one of the top six COPs, within the
context of HHs.

A. SEARCH ABOUT COPs
We carry out a broad literature review to identify several
Combinatorial Optimization Problems (COPs). We acquire
and store data about each problem for further analysis.
To this end, we use Elvesier’s Scopus database. The reasons
are thrice-fold. First, Scopus compounds a comprehensive
overview of scientific research from different sources around
the world. Second, it allows identifying emerging trends
thanks to its built-in analytical tools. Finally, it is accessible
due to institutional agreements. The search query, at this
point, is designed striving for generality, so time restrictions
are disregarded. Hence, we use the expression: ‘‘combinato-
rial optimization problem’’. Afterward, we thoroughly read
and analyze both the abstracts and general contents of the
results. As an outcome, we find frequently mentioned key-
words and expressions that narrow our study. Then, we sys-
tematically employ each one of them individually, to expand
our data and consolidate the COPs and sub-problems from all
the sources. Bear in mind that the same results are returned
when using the American and British spelling of the word
optimization. So, we disregard using both variants of the
word, striving for simplicity.

B. PRELIMINARY DATA ANALYSIS AND SELECTION
This stage aims at performing an in-depth qualitative analysis
of the most active fields, as to identify trends for future
research. So, we scout each optimization problem and store
two indicators that we deem relevant for the analysis: the

number of total published documents and the year of its
first publication. Using this information, we calculate the
average number of manuscripts per year for each domain.
Furthermore, we store raw data about the number of docu-
ments published for each year andof combinatorial problems
to better determine any tendencies.

As the final approach on this stage, we filter our results to
the top 10 problem domains. To do so, we keep those that
comply with all of the following criteria:

1) The number of published manuscripts tends to increase
with each year.

2) The average number of manuscripts per year since the
first appearance is above 50.

3) There are over 2000 total published documents.
4) The domain is not inherent and directly related to

another one, i.e., the selected problem is not a sub-
domain of another.

Since this may yield more than ten problem domains,
we then sort the remaining ones increasingly, based on ele-
ments such as:

1) Average number of documents per year,
2) Total number of published manuscripts, and
3) Growth over the last two years.
Moreover, and to avoid that small differences bias our

conclusions, we set the following assumptions for two or
more problems:

1) They have the same average of documents per year if
their difference is less than or equal to 13;

2) They are equal when they have a difference of less than
or equal to 800 manuscripts; and

3) They have the same growth if, and only if, they have
precisely the identical growth value.

VOLUME 8, 2020 128077



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

It is essential to mention that we define each threshold as
roughly 10% of the average of its corresponding parameter
value. Also, whenever a criterion ties, the next one is ana-
lyzed. Even so, there is no case where two or more problem
domains exhibit the same growth value.

For example, should Bin Packing Problem (BPP) and
Boolean Satisfiability Problem (SAT) exhibit an average
of 47 and 50 documents per year, respectively, they would be
considered as tied. So, we would compare the total number of
published manuscripts. Let us assume that it is 5853 for BPP
and 2019 for SAT. Thus, the tie is broken, and BPP becomes
more relevant than SAT.

C. MAIN PROBLEMS
This stage strives to analyze citation data to gather insights
about research patterns and trends. It identifies recent
research interest for each one of the filtered problem domains.
Keeping this in mind, we determine the number of cita-
tions generated between 2015 and 2019, and related to the
manuscripts published between 2014 and 2019. During this
process, a new search query is made for each problem,
including the word problem, to have complete and relevant
data. Afterward, we filter the results to those from 2014 to
2019. To better analyze these values, we divide them by
the number of available documents, thus considering a ratio
(cf. Sect. III-B).

D. HYPER-HEURISTICS IN COPs
This stage focuses on finding whether the results hold
when analyzing the output generated by hyper-heuristic
research. In other words, wewant to see how themost relevant
combinatorial optimization problems change when migrating
from a global observation to one restricted to what has been
tackled with hyper-heuristics. Therefore, we replicate the pre-
vious citation overview analysis while restricting the search
with the expression: ‘‘hyper-heuristic*’’ OR ‘‘hyper heuris-
tic*’’. The reason: results differ when using each term. Hence,
we search for each problem individually and then restrict the
corresponding results to the keywords, as mentioned earlier.
Afterward, we filter the data to the time window between
2014 and 2019.

Moreover, and once again seeking to avoid bias, we cal-
culate the ratio between the number of citations belonging
to works restricted to hyper-heuristics and the corresponding
number of unrestricted citations. This way, we can more
clearly see the relative impact of each problem.

As a complement, we analyze the number of published
manuscripts per year between 2010 and 2019, which relate
to hyper-heuristics. So, we use these limits as a new time
window. To detect whether there has been a growing interest
for each problem, we calculate the number of citations per
document, by dividing the citation information into the values
yielded by the previous step. Finally, we seek to filter the list
of problems to the sixmost relevant ones. To do so, we include
a problem domain if and only if it complies with all the
following criteria:

1) With each year, more documents related to hyper-
heuristics are cited. To this end, we calculate the aver-
age yearly growth of the number of citations for the
problem;

2) With respect to its first mention, the problem has
accumulated an average of over 50 citations per year,
restricted to documents related to hyper-heuristics;

3) Its average number of documents per year, related to
hyper-heuristics, is higher than 10; and

4) It includes over 100 citations of documents related to
hyper-heuristics.

E. ANALYSIS ABOUT JOURNALS, AUTHORS, AND
INSTITUTIONS
As the final approach, we delve deeper into our analysis of
the top six problem domains. For each one of these domains,
we identify the top five journals, authors and institutions.
In this regard, we part from the whole search results restricted
to hyper-heuristics, i.e., disregarding time windows. Then,
we sort such data per author affiliation, as well as by author
name and by source title. In case of ties, we differentiate
among them by the number of citations. To support this idea,
we use the software VOSviewer to create co-authorship dia-
grams in terms of authors and organizations for each domain.
We look at it as a global authorship network and then simplify
it to the top five authors. Based on these indicators, we deter-
minewhether the problems of higher interest in combinatorial
optimization have also been of high importance in hyper-
heuristic research.

Moreover, this allow us to identify the main actors for
each one of the top problems. It also enables the analysis
to determine how diverse the research community working
on hyper-heuristics is for a given problem. Additionally, and
to avoid misjudging the relevance of journals, authors, or
institutions for each problem, we normalize the resulting
data.

IV. RESULTS
A. SEARCH ABOUT COPs
We obtain almost 30000 results when employing the search
query: combinatorial optimization problem. After inspect-
ing the most relevant results, we detect the common key-
words from Fig. 5. As expected, the terms combinatorial,
optimization, and problem are present. Nonetheless, related
terms, such as discrete, are also quite common. Moreover,
and since most combinatorial problems of interest are NP-
hard, such a term is also present. Besides them, popular terms
relate to the kind of solution being sought (i.e., maximiza-
tion/minimization), as well as to some particular problems
(e.g., Traveling Salesman) and solvers (e.g., metaheuristics).

Our expanded search includes each relevant keyword.
Table 1 shows the resulting data, where we summarize the
number of results per search query, as well as the number of
problem domains that can be derived from them. We detect
an overlap in the latter. So, we synthesize the data and

128078 VOLUME 8, 2020



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

FIGURE 5. Most common keywords from the initial search query. The
larger the font size, the more occurrences of the term.

TABLE 1. Number of results and types of combinatorial problems from
each search query. Some problems overlap across expressions.

obtain 40 different problems. These can be clustered into
21 different groups, as Table 2 evidences.

B. PRELIMINARY DATA ANALYSIS AND SELECTION
A selection of the problems from Table 2 that comply with
the criteria from Sect. III-B leads to 13 candidate problem
domains. It means that all of them fulfill the given require-
ments (i.e., tendency of the number of publications, the aver-
age number of manuscripts per year, the total number of
published documents, and domain relationship). So, we sort
them.

It is interesting to note that only the first two candidates
do not tie based on the first criterion. In other words, only
they exhibit a difference in average documents per year
beyond 13. The leading entry is Vehicle Routing (VR), which
has 18 more documents per year (on average) than Constraint
Satisfaction (CS). At this point, there is quite a gap in the
data, with Traveling Salesman (TS) having 55 fewer docu-
ments per year. However, there is a tie between TS, Job-Shop
Scheduling (JSS), and Shortest Path (SP). However, since SP
has more documents per year, it ends up being third in the
ranking. This increases the previously mentioned gap to 59.
A similar effect occurs for Production Scheduling, Set Cover
(SC), and Knapsack (KP): They are tied, but the former has
more documents than the other two, so it ends up ranking

TABLE 2. Initial list of combinatorial problems, including all queries from
Table 1.

higher. It is important to note that such values belong to
filtered data, which allows us to better analyze results.

In the case of CS, there is a document that was published
in 1959. This entry is discarded since it is not sufficiently
related to the subject. So, we consider 1970 as its first publi-
cation year. The same happens with the SC and KP problems
and their oldest publications. Therefore, we consider the first
mention of SC as 1934 and of KP as 1969. Also, bear in mind
that the first criterion profoundly affects the number of ties.
For example, in our case, 11 problem domains tie based on
the first criterion. Nevertheless, if we instead use the second
criterion, such a number reduces to five. However, we go for
the first one since, this way, we can measure interest from the
research community.

The second criterion is the most common tiebreaker,
i.e., the number of total document results. Out of the
11 remaining problems, we can set nine of them apart with it.
Most cases exhibit a difference between 2000 and 2700 doc-
uments. Even so, the highest one is 8898 documents, which
occurs between JSS and SP. As a whole, the average differ-
ence is 3687 publications.

VOLUME 8, 2020 128079



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

FIGURE 6. Citation overview of top 10 combinatorial optimization problems from a general perspective.

At this point, only two problems need sorting. They are
Steiner Tree (ST) and Boolean Satisfiability (BS). So, we use
the last criterion, i.e., the growth over the last three years. The
average growth of ST (equal to 4.33) is higher than that of BS
(equal to 2.33). In any case, these problems are the lowest-
ranked ones, so they are ultimately discarded.

Table 3 shows the resultant list of problems, including the
number of yearly and total manuscripts, for each problem.
We can split the problems depicted in this table into four
isolated groups. The top section contains the first two prob-
lems, which are quite separated from the others. The second
and third ones are close together, and each group contains
three problem domains. One has around 172 average results
per year; the other, around 129. The lowest section has up
to 84 manuscripts per year, and it includes those that do not
make it into the top 10. In this regard, Boolean Satisfiability
ranks at the bottom,with an average of 50 documents per year.
Again, ranking depends on the ordering of sorting criteria.
So, the first problem (Vehicle Routing) does not necessarily
have the highest number of total manuscripts. It only has
12092 documents. However, other problem domains ren-
der higher values. This is the case for Shortest Path and
Production Scheduling (PS), which present about 5000 and
1000 more documents, respectively.

C. MAIN PROBLEMS
As we mention in Sect. III-C, this section considers data of
the top 10 problems from Table 3. The total citation count
for these problems is 201093, and its evolution is presented
in Fig. 6a. Citations have increased across the years and for
all problem domains. Most problems follow a mostly linear
tendency (R2 about 0.97), with average growths between
1390 and 1836 citations per year. These data implies that
the scientific community is noticing the manuscripts, and
also that interest in them is growing. Total citations increased
almost nine-fold throughout the time window, shifting from
9626 in 2015 to 78174 in 2019. Even so, it is interesting to

TABLE 3. Top 10 of combinatorial problems when sorting with the criteria
from Sect. III-B. Values in bold represent ties between two or more
problems. Data shown are given for the general scenario (i.e., without
restricting to hyper-heuristics).

remark that all problems seem to increase their number of
citations linearly between 2015 and 2017. However, from that
point onward, only some of the problem domains exhibit a
higher citation growth rate. Besides, Set Cover (SC) started
at the same level as VR and SP. Nevertheless, SC grows
at a different rate than the others, so it gets separated and
thus ends up in the second group discussed in the previ-
ous section. Moreover, and even though Minimum Spanning
Tree (MST) has exhibited a linear growth rate throughout the
years, it ranks last. It was the only one which beganto stagnate
towards 2019.

Despite the gap in the number of documents for each prob-
lem, it is interesting to see that the average number of citations
per article has been similar for all problems (Fig. 6b). In 2015,
manuscripts of all problem domains averaged between 1 and
2.4 citations, and most of them grow linearly, with an aver-
age increase between 1.75 and 2.6 citations per year and a
R2 ≈ 0.98. Hence, and even though the gap between citations
can be huge (Fig. 6a), all the selected problems increase the
number of manuscripts accordingly. Hence, the interest in
them has been growing at similar rates. Even so, a noticeable
difference among them appears in 2018. For example, MST

128080 VOLUME 8, 2020



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

FIGURE 7. Citation overview of top 10 combinatorial optimization problems restricted to hyper-heuristics. A value of zero indicates that there are
neither documents nor citations for the corresponding year.

begins to slow down, while three other problems stand out:
SC, VR, and JSS. The first two exhibit the highest growth
rates for most of the observation window. Actually, SC has
an advantage over VR of almost two cites per document per
year in 2018, but in 2019 VR increases about twice as usual
and even surpasses SC. Nonetheless, albeit JSS does not stand
out in previous years, in 2019, it increases in more than four
citations per document per year, almost reaching the levels of
SC and VR. We believe that such behavior reflects a growing
interest from the research community as works are being
cited more frequently. Should the behavior hold, we expect
that VR and JSS become the most relevant combinatorial
problems by the end of 2020.

D. HYPER-HEURISTICS IN COPs
We now study the influence of restricting search results to
those about hyper-heuristics. Remember that this is achieved
by replicating each search and by adding a ‘‘limit to’’ restric-
tion with the expression: ‘‘hyper-heuristic*’’ OR ‘‘hyper
heuristic*’’. This leads to a total of 551 publications and

2869 citations, which represents 198224 fewer citations.
Hence, manuscripts related to hyper-heuristics only accrue
for 1.45% of total citations. Fig. 7a shows the evolution
of citation data across the top 10 problems. It is notewor-
thy that some behaviors hold. For example, total citations
also increased nine-fold throughout the time window, rising
from 128 in 2015 to 1205 in 2019. Alas, other elements are
lost, e.g., tendencies are not as clear, though they still seem
linear.

Fig. 7a shows several facts worth highlighting. First, there
are three clear groups until 2018, when the middle one splits
into two. Once again, the top section includes two problems,
one of which matches the global scenario, i.e., VR. The other
one is JSS, which previously ranks at a middle position.
Subsequently, the next section of the plot contains the two
groups with medium interest. It seems as if TS and PS have
received more interest in the last two years so that they now
have a clear difference w.r.t. SC, KP, and CS. The lowest
section includes the last three problems, which never reach
more than 40 citations in a single year.

VOLUME 8, 2020 128081



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

Another interesting fact from Fig. 7a is that the two prob-
lems of highest interest in hyper-heuristic research are also
the most recent ones (1970 for VR and 1968 for JSS).
As an exception, MST is also recent (1971) but represents
the problem of the least interest. Consequently, and despite
ranking third in the general scenario, the oldest problem
(i.e., Shortest Path from 1915) ranks almost at the bottom.
Such erratic behavior may be due to hyper-heuristics being
recent. Because of this, work with hyper-heuristics has been
restricted to some applications. As a consequence, knowledge
about their benefits has not been widespread. Hence, being
the oldest problem domain does not necessarily imply that it
has been explored with hyper-heuristics.

To address this issue, interest from the research community
should be generated through pioneering works that illustrate
the benefits derived from using them.Hereabouts, researchers
working on the same problem domain but through a dif-
ferent approach would eventually notice hyper-heuristics.
For example, SP now ranks in the group of lowest interest.
Working on hyper-heuristics for dealing with SP problems
should allow tapping into its research community. Since
this represents the third problem of the highest activity in
the global scenario, a meaningful impact could be gener-
ated. Nonetheless, the low number of works on SP may be
due to some specific reason, e.g., to hyper-heuristics per-
forming poorly. Such a fact would undoubtedly hinder its
impact. Therefore, an in-depth study should be developed,
which focuses on analyzing the currently available litera-
ture and determining the real reason for the low number of
manuscripts. However, this goes beyond the scope of our
work.

Withal, let us now analyze how citations behave w.r.t. the
number of manuscripts. Fig. 7b displays the evolution of the
ratio between citations and documents. Summon into mind
that we fix the value of zero for cases where there are neither
publications nor citations. Opposite to the general case, data
do not exhibit a clear tendency, though all problem domains
seem to increase. The increase of Longest Path since 2017 is
noticeable. Thus, in 2019 LP achieves almost twice the ratio
of the next problem, i.e., Set Cover. Even so, VR, SC, and SP
lost interest in 2019. This contrasts heavily against the general
case, where no problem domain declines over the years. Also,
it could mean that some other approach appeared, which has
diverted attention from hyper-heuristics. For example, total
citations of VR has increased over the years, but its growth
for 2019 is smaller thanfor the previous year. A reason for
this could rest on the phenomenon mentioned above since the
total citations for VR increases more in this period than for
the 2017-2018 range (cf. Fig.6a). A similar effect occurs with
SC and SP. However, these two do not experience a reduction
in their citation growth rate. So, it is unlikely that interest
in solving them with hyper-heuristics has diverted to other
approaches. Instead, the number of published manuscripts
almost doubled from 2018 to 2019, which could mean that
interest is growing (see Fig. 7c). Such an effect is also
present for VR. Hence, even if interest has diverted due to the

TABLE 4. Relation of total citations per document in the 2015-2019 range,
sorted decreasingly. Cit.: Citations 2015-2019. Doc.: Documents 2015-2019.

appearance of other approaches, research is still being carried
out increasingly. Thus, interest in these problems may grow
in the upcoming years. Since the rise in documents belongs
to 2019, it is also possible that they have not been cited yet.
Consequently, we might expect a boost in the number of
citations in forthcoming years. In any case, it is evident that
interest in these problems is increasing, as more people are
working on them.

Since the number of papers related to hyper-heuristics is
rather small, we run a complementary analysis of the accu-
mulated data. Table 4 shows the total number of documents
related to hyper-heuristics generated in the 2015-2019 time
window, as well as the citations such documents have gener-
ated.We also provide the corresponding citation ratio, and we
use such values for sorting the table. Despite some changes
in the ordering (w.r.t. Fig. 7b), SC, VR, and LP remain as the
three main problems. Similarly, the three problems of lowest
interest remain as CS, SP, and MST. However, the middle
region of the table exhibits some changes in the ordering.
Among them, we can highlight PS rising from the seventh to
the fourth place. The reason for this is that PS has exhibited
a more stable behavior across the years. Another change
includes a swap between positions of JSS and TS.

Fig. 7c shows a broader overview of the number of
manuscripts about hyper-heuristics. Overall, the number
of documents has increased, going from 36 in 2010 to
150 in 2019, and totaling 814. Notwithstanding, all problem
domains have behaved irregularly. For example, even though
CS has yielded more records over the years, the peak of
over 20 documents achieved in 2013 has notbeen repeated.
In turn, it dipped to about five in 2014 and now hovers
around the ten documents mark. However, although the order
is slightly altered, the top three problems are the same as
when analyzed from the perspective of the number of cita-
tions (Fig. 7a): Job-Shop Scheduling, Vehicle Routing, and
Traveling Salesman. The first two present a dramatic growth
since 2017, whereas Traveling Salesman actually began to
decline. Similarly, the lowest-ranked problems remain as
Minimum Spanning Tree and Longest Path, but the order is
altered, contrary to what occurs with the top three. Despite
this, they both remain around the two documents per year
mark.

128082 VOLUME 8, 2020



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

TABLE 5. Top six combinatorial optimization problems related to hyper-heuristics. Data shown in the first three columns are average values. Values in
bold represent the best result for each criterion.

Finally, Fig. 7d exhibits the liaison between the num-
ber of citations restricted to hyper-heuristics and the
global scenario. In other words, it shows the ratio of citations
that belong to hyper-heuristics, and sowe can observe citation
growth. Keep in mind that the figure displays growth as a
ratio, which differs from the real number of citations over
the periods. In this case, and contrary to the previous ones,
most problems do not follow a clear pattern. All problems
have experienced increments and decrements throughout the
years. However, the only ones that follow a clear tendency
are Vehicle Routing (VR), Production Scheduling (PS), and
Constraint Satisfaction (CS). The former losses track, whilst
the other two gain it. Research of hyper-heuristics for solving
VR problems represented 3% of the global citations in 2015,
but it fell to 1.5% by 2019. Alternatively, PS and CS increased
six-fold and three-fold in the same time period, respectively.
Even so, there is a couple of interesting facts regarding JSS
problems. The first one concerns the existence of a gap
between JSS and the other problem domains, although it only
represents 3.8% of all citations from 2019. The second fact
is that it seems to exhibit a small rising slope, which means
that the percentage could improve in the coming years. In
this sense, top problems change w.r.t. Fig. 7a: JSS steps up
to the first place, whilst Knapsack rises to the second one,
and TS remains third. It is unexpected that Knapsack reaches
such a ranking, since until now it had not appeared among the
top three domains in any category. Besides, the last problems
prevail.

Using the aforementioned data, as well as the metrics from
Sec. III-D, we select the six most relevant combinatorial opti-
mization problems for hyper-heuristics, and sort them accord-
ingly, yielding Table 5. A higher average citation growth
indicates that the problem has a higher tendency to grow
between 2015 and 2019. As previously discussed, the impact
of research related to JSS and VR is higher by far than for the
remaining problems. JSS seems to be gaining interest quicker.
The average citation growth for JSS is about 50% higher than
for VR, and it almost doubles that of Production Scheduling,
which sits in third place. It is also interesting to notice that JSS
ranked first on almost all criteria. The only two exceptions are
for the number of citations per year, where VR wins and JSS
places second, and for the average number of citations per
document, where SC proves best and JSS places third. Thus,
it is evident that JSS leads in terms of hyper-heuristic related
research.

FIGURE 8. Relative contribution per combinatorial optimization problem
of the top five authors when restricted to hyper-heuristics.

E. ANALYSIS ABOUT JOURNALS, AUTHORS, AND
INSTITUTIONS
Our final approach sought to analyze the most relevant
elements of each selected problem domain. We strove to
detect the most relevant venues researchers have selected
for publishing their work, as well as the leading authors for
each problem and their corresponding affiliations.We believe
these work as metrics that explain changes in the citation
impact and may provide more details about research inter-
est. These insights may also facilitate collaboration among
researchers.

Fig. 8 presents the relative contribution of the top five
authors per problem. At first glance, we noticed that authors
are quite diverse. Nonetheless, it is interesting to see that
Zhang,M. is the only author who appears among the top three
for half the problem domains. Particularly, Zhang, M. leads
the research in JSS and PS problems. In fact, he provided
20% of the documents in JSS. Similarly, CS is the prob-
lem domain with the highest concentration, where the first
author, Terashima-Marín H. accrues 23% of all works. Still,
it represents quite a difference concerning the other problem
domains, where the highest-ranking author (also Zhang, M.)
accrued less than 8% of HH related works. These problems
also seem to have a better distribution of manuscripts, with
the top five authors possessing similar contribution ratios.
Actually, TS appears to be the most varied problem domain,
with a single author contributing a maximum of 2.5% of all

VOLUME 8, 2020 128083



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

FIGURE 9. Co-authorship network for the Job-Shop Scheduling problem,
generated with the VOSviewer software and based on the Scopus data.
The box contains the network with the top five authors.

works. It is also worth mentioning that JSS and CS are the
problem domains where authors have the highest number
of manuscripts. The former leads the ranking, but the latter
ranks at the bottom, as Table 5 shows. In both cases the top
three authors have a similar number of publications, which
is several (three or more) times that of the top three authors
of the remaining problems. Moreover, the number of records
related to CS is even lower than those for VR, PS, and TS.

Furthermore, we observed that for these two problems (i.e.,
JSS and CS), research has skewed towards a few authors.
Even though this has the benefit of having a strong researcher
for that domain, it risks biasing research towards his/her
ideas.

When taking a look at author connections for the JSS
domain, we found that its 279 authors are spread over 69 clus-
ters. Alas, they are not fully connected. The largest network
is composed of 79 researchers distributed throughout nine
clusters (see Fig. 9), which represents about 28% of the
research community. Such a network does not contain the
authors with the highest number of works. So, Fig. 9 shows
, in the blue dashed line box, the connections among the top
five authors for this problem. Since they are all connected,
they all published at least one manuscript with the others. In
fact, the top author (Zhang, M.) has published 33 manuscripts

FIGURE 10. Relative contribution per combinatorial optimization problem
of the top five journals when restricted to hyper-heuristics.

and virtually all the remaining authors share all of theirs with
him. The only exception is Nguyen, S., who shares about
94% representing about 20% of all works for this problem
domain. It evidences that a big chunk of the research has been
carried out by the same research team. Therefore, the Job
Shop Scheduling problem domain could benefit from a higher
diversity in the number of research teams that actively con-
tribute towards its development.

A similar issue arises when analyzing the co-authorship
network for CS, where the quantity of clusters is 69,
covering 231 authors. The largest network is composed
of 30 researchers (about 13%) distributed in four clusters. In
this case, the top author, Terashima-Marín, H., has published
28 manuscripts. The remaining ones share at least 50% of
the publications with him. As mentioned, despite having less
manuscripts, the contribution of this research team represents
a bigger chunk than for the JSS case. In contrast, Traveling
Salesman is the most spread out problem domain. There are
92 clusters and the largest network is conformed by 20 out
of 323 authors (about 6%). Besides, only two of the top five
researchers share publications between them. A similar effect
occurs for Set Cover, where 9 out of 133 authors (about 7%)
compose the most extensive network, where only two of the
top authors are linked (i.e., Zhang, M. and Nguyen, S.). In
addition, there are some mixed cases where only one or two
of the top five authors are not connected to the others. It is
the case for PS and VR, where their largest networks are
composed of 13% (28/220) and 28% (74/296) of the authors,
respectively. Since these values are similar to those of JSS
and CS, it seems to exist a relationship between the largest
network size and the research distribution.

We now focus on the venues researchers have chosen over
the years. Fig. 10 shows the top five journals per problem,
as well as their normalized number of publications. In this
figure, we use the acronyms given in Table 6 for the sake
of clarity. There are a few remarks to discuss. First of all,
data are not as diverse as the one for authors (cf. Fig. 8).
Lecture Notes in Computer Science (LNCS) is the most

128084 VOLUME 8, 2020



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

TABLE 6. Journal abbreviations (Abbr.) used in this work.

common output, ranking first in five out of the six problem
domains. Also, for JSS, VR, TS, and CS, the contributions
of LNCS are at least thrice the others, ranging between
12% and 17% of all publications made for each problem
domain. It differs from the case of authors where only JSS
and CS displayed an advantage of such magnitude, although
all rankings for PS and SC have a similar contribution. It
is noticeable that this time CS does not lead the number of
contributions. Moreover, LNCS also appears as a suitable
venue for works related to SC, ranking third among all can-
didates. Albeit the relative contribution of SC is higher than
it would seem from the raw data, it remains quite stable, with
each of the first four positions contributing about 6% of the
manuscripts. Similarly, PS also exhibits an even distribution.
This time, however, the top venue (LNCS) constitutes about
7.5%of all research, whilst the next three (JIMS, IEEE-A, and
T-ASE) provide approximately 5% each. Besides LNCS,
there are other recurring journals worth mentioning, such as
Computers and Operations Research (COR), which appears
in three domains: second in TS, and fourth in CS and
VR. Four other journals appear in two domains: Interna-
tional Journal of Production Research (TPRS), IEEE Access
(IEEE-A), Expert Systems with Applications (ESWA), and
the European Journal of Operational Research (EJOR).
Beyond them, all venues only appear once.

To perform an akin approach, we gathered the top five
institutions per problem, taking into account the normalized
data and the acronyms from Fig. 11 and Table 6, respectively.
It is interesting to remark a recurring institution, University
of Nottingham (UNO), which appears in almost all problem
domains, i.e., twice as the top institution, twice as the second
one, and once as the fourth one. Likewise, Victoria University
ofWellington (VUW) is the secondmost common institution,
showing up once at the top and twice at the second place. The
problem domain where VUW ranks at the top is JSS, where it

FIGURE 11. Relative contribution per combinatorial optimization problem
of the top five institutions when restricted to hyper-heuristics.

contains 33 publications, representing about four times more
documents than any other institution, and accruing 20% of
all records. Furthermore, considering CS that has five fewer
publications in the top institution, Tecnólogico de Monter-
rey (ITESM) accrues about 23% of all works liaised with it.
CS is also the only domain where the top two institutions have
several times the number of documents than the rest. For the
remaining problems, the behavior is rather even with the first
two places representing between 5% and 10%,while the other
ones hover between 3% and 5%.

By analyzing author connections at the affiliation level,
we identified that authors have tended to mostly collab-
orate with people from their same institution, as natural.
For example, in the case of CS, all top three researchers
belong to ITESM. Moreover, the largest cluster contains
ten items, where nine of them are affiliated to the same
institution (Universidad Autónoma de Chile, UA). Simi-
larly, 41% of all clusters are made up of members from a
single institution. In other words, authors have tended to
not collaborate with other institutions. In the case of JSS
problems, there are 225 different affiliations clustered into
108 different groups. But, the largest one is conformed by
12 items, where five of them are affiliated to the same insti-
tution (VUW). As an illustrative example, consider School of
Engineering and Computer Science, Evolutionary Computa-
tion Research Group, School of Mathematics and Statistics,
and Operations Research, which belong to VUW. Similarly,
52% of all clusters are conformed by one organization and
18.5% by two. For the remaining problem domains, the num-
ber of clusters is about half the amount of records, and
they comprise between 6 and 12 organizations. Although,
we noticed that, once again, several of them belong to the
same institution. In summary, collaboration across institu-
tions has been scarce–at least for works dealing with hyper-
heuristics. We believe that such a fact also may, and will,
bias research if there is not a timely collaboration across
institutions.

VOLUME 8, 2020 128085



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

TABLE 7. Institution abbreviations (Abbr.) used in this work.

V. DISCUSSION
Throughout this work we set out to answer the following
questions:
Q1: What are the Combinatorial Optimization Prob-

lems (COPs) of highest interest for the overall research
community and how have they evolved since 2015?

Q2: Have these COPs been tackled with hyper-heuristics
(HHs)?

Q3: How has interest in these COPs evolved regarding HH
research?

Q4: Out of these COPs, which ones have been the most
relevant for HH research?

Q5: What have been the most influential authors and insti-
tutions on these top problems?

Q6: Where have these researchers chosen to publish their
work?

So, this section now discusses such answers. For Q1,
it becomes evident that, in a general sense, interest in combi-
natorial optimization problems (COPs) has increased steadily
over the years. Such a fact is reflected in a growing number
of manuscripts and citations throughout the time window we
selected (2015-2019), as Table 3 and Fig. 6 show. For Q2,
the answer is straightforward: yes, the most relevant COPs
have been tackled with hyper-heuristics, though at different
scales. Interest has also grown for the case of hyper-heuristics
(Q3). But its behavior is not as evident. The main reason is
the lower number of citations and documents, which can be
due to hyper-heuristics being recent. Because of this lowered
productivity values, the behavior becomes more sensitive to
small changes, such as a reduction of a few articles for a given
year, as indicated by Fig. 7.
We analyze the interest of the research community on

hyper-heuristics (Q4) by observing citations and their cor-
responding ratio w.r.t. the overall perspective (Table 5).

Based on this information, the six most relevant problems are:
Job-Shop Scheduling (JSS), Vehicle Routing (VR), Produc-
tion Scheduling (PS), Traveling Salesman (TS), Set Cover
(SC), and Constraint Satisfaction (CS). The citation ratio is
stable for some problem domains, e.g. TS and SC. Simi-
larly, other problem domains have been gaining ground by
increasing the citation ratio that their manuscripts represent,
e.g. PS. Alas, hyper-heuristics have fallen behind in some
other problem domains, such as for VR problems. Scien-
tific reports with hyper-heuristics rendered about 3% of all
citations related to VR in 2015, although it had diminished
to approximately 1.5% by 2019. A remedy rests in improv-
ing the attractiveness of hyper-heuristics. In a similar fash-
ion, the number of documents for the Minimum Spanning
Tree (MST) problem has been minimal. So, it is a good target
for testing new developments and for generating new model
ideas. For VR problems, ways must be sought for combining
hyper-heuristic models with popular ideas from the overall
research community. This way, researchers working on the
same problem domain, but through a different approach,
would eventually notice hyper-heuristics. In doing so, a novel
approach for improving hyper-heuristic performance may be
revealed.

RegardingQ5, this work also discloses interesting insights
about the top authors and their institutions, restricted to
hyper-heuristics. For starters, it is clear that some authors
work on different problem domains and that they signifi-
cantly contribute to them (Fig. 8). Moreover, contributions
of a single author are quite elevated. Even if this provides a
definite referent for a given problem domain, it risks biasing
research towards the preferences of a single author. A closer
look at co-authorship networks reveals that, in some cases,
the top authors of a single problem domain belong to the
same research team, as Fig. 9 shows. Nonetheless, there were
other problem domains where the opposite happened, e.g.
TS problems. This indicates a more mature problem domain,
as it has a higher author diversity that provides a broader
scope. Regarding institutions (Fig. 11), University of Notting-
ham (UNO) has a strong presence in hyper-heuristics, as it
ranks twice at the top (for VR and TS problems), while also
being within the top five for three other problems (SC, CS,
and PS). Victoria University of Wellington follows, ranking
first for JSS problems and second for PS and VR problems.
In the case of JSS and CS problems, the top institutions con-
tribute with 20% or more of the manuscripts. This indicates
a strong dominance of one or a few research teams for a
given problem domain, which also risks biasing research. By
analyzing the co-authorship networks at the institution level,
it becomes evident that for most problem domains, the major-
ity of collaborations are bounded by the same institution. For
all the domains, the quantity of different clusters is half the
quantity of organizations related to the domain. And from
this quantity, approximately half of it is conformed by only
one document. We believe this further increases the risk of
biasing research. For the final question (Q6), Fig. 10 reveals
that authors commonly choose Lecture Notes in Computer

128086 VOLUME 8, 2020



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

Science (LNCS) for publishing their work. This venue is the
most popular one for all but one problem domain. The only
exception is SC, where it ranks third.

In spite of our best efforts, there are undoubtedly some
drawbacks to our work. For example, we do not search for
all combinatorial problems that have been tackled with hyper-
heuristics. Perhaps, this would have allowed identifying some
other problem domains where a lot of work has been done
with hyper-heuristics.

A quick Scopus search reveals that timetabling problems
generated a peak of between 40 and 50 manuscripts in the
observation window. Hence, its behavior resembles that of
the JSS domain. Nonetheless, in this study, we analyze how
much research has been carried out with hyper-heuristics in
the most relevant COPs. So, it may be fruitful to expand
this analysis in future work. This could be done by revers-
ing the cycle: including problem domains of high interest
for the research community working on hyper-heuristics,
and determining whether those problems are of high inter-
est for the overall research community. Another drawback
of our approach is that the ranking we consider can be
affected by the first mention of the problems. If such a
problem is really old but interest on it only recently skyrock-
eted, it will probably be qualified as unimportant. So, our
work could be complemented by considering multiple points
of view (i.e. rankings). Nonetheless, this goes beyond the
scope of this work, though we will consider it for a future
one.

Just as a final remark, we want to highlight some insights
about the top six COPs. Table 8 shows relevant data for
the five most influential manuscripts of each COP. The first
element that pops up is that a survey gives the main contri-
bution to the top three problems. These COPs have two or
more surveys within their top works. It evidences the high
impact that this kind of works can deliver. Nonetheless, there
has not been a survey for the remaining three COPs with an
impact high enough to make it into the top manuscripts. So,
this stands out as an opportunity. Based on the information
from JSS, PS, and VR problems, an important focus for the
review is to tackle the different models and variations of the
main problem, as well as their applications and solvers. For
the reader interested in pursuing this path, we recommend
reading [144]–[146], as their process may prove valuable for
such an endeavor.

A second insight is that most COPs include works over
two decades old. Since the metric we use considers the
average citations per year, this means that they represent
manuscripts that have remained valid and relevant throughout
time. The only exception is for PS, where the oldest work
dates from 2004 [145]. Since three of the documents within
this COP are reviews, this may imply that this field evolves
rapidly. Even so, top works still manage to achieve an average
of 30-50 citations per year, which matches the ranges of
most COPs. Another exciting pattern from Table 8 is that the
average citability of TS problems is quite higher than for the
other problems. This goes in hand with the fact that most

top manuscripts belong to seminal works where methods
with high popularity were proposed, such as Ant Colony
Systems and Harmony Search. So, all the works date from
2001 or earlier. Such a pattern suggests that TS problems
stand as a good choice for testing new solvers and that they
can lead to a high impact (an average citability per year
of over 180). A final remark from the data is that in the
case of CS problems, the dichotomy conjecture has played
quite a significant role. If this is combined with the first
insight, an exciting research path arises: to deeply review and
categorize works dealing with the dichotomy conjecture as to
conglomerate its progress and analyze the variants where it
has been successfully proven.

Finally, it is important to highlight that selection hyper-
heuristics have focused on creating models that select
among low-level heuristics (as was shown in the exam-
ples). Nonetheless, this does not imply that such models are
restricted to low-level heuristics. In fact, any kind of solver
could be used here, as long as it allows interactions across
different solving methods. So, one could think of a second-
order hyper-heuristic where the hyper-heuristic itself is able
to select among a pool of low-level heuristics and, let us
say, first-order hyper-heuristics. We are currently studying
this idea, as we consider that it may provide an additional
degree of freedom to the model, which may improve its
generalization capabilities. In fact, one may go as far as
proposing ‘deep’ selection hyper-heuristics, where different
layers of solvers can be used in conjunction. This way, solvers
at the lowest-levels can be highly specialized and general-
ization could be achieved by progressively abstracting the
problem domain with each additional layer. Such a model
may also facilitate research about transfer learning in hyper-
heuristics, as one topology could be used as a lower-level
solver in another. Besides, this permits using other kind of
solvers, such as those based on neural-networks. Of course,
computational cost is something that may limit this approach,
so it may be worthwhile to consider processes that can be
paralleled. Nonetheless, in the aforementioned idea training
can be done per layer, in such a way that higher layers only
use an already trained hyper-heuristic at a lower-layer. Con-
versely, the whole system could be trained simultaneously,
which will skyrocket computational cost but which may also
achieve better generalization.

As a summary of this discussion, we encourage researchers
and practitioners interested in the joint HH + COP field to:
• Strengthen contributions of HHs in all COPs, but with
special attention on JSS, VR, and TS problems.

• Diversify and expand collaboration networks to nourish
the field and to avoid biased contributions.

• Develop surveys on all COP domains that focus on prob-
lem variants, as well as on the applications and solvers
of each domain. This would allow renewing existing
surveys and proposing new relevant ones.

• Explore the feasibility of using HHs in relevant COPs
that have been left unexplored, such as SP, SC, LP, and
MST.

VOLUME 8, 2020 128087



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

TABLE 8. Summary of the five most influential manuscripts for the top six problems we identified. C: Total number of citations for the manuscript. C/Y:
Average citations per year.

128088 VOLUME 8, 2020



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

TABLE 8. (Continued.) Summary of the five most influential manuscripts for the top six problems we identified. C: Total number of citations for the
manuscript. C/Y: Average citations per year.

• Propose new HH models that fuse ideas from relevant
approaches in COPs. One example of such an approach
would be to merge HH with metaheuristics. A worth-
while domain for testing the resulting method is TSP,
as themost substantial contributions have stemmed from
metaheuristics.

VI. CONCLUSIONS AND FUTURE WORK
In this work, we presented an analysis of combinatorial
optimization problems (COPs) and their relation with hyper-
heuristics (HHs). We focused on identifying problems of the
highest interest for the research community, and on whether
those are the same when restricted to HHs. We identified
40 COPs. Based on growth data since 2014, we reduced
the list to the top 10 problems from a general perspective,
and the standpoint of hyper-heuristics. Afterward, we deter-
mined the five most relevant authors, journals, and institu-
tions, for the top six problems.

Even though there is some common ground, COPs con-
cerned with the overall research community are not the
same as those relevant to the community working on HHs.
For example, when considering citation growth, the most

prevalent problems in an overall scenario are Vehicle Rout-
ing (VR) and Shortest Path (SP). When restricted to hyper-
heuristic research, VR still rules, but SP falls to the eighth
place. From this perspective, Job-Shop Scheduling (JSS)
becomes the second most relevant problem domain, though
it ranks sixth in the overall scenario.

Hyper-heuristics are potent tools that can be used to
improve the performance of solvers. They have been mainly
tested in COPs, though some works on continuous problems
have also been explored. Their benefits include the ability
to combine different solvers into a more robust approach.
Moreover, the idea is flexible enough that it can be tailored
to different needs and approaches. One of the most basic
approaches is to learn when to select a given solver, from a
pool of available ones. This is known as a selection hyper-
heuristic and represents a common strategy. Even if this HH
seems akin to an algorithm portfolio, the main difference is
that a hyper-heuristic chooses at every step of the solution.
Instead, an algorithm portfolio uses a single solver from
start to end. Because of this, the latter is bounded by the
performance of a synthetic Oracle, whilst a hyper-heuristic
may even overcome it. Another approach is to decompose

VOLUME 8, 2020 128089



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

available solvers into building blocks, and then combine such
blocks to generate a new solver with improved performance.
Even so, their main drawback is that they require a training
stage, where the model is refined so that excellent perfor-
mance can be achieved. Nonetheless, there is work dealing
with models that are not tied by this restriction [38]. One
of the main achievements of hyper-heuristics in COPs is
their broad scope. All the COPs we analyzed had, at least,
a few works with hyper-heuristics. It speaks about the diver-
sity inherent to the research community in hyper-heuristics,
which nurtures the discussion of ideas. Moreover, such works
have been representative, as is evidenced by the average
number of citations per document. For the most relevant COP,
i.e., SC, each document was cited, on average, 10.6 times,
meaning it sparked further developments. Even if the num-
ber is not as impressive, in the least relevant COP (Mini-
mum Spanning Tree), each document generated an average
of 2.63 citations, which is still valuable.

Hyper-heuristics have gained popularity in some problem
domains, but they have lost it in others. For example, the cita-
tion ratio (ratio between citations of such works and the over-
all ones) increased sixfold for Production Scheduling (PS) in
the 2015-2019 time window. Alas, it diminished by around
50% for Vehicle Routing (VR). Nonetheless, the number of
citations and documents increase throughout these years. So,
interest may simply not grow as fast as the allure of the
overall problem domain. To address this issue, interest from
the research community should be generated through pio-
neering works that illustrate the benefits derived from using
hyper-heuristics. Some ideas include testing their models in
the Minimum Spanning Tree (MST) problem and combining
them with novel solutions for the VR problem. In the first
case, benefits will be two-fold. First, more knowledge about
the performance of each model in this COP will be generated.
Second, researchers working on MST will notice the benefits
of hyper-heuristics. In the second case, better hyper-heuristic
models may be derived by incorporating novel ideas from a
rapidly evolving COP.

Our data reveal that some authors working on hyper-
heuristics have significantly contributed to more than one
COP. Moreover, there are some problem domains where the
contributions of a single author (or research team) represent
a high percentage of all recent works. Constraint Satisfac-
tion is one of such examples, where the leading author has
almost 25% of all recent works, and where the top three
authors belong to the same research team. Despite providing
a bright leading researcher, this phenomenon risks biasing
research towards individual ideas. This danger is exacer-
bated by the small level of collaboration across institutions.
Notwithstanding, there is a clear tendency for communicating
results through conferences. A proof of this is the notorious
dominance of Lecture Notes in Computer Science, which
represented an average document contribution of over 10%
across the six most relevant COPs.

Efforts should be continued for the following problems:
JSS, VR, and TS. The reason: they rank at the top when

considering the number of manuscripts, the number of cita-
tions, or the citation ratio; thus, they are highly relevant.
Moreover, their stats have continued to grow in all three sort-
ing criteria. Nonetheless, allocating resources to these prob-
lem domains should further the impact of hyper-heuristics:
Shortest Path, Set Cover, Longest Path, and Minimum Span-
ning Tree. These are optimization problems of interest in an
overall scenario, but they have been cast aside when dealing
with hyper-heuristics. Particular attention should be given to
the first two, as they represent the second and third problems
of the highest interest in the overall scenario, respectively.

Information contained within this manuscript paves the
road for multiple research paths. For starters, an analysis
flowing in the opposite direction should be executed. It would
begin by analyzing the COPs that have been most relevant
for the overall hyper-heuristics research community, and then
explain how they map into the whole scenario. A different
path for extending this literature analysis rests on including
several rankings for the COPs, so that they are less prone
to the effect of long periods of inactivity. Another natural
avenue leads to the implementation of HH models in the
aforementioned problem domains, and especially in SP and
SC as they represent problems of high interest for the overall
community. Our analysis could also be expanded to continu-
ous optimization problems and to approaches beyond hyper-
heuristics. And, of course, this work should be furthered
by keeping a close eye on the behavior of combinatorial
optimization problems for the following years, as well as on
the evolution of research interest. This way, efforts on hyper-
heuristic research could be focused on targeting the most
relevant problems. Finally, and even though hyper-heuristics
strive at circumventing the No-Free-Lunch theorem, they
are still plagued by the algorithm selection problem. Hence,
there is currently no model that properly generalizes all sce-
narios. So, this represents an interesting path to pursue in
future works. We are actively working on this by exploring
two-phase hyper-heuristic models, where different levels of
generalization can be achieved.

REFERENCES
[1] B. Xin, L. Chen, J. Chen, H. Ishibuchi, K. Hirota, and B. Liu, ‘‘Interac-

tive multiobjective optimization: A review of the state-of-the-art,’’ IEEE
Access, vol. 6, pp. 41256–41279, 2018.

[2] N. Gunantara, ‘‘A review of multi-objective optimization: Meth-
ods and its applications,’’ Cogent Eng., vol. 5, no. 1, Jul. 2018,
Art. no. 1502242.

[3] J. M. Cruz-Duarte, A. Garcia-Perez, I. M. Amaya-Contreras,
C. R. Correa-Cely, R. J. Romero-Troncoso, and J. G. Avina-Cervantes,
‘‘Design of microelectronic cooling systems using a thermodynamic
optimization strategy based on cuckoo search,’’ IEEE Trans. Compon.,
Packag., Manuf. Technol., vol. 7, no. 11, pp. 1804–1812, Nov. 2017.

[4] I. Amaya and R. Correa, ‘‘Reconstructing design parameters of a rect-
angular resonator via peak signal-to-noise ratio and global optimization
algorithms,’’ Inverse Problems Sci. Eng., vol. 25, no. 6, pp. 864–886,
Jun. 2017.

[5] S. Amaran, N. V. Sahinidis, B. Sharda, and S. J. Bury, ‘‘Simulation
optimization: A review of algorithms and applications,’’ 4OR, vol. 12,
no. 4, pp. 301–333, Dec. 2014.

[6] N. Pillay and R. Qu,Hyper-Heuristics: Theory and Applications (Natural
Computing Series). Cham, Switzerland: Springer, 2018.

128090 VOLUME 8, 2020



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

[7] J. M. Cruz-Duarte, A. Ivan, J. C. Ortiz-Bayliss, S. E. Conant-Pablos, and
H. Terashima-Marín, ‘‘A primary study on hyper-heuristics to customise
metaheuristics for continuous optimisation,’’ in Proc. IEEE Congr. Evol.
Comput. (CEC), Jul. 2020, pp. 1–8.

[8] L. F. Plata-González, I. Amaya, J. C. Ortiz-Bayliss, S. E. Conant-Pablos,
H. Terashima-Marín, and C. A. Coello Coello, ‘‘Evolutionary-based tai-
loring of synthetic instances for the knapsack problem,’’ Soft Comput.,
vol. 23, no. 23, pp. 12711–12728, Dec. 2019.

[9] J. C. Gomez and H. Terashima-Marín, ‘‘Evolutionary hyper-heuristics
for tackling bi-objective 2D bin packing problems,’’ Genetic Program.
Evolvable Mach., vol. 19, nos. 1–2, pp. 151–181, Jun. 2018.

[10] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[11] E. Zitzler, M. Laumanns, and L. Thiele, ‘‘SPEA2: Improving the strength
Pareto evolutionary algorithm for multiobjective optimization,’’ in Proc.
EUROGENConf. Evol. Methods Design, Optim. Control Appl. Ind. Prob-
lems, vol. 1, 2001, pp. 95–100.

[12] S. Kukkonen and J. Lampinen, ‘‘GDE3: The third evolution step of
generalized differential evolution,’’ in Proc. IEEE Congr. Evol. Comput.
(CEC), vol. 1, Sep. 2005, pp. 443–450.

[13] M. Maashi and E. Özcan, and G. Kendall, ‘‘A multi-objective hyper-
heuristic based on choice function,’’ Expert Syst. Appl., vol. 41, no. 9,
pp. 4475–4493, 2014.

[14] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,
vol. 1. Hoboken, NJ, USA: Wiley, 2001.

[15] A.Kumar andA. Jaiswal, ‘‘Systematic literature review of sentiment anal-
ysis on Twitter using soft computing techniques,’’ Concurrency Comput.
Pract. Exper., vol. 32, no. 1, p. e5107, Jan. 2020.

[16] D. Pradeepkumar and V. Ravi, ‘‘Soft computing hybrids for FOREX
rate prediction: A comprehensive review,’’ Comput. Oper. Res., vol. 99,
pp. 262–284, Nov. 2018.

[17] P. O. Omolaye, ‘‘A holistic review of soft computing techniques,’’ Appl.
Comput. Math., vol. 6, no. 2, p. 93, 2017.

[18] K. E. Parsopoulos and M. N. Vrahatis, Particle Swarm Optimization and
Intelligence. Hershey, PA, USA: IGI Global, 2010.

[19] D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, ‘‘A compre-
hensive survey: Artificial bee colony (ABC) algorithm and applications,’’
Artif. Intell. Rev., vol. 42, no. 1, pp. 21–57, Jun. 2014.

[20] T. Graß and M. Lewenstein, ‘‘Hybrid annealing: Coupling a quantum
simulator to a classical computer,’’Phys. Rev. A, Gen. Phys., vol. 95, no. 5,
May 2017, Art. no. 052309.

[21] A. Attar, S. Raissi, and K. Khalili-Damghani, ‘‘Simulation–optimization
approach for a continuous-review, base-stock inventory model with gen-
eral compound demands, random lead times, and lost sales,’’ Simulation,
vol. 92, no. 6, pp. 547–564, Jun. 2016.

[22] H. R. Boveiri and M. Elhoseny, ‘‘A-COA: An adaptive cuckoo optimiza-
tion algorithm for continuous and combinatorial optimization,’’ Neural
Comput. Appl., vol. 32, no. 3, pp. 681–705, Feb. 2020.

[23] A. A. D. M. Meneses, P. V. da Silva, F. N. Nast, L. M. Araujo, and
R. Schirru, ‘‘Application of cuckoo search algorithm to loading pat-
tern optimization problems,’’ Ann. Nucl. Energy, vol. 139, May 2020,
Art. no. 107214.

[24] O. Ramos-Figueroa, M. Quiroz-Castellanos, E. Mezura-Montes, and
O. Schütze, ‘‘Metaheuristics to solve grouping problems: A review and a
case study,’’ Swarm Evol. Comput., vol. 53, Mar. 2020, Art. no. 100643.

[25] R. Xue and Z. Wu, ‘‘A survey of application and classification on
teaching-learning-based optimization algorithm,’’ IEEE Access, vol. 8,
pp. 1062–1079, 2020.

[26] H. N. N. Al-Sammarraie and D. N. A. Jawawi, ‘‘Multiple black hole
inspiredmeta-heuristic searching optimization for combinatorial testing,’’
IEEE Access, vol. 8, pp. 33406–33418, 2020.

[27] R. Eberhart and J. Kennedy, ‘‘A new optimizer using particle swarm
theory,’’ in Proc. 6th Int. Symp. Micro Mach. Human Sci. (MHS), 1995,
pp. 39–43.

[28] B. Jarboui, N. Damak, P. Siarry, and A. Rebai, ‘‘A combinatorial par-
ticle swarm optimization for solving multi-mode resource-constrained
project scheduling problems,’’ Appl. Math. Comput., vol. 195, no. 1,
pp. 299–308, Jan. 2008.

[29] G. Ochoa, M. Hyde, T. Curtois, J. A. Vazquez-Rodriguez, J. Walker,
M. Gendreau, G. Kendall, B. McCollum, A. Parkes, S. Petrovic, and
E. Burke, ‘‘HyFlex: A benchmark framework for cross-domain heuristic
search,’’ inProc. 12th Eur. Conf. Evol. Comput. Combinat. Optim., Berlin,
Germany, 2012, pp. 136–147.

[30] C. Ansótegui, J. Gabàs, Y. Malitsky, and M. Sellmann, ‘‘MaxSAT
by improved instance-specific algorithm configuration,’’ Artif. Intell.,
vol. 235, pp. 26–39, Jun. 2016.

[31] Y.Malitsky andM. Sellmann, ‘‘Instance-specific algorithm configuration
as a method for non-model-based portfolio generation,’’ in Integration
of AI and OR Techniques in Contraint Programming for Combinatorial
Optimzation Problems—CPAIOR (Lecture Notes in Computer Science),
N. Beldiceanu, N. Jussien, and E. Pinson, Eds. Berlin, Germany: Springer,
2012, pp. 244–259.

[32] D. H. Wolpert and W. G. Macready, ‘‘No free lunch theorems for
optimization,’’ IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82,
Apr. 1997.

[33] J. C. Ortiz-Bayliss, H. Terashima-Marín, and S. E. Conant-Pablos, ‘‘Com-
bine and conquer: An evolutionary hyper-heuristic approach for solving
constraint satisfaction problems,’’ Artif. Intell. Rev., vol. 46, pp. 327–349,
Feb. 2016.

[34] C. Zhang, Y. Zhao, and L. Leng, ‘‘A hyper-heuristic algorithm for time-
dependent green location routing problem with time windows,’’ IEEE
Access, vol. 8, pp. 83092–83104, 2020.

[35] I. Amaya, J. C. Ortiz-Bayliss, A. Rosales-Pérez,
A. E. Gutiérrez-Rodríguez, S. E. Conant-Pablos, H. Terashima-Marín,
and C. A. Coello, ‘‘Enhancing selection hyper-heuristics via feature
transformations,’’ IEEE Comput. Intell. Mag., vol. 13, no. 2, pp. 30–41,
May 2018.

[36] Y. Zhou, J.-J. Yang, and L.-Y. Zheng, ‘‘Hyper-heuristic coevolution
of machine assignment and job sequencing rules for multi-objective
dynamic flexible job shop scheduling,’’ IEEE Access, vol. 7, pp. 68–88,
2019.

[37] J. Lin, ‘‘Backtracking search based hyper-heuristic for the flexible job-
shop scheduling problem with fuzzy processing time,’’ Eng. Appl. Artif.
Intell., vol. 77, pp. 186–196, Jan. 2019.

[38] I. Amaya, J. C. Ortiz-Bayliss, S. Conant-Pablos, andH. Terashima-Marin,
‘‘Hyper-heuristics reversed: Learning to combine solvers by evolving
instances,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2019,
pp. 1790–1797.

[39] F. Garza-Santisteban, R. Sanchez-Pamanes, L. A. Puente-Rodriguez,
I. Amaya, J. C. Ortiz-Bayliss, S. Conant-Pablos, andH. Terashima-Marin,
‘‘A simulated annealing hyper-heuristic for job shop scheduling prob-
lems,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2019, pp. 57–64.

[40] E. Kieffer, G. Danoy, M. R. Brust, P. Bouvry, and A. Nagih, ‘‘Tack-
ling large-scale and combinatorial bi-level problems with a genetic pro-
gramming hyper-heuristic,’’ IEEE Trans. Evol. Comput., vol. 24, no. 1,
pp. 44–56, Feb. 2020.

[41] J. R. Rice, ‘‘The algorithm selection problem,’’ Adv. Comput., vol. 15,
pp. 65–118, Jan. 1976.

[42] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan,
and R. Qu, ‘‘Hyper-heuristics: A survey of the state of the art,’’ J. Oper.
Res. Soc., vol. 64, no. 12, pp. 1695–1724, Dec. 2013.

[43] J. A. Berlier and J. M. McCollum, ‘‘A constraint satisfaction algorithm
for microcontroller selection and pin assignment,’’ in Proc. IEEE (South-
eastCon), Mar. 2010, pp. 348–351.

[44] S. C. Brailsford, C. N. Potts, and B. M. Smith, ‘‘Constraint satisfaction
problems: Algorithms and applications,’’ Eur. J. Oper. Res., vol. 119,
no. 3, pp. 557–581, 1999.

[45] P. Hell and J. Nešetřil, ‘‘Colouring, constraint satisfaction, and complex-
ity,’’ Comput. Sci. Rev., vol. 2, no. 3, pp. 143–163, Dec. 2008.

[46] K. Nonobe and T. Ibaraki, ‘‘A tabu search approach to the constraint
satisfaction problem as a general problem solver,’’ Eur. J. Oper. Res.,
vol. 106, nos. 2–3, pp. 599–623, Apr. 1998.

[47] E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg,
‘‘Hyper-heuristics: An emerging direction in modern search technology,’’
in Handbook of Metaheuristics. Norwell, MA, USA: Kluwer, 2003,
pp. 457–474.

[48] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan,
‘‘Using case-based reasoning in an algorithm portfolio for constraint solv-
ing,’’ in Proc. 19th Irish Conf. Artif. Intell. Cogn. Sci., 2008, pp. 210–216.

[49] S. Petrovic and R. Qu, ‘‘Case-based reasoning as a heuristic selector
in a hyper-heuristic for course timetabling problems,’’ in Proc. 6th Int.
Conf. Knowl.-Based Intell. Inf. Eng. Syst. Appl. Technol. (KES), vol. 82,
pp. 336–340, Sep. 2002.

[50] S. L. Epstein, E. C. Freuder, R. Wallace, A. Morozov, and B. Samuels,
‘‘The adaptive constraint engine,’’ in Proc. 8th Int. Conf. Princ.
Pract. Constraint Program. (CP). London, U.K.: Springer-Verlag, 2002,
pp. 525–542.

VOLUME 8, 2020 128091



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

[51] B. Crawford, R. Soto, C. Castro, and E. Monfroy, ‘‘A hyperheuris-
tic approach for dynamic enumeration strategy selection in constraint
satisfaction,’’ in Proc. 4th Int. Conf. Interplay Between Natural Artif.
Comput. New Challenges Bioinspired Appl. (IWINAC). Berlin, Germany:
Springer-Verlag, 2011, pp. 295–304.

[52] R. Soto, B. Crawford, E. Monfroy, and V. Bustos, ‘‘Using autonomous
search for generating good enumeration strategy blends in constraint
programming,’’ in Proc. ICCSA, 2012, pp. 607–617.

[53] R. Diao and Q. Shen, ‘‘Nature inspired feature selection meta-heuristics,’’
Artif. Intell. Rev., vol. 44, no. 3, pp. 311–340, Oct. 2015.

[54] J. H. Drake, J. Swan, G. Neumann, and E. Özcan, ‘‘Sparse, continuous
policy representations for uniform online bin packing via regression of
interpolants,’’ in Evolutionary Computation in Combinatorial Optimiza-
tion. (Lecture Notes in Computer Science). Cham, Switzerland: Springer,
2017, pp. 189–200.

[55] H. Hu, X. Zhang, X. Yan, L. Wang, and Y. Xu, ‘‘Solving a new 3D
bin packing problem with deep reinforcement learning method,’’ 2017,
arXiv:1708.05930. [Online]. Available: http://arxiv.org/abs/1708.05930

[56] M. Delorme, M. Iori, and S. Martello, ‘‘Bin packing and cutting stock
problems:Mathematical models and exact algorithms,’’Eur. J. Oper. Res.,
vol. 255, no. 1, pp. 1–20, Nov. 2016.

[57] U. Eliiyi and D. T. Eliiyi, ‘‘Applications of bin packing models through
the supply chain,’’ Int. J. Bus. Manage., vol. 1, pp. 11–19, Jun. 2009.

[58] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby,
E. Danna, G. Gamrath, A.M. Gleixner, S. Heinz, A. Lodi, H.Mittelmann,
T. Ralphs, D. Salvagnin, D. E. Steffy, and K. Wolter, ‘‘MIPLIB 2010,’’
Math. Program. Comput., vol. 3, no. 2, pp. 103–163, Jun. 2011.

[59] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer
Implementations. Hoboken, NJ, USA: Wiley, 1990.

[60] E. K. Burke, M. R. Hyde, G. Kendall, and J. Woodward, ‘‘Automating
the packing heuristic design process with genetic programming,’’ Evol.
Comput., vol. 20, pp. 63–89, Mar. 2012.

[61] K. Sim, E. Hart, andB. Paechter, ‘‘Learning to solve bin packing problems
with an immune inspired hyper-heuristic,’’ in Proc. ECAL, 2013.

[62] E. López-Camacho, H. Terashima-Marin, P. Ross, and G. Ochoa, ‘‘A uni-
fied hyper-heuristic framework for solving bin packing problems,’’Expert
Syst. Appl., vol. 41, no. 15, pp. 6876–6889, Nov. 2014.

[63] C. Wilbaut, S. Hanafi, and S. Salhi, ‘‘A survey of effective heuristics and
their application to a variety of knapsack problems,’’ IMA J. Manage.
Math., vol. 19, no. 3, p. 227, 2008.

[64] J. H. Drake,M.Hyde, K. Ibrahim, and E. Özcan, ‘‘A genetic programming
hyper-heuristic for themultidimensional knapsack problem,’’Kybernetes,
vol. 43, no. 9/10, pp. 1500–1511, Nov. 2014.

[65] B. Duhart, F. Camarena, J. C. Ortiz-Bayliss, I. Amaya, and H. Terashima-
Marín, ‘‘An experimental study on ant colony optimization hyper-
heuristics for solving the knapsack problem,’’ in Pattern Recognition,
J. F. Martínez-Trinidad, J. A. Carrasco-Ochoa, J. A. Olvera-López, and
S. Sarkar, Eds. Cham, Switzerland: Springer, 2018, pp. 62–71.

[66] A.Muluk, H. Akpolat, and J. Xu, ‘‘Scheduling problems—An overview,’’
J. Syst. Sci. Syst. Eng., vol. 12, pp. 481–492, Dec. 2003.

[67] A. S. Jain and S. Meeran, ‘‘Deterministic job-shop scheduling: Past,
present and future,’’ Eur. J. Oper. Res., vol. 113, no. 2, pp. 390–434,
Mar. 1999.

[68] P. J. Van Laarhoven, E. H. Aarts, and J. K. Lenstra, ‘‘Job shop scheduling
by simulated annealing,’’ Oper. Res., vol. 40, no. 1, pp. 113–125, 1992.

[69] J. Zhang, G. Ding, Y. Zou, S. Qin, and J. Fu, ‘‘Review of job shop
scheduling research and its new perspectives under industry 4.0,’’ J. Intell.
Manuf., vol. 30, no. 4, pp. 1809–1830, Apr. 2019.

[70] K. Gao, Z. Cao, L. Zhang, Z. Chen, Y. Han, and Q. Pan, ‘‘A review on
swarm intelligence and evolutionary algorithms for solving flexible job
shop scheduling problems,’’ IEEE/CAA J. Automatica Sinica, vol. 6, no. 4,
pp. 904–916, Jul. 2019.

[71] J. Mohan, K. Lanka, and A. N. Rao, ‘‘A review of dynamic job shop
scheduling techniques,’’ Procedia Manuf., vol. 30, pp. 34–39, 2019.

[72] G. Gong, Q. Deng, R. Chiong, X. Gong, and H. Huang, ‘‘An effective
memetic algorithm for multi-objective job-shop scheduling,’’ Knowl.-
Based Syst., vol. 182, Oct. 2019, Art. no. 104840.

[73] P. Fattahi, M. M. Bidgoli, and P. Samouei, ‘‘An improved tabu search
algorithm for job shop scheduling problem trough hybrid solution repre-
sentations,’’ J. Qual. Eng. Prod. Optim., vol. 3, no. 1, pp. 13–26, 2018.

[74] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, ‘‘Genetic program-
ming for job shop scheduling,’’ in Evolutionary and Swarm Intelligence
Algorithms. Cham, Switzerland: Springer, 2019, pp. 143–167.

[75] D. Coelho, ‘‘Deep reinforcement learning as a job shop scheduling solver:
A literature,’’ in Proc. Hybrid Intell. Syst. 18th Int. Conf. Hybrid Intell.
Syst. (HIS), vol. 923. Porto, Portugal: Springer, Dec. 2018, p. 350.

[76] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Özcan, and
J. R. Woodward, ‘‘A classification of hyper-heuristic approaches: Revis-
ited,’’ in Handbook of Metaheuristics. Cham, Switzerland: Springer,
2019, pp. 453–477.

[77] S. N. Chaurasia, S. Sundar, D. Jung, H. M. Lee, and J. H. Kim, ‘‘An evo-
lutionary algorithm based hyper-heuristic for the job-shop schedul-
ing problem with no-wait constraint,’’ in Harmony Search and Nature
Inspired Optimization Algorithms, vol. 741. Singapore: Springer, 2019,
pp. 249–257.

[78] E. Lara-Cárdenas, X. Sánchez-Díaz, I. Amaya, and J. C. Ortiz-Bayliss,
‘‘Improving hyper-heuristic performance for job shop scheduling prob-
lems using neural networks,’’ inAdvances in Soft ComputingL.Martínez-
Villaseñor, I. Batyrshin, and A. Marín-Hernández, Eds. Cham, Switzer-
land: Springer, 2019, pp. 150–161.

[79] J. H. Drake, A. Kheiri, E. Özcan, and E. K. Burke, ‘‘Recent advances
in selection hyper-heuristics,’’ Eur. J. Oper. Res., vol. 285, no. 2,
pp. 405–428, Sep. 2020.

[80] J. Zhong, Z. Huang, L. Feng, W. Du, and Y. Li, ‘‘A hyper-heuristic
framework for lifetime maximization in wireless sensor networks with a
mobile sink,’’ IEEE/CAA J. Automatica Sinica, vol. 7, no. 1, pp. 223–236,
Jan. 2020.

[81] A. Toledo, M.-C. Riff, and B. Neveu, ‘‘A hyper-heuristic for the orienteer-
ing problem with hotel selection,’’ IEEE Access, vol. 8, pp. 1303–1313,
2020.

[82] P. B. C. Miranda, R. B. C. Prudêncio, and G. L. Pappa, ‘‘H3AD: A hybrid
hyper-heuristic for algorithm design,’’ Inf. Sci., vol. 414, pp. 340–354,
Nov. 2017.

[83] X. Sánchez-Díaz, J. C. Ortiz-Bayliss, I. Amaya, J. M. Cruz-Duarte,
S. E. Conant-Pablos, and H. Terashima-Marin, ‘‘A preliminary study on
feature-independent hyper-heuristics for the 0/1 knapsack problem,’’ in
Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2020, pp. 1–8.

[84] H. Terashima-Marín, J. C. Ortiz-Bayliss, P. Ross, and
M. Valenzuela-Rendón, ‘‘Hyper-heuristics for the dynamic variable
ordering in constraint satisfaction problems,’’ in Proc. 10th Annu. Conf.
Genetic Evol. Comput. (GECCO), 2008, pp. 571–578.

[85] P. Ross, J. G. Marín-Blázquez, S. Schulenburg, and E. Hart, ‘‘Learning
a procedure that can solve hard bin-packing problems: A new ga-based
approach to hyper-heuristics,’’ in Proc. Genetic Evol. Comput. Conf.
(GECCO), 2003, pp. 1295–1306.

[86] H. Terashima-Marín, P. Ross, C. J. Farías-Zárate, E. López-Camacho,
and M. Valenzuela-Rendón, ‘‘Generalized hyper-heuristics for solving
2D regular and irregular packing problems,’’ Ann. Oper. Res., vol. 179,
no. 1, pp. 369–392, Sep. 2010.

[87] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan,
and J. R. Woodward, Exploring Hyper-heuristic Methodologies
With Genetic Programming. Berlin, Germany: Springer, 2009,
pp. 177–201.

[88] R. Hunt, K. Neshatian, andM. Zhang, ‘‘A genetic programming approach
to hyper-heuristic feature selection,’’ in Simulated Evolution and Learn-
ing, L. T. Bui, Y. S. Ong, N. X. Hoai, H. Ishibuchi, and P. N. Suganthan,
Eds. Berlin, Germany: Springer, 2012, pp. 320–330.

[89] E. Sopov, ‘‘Genetic programming hyper-heuristic for the automated syn-
thesis of selection operators in genetic algorithms,’’ in Proc. 9th Int.
Joint Conf. Comput. Intell. (IJCCI), C. Sabourin, J. J. M. Guervos,
U.-M. O’Reilly, K. Madani, and K. Warwick, Eds. Madeira, Portugal:
SciTePress, Nov. 2017, pp. 231–238.

[90] J. Swan, E. Özcan, and G. Kendall, ‘‘Hyperion—A recursive hyper-
heuristic framework,’’ in Learning and Intelligent Optimization,
C. A. C. Coello, Ed. Berlin, Germany: Springer, 2011, pp. 616–630.

[91] N. Sathya and A. Muthukumaravel, ‘‘A review of the optimization algo-
rithms on traveling salesman problem,’’ Indian J. Sci. Technol., vol. 8,
no. 29, pp. 1–4, Nov. 2015.

[92] P. Zhao and D. Xu, ‘‘Hybrid algorithm for solving traveling sales-
man problem,’’ IOP Conf. Ser. Mater. Sci. Eng., vol. 646, no. 1,
pp. 012032-1–012032-6, 2019.

[93] Y. Shuai, S. Yunfeng, and Z. Kai, ‘‘An effective method for solving
multiple travelling salesman problem based on NSGA-II,’’ Syst. Sci.
Control Eng., vol. 7, no. 2, pp. 121–129, 2019.

[94] M. Patterson and D. Friesen, ‘‘Variants of the traveling salesman prob-
lem,’’ Stud. Bus. Econ., vol. 14, no. 1, pp. 208–220, 2019.

128092 VOLUME 8, 2020



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

[95] K. B. Parmar, H. B. Prajapati, and V. K. Dabhi, ‘‘Cutting stock problem:
A survey of evolutionary computing based solution,’’ in Proc. IEEE Int.
Conf. Green Comput., Commun. Electr. Eng. (ICGCCEE), Dec. 2014,
pp. 1–6.

[96] K. C. Ágoston, ‘‘The effect of welding on the one-dimensional cutting-
stock problem: The case of fixed firefighting systems in the construction
industry,’’ Adv. Oper. Res., vol. 2019, pp. 1–12, Mar. 2019.

[97] P. B. Bangun, S. Octarina, and A. P. Pertama, ‘‘Implementation of
branch and cut method on n-sheet model in solving two dimensional
cutting stock problem,’’ J. Phys. Conf. Ser., vol. 1282, Jul. 2019,
Art. no. 012012.

[98] N. Chernov, Y. Stoyan, and T. Romanova, ‘‘Mathematical model and
efficient algorithms for object packing problem,’’ Comput. Geometry,
vol. 43, no. 5, pp. 535–553, Jul. 2010.

[99] T. Romanova, A. Pankratov, I. Litvinchev, Y. Pankratova, and I. Urniaieva,
‘‘Optimized packing clusters of objects in a rectangular container,’’Math.
Problems Eng., vol. 2019, pp. 1–12, Feb. 2019.

[100] İ. Erozan and E. Çalşkan, ‘‘A multi-objective genetic algorithm for a
special type of 2D orthogonal packing problems,’’ Appl. Math. Model.,
vol. 77, pp. 66–81, Jan. 2020.

[101] N. M. Cid-Garcia and Y. A. Rios-Solis, ‘‘Positions and covering: A two-
stage methodology to obtain optimal solutions for the 2D-bin packing
problem,’’ PLoS ONE, vol. 15, no. 4, pp. 1–22, 2020.

[102] M. Assi and R. A. Haraty, ‘‘A survey of the knapsack problem,’’ in Proc.
Int. Arab Conf. Inf. Technol., Nov. 2018, pp. 1–6.

[103] R. I. E. Saragih, N. F. Saragih, and M. Aritonang, ‘‘Improving perfor-
mance genetic algorithm on knapsack problem by setting parameter,’’
J. Phys. Conf. Ser., vol. 1361, Nov. 2019, Art. no. 012034.

[104] V. Poirriez, N. Yanev, and R. Andonov, ‘‘A hybrid algorithm for
the unbounded knapsack problem,’’ Discrete Optim., vol. 6, no. 1,
pp. 110–124, Feb. 2009.

[105] L. A. McLay and S. H. Jacobson, ‘‘Algorithms for the bounded set-
up knapsack problem,’’ Discrete Optim., vol. 4, no. 2, pp. 206–212,
Jun. 2007.

[106] S. Martello and M. Monaci, ‘‘Algorithmic approaches to the mul-
tiple knapsack assignment problem,’’ Omega, vol. 90, Jan. 2020,
Art. no. 102004.

[107] B. Schulze, M. Stiglmayr, L. Paquete, C. M. Fonseca, D. Willems,
and S. Ruzika, ‘‘On the rectangular knapsack problem: Approximation
of a specific quadratic knapsack problem,’’ Math. Methods Oper. Res.,
pp. 1–26, Feb. 2020, doi: 10.1007/s00186-020-00702-0.

[108] A. Allahverdi, ‘‘The third comprehensive survey on scheduling problems
with setup times/costs,’’ Eur. J. Oper. Res., vol. 246, no. 2, pp. 345–378,
Oct. 2015.

[109] C. Luo and G. Zhang, ‘‘Single machine scheduling problem with control-
lable setup and job processing times and position-dependent workloads,’’
IOP Conf. Ser. Mater. Sci. Eng., vol. 790, no. 1, p. 6, 2020.

[110] G. P. Georgiadis, B. Mariño Pampín, D. Adrián Cabo, and
M. C. Georgiadis, ‘‘Optimal production scheduling of food process
industries,’’ Comput. Chem. Eng., vol. 134, Mar. 2020, Art. no. 106682.

[111] M. Liu and X. Liu, ‘‘Satisfaction-driven bi-objective multi-skill work-
force scheduling problem,’’ IFAC-PapersOnLine, vol. 52, no. 13,
pp. 229–234, 2019.

[112] H. Li, H. Zhu, and T. Jiang, ‘‘Modified migrating birds optimization for
energy-aware flexible job shop scheduling problem,’’ Algorithms, vol. 13,
no. 2, pp. 1–16, 2020.

[113] J. A. S. Araujo, H. G. Santos, B. Gendron, S. D. Jena, S. S. Brito, and
D. S. Souza, ‘‘Strong bounds for resource constrained project schedul-
ing: Preprocessing and cutting planes,’’ Comput. Oper. Res., vol. 113,
Jan. 2020, Art. no. 104782.

[114] H. Babaei, J. Karimpour, and A. Hadidi, ‘‘A survey of approaches for
University course timetabling problem,’’ Comput. Ind. Eng., vol. 86,
pp. 43–59, Aug. 2015.

[115] B. Wang, Y. Geng, and Z. Zhang, ‘‘Applying genetic algorithm to Uni-
versity classroom arrangement problem,’’ J. Phys. Conf. Ser., vol. 1325,
Oct. 2019, Art. no. 012157.

[116] A. Boloori Arabani and R. Z. Farahani, ‘‘Facility location dynamics: An
overview of classifications and applications,’’ Comput. Ind. Eng., vol. 62,
no. 1, pp. 408–420, Feb. 2012.

[117] J. B. Zuñiga, J. A. Saucedo Martínez, T. E. Salais Fierro, and
J. A. M. Saucedo, ‘‘Optimization of the storage location assignment and
the picker-routing problem by using mathematical programming,’’ Appl.
Sci., vol. 10, no. 2, p. 534, Jan. 2020.

[118] A. S. Hameed, B. M. Aboobaider, M. L. Mutar, and N. H. Choon, ‘‘A new
hybrid approach based on discrete differential evolution algorithm to
enhancement solutions of quadratic assignment problem,’’ Int. J. Ind.
Eng. Comput., vol. 11, no. 1, pp. 51–72, 2020.

[119] K. Ozeki and T. Yamashita, ‘‘Spanning trees: A survey,’’ Graphs Combi-
natorics, vol. 27, no. 1, pp. 1–26, Jan. 2011.

[120] S. Kamei, H. Kakugawa, S. Devismes, and S. Tixeuil, ‘‘A self-stabilizing
3-approximation for the maximum leaf spanning tree problem in arbitrary
networks,’’ J. Combinat. Optim., vol. 25, no. 3, pp. 430–459, Apr. 2013.

[121] H. Li, K. Shi, H. Li, S. Lin, G. Xu, and S. Li, ‘‘A new crossover algebra
of GA for solving the degree constrained minimum spanning tree prob-
lems,’’ J. Phys. Conf. Ser., vol. 1187, no. 4, Apr. 2019, Art. no. 042085.

[122] A. F. Marpaung, ‘‘Comparative of prim’s and Boruvka’s algorithm to
solve minimum spanning tree problems,’’ J. Phys. Conf. Ser., vol. 1462,
Feb. 2020, Art. no. 012043.

[123] W. Gong and X. Zhou, ‘‘A survey of SAT solver,’’ in Proc. AIP Conf.,
vol. 1836, Jun. 2017, Art. no. 020059.

[124] H. Yamashita, K. Aihara, and H. Suzuki, ‘‘Timescales of Boolean sat-
isfiability solver using continuous-time dynamical system,’’ Commun.
Nonlinear Sci. Numer. Simul., vol. 84, May 2020, Art. no. 105183.

[125] R. Z. Farahani, N. Asgari, N. Heidari, M. Hosseininia, and M. Goh,
‘‘Covering problems in facility location: A review,’’ Comput. Ind. Eng.,
vol. 62, no. 1, pp. 368–407, Feb. 2012.

[126] R. Hasudungan, D. M. Pangestuty, A. J. Latifah, and Rudiman, ‘‘Solving
minimum vertex cover problem using DNA computing,’’ J. Phys. Conf.
Ser., vol. 1361, Nov. 2019, Art. no. 012038.

[127] Y. Li, Y. Liu, D. Juedes, F. Drews, R. Bunescu, and L. Welch, ‘‘Set
cover-based methods for motif selection,’’ Bioinformatics, vol. 36, no. 4,
pp. 1044–1051, Sep. 2019.

[128] H. Wang and L.-A. Wu, ‘‘Ultrafast adiabatic quantum algorithm for the
NP-complete exact cover problem,’’ Sci. Rep., vol. 6, no. 1, pp. 4–10,
Apr. 2016.

[129] N. Fröhlich, A. Maier, and H. W. Hamacher, ‘‘Covering edges in net-
works,’’ Networks, vol. 75, no. 3, pp. 278–290, Apr. 2020.

[130] U. Ritzinger, J. Puchinger, and R. F. Hartl, ‘‘A survey on dynamic and
stochastic vehicle routing problems,’’ Int. J. Prod. Res., vol. 54, no. 1,
pp. 215–231, Jan. 2016.

[131] M. Granada-Echeverri, E. M. Toro, and J. J. Santa, ‘‘A mixed integer
linear programming formulation for the vehicle routing problem with
backhauls,’’ Int. J. Ind. Eng. Comput., vol. 10, no. 2, pp. 295–308, 2019.

[132] A. A. Bulatov, ‘‘Constraint satisfaction problems: Complexity and algo-
rithms,’’ in Language and Automata Theory and Applications. LATA
(Lecture Notes in Computer Science: Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), vol. 10792, no. 4. NewYork,
NY, USA: Springer, 2018, pp. 1–25.

[133] J. Bulín, A. Krokhin, and J. Opršal, ‘‘Algebraic approach to promise
constraint satisfaction,’’ in Proc. Annu. ACM Symp. Theory Comput.,
2019, pp. 602–613.

[134] M. Bezenšek and B. Robič, ‘‘A survey of parallel and distributed algo-
rithms for the Steiner tree problem,’’ Int. J. Parallel Program., vol. 42,
no. 2, pp. 287–319, Apr. 2014.

[135] F. V. Fomin, P. Kaski, D. Lokshtanov, F. Panolan, and S. Saurabh, ‘‘Param-
eterized single-exponential time polynomial space algorithm for Steiner
tree,’’ SIAM J. Discrete Math., vol. 33, no. 1, pp. 327–345, Jan. 2019.

[136] R. J. Gould, ‘‘Recent advances on the Hamiltonian problem: Survey III,’’
Graphs Combinatorics, vol. 30, no. 1, pp. 1–46, Jan. 2014.

[137] F. Keshavarz-Kohjerdi and A. Bagheri, ‘‘Linear-time algorithms for find-
ing Hamiltonian and longest (s,t)-paths in C-shaped grid graphs,’’ Dis-
crete Optim., vol. 35, Feb. 2020, Art. no. 100554.

[138] A. Madkour, W. G. Aref, F. Ur Rehman, M. A. Rahman, and
S. Basalamah, ‘‘A survey of shortest-path algorithms,’’ 2017,
arXiv:1705.02044. [Online]. Available: http://arxiv.org/abs/1705.02044

[139] Y. Qiu, A. Zou, P. Chen, and L. Xu, ‘‘GPU-accelerated fast implementa-
tion of shortest path algorithm in the noise simulation analysis system,’’
IOP Conf. Ser. Mater. Sci. Eng., vol. 768, Mar. 2020, Art. no. 072035.

[140] E. Duesbury, J. D. Holliday, and P.Willett, ‘‘Maximum common subgraph
isomorphism algorithms,’’Match, vol. 77, no. 2, pp. 213–232, 2017.

[141] J. Malík, O. Suchý, and T. Valla, ‘‘Efficient implementation of color
coding algorithm for subgraph isomorphism problem,’’ in Analysis of
Experimental Algorithms (Lecture Notes in Computer Science: Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 11544. New York, NY, USA: Springer, 2019, pp. 283–299.

VOLUME 8, 2020 128093

http://dx.doi.org/10.1007/s00186-020-00702-0


M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

[142] K. K. Singh and D. A. K. Pandey, ‘‘Survey of algorithms on maximum
clique problem,’’ Int. Adv. Res. J. Sci., Eng. Technol., vol. 2, no. 2,
pp. 15–20, Feb. 2015.

[143] H. Dau, O. Milenkovic, and G. J. Puleo, ‘‘On the triangle clique cover
and Kt clique cover problems,’’Discrete Math., vol. 343, no. 1, Jan. 2020,
Art. no. 111627.

[144] A. Allahverdi, C. T. Ng, T. C. E. Cheng, and M. Y. Kovalyov, ‘‘A survey
of scheduling problems with setup times or costs,’’ Eur. J. Oper. Res.,
vol. 187, no. 3, pp. 985–1032, Jun. 2008.

[145] N. V. Sahinidis, ‘‘Optimization under uncertainty: State-of-the-art and
opportunities,’’ Comput. Chem. Eng., vol. 28, nos. 6–7, pp. 971–983,
Jun. 2004.

[146] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, ‘‘A review of
dynamic vehicle routing problems,’’ Eur. J. Oper. Res., vol. 225, no. 1,
pp. 1–11, 2013.

[147] E. Taillard, ‘‘Benchmarks for basic scheduling problems,’’ Eur. J. Oper.
Res., vol. 64, no. 2, pp. 278–285, Jan. 1993.

[148] M. Nouiri, A. Bekrar, A. Jemai, S. Niar, and A. C. Ammari, ‘‘An effective
and distributed particle swarm optimization algorithm for flexible job-
shop scheduling problem,’’ J. Intell. Manuf., vol. 29, no. 3, pp. 603–615,
Mar. 2018.

[149] I. A. Chaudhry, A. M. Khan, and A. A. Khan, ‘‘A genetic algorithm
for flexible job shop scheduling,’’ Lect. Notes Eng. Comput. Sci., vol. 1,
pp. 703–708, Jul. 2013.

[150] I. Harjunkoski, C. T. Maravelias, P. Bongers, P. M. Castro, S. Engell,
I. E. Grossmann, J. Hooker, C. Méndez, G. Sand, and J. Wassick, ‘‘Scope
for industrial applications of production scheduling models and solution
methods,’’ Comput. Chem. Eng., vol. 62, pp. 161–193, Mar. 2014.

[151] A. C. Hax and H. C. Meal, Hierarchical Integration of Production Plan-
ning and Scheduling. New York, NY, USA: Elsevier, 1973.

[152] F. Shrouf, J. Ordieres-Meré, A. García-Sánchez, and M. Ortega-Mier,
‘‘Optimizing the production scheduling of a single machine to minimize
total energy consumption costs,’’ J. Cleaner Prod., vol. 67, pp. 197–207,
Mar. 2014.

[153] J. Branke, S. Nguyen, C. W. Pickardt, and M. Zhang, ‘‘Automated design
of production scheduling heuristics: A review,’’ IEEE Trans. Evol. Com-
put., vol. 20, no. 1, pp. 110–124, Feb. 2016.

[154] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus,
‘‘On-demand high-capacity ride-sharing via dynamic trip-vehicle assign-
ment,’’ Proc. Nat. Acad. Sci. USA, vol. 114, no. 3, pp. 462–467, 2017.

[155] C. Lin, K. L. Choy, G. T. S. Ho, S. H. Chung, and H. Y. Lam, ‘‘Survey
of green vehicle routing problem: Past and future trends,’’ Expert Syst.
Appl., vol. 41, no. 4, pp. 1118–1138, Mar. 2014.

[156] M. M. Solomon, ‘‘Algorithms for the vehicle routing and scheduling
problems with time window constraints,’’ Oper. Res., vol. 35, no. 2,
pp. 254–265, Apr. 1987.

[157] K. Dorling, J. Heinrichs, G. G. Messier, and S. Magierowski, ‘‘Vehicle
routing problems for drone delivery,’’ IEEE Trans. Syst., Man, Cybern.
Syst., vol. 47, no. 1, pp. 70–85, Jan. 2017.

[158] M. Dorigo, V. Maniezzo, and A. Colorni, ‘‘Ant system: Optimization by
a colony of cooperating agents,’’ IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 26, no. 1, pp. 29–41, Feb. 1996.

[159] M. Dorigo and L. M. Gambardella, ‘‘Ant colony system: A cooperative
learning approach to the traveling salesman problem,’’ IEEE Trans. Evol.
Comput., vol. 1, no. 1, pp. 53–66, Apr. 1997.

[160] R. K. Arora, ‘‘1D optimization algorithms,’’ in Optimization: Algorithms
and Applications. Boca Raton, FL, USA: CRC Press, 2015, pp. 35–54.

[161] J. J. Hopfield and D. W. Tank, ‘‘‘Neural’ computation of decisions in
optimization problems,’’ Biol. Cybern., vol. 52, no. 3, pp. 141–152, 1985.

[162] H. Hoos and T. Stützle, ‘‘MAXMIN ant system,’’ Future Gener. Comput.
Syst., vol. 16, Nov. 1999, pp. 889–914, 2000.

[163] U. Feige, ‘‘A threshold of ln n for approximating set cover,’’ J. ACM,
vol. 45, no. 4, pp. 634–652, Jul. 1998.

[164] J. Hastad, ‘‘Some optimal inapproximability results,’’ in Proc. Conf.
Annu. ACM Symp. Theory Comput., 1997, vol. 48, no. 4, pp. 1–10.

[165] M. Cardei, M. T. Thai, Y. Li, and W. Wu, ‘‘Energy-efficient target
coverage in wireless sensor networks,’’ in Proc. IEEE INFOCOM, vol. 3,
Mar. 2005, pp. 1976–1984.

[166] R. Impagliazzo, R. Paturi, and F. Zane, ‘‘Which problems have
strongly exponential complexity?’’ J. Comput. Syst. Sci., vol. 63, no. 4,
pp. 512–530, Dec. 2001.

[167] B. S. Baker, ‘‘Approximation algorithms for NP-complete problems on
planar graphs,’’ J. ACM, vol. 41, no. 1, pp. 153–180, Jan. 1994.

[168] R. Dechter, I. Meiri, and J. Pearl, ‘‘Temporal constraint networks,’’ Artif.
Intell., vol. 49, nos. 1–3, pp. 61–95, May 1991.

[169] A. K. Mackworth, Consistency in Networks of Relations, vol. 8. San
Mateo, CA, USA: Morgan Kaufmann, 1977.

[170] A. A. Bulatov, ‘‘A dichotomy theorem for nonuniform CSPs,’’ in Proc.
Annu. Symp. Found. Comput. Sci., Oct. 2017, pp. 319–330.

[171] T. Feder and M. Y. Vardi, ‘‘Monotone monadic SNP and constraint
satisfaction,’’ in Proc. Annu. ACM Symp. Theory Comput., vol. F1295,
1993, pp. 612–622.

[172] T. Feder and M. Y. Vardi, ‘‘The computational structure of monotone
monadic SNP and constraint satisfaction: A study through datalog and
group theory,’’ SIAM J. Comput., vol. 28, no. 1, pp. 57–104, Jan. 1998.

[173] D. Zhuk, ‘‘A proof of CSP dichotomy conjecture,’’ in Proc. Annu. Symp.
Found. Comput. Sci., Oct. 2017, pp. 331–342.

MELISSA SÁNCHEZ was born in Culiacán,
Sinaloa, Mexico, in 1996. She is currently pursu-
ing the B.Sc. degree in mechatronics engineering
with the Tecnológico de Monterrey.

From 2017 to 2019, she worked as a Labora-
tory Instructor at the Tecnológico de Monterrey.
Since 2018, she has been a part of the Research
Group with Strategic Focus in Autonomous Vehi-
cles, Tecnológico de Monterrey. Since 2019, she
has also been working as a Harness Design Intern

at John Deere and a Research Assistant at the Research Group with Strategic
Focus in Intelligent Systems, Tecnológico de Monterrey. Her research inter-
ests include underwater autonomous vehicles (UAVs), combinatorial opti-
mization problems solved through hyper-heuristics, and power electronics.

JORGE M. CRUZ-DUARTE (Member, IEEE) was
born in Ocaña, Colombia, in 1990. He received
the B.Sc. and M.Sc. degrees in electronics engi-
neering from the Universidad Industrial de San-
tander, Bucaramanga, Colombia, in 2012 and
2015, respectively, and the Ph.D. degree in elec-
trical engineering from the Universidad de Guana-
juato, Guanajuato, Mexico, in 2018.

Since 2019, he has been a Postdoctoral Fellow
with the Research Group with Strategic Focus in

Intelligent Systems, Tecnológico de Monterrey, Monterrey, Mexico. His
research interests include data science, optimization, mathematical methods,
thermodynamics, digital signal processing, electronic thermal management,
and fractional calculus. He is a member of the Mexican National System of
Researcher.

JOSÉ CARLOS ORTÍZ-BAYLISS (Member,
IEEE) was born in Culiacán, Sinaloa, Mexico,
in 1981. He received the B.Sc. degree in computer
engineering from the Universidad Tecnológica de
la Mixteca, in 2005, the second B.Sc. degree in
project management from the Universidad Virtual
del Estado de Guanajuato, in 2019, the M.Sc.
degree in computer sciences from the Tecnológico
de Monterrey, in 2008, the M.Ed. degree from
the Universidad del Valle de México, in 2017,

the M.Ed.A. degree from the Instituto de Estudios Universitarios, in 2019,
and the Ph.D. degree from the Tecnológico de Monterrey, in 2011.

He is currently an Assistant Research Professor with the School of
Engineering and Sciences, Tecnológico de Monterrey. His research interests
include computational intelligence, machine learning, heuristics, meta-
heuristics, and hyper-heuristics for solving combinatorial optimization prob-
lems. He is a member of the Mexican National System of Researchers,
the Mexican Academy of Computing, and the Association for Computing
Machinery.

128094 VOLUME 8, 2020



M. Sánchez et al.: Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems

HECTOR CEBALLOS was born in Coatzacoalcos,
Heroica Veracruz, Mexico, in 1977. He received
the B.Sc. degree in computer science engineer-
ing from the Instituto Tecnológico de Veracruz,
in 2000, and the M.Sc. and Ph.D. degrees in
intelligent systems from the Tecnológico de Mon-
terrey, Monterrey, Mexico, in 2003 and 2010,
respectively.

Since 2010, he has been the Head of the Sci-
entometrics Office and the Research Vice-Rectory

of the Tecnológico de Monterrey. He is currently ascribed to the Research
Group with Strategic Focus in Intelligent Systems, Tecnológico de Mon-
terrey. His main research interests include social network analysis, process
mining and agent theory, applied to research analytics, and cultural heritage.
He is the author of more than 30 papers in journals and conferences, has
worked as an expert consulting for bank and IT companies, and promoted the
adoption of Semantic Web technologies in academy, government, and indus-
try. He is a member of the Mexican National System of Researcher (SNI)
and an Adherent Member of the Mexican Academy on Computing (AMEX-
COMP).

HUGO TERASHIMA-MARÍN (Senior Member,
IEEE) was born in Minas de Barroterán, Coahuila,
Mexico, in 1961. He received the B.Sc. degree
in computational systems from the Tecnológico
de Monterrey, Monterrey, in 1982, the M.Sc.
degree in computer science from The University
of Oklahoma, in 1987, the second M.Sc. degree in
information technology and knowledge-based sys-
tems from The University of Edinburgh, in 1994,
and the Ph.D. degree in informatics from the

Tecnológico de Monterrey, in 1998.
He is currently a Full Professor with the School of Engineering and

Sciences, the Leader of the ResearchGroupwith Strategic focus in Intelligent
Systems, and the Director of the Graduate Program in Computer Science. His
research interests include computational intelligence, heuristics, metaheuris-
tics and hyper-heuristics for combinatorial optimization, characterization of
problems and algorithms, constraint handling and applications of artificial
intelligence, andmachine learning. He is a member of the National System of
Researchers, the Mexican Academy of Sciences, and the Mexican Academy
of Computing.

IVAN AMAYA (Member, IEEE) was born in
Bucaramanga, Santander, Colombia, in 1986.
He received the B.Sc. degree in mechatronics
engineering from the Universidad Autónoma de
Bucaramanga, in 2008, and the Ph.D. degree in
engineering from the Universidad Industrial de
Santander, in 2015.

From 2016 to 2018, he was a Postdoctoral
Fellow with the Research Group with Strategic
Focus in Intelligent Systems, Tecnológico deMon-

terrey. Since 2018, he has been a Research Professor with the School of
Engineering and Sciences, Tecnológico de Monterrey. His research interests
include numerical optimization of continuous and discrete problems, through
the application of heuristics, metaheuristics, and hyper-heuristics. For the
latter, he focuses on finding new ways of using feature transformations for
improving performance. He is a member of the Mexican National System of
Researchers, the Mexican Academy of Computing, and the Association for
Computing Machinery.

VOLUME 8, 2020 128095


