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ABSTRACT In spite of recent remarkable advances in binary code analysis, malware developers are
still using complex anti-reversing techniques to make analysis difficult. To protect malware, they use
packers, which are (commercial) tools that contain various anti-reverse engineering techniques such as code
encryption, anti-debugging, and code virtualization. In this paper, we present x64Unpack: a hybrid emulation
scheme that makes it easier to analyze packed executable files and automatically unpacks them in 64-bit
Windows environments. Themost distinguishable feature of x64Unpack compared to other dynamic analysis
tools is that x64Unpack and the target program share virtual memory to support both instruction emulation
and direct execution. Emulation runs slow but provides detailed information, whereas direct execution of the
code chunk runs very fast and can handle complex cases regarding to operating systems or hardware devices.
With x64Unpack, we can monitor major API (Application Programming Interface) function calls or conduct
fine-grained analysis at the instruction-level. Furthermore, x64Unpack can detect anti-debugging code
chunks, dump memory, and unpack the packed files. To verify the effectiveness of x64Unpack, experiments
were conducted on the obfuscation tools: UPX 3.95, MPRESS 2.19, Themida 2.4.6, and VMProtect 3.4.
Especially, VMProtect and Themida are considered as some of the most complex commercial packers
in 64-bit Windows environments. Experimental results show that x64Unpack correctly emulates the packed
executable files and successfully produces the unpacked version. Based on this, we provide the detailed
analysis results on the obfuscated executable file that was generated by VMProtect 3.4.

INDEX TERMS Anti-forensics, code obfuscation, computer security, dynamic code analysis, reverse
engineering.

I. INTRODUCTION
Nowadays, software developers are using a variety of obfus-
cation techniques to deter code analysis and to protect their
copyright. Modern (commercial) obfuscation tools [1]–[3]
contain strong anti-reverse engineering techniques and are
actively utilized for anti-computer forensics to deter analy-
sis [4]. Also, they are widely used for developing malware.

Even though each has a different behavior, basically,
the obfuscation tools use a common technique called code
packing, a method of compressing or encrypting the target

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

program for protection: it transforms the target program into
the packed one by compressing or encrypting the code into the
packed data and associating this with the unpacking routine.
Additionally, these tools put diverse anti-reverse engineering
techniques (e.g., anti-debugging [5], self-modifying code [6],
code-encryption [5]) in the unpacking routine to make anal-
ysis difficult.

To analyze packed software, static analysis, which con-
ducts analysis without execution, has its limitation since the
target code is encrypted or compressed. To overcome this,
dynamic analysis can be used, which conducts code execution
and analysis together. To analyze dynamically, debuggers [7]
or DBI (Dynamic Binary Instrumentation) tools [8], [9] are
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widely used, which have shortcomings in that execution envi-
ronments are slightly different from that of actual execution
and many anti-reverse engineering techniques can detect this
difference.

To cope with new anti-reverse engineering techniques and
to effectively analyze packing tools, we present x64Unpack:
the hybrid application emulator that alternates emulating
machine instructions and executing binary code chunks.
x64Unpack runs in 64-bit Microsoft Windows environments
and has the following distinctive features. Since the target
program and x64Unpack share virtual memory, target code
chunks can be directly executed, which provides efficiency
and correctness. Alternatively, they can be emulated using the
CPU emulator, which provides fine-grained analysis (includ-
ing instruction-level emulation, tracking registers or memory
I/O, and exception handling).

For CPU emulation, the Bochs emulator [10] is used to
improve accuracy. We use [11] to automatically decode the
obfuscated API (Application Program Interface) function
calls. Moreover, x64Unpack provides diverse functionalities
for analyzing packed software, including automatic finding
the original entry point (OEP: the entry point of the original
target program, refer to Section II-A.) [12], detecting anti-
debugging routines, dumping the memory region, and auto-
matically unpacking the packed file.

To verify the effectiveness of the proposed technique,
we conducted experiments on widely used (commercial)
packers in 64-bit Microsoft Windows environments: VMPro-
tect 3.4 [2], MPRESS 2.19, Themida 2.4.6 [1], and UPX
3.95 [13]. Especially, VMProtect and Themida are consid-
ered as some of the most complex commercial protectors in
Microsoft Windows environments. x64Unpack successfully
unpacks all the test files that were packed with these protec-
tors and has produced detailed logs. Based on this, we explain
in detail the structure of obfuscated files that were generated
from VMProtect 3.4. We also discuss how to unpack and
obtain the original unprotected code. The following is a sum-
mary of the contributions of this paper.
• Unlike previous work/tools, x64Unpack supports both
instruction emulation mode and direct execution mode
to provide fine-grained analysis and fast execution.

• While the previous dynamic analysis tools [7]–[9] focus
on accuracy and speed, x64Unpack aims at automat-
ically evading anti-reverse engineering techniques to
make the analysis environment as close as possible to
the actual execution.

• x64Unpack is the specialized unpacking tool that
analyzes the unpacking process, which resides in the
beginning of the program execution. x64Unpack auto-
matically (or manually) unpacks the target program
when OEP is encountered, rather than analyzing the
entire target program.

• We provide a detailed analysis of the latest version of
VMProtect: Version 3.4. To the best of our knowledge,
there has been no analysis results published for the
recent version of VMProtect.

This paper is organized as follows. In Section II we
describe x64Unpack, the proposed hybrid dynamic program
analysis tool. Section III summarizes the experimental results
and Section IV provides the detailed analysis results on the
unpacking routine of the VMProtect 3.4. Section V explains
how to perform unpacking to get the original file. Section VI
deals with related work and we conclude in Section VII.

II. x64Unpack: HYBRID APPLICATION EMULATOR
FOR 64-BIT WINDOWS ENVIRONMENTS
Section II-A shows the general unpacking procedure
and Section II-B explains the overview of x64Unpack.
In Sections II-C - II-I, we deal with details of x64Unpack,
including memory management, CPU emulation, API
function calls, exception handling, and program loading.
In Section II-J, we explain implementation issues.

FIGURE 1. General unpacking procedure.

A. (SIMPLIFIED) UNPACKING PROCEDURE
Recall that code packing is the technique to transform the
target program into a packed one such that it compresses or
encrypts the code into the packed data and associates this
with the unpacking routine. Fig. 1 shows the conventional
unpacking procedure when the packed program is executed.
After the packed program starts (Fig.1-(a)), the execution
flow goes to the restoration routine (we call this the unpacking
routine), which unpacks/decrypts the packed data to restore
the original code and the original data. When this work is
completed (Fig.1-(b)), it also restores the execution context
for the original program code, including initialization of CPU
registers. Then, it sets the program counter to the entry point
of the unpacked original code region (we call this point OEP
(Original Entry Point)), which is shown in Fig.1-(c). Finally,
the restored original code is executed. In general, complex
packers use code-packing multiple times while using diverse
anti-reverse engineering techniques to deter analysis.

B. OVERVIEW OF x64Unpack
The x64Unpack runs as a single process, where Fig. 2 shows
the simplified overall running procedure. First, as shown
in Figure 2-(b), x64Unpack loads the packed target program
into memory (which is described in Section II-I). Then, each
instruction of the unpacking routine is emulated one by one
using the CPU emulator and the original code and data are
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FIGURE 2. (Simplified) overall execution procedure of x64Unpack.

partially restored (Figure 2-(c), Section II-D). If the unpack-
ing routine invokes the API function call, x64Unpack hooks it
and returns the result after calling the function. (Figure 2-(d),
Section II-E). When the original code and data are fully
restored, x64Unpack automatically detects this (using [12])
and dumps the memory to produce the unpacked executable
file (Figure 2-(e), Section II-G).

FIGURE 3. Memory layout of x64Unpack.

The x64Unpack’s memory structure is shown in Fig. 3.
x64Unpack manages two separate stacks: one is a real stack
for the x64Unpack and the other is a virtual stack for the target
program. Other segments, i.e., Heap, Data, BSS and DLL
(Dynamic Link Library) are shared by the target program and
x64Unpack. The code segment contains the target process
code and the x64Unpack code.

Suppose that the target program has already been loaded
(we will explain this in Section II-I). The emulation of the
target program is conducted as follows. First, x64Unpack
takes every machine instruction of the target program and
emulates it using the CPU emulator. Sometimes, the instruc-
tion is related to the call/jump to the API (Application
Program Interface) function (in DLL). Then, x64Unpack
directly calls the corresponding function on behalf of the
target program and returns the result to the target program.
Additionally, x64Unpack handles diverse tricky cases includ-
ing exceptions, interrupt-related instructions. In emulating
machine instructions, all memory I/O operations are hooked
to check permissions.

C. MEMORY MANAGEMENT
Asmentioned in Section II-B, thememory sections are shared
between the x64Unpack and the target program except for
the stack (shown in Fig. 3). This makes it possible to set an
emulation environment that is very close to real execution.
When x64Unpack loads the target program into the memory,
it allocates and loads the code and data exactly in the same
area as in the case when the target program is normally
executed (which will be explained in Section II-I). To do so,
the code of x64Unpack should be loaded in other unused
space. In 64-bit environments, the virtual address space is
very large so finding the unused space is not difficult.

Because we alternate execution of the target program and
x64Unpack, we should maintain separate stacks (as shown
in Fig. 3). When emulating each machine instruction of the
target program, we should hook to check permissions, e.g.,
memory I/O. If the operation is not allowed, we should
raise an appropriate exception just as in the real execution.
Sometimes, if the memory access is related with anti-
debugging, we should modify content of the specific memory
region for automatic bypass.

D. CPU EMULATION
x64Unpack has a CPU emulator, which emulates the target
program’s code on a per instruction basis. It fetches the
instruction from the starting location in the (packed) target
program and then checks the address of the instruction. If it
is the starting address of an API function, x64Unpack calls
the API function directly (which is explained in Section II-E).
Otherwise, x64Unpack uses the CPU emulator to emulate
the instruction and then changes the instruction pointer (RIP
register) in the CPU emulator to process the next instruction.
Fig. 4 shows the main emulation loop in x64Unpack to han-
dle each instruction of the target program. If the instruction
pointer (RIP register) is MAGIC_VALUE, x64Unpack han-
dles the return of the vectored exception (which is explained
in Section II-H). If the RIP points out the starting address of
the API function, x64Unpack executes the correspondingAPI
function directly. Otherwise, it emulates the instruction using
the CPU emulator. Then, it outputs the status and writes the
log message.

VOLUME 8, 2020 127941



S. Choi et al.: x64Unpack: Hybrid Emulation Unpacker for 64-bit Windows Environments and Detailed Analysis Results on VMProtect 3.4

FIGURE 4. The main loop in x64Unpack (for handling each instruction in
the target program).

E. API FUNCTION CALLS
Whenever a new DLL module (or the target program) is
loaded, x64Unpack registers the list of all functions of the
DLL module (or the target program) in the memory. Using
this, when the instruction is emulated, x64Unpack checks its
address: If the address of the instruction is within the API
function code area, x64Unpack calls the corresponding the
API function directly and the return value is passed to the
CPU emulator.

FIGURE 5. Wrapper functions for _wcsnicmp() and CreateFileW.

Most of Windows API functions can be implemented sim-
ply by calling them directly. For example, Fig. 5 shows
the code chunk that directly executes the _wcsnicmp() and
CreateFileW() API functions. In the case of the _wcsnicmp(),
since it receives three parameters, x64Unpack copies the
parameters into the RCX, RDX, and R8 registers. After call-
ing _wcsnicmp(), x64Unpack stores the result in the RAX
register. Similarly, CreateFileW() is an API function that
takes seven arguments so x64Unpack uses the RCX, RDX,
R8, and R9 registers and the stack to set parameters and then
calls the CreateFileW() function.

Some specific functions require manipulations before/after
the function call or we should reimplement the function. For
example, for the timeGetTime() function, we adjust the return
value (tick counter) because the target program may detect
that the tick counter value goes too fast (i.e., emulation is
slow). To make the tick go slow, x64Unpack maintains the
virtual tick counter variable. First, x64Unpack reads the sys-
tem time at startup and sets the virtual tick counter as the real

value. After that, x64Unpack manipulates the virtual counter
to go much slower than the real one as emulation proceeds.
(For detail of the change of the virtual tick counter, refer to
Section II-F.) Similarly, x64Unpack uses virtual values for the
process ID and thread ID (for evading anti-reverse engineer-
ing techniques). Related major API functions are GetCurrent-
ProcessID(), GetCurrentProcess(), GetCurrentThread(), and
GetCurrentTrheadId(), in all which x64Unpack modifies the
return values.

The advantage of treating API functions as direct calls
rather than emulating their code is that the execution speed
is much faster than that of emulation. Moreover, direct exe-
cution is more accurate for complex code. On the downside,
there are a large number of API functions in the Windows
environments, which are too much work for handling all
of them (parameter conversion and passing, function calls,
and return value conversion). Note that our objective is not
emulating/executing the entire target program, but instead
focusing on only the unpacking work until the OEP (Orig-
inal Entry Point) is met. When execution reaches the OEP,
x64Unpack notifies this event and then automatically dumps
the memory and reconstructs the unpacked version of the
target system. Hence, we can focus on dealing with widely
usedAPI functions in unpacking routines in protectors, not all
the API functions inWindows systems, which relieves burden
of work.

When unregistered functions from the external DLL are
called, x64Unpack produces a warning message, and emu-
lates the instructions of the function body just like in the case
for the target program emulation.

F. THREAD HANDLING
In x64Unpack, the main thread is responsible for handling
the emulator GUI (for controlling x64Unpack). Thread 0 is
responsible for CPU emulation, which is for the target pro-
gram. Since we want to make emulation environments very
close to those of real execution, x64Unpack shares PEB
(Process Environment Block) and TEB (Thread Environment
Block) information between the main thread and thread 0,
which is shown in Fig. 6.

When the CreateThead() API function is called in the
target code, x64Unpack calls CreateThread() to the operating
system to create a new thread (Thread 1). This thread has its
own TEB while PEB is shared with the main thread (since all
threads belong to the single process).

Later, if CreateThread() is called again in the target pro-
gram, another thread (Thread k, k > 1) is created with its
own TEB. PEB of Thread k is the same as that of the main
thread.

x64Unpack hooks every memory access to monitor
PEB/TEB access (to detect and avoid anti-debugging
routines) and take appropriate action as needed.

In x64Unpack, the time stamp value is derived from the
virtual tick counter. This counter is incremented by 1 when-
ever a single instruction in Thread 0 is emulated. For time
synchronization between threads, we use the round-robin
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FIGURE 6. Thread emulation and thread scheduling in x64Unpack.

scheduling. First, we execute one instruction in Thread 0 and
then run one instruction of all other threads (to do this we
use thread-interlocking for synchronization). After finishing
emulation of all other threads, x64Unpack increments the
virtual tick counter by 1 and emulates the next instruction in
Thread 0.

When the Sleep() function is called in the thread,
x64Unpack reduces the number of running threads (nRun-
ningThread) by one. Then, it excludes the corresponding
thread in the ready thread list. Likewise, if the WaitForSin-
gleObject() function is called on the thread, we exclude the
corresponding thread in the list.

G. FINDING OEP (ORIGINAL ENTRY POINT)
We suppose that the target programwas packed using the pro-
tector. Recall that OEP (Original Entry Point) is the address
indicating the beginning point of the original code which is
unpacked and loaded into the memory.

We have implemented a routine for finding OEP, which
is based on the algorithm in [14]. x64Unpack finds the
case where the instruction pointer jumps to the memory
region which has been written after the start-up. If found,
x64Unpack regards this address as an OEP candidate.
Generally, x64Unpack finds many OEP candidates because
packers use the self-modifying code technique. Hence, we use
the heuristic algorithm [12] to refine OEP candidates.

H. EXCEPTION HANDLING
Since many protectors use anti-debugging techniques related
to exceptions or interrupts, emulation of exception handling
routines is essential. In 64-bit environments, for handling
exceptions, Microsoft Windows uses VEH (Vectored Excep-
tion Handling), which is an extension of Structured Exception
Handling (SEH) (that is used in 32-bit Windows).1 VEH is

1Precisely speaking, 64-bit Windows operating systems uses 64-bit SEH
and VEH. For implementation of 64-bit SEH, we omit explanation for lack
of space.

similar to SEH, with the following differences: First, handlers
are not tied to specific functions nor to stack frames. Second,
exception handlers are explicitly added by calling the API
function (AddVectoredExceptionHandler()) rather than as a
byproduct of try/catch statements. After calling this function,
NTDLL adds a new handler to the vectored exception handler
list, which has a circular linked structure in the heap.

If an exception is raised, the operating system catches and
forwards it to KiUserExceptionDispatcher() (in NTDLL),
which calls RtlDispatchException Then, RtlCallVectoredEx-
ceptionHandlers() is called, which finds the appropriate
handler in the handler list and executes it. (internals are very
undocumented.)

We have implemented exception-related routines for VEH:
exception registration, exception handling, return after excep-
tion handling, context saving and context restoration. Further,
x64Unpack can automatically detect and log exception-based
anti-debugging techniques.

FIGURE 7. Exception handling routines in x64Unpack.

Fig. 7. shows exception handling procedures in
x64Unpack. First, the CPU emulator raises an exception.
Then, x64Unpack setups the exception record and finds the
appropriate handler. It calls veh_exception(), where it saves
all registers to the context structure and adds the context and
the exception record into ebuffer. This buffer has a circular
linked list in the heap to maintain all exception handlers
information. Then, x64Unpack pushes MAGIC_VALUE into
the virtual stack to specify the return to the code after han-
dling the exception. Finally, it changes the program counter
(RIP register) as the starting address of the handler.

Second, control flow goes back to the CPU emulator, which
emulates the appropriate exception handler code.

Third, if the RIP register is equal to MAGIC_VALUE, this
means the end of execution of the exception handler code and
x64Unpack calls exception_return It restores the context and
exception record from ebuffer and restores the saved register
context. If there is another exception handler to be executed,
it calls exec_execption

Forth, after handling exceptions, control flow goes back to
the instruction (in the target code) that originally invoked the
exception.
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I. LOADING THE TARGET PROGRAM INTO THE MEMORY
In Microsoft Windows, the file format for the executable
binary program is PE (Portable Executable), which contains
the information necessary for the loader.

Our PE loader works as follows. 1. It parses the PE file.
2. From the PE header, important information is obtained
(the entry point, heap sizes, and stack sizes, etc.). 3. It iter-
ates through each section and copies it from the file to the
memory. 4. It adjusts entries in the symbol tables. 5. After
that, x64Unpack starts the emulation process by creating a
main emulation thread (Thread 0) and by fetching the instruc-
tion from the starting address of the target program.

Because (in Windows environments) the executable and
DLL have the same structure, this PE loader is also used for
loading external DLL files. When the target program explic-
itly loads theDLL by calling functions such as LoadLibrary(),
we hook the function call and use this PE loader to load the
corresponding DLL file.

J. IMPLEMENTATION
We have implemented x64Unpack using Qt 5.6 [15] and
Visual Studio 2015 Professional on Microsoft Windows 10
64-bit environment. For CPU emulation, we have adopted
CPU emulation part from the Bochs [10].

For handlingAPI functions, we have implemented 196API
functions (4 GUI-related functions: MessageBoxA(), Mes-
sageBoxW(), MessageBoxExA(), GetWindow()), which are
widely used by the (commercial) protectors for unpacking,
decompressing, or anti-reverse engineering in 64-bit environ-
ments.

x64Unpack has theGUI interface to output analysis results,
to dump memory, or to produce the unpacked executable
file. Further, the user can set the specific memory region for
tracing the instruction execution for deep analysis. Fig. 8 is
an example for the screenshot of x64Unpack, where the
complete log file is available at https://drive.google.com/
open?id=11Pt9Y1kUSoasxleJsDwsqIsBPioCl31r. The log
contains the following information: executed instructions,
memory reads/writes, API function calls, memory region
information, exception, and thread information.

III. EXPERIMENTAL RESULTS
To verify the effectiveness of the proposed scheme,
we selected the following protectors.
• VMProtect: Version 3.4 [2]
• Themida: Version 2.4.6 [1]
• UPX: Version 3.95 [13]
• MPRESS 2.19
UPX is well-known and one of the most widely used pack-

ers in Microsoft Windows environments. MPRESS is another
free high-performance executable packer for 32-bit/64-bit
environments. VMProtect and Themida are considered as
some of the most advanced, complex protectors in 64-bit
Microsoft Windows environments. To the best of our knowl-
edge, there has been no analysis results published for the
recent version of VMProtect.

FIGURE 8. The graphical user interface of x64Unpack.

For VMProtect, we have used the following options: Mem-
ory Protection, Import Protection, Resource Protection, and
Pack the Output File. Memory Protection is the feature that
detects memory tampering. Import Protection is the feature
that obfuscates import regions. Resource Protection encrypts
the resource area. Pack the Output File is the feature that
compresses executable files.

The test program uses some simpleAPI functions related to
the message box and strings: the program generates a random
number, outputs a message box, and then exits. We have
compiled it with Visual Studio 2015 in the release mode and
default options.

After packing the above test program with 4 packers,
we have tested x64Unpack with the packed files. We have
confirmed that x64Unpack successfully executes them:
bypassing anti-reverse engineering techniques, entering the
OEP, displaying the message box, and then terminating the
program.

We conducted two experiments for measuring the average
elapsed time. In the first experiment, we chose a simple test
program that runs 1000∗1000 simple loops and then calls
puts() function 1000 times. For comparison, we executed
the test program (i.e., real execution) and then ran it under
Pin [8], x64Unpack, and x64dbg [17]. For fair comparison,
we set Pin, x64Unpack, and x64Dbg such that they produce
instruction traces. We repeated the work for 30 times to get
the average value. Fig. 9-(a) shows the average execution
time. In this experiment, x64dbg runs the slowest because
x64Dbgscript is slow. Pin is faster than x64Unpack since
it uses caching for efficiency. We also measured memory
usage where that of raw execution, x64Unpack, Pin, and
x64dbg are 0.478 MBytes, 23.910 MBytes, 73.952 MBytes,
and 8.1742 MBytes, respectively.
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FIGURE 9. Elapsed time comparison for 2 Experiments.

In the second experiment, we used the modified test pro-
gram, which runs 10000∗10000 simple loops and then calls
puts() function 10000 times. As seen in Fig. 9-(b), x64Dbg
runs the slowest because x64Dbgscript inserts the break point
for each instruction in the target program, which is very
slow. Similar to Experiment 1, x64Unpack is slower than Pin.
Note that x64Unpack focuses on analyzing the unpacking
routine only (not the entire program). Hence, we believe
that performance is the second issue compared with the cor-
rect execution of the unpacking routine having diverse anti-
reverse engineering techniques. We also measured memory
usage where that of raw execution, x64Unpack, Pin, and
x64dbg are 0.474 MBytes, 24.221 MBytes, 73.800 MBytes,
and 8.195 MBytes, respectively.

IV. DETAILED ANALYSIS RESULTS ON THE
PACKED FILES BY VMProtect 3.4
This section summarizes the analysis results on the packed
files by VMProtect 3.4. First, we have obtained the trace
information using x64Unpack and then have analyzed the
trace information, e.g., to find which anti-reverse engineer-
ing techniques are used, and when the compressed code is
uncompressed.

We use the following notations throughout this section.
PEHdr means the PE file header, Pker means memory region
w.r.t. the packer, and Target means the memory region w.r.t.
the target program. Rx and Wx denote the memory read and
write, respectively where x is either b (8bits), w (16bits),
d (32bits), or q (64bits). Mod means a Windows module
(exe, dll, ocx, sys files, etc.). Heap_addr means the allocated
heap memory area and addr means the postfix four digits of
the memory address.

Section IV-A compares the section structures of the exe-
cutable files for the original version and the packed ver-
sion. Section IV-B explains API obfuscation techniques
and Section IV-C describes the unpacking procedure of the
obfuscated file.

A. COMPARISON RESULTS ON THE SECTIONS
IN THE PE FILE
For the original file and the packed file, we compare
section information as follows. Fig. 10 shows the section
information for the original file and the packed version
(VMProtect 3.4). Depending on option settings, VMProtect
splits the target file into multiple sections or keeps as a single
section. In the default settings, VMProtect adds 2 sections
(.vmp0 and .vmp1) for the unpacking routine.

FIGURE 10. The section structure of the original executable file and the
packed version.

As seen in Fig. 10, the packed version has the same address
and name for the following sections: .text, .rdata, .data
and .pdata sections. As mentioned previously, .vmp0 and
.vmp1 contain code and data for the unpacking routine and
program protection. .reloc contains data that is not related to
the original program, and .rsrc has the same name and content
as the original .rsrc section (unless resource encoding is set in
the options). Before execution, the .text, .rdata, .data, .pdata,
and .vmp0 sections are empty and they are filled during the
unpacking procedure.

If we execute the packed file, after unpacking is finished,
the obfuscated code and data are restored to their original
sections and then the original code is executed.

B. ANALYSIS OF THE API OBFUSCATION TECHNIQUES
Generally, (commercial) protectors use diverse API obfusca-
tion techniques to deter analysis on API function calls, where
major 3 of them [11] are as follows.
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• Obfuscation of call/jmp instructions that direct to the
beginning of the API functions. (1st method)

• Obfuscation for the Import Address Table (IAT).
(2nd method)

• Obfuscation for either some part or the whole code of
the API function body. (3rd method)

Among them, VMProtect uses the first one only.
In VMProtect, each call or jmp instruction for the API
function call is converted into several instructions having the
same semantics (1st method). For this case, jmp/call goes
across the different sections, which is seen in Fig. 11.

FIGURE 11. Obfuscated API function calls in VMProtect.

In the figure, ‘Call the API function’ means the instruction
for calling the API function. The ‘Obfuscated API Section
(.vmp0)’ contains the obfuscation-related instructions, which
are added by VMProtect. This section contains many branch
instructions for code obfuscation. ‘Encoded Org-API-Info’
indicates that the encoded address of the API function body,
where the original API function address is encoded. In calling
the obfuscated API function, this value is decoded and then
used to jump to the beginning point of the original API
function body.

C. ANALYSIS RESULTS ON THE EXECUTION OF THE
PACKED FILE (VMProtect 3.4)
When we execute the obfuscated executable file that was
packed with VMProtect 3.4, the unpacking routine conducts
the following work until the OEP (Original Execution Point)
is met (after that, code of the original file will be executed).
These functionalities are arranged in order of execution.

1) CALLING GetModuleHandleA() TO GET THE HANDLES
FOR Kernel32.DLL AND NTDLL.DLL
First, VMProtect calls the GetModuleHandleA() function,
which is shown in Fig. 12. The packed executable file invokes
API functions, which are not listed in the import section
(because import section is obfuscated). To retrieve API func-
tion addresses, in the run-time, the unpacking routine first
calls GetModuleHandleA(), which returns the module han-
dles of Kernel32.dll and NTDLL.dll. Then, it computes the
addresses of the API functions using these handles.

FIGURE 12. Calling GetModuleHandleA.

FIGURE 13. Checking the build number of the operating system.

2) CHECKING THE BUILD NUMBER OF THE
OPERATING SYSTEM
The unpacking routine guesses the correct build number of
the operating system, as follows. (This is because the anti-
debugging techniques are very sensitive with the version of
the target operating systems.) In the execution trace of Fig. 13,
the unpacking routine gets the address of PEB by reading the
memory cell at GS:[60] and then reads the content at PEB +
0× 120 to retrieve the build number. In this figure, 0× 47ba
represents that the build number is Windows 10 1809.

3) CHECKING THE INTEGRITY OF THE PE HEADER
The unpacking routine reads the PE Header and checks
whether the content of the PE header has been modified
or not.

4) CHECKING THE INTEGRITY OF THE CONTENT
OF THE EXECUTABLE FILE
The unpacking routine reads and checks whether the content
of the executable file has been modified or not, i.e., it reads
the file in the disk and checks whether the file contents
are equal to what are currently loaded in memory or not.
By calling GetModuleFileNameW(), it gets the name of the
executable file. It opens the file by calling ZwOpenFile Then,
the entire file contents are read into memory through ZwCre-
ateSection() and ZwMapViewOfSection These contents are
used to check whether the loaded code/data in the memory
is tampered or not. If it has been tampered with, a message
box would pop up for a warning (Fig. 16) and the program
terminates.

5) TARGET CODE RESTORATION
The unpacking routine decodes the target code and the obfus-
cated API function code and then writes them to the mem-
ory, i.e., conducting the unpacking procedure. Before the
unpacking, the .text and .vmp0 sections are filled with zeroes.
Because the memory sections for the target code are pro-
hibited for the write operation, the unpacking routine gives
the write permission into each memory section using ZwPro-
tectVirtualMemory Then, it reads the encoded area in the file
and writes each decoded byte to .text and .vmp0 section.
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FIGURE 14. Reading and checking the PE header.

FIGURE 15. Checking the integrity of the content of the executable file.

FIGURE 16. A pop-up message box showing that the file has been
corrupted.

6) CHECKING CODE-INJECTION
Reverse engineers often inject their code chunks for analysis
in the new memory section. VMProtect checks this code-
injection as follows. It first gets the size of the image from
the PE header and then calls ZwQueryVirtualMemory() with
the end address that is calculated by adding the base address
and the size of the image. If there is any memory region that
is already allocated at the end of the program, it regards this
is the code-injection, pops up the message box and exits the
program.

FIGURE 17. Decoding procedure in VMProtect.

FIGURE 18. Checking the injected code chunks.

FIGURE 19. Setting the thread affinity.

7) SETTING THE THREAD AFFINITY
The routine sets thread affinity to use all CPU cores
(in Fig. 19). This may prevent or make it difficult analysis
by fixing thread affinity.

8) ANTI-DEBUGGING TECHNIQUE FOR CHECKING
THE ELAPSED TIME
It calls time-related API functions. This is for measuring the
elapsed time for detecting debuggers/analysis tools. If the
elapsed time is too long, it regards as being analyzed and it
terminates execution.
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FIGURE 20. Checking the elapsed time.

9) USING FIBER-LOCAL STORAGE TO KEEP THE
ALLOCATED HEAP ADDRESS
A fiber is a particularly lightweight thread of execution.
In Microsoft Windows, fibers run in the context of the
threads where each thread can schedule multiple fibers. The
unpacker routine calls fiber-related functions such as Fls-
GetValue(), FlsSetValue(), and FlsAlloc Also, it calls FlsSet-
Value(), which may mislead us into believing that an FLS
based anti-debugging technique is used [5]. If properly used,
FlsSetValue() can alter the control flow such that the debug-
ger loses its control. However, VMProtect does not create any
fiber at all. Instead, it uses FLS (Fiber Local Storage) as a
storage to keep the pointer to the allocated memory region
(which was allocated by calling RtlAllocateHeap() function),
which is seen in Fig. 21-(a).

FIGURE 21. Using Fiber Local Storage (FLS) to keep allocated heap
address.

Then, this memory address is retrieved many times by
FlsGetValue() function (which is seen in Fig. 21-(b)).

10) ENCODING THE IMPORTANT POINTERS
VMProtect hides the important addresses by calling RtlEn-
codePointer() and RtlDecodePointer() functions. We think
that VMProtect hides the starting addresses to API functions
and to allocated memory blocks. E.g., in Fig. 22, addresses
0 × 1400244c and 0 × 1400268.4 are the starting points
of obfuscated calls to the API functions GetLastError() and
RtlAllocateHeap(), respectively.

FIGURE 22. Encoding the pointers for the API functions.

FIGURE 23. Encoding the pointer for the heap memory region.

FIGURE 24. Traversing the threads.

Fig. 23 indicates that RtlEncodePointer() is used for encod-
ing the address 0×2122ac77800, which is the starting address
of the heap memory region created by calling RtlAllocate-
Heap() beforehand.

11) THREAD SNAPSHOT
VMProtect traverses the threads in the thread list using
the following API functions: CreateToolhelp32Snapshot(),
Thread32First() and Thread32Next If the target process is
being debugged, traversing threads with Thread32Next()
goes into the infinite loop.

12) CHECKING INTEGRITY OF THE MEMORY REGION
VMProtect installs a trampoline at the start of the ZwPro-
tectVirtualMemory() function to monitor the .vmp0 section
of the obfuscated API calls. Every time ZwProtectVirtual-
Protect() is called, it jumps to a chuck of code, which checks
the integrity of .vmp0 section and then executes the original
ZwProtectVirtualProtect() function and returns to the caller.
To install a trampoline, VMProtect allocates a heap memory
region and overwrites the original two instructions in ZwPro-
tectVirtualMemory() function body.
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FIGURE 25. Installing a trampoline at ZwProtectVirtualMemory.

FIGURE 26. After modifying ZwProtectVirtualMemory() function, Jumping
to the code chunk for checking integrity of memory.

Fig. 25 shows how trampoline code is written during
execution. Fig. 26 shows the modified code for the trampo-
line. As seen in Fig. 26-(a) and Fig. 26-(b), ZwProtectVir-
tualMemory() is patched to redirect to 0×7ff8f6a90015 at the
newly allocated heap address that contains a jump instruction
to the integrity check code. Fig. 26-(c) shows the newly
allocated memory region (which was written in the trace
with the tag: Heap_0000 in Fig. 25) using VirtualAlloc
This region contains the first two instructions copied from
ZwProtectVirtualMemoryWhen ZwProtectVirtualMemory()
is called, it executes ‘jmp 7ff8f6a90015; jmp [7ff8f6a9001b]’
and the integrity-checking code starting at 0 × 14000de00.
After that, it returns to the 0× 7ff8fa9000 – the start address
of the Heap_0000 – and executes the copied two instruc-
tions from ZwProtectVirtualMemory() and then returns to
0 × 7ff8f693cab8 that is the third instruction of the original
ZwProtectVirtualMemory

If we trace the memory reads, we can see that execution
iterates over the checksum of memory in the obfuscation API
area as in Fig. 27. (It scans the .data section and .vmp0 section
and then checks the integrity of the program.)

FIGURE 27. The integrity-checking routine in the trace.

13) BRANCH TO OEP
Finally, it restores memory access permission of each section
to the original value and then branches to OEP, which is
shown in Fig. 28. (after that, code of the original file will be
executed).

FIGURE 28. Branch to OEP.

V. RESTORING PROCESS FOR THE PACKED FILES
This section describes the process of restoring packed
files from VMProtect 3.4 to obtain the unpacked version.
Section V-A describes how to restore the import sections and
Section V-B explains how to create the PE file. x64Unpack
can automate these processes to get the unpacked version.

A. DEOBFUSCATING OBFUSCATED API FUNCTION CALLS
VMProtect deletes IAT section in the packing process.
Fig. 29-(a) and Fig. 29-(b) describe the differences between
the IAT of the original executable file and the corresponding
memory region when OEP is met. This region will be used
for reconstruing the IAT table.

In VMProtect, API function calls are also obfuscated.
Fig. 30 shows an example for how an original API function
call is obfuscated. The instruction at 0 × 1400011.7 ‘call
cs:MessageBoxA’ is obfuscated to ‘call sub_140150aa3’.

The target address of the obfuscated call instruction points
to the .vmp0 section. The instructions from the address
0× 140150aa3 to 0× 14007.21d in Figure 31 are equivalent
to the instruction ‘call MessageBoxA’.

The obfuscated instructions can be optimized using code
optimization techniques such as dead code elimination, con-
stant propagation, constant folding and peephole optimiza-
tion. We explain the procedure on the code in Fig. 31.
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FIGURE 29. Differences between the IAT of the original executable file
and the corresponding memory at OEP.

FIGURE 30. Original MessageBoxA() function call vs. obfuscated
function call.

First, meaningless jmp and nop instructions can be elim-
inated. The obfuscated instructions excluding nop and jmp
are ‘push rax; cdqe; lahf; mov rax, [rsp+8]; lea rax, [rax+1];
mov [rsp+8], rax; movsx eax, r15w; movsx ax, r1b; lea
rax, 0 × 14000182d; mov rax, [rax+0 × 7.9f1]; lea rax,
[rax+0× 648.390a], xchg rax, [rax]; ret.’
Second, the dead code elimination algorithm can remove

the instructions which are meaningless because registers are
overwritten: ‘cdqe; lahf; mov rax, [rsp+8]’ instructions can
be eliminated because ‘lea rax, [rax+1]’ overwrites rax.
‘movsx eax, r15w; movsx ax, r1b’ instructions are elimi-
nated because ‘lea rax, 0 × 14000182d’ overwrites rax. The
instructions after dead code eliminations are ‘push rax; lea
rax, [rax+1]; mov [rsp+8], rax; lea rax, 0×14000182d; mov
rax, [rax+0× 7.9f1]; lea rax, [rax+0× 648.390a], xchg rax,
[rax]; ret.’

Third, constant propagation is applied to ‘lea rax,
0 × 14000182d; mov rax, [rax+0 × 7.9f1]’, which are
transformed into ‘mov rax, [0 × 14007.21e]’. The value of
[0 × 140007.21e] is 0 × 7ff891c8e426 and it is considered
as a constant. Hence, the instruction is transformed into ‘mov
rax, 0×7ff891c8e426’ where the address 0×7ff8f6571d30 is
the start address of MessageBoxA() function.

Fourth, constant folding is applied to the instructions ‘mov
rax, 0 × 7ff891c8e426; lea rax, [rax+0 × 648.390a]’ and

FIGURE 31. Obfuscated instructions equivalent to ‘call MessageBoxA.’

they are transformed into ‘mov rax, 0× 7ff8f6571d30 (= the
starting address of MessageBoxA).’

Finally, a peephole optimization is applied into ‘push
rax; lea rax, [rax+1]; mov [rsp+8], rax’: These instructions
increase the value of the stack top by 1 and push the value of
rax on the top of the stack, which is equivalent to ‘inc [esp];
push rax.’ We use peephole optimization because this pattern
is not common in compiler optimization techniques. ‘push
rax;mov rax, 0×7ff8f6571d30; xchg rax, [rax]’ are optimized
into ‘push 0 × 7ff8f6571d30’ and ‘push 0 × 7ff8f6571d30;
ret’ are optimized into ‘call 0 × 7ff8f6571d30’ by peephole
optimization.

Sometimes VMProtect uses indirect call/jmp for invoking
API functions. E.g., first, instruction ‘call A’ is invoked,
second, instruction ‘jmp B’ at the address A is executed, and
then the function body at the address B is executed. We track
the execution flow to analyze all indirect call/jmps to the API
functions and then convert them as direct call/jmps.

To find obfuscated API calls, we disassemble the whole
.text section and collect every call instruction that targets

127950 VOLUME 8, 2020



S. Choi et al.: x64Unpack: Hybrid Emulation Unpacker for 64-bit Windows Environments and Detailed Analysis Results on VMProtect 3.4

into .vmp0 section. Instead of using code optimization tech-
nique, we use Run-until-API method [11] to find the original
API function efficiently. We use x64Unpack to emulate each
obfuscated call instruction until it reaches the API function
body. After that we can deobfuscate API function calls and
can reconstruct the IAT table.

B. CREATING THE PE FILE
We copy the original sections into the unpacked version.
Then, we create an import section from the IAT information.
We copy resource and TLS if present. All sections need to be
repositioned. Finally, the PE header checksum is calculated
using the CheckSumMappedFile() function.

VI. RELATED WORK
In the case of malware detection [18]–[21] and binary code
analysis [22], [23] relevant studies have been actively con-
ducted. However, anti-reversing techniques have not attracted
special interest from researchers except for specific topics
such as code virtualization [24], [25]. This section summa-
rizes related research/tools on the detection and bypass of
anti-reversing techniques, which can be classified into four
categories: debugger, CPU emulator, DBI and unpacking.
The details of each are as follows.

Debugger: One of the most widely used tools for dynamic
analysis of binary code is the debugger. The debugger sup-
ports run-time disassembly for the target program and single-
step execution of instructions. Execution context can also
be monitored and immediately manipulated. The debugger
allows the analyst to easily check how status is being changed
as each instruction is executed. However, the debugging envi-
ronment is quite different from the actual execution environ-
ment, and there are various anti-debugging techniques using
this difference.

Ollydbg [7] is one of the most widely used debuggers for
binary code analysis in Microsoft Windows environments,
but it supports only 32-bit environments. WinDbg is the
debugger made by Microsoft and has the advantage of being
able to debug the kernel. However, WinDbg has the disadvan-
tage of relatively inconvenient interface compared to other
debuggers. WinDbg Preview has a significant improvement
over the interface compared to WinDbg, and supports Time
Traveling that performs reverse single-step execution.

Recently, Hao Shi and Jelena Mirkovic [16] pro-
posed Apate, a framework for hiding the debugger from
anti-debugging techniques. They have designed and imple-
mented various bypassing techniques for anti-debugging
in 32-bit Windows environments. Apate was implemented
as a plug-in of 32bit-version of WinDbg. They claim that
Apate outperforms other debugger-hiding schemes by a wide
margin. In our experiment, even though Apate works well on
simple packers (e.g., UPX, MPRESS, or ASPack), it fails on
complex packers (e.g., VMProtect, Safengine, or Themida).

CPU emulator/virtualization: The CPU emulator is the
tool that emulates and executes binary code. However, using
this tool alone we cannot execute operating system-related

code, so we need to build a virtual environment for correct
execution.

QEMU [26] uses a CPU emulator to provide virtualization
environments. This allows us to install an operating system
on a virtual machine. Bochs [10] is an IA-32/x86-64 emu-
lator while QEMU supports a variety of platforms, including
IA-32 andARM.Generally, the running speed is much slower
than that of the real execution. If we use hardware-supported
virtual environments, the execution speed on the virtual
machine is very similar to that on the real execution. The
tools supporting hardware virtualization include VMWare
ESXi [27], Xen [28], and Microsoft Hyper-V.

Using virtualization tools, we can run the target code in
a completely isolated environment. Since code execution in
a virtualized environment is almost similar to that of a non-
virtualized environment, anti-reversing techniques are auto-
matically bypassed [29].

However, since these tools are not designed for analyzing
the binary code, it is very inconvenient for code analysis.
E.g., when extracting the instruction trace, not only the target
process/thread information but also other processes/threads
information or kernel information are included, which makes
the analysis inconvenient. Further, it is difficult to com-
bine the virtualization tool and the analysis tool such that
only the desired part is analyzed. Since there are rela-
tively a few virtualization tools exist, recently techniques for
detecting their virtualization environments are actively being
developed [6].

[30] presents HybridEmu, the dynamic analysis scheme
for investigating the internal structure of malicious code
in Microsoft Windows 32-bit environments. Similar to
xUnpack64, HybridEmu can directly call or emulate various
API functions in malware while emulating instructions using
the 32-bit CPU simulator. However, it is designed only for
32-bit environments.

Dynamic Binary Instrumentation (DBI): DBI tools can
run the analyst’s code in arbitrary or specific parts of the target
code at runtime. It operates in such a way that the target code
and the analysis code are interleaved and executed. Pin [8]
provides various APIs for analyzing the target code and is
famous for correct execution and fastness. However, it is
difficult to identify the cause when an error occurs because
it is not open source.

Valgrind [31] and DynamoRIO [9] also provide a variety
of APIs for analyzing the binary code and are open source.
Valgrind only supports the Linux operating system, while
DynamoRIO has a disadvantage in that for a large/complex
program it often fails for analysis. Detours [32] hooks the
major Win32 API functions for analysis. It is well known for
efficiency and correctness. However, there is a disadvantage
in that detailed analysis (e.g. at the instruction level analysis)
is difficult.

These DBIs focus on fast and accurate code execution and
flexible code instrumentation of target binaries. Since the
original code is modified in the process of code instrumen-
tation, the anti-reversing detection techniques for detecting
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this modification cannot be avoided. As DBI tools become
popular for analyzing anti-reversing code, techniques for
identifying individual DBIs have been developed [33], [34].

Unpacking tools: Unpacking tools have been developed
for various packers. One example is the UPX unpacker [13].
Renovo [13] provides a general way to find the unpacking
procedures. It finds written-and-execute behaviors which are
common in the unpacking work. However, Renovo does not
deal with various anti-reverse engineering techniques, which
makes difficult to use in reality. VMAttack [35] focuses
on automatic deobfuscation (i.e., intensive code-stripping)
of code-virtualization techniques in VMProtect (version 2)
whereas our work deals with automatic analysis of unpacking
procedure of packers (including VMProtect 3.4). Pindemo-
nium [6], one of the most famous open-sourced unpacking
tools, relies on Pin for analyzing the packed program and for
dumping the unpacked code. To the best of our knowledge,
it cannot unpack recent version of sophisticated (commer-
cial) packers, including VMProtect, Themida, and Safengine.
Recently, UnThemida [36] was developed as a plug-in for
the Pin tool to analyze and to unpack the structure of files
packed with Themida 2.4.5. Unlike previous tools including
UnThemida or UPX unpacker, x64Unpack is designed to
cope with diverse packers: it can handle both finding general
unpacking routines and evading various anti-reverse engi-
neering techniques.

VII. CONCLUSION
In this paper, we proposed x64Unpack, a hybrid application
emulator for 64-bit Windows environments. Using this tool,
analysts can collect and analyze unpacking-related informa-
tion through interception of API calls, memory I/O, etc.
It can be used to analyze obfuscation tools, to detect and
bypass anti-debugging techniques, and to restore packed
files. To verify the effectiveness of the proposed method,
experiments were conducted on widely used obfuscation
tools: MPRESS 2.19, Themida 2.4.6, VMProtect 3.4 and
UPX 3.95. For the obfuscated files that were packed with
the default settings, x64Unpack unpacks them successfully.
Based on this, we provide detailed analysis results on the
obfuscated executable file by VMProtect 3.4. Additionally,
we explain how to restore the unpacked version from the
obfuscated binary code. Since x64Unpack currently cannot
run 32-bit applications, the future work includes supporting
32-bit programs. Further, hooking API-functions or moni-
toring memory I/O can be implemented using filter drivers,
which we leave as a future work.

APPENDIX A
NAMES OF MODIFIED API FUNCTIONS
The following list shows the names of the modified API
functions in x64Unpack (grouped by functionalities), some
of which are described in Section II-E.
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