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ABSTRACT There is a growing interest in automated diagnosis of coronary artery disease (CAD) with the
application of machine learning (ML) methods to the body surface electrocardiograph (ECG). Although
prior studies have documented associations of CAD with increased QT variability and ST–T segment
abnormalities such as T-wave inversion and ST-segment elevation or depression, their efficacy in automated
CAD detection has not been fully investigated. To validate their usefulness, a dataset containing related
clinical characteristics and 5-min single-lead ECGs of 107 healthy controls and 93 CAD patients was first
constructed. Based on this dataset, simultaneous analyses were then conducted in five scenarios, in which
different ML algorithms were applied to classify the two groups with various features derived from the
RR and QT interval time-series and ST–T segment waveforms. Compared with utilizing features obtained
from the RR interval time-series, better classification results were achieved utilizing that obtained from
the QT interval time-series. The classification results were elevated with combining utilization of features
derived from both the RR and QT interval time-series. By further fusing features extracted from ST–T
segment waveforms, the best performance was achieved with 96.16% accuracy, 95.75% sensitivity, and
96.40% specificity. Based the best performance, an automated CAD detection system was developed with
extreme gradient boosting, an ensemble ML algorithm, and the residual neural network, namely, a deep
learning method. The results of this study support the potential of information derived from the QT interval
time-series and ST–T segment waveforms in ECG-based automated CAD detection.

INDEX TERMS Coronary artery disease (CAD), QT interval variability (QTV), heart rate variability (HRV),
ST–T waveform, machine learning (ML), signal decomposition.

I. INTRODUCTION
Coronary artery disease (CAD), defined as an angiographic
stenosis of ≥ 50% in at least one coronary artery, is a
major type of cardiovascular disease (CVD) and the primary
cause of death from CVD globally [1]–[3]. The stenosis is
caused by atherogenesis, a process that narrows coronary
arteries with a buildup of plaque. It can impede or even
obstruct the blood flow to the heart muscle, and thus CAD
patients are prone to suffer serious adverse events, e.g.,
arrhythmias, heart failure (HF), myocardial infarction (MI),
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and stroke [1]–[3]. Clinically, the surface 12-lead electro-
cardiogram (ECG) test is still one of the most commonly
used methods of the initial screening of CAD due to its
nature of non-invasiveness, low cost, and timeliness [4], [5].
Certain morphologic ECG abnormalities, including T-wave
inversion, abnormal Q-wave, and ST-segment depression or
elevation, have proved their clinical significance in risk strat-
ification [6]–[8] and associations with myocardial ischemia
and infarction [9]–[14]. However, these abnormalities are
nonspecific symbols of CAD and can be observed in non-
cardiac conditions, such as central nervous system diseases,
hypothermia, and pulmonary embolism [15]. Previous studies
have also reported that resting ECGs from 50 to 70% of CAD
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TABLE 1. An overview of existing studies on resting ECG-based automated CAD diagnosis.

patients do not exhibit any remarkable alterations [16], [17].
Moreover, it is time-consuming and tedious for cardiologists
to visually check subtle waveform abnormalities among a
vast amount of ECGs. An automated detection approach can
play a crucial role in addressing the above issues of ECG-
based noninvasive CAD screening.

The last several decades have witnessed a growing trend
towards the application of machine learning (ML) methods
on ECG-based automated diagnosis of CAD which can be
considered as a task of classification [18]. Some studies
distinguished CAD patients from healthy individuals using
publicly available datasets which consists of various labeled
clinical parameters [19]. Others directly analyzed ECG or
cardiac rhythm (RR interval) signals to distinguish CAD and
normal sources, in which different tools derived from signal
processing were applied [20]–[27]. An overview of studies
using resting ECGs on automated CAD detection has been
summarized in Table 1. As the table shows, the heart rate vari-
ability (HRV) analysis [24]–[27] and signal decomposition
methods [21]–[23] have been utilized by most studies due to
the nonstationary and nonlinear properties of physiological
signals.

Meanwhile, the ventricular repolarization heterogeneity
or lability as measured by beat-to-beat QT interval vari-
ability (QTV) has proved its value in risk stratification of

certain CVD-related events including ventricular arrhyth-
mia, sudden cardiac death (SCD), and cardiovascular mor-
tality [28]–[30]. QTV quantifies the temporal fluctuation
among consecutive QT intervals [31]. In comparison to
normal individuals, an increase of QTV has been found
in patients with HF [32]–[35] and MI [36]–[38], and in
those with CAD but without MI [39]. Myocardial ischemia
has also been observed to be associated with elevated
QTV [40].

Additionally, as aforementioned, myocardial ischemia and
infarction have been related to morphological abnormalities
of the ST–T segment (also called the JT interval, which
includes the ST-segment and T-wave) [9]–[14]. ST elevation
is defined as one of the diagnostic criteria of acute ST eleva-
tion MI [11], and its elevation during ischemia is associated
with changes in the transmembrane action potential duration
and electrical cell-to-cell coupling [9]. ST depression result-
ing from acute MI is considered to be a reciprocal change at
sites distant from the area of acute necrosis [10], [12], and the
depression during ischemia is caused by current flowing in a
lateral boundary between healthy and ischemic tissues [13].
T-wave alternans, referring to beat-to-beat morphological
variations in the T-wave, have been observed to be increased
in CAD patients and to be reduced after revascularization by
percutaneous coronary intervention [14].

VOLUME 8, 2020 129511



L. Yao et al.: Enhanced Automated Diagnosis of CAD Using Features Extracted From QT Interval Time Series and ST–T Waveform

Despite this progress towards the clinical application of
QTV and morphologic ST–T segment abnormalities, to our
knowledge, their efficacy in automated CAD diagnosis with
the application of ML methods has not been fully explored.
Thus, the hypothesis in this study is that the utilization of
information derived from ST–T segment waveforms and QT
interval time-series can help enhance the performance of
automated diagnosis of CAD based on single-lead resting
ECGs, in comparison to the utilization of that derived from
RR interval time-series. To test this hypothesis, a dataset con-
sisting of related clinical parameters and 5-min single-lead
resting ECGs of 107 healthy individuals and 93 CAD patients
was first constructed. Then, simultaneous analyses were con-
ducted in five scenarios to classify the two groups by applying
different ML algorithms with various features extracted from
ST–T segment waveforms and the RR and QT interval time-
series. In the present study, variability and decomposition fea-
tures derived from the RR and QT interval time-series were
employed. Based on the best classification result from the
five scenarios, a novel automated diagnostic system for CAD
using related clinical characteristics and 5-min single-lead
resting ECGs was further developed.

The remainder of this article is constructed as follows:
Section II sequentially depicts the processes of partici-
pant recruitment, clinical characteristic and ECG acqui-
sition, feature extraction, classification and evaluation.
Section III and IV presents the results and discussion, respec-
tively. Finally, Section V concludes this study and provides
some future extensions.

II. METHODS
A. STUDY POPULATION
The study subjects included 107 healthy control subjects and
93 CAD patients who were both consecutively enrolled at
Shandong Provincial Qianfoshan Hospital between Novem-
ber 2017 and September 2019. Healthy controls were
recruited from the Physical Examination Center and were
considered candidates if they had no heart disease history,
were at least 40 years of age (to remove any confound-
ing impact of age), and had normal reports on 12-lead
ECG, carotid artery ultrasonography, and echocardiogra-
phy (Echo) exams. Exclusion criteria for healthy subjects
included advanced age (≥75 years of age), mental ill-
ness, cerebrovascular diseases, thyroid dysfunction, serious
hepatic or renal dysfunction, cancer, or electrolyte distur-
bances. CAD patients were selected from inpatients from the
Department of Cardiology and who underwent the coronary
angiogram. The inclusion criterion was having≥ 50% lumen
stenosis in at least one major coronary artery. In addition to
the same exclusion criteria of the healthy controls, for the
CAD patients, they were excluded if they had valve diseases,
left ventricular dysfunction (ejection fraction [EF] ≤ 40%),
or a history of HF or MI.

All subjects gave written informed consent prior to par-
ticipating in this study. No attempt was made to control any

medication administration. The research obtained the full
approval of Clinical Ethics Committee of the aforementioned
hospital, in accordance with the Declaration of Helsinki.

B. MEASUREMENTS
1) EXAMINATIONS
Information about sex, age, smoking history, weight, height,
and body-mass index (BMI) was acquired from all sub-
jects. Systolic and diastolic blood pressures (SBP and DBP)
were assessed with electronic sphygmomanometers. Hyper-
tension was defined as a baseline SBP/DBP of at least
140/90 mm Hg, or hypertension history, or under treatment
with anti-hypertensive drugs [41].

Laboratory tests were performed in a central laboratory
of the aforementioned hospital using an automated bio-
chemical analyzer, with strict quality control. Following
biochemical parameters were recorded, including low- and
high-density lipoprotein cholesterol (LDL-C and HDL-C),
glucose (GLU), total cholesterol (TC) and triglyceride (TG).
Diabetes was defined as either a fasting GLU ≥ 7 mmol/L,
or diabetes history, or on treatment with anti-diabetes medica-
tions [42]. Hyperlipidemia was defined as TG≥ 1.7 mmol/L,
or TC ≥ 5.17 mmol/L, or LDL-C ≥ 3.12 or HDL-C <

0.78 mmol/L [43].
Echo tests were performed for all participants and carotid

artery ultrasound tests were conducted only for the healthy
controls using ultrasound devices by trained technicians
blinded to the subjects’ circumstances.

The coronary angiography was conducted only for the
CAD patients according to the Judkins technique [44]. The
degree of stenosis in each main coronary artery was quanti-
fied at least two vertical versions by a cardiologist blinded to
the patients’ circumstances.

2) VARIABILITY SIGNAL CONSTRUCTION
The ECG collection was conducted on the date of blood pres-
sure measurement for the healthy group, and a maximum of 2
days before the coronary angiogram for the CAD patients.
After a 10-min supine rest, each subject underwent a 5-min
ECG recording in standard lead I configuration and sampled
at a frequency of 1 kHz. Collections were completed in a quiet
and temperature-controlled (25 ± 3 ◦C) room in the daytime
using a cardiovascular function detection device.

The raw ECGs were preprocessed following the steps
described in our prior work [45]. Briefly, the R-wave peak
was primarily located using a detector composed of a fil-
ter bank [46], [47]. An algorithm based on line fitting was
applied to detect the QRS complex onset and offset [48], and
the T-wave terminus was located by seeking amarker relevant
to the area under the T-wave curve [49]. Then, the delin-
eation of above fiducial point was manually checked and
ectopic beats were annotated. ECGswere eliminated if excess
noise interfered with delineation or the number of ectopic
beats exceeded 10% of that of the heart beats. The RR and
QT interval time-series were constructed from the remaining
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ECGs where abnormal intervals resulting from ectopic beats
were excluded. A demonstration of fiducial point delineation
is shown in Fig. 1. Examples of the RR and QT interval
time-series from a healthy control and a CAD patient are
displayed in Fig. 2.

FIGURE 1. Demonstrations of fiducial point delineation for ECGs from a
healthy control (blue solid line) and a CAD patient (red solid line). The
detected R-wave peaks, T-wave terminus, QRS complex onsets and offsets
are marked as circles with black, cyan, green, and magenta, respectively.

C. FEATURE EXTRACTION
1) VARIABILITY FEATURES
A set of 31 HRV and 19 QTV indices were computed as
variability features in this study, as shown in Tables 2 and 3,
respectively. Briefly, various techniques derived from signal
processing in time- and frequency-domain as well as non-
linear dynamics were utilized. Given that the RR and QT
interval time-series share similar properties [31], a number of
indices were identical. There still existed several indicators
specialized in QTV quantification, including QT variability
index (QTVi), variability ratio (VR), and heart rate (HR)-
corrected QT (QTc) intervals, which can all be considered
as HR-normalized metrics. The purpose of their development
was to minimize the influence of HR on the quantification of
temporal fluctuations in beat-to-beat QT intervals.

To remove the influence of time-series length on index
calculation, only the last 221 beats in each ECG were used,
which accorded with the shortest length among all derived
interval time-series. Prior to frequency-domain analyses, all
time-series were interpolated at 4 Hz with a poly-phase filter,
and then detrended using a smoothness priors algorithm [50].
Power spectral density was computed using Burg’s method
with an order of 16 [51]. All time-series were normalized into
[0, 1] prior to nonlinear dynamics analyses.

2) DECOMPOSITION FEATURES
Considering the nonstationary and nonlinear properties of the
RR andQT interval time-series, two time-frequencymethods,

TABLE 2. The heart rate variability features used in this study.

TABLE 3. The QT interval variability features used in this study.

tunable Q wavelet transform (TQWT) and Hilbert-Huang
transform (HHT), were employed to acquire decomposition
features.

TQWT, as an advanced wavelet transform, was proposed
for analyzing discrete-time oscillatory signals, where its
Q-factor (Q) and redundancy (r) could be independently
and easily specified according to the signal oscillatory
behavior [21]. At each level of wavelet transform, using a
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FIGURE 2. Examples of the RR and QT interval time-series displayed as blue and red solid lines, respectively. The left from a healthy
control subject and the right a CAD patient.

two-channel filter bank, which consists of a low-pass filter
H0(ω) and a high-pass filter H1(ω), the input signal with a
sampling rate of fs is decomposed into a low- and a high-pass
sub-band signal with frequencies of αfs and βfs, respectively,
where α and β are corresponding scaling parameters. The
frequency responses for low- and high-pass sub-band signals
acquired from the J -level can be respectively given as:

H (J )
0 :=

{∏J−1

m=0
H0(ω/αm), |ω| ≤ αJπ

0, αJπ < |ω| ≤ π
(1)

H (J )
1 (ω) :=


H1(ω/αJ−1)

∏J−2

m=0
H0(ω/αm),

(1− β)αJ−1π ≤ |ω| ≤ αJ−1π
0, for other ω ∈ [−π, π]

(2)

where

H0(ω) = θ
(
ω + (β − 1)π
α + β − 1

)
(3)

H1(ω) = θ
(
απ − ω

α + β − 1

)
(4)

and θ (ω) is the frequency response of the Daubechies filter
and can be given as:

θ (ω) = 0.5(1+ cos(ω))
√
2− cos(ω), |ω| ≤ π (5)

The Daubechies filter was chosen to ensure the good time-
frequency localization properties of the synthesis functions of
the constructed wavelet transform [57], [58]. The values of r
and Q can be determined based on α and β as follows:

r = β
/
(1− α), Q = (2− β)

/
β (6)

All resulting sub-band signals can be given in the manner
of a cell array C :

C = {w1,w2,w3, . . . ,wJ ,wJ+1} (7)

where ωJ+1 is the sub-band signal of the lowest frequency
and ω1 to ωJ are the sub-band signals corresponding to the
high frequency. In this study, we setQ = 2, r = 4, and J = 3
as recommended by [21]. Hence, a total of 4 × 221 wavelet

features (coefficients) were acquired from the RR and QT
interval time-series, respectively.

HHT is a two-step adaptive signal processing technique
consisting of the empirical mode decomposition (EMD) and
the Hilbert transform (HT). HHT can adaptively decompose
signals according to their properties, which means it can pro-
vide more meaningful representations of nonstationary and
nonlinear processes [59]. The EMD as the first step decom-
poses the input signal into various intrinsic mode functions
(IMFs) following an iterative procedure termed the sifting
process [59]. The HT is employed to acquire the Hilbert spec-
trum of the input signal specified by IMFs. In this work, the
instantaneous frequency (IF) and instantaneous energy (IE)
of each IMF were calculated as decomposition features. The
EMD algorithm is summarized as follows:

1) Determine the local maxima and local minima of the
input signal x(t).

2) Using the cubic spline interpolation technique, acquire
the envelope Emax(t) by connecting all maxima and the
Emin(t) by connecting all minima.

3) Compute the average of Emax(t) and Emin(t) as:

m(t) = [Emax(t)− Emin(t)]
/
2 (8)

4) Extract k(t) from x(t) as:

k(t) = x(t)− m(t) (9)

5) Check whether k(t) satisfies the following two criteria:
(a) the number of extrema (maxima and minima) and
that of zero-crossings in the input signal should be
either equal to or differ at the largest by one; (b) at any
point, the average value of two envelopes, one formed
with local minima and the other formed connecting
local maxima, should both be zero.

6) Repeat steps 1) to 5) until k(t) satisfies the above two
conditions.

Once the IMFs were outputted, for each IMF, its analytic
signal, zi(t), was computed using the HT:

zi(t) = ci(t)+ jH{ci(t)} (10)
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where H{xi(t)} is the HT of i-th IMF ci(t). The zi(t) can also
be expressed as:

zi(t) = ai(t)ejθi(t) (11)

where ai(t) is the instantaneous amplitude and θi(t) is the
instantaneous phase. The IE can be computed as:

IEi(t) = |ai(t)|2 (12)

while the IF is defined as:

IFi(t) = dθi(t)
/
dt (13)

In the present study, the RR and QT interval time-series
were decomposed into 3 levels of IMFs. Therefore, a total
of 3 × 221 IE and 3 × 221 IF features (coefficients) were
obtained from RR and QT interval time-series, respectively.

3) DIMENSIONALITY REDUCTION
Statistical based feature selection methods and the principal
component analysis (PCA) were performed successively to
reduce the dimensionality of decomposition features.

Statistical-based feature selection was conducted using an
independent sample T test when the distribution normality of
the untransformed feature data (or the Box-Cox transformed
ones) was verified by the Shapiro–Wilk test; otherwise,
the Mann–Whitney U test was performed. Homogeneity of
variances was checked with the Levene’s test. Features with
P-value < 10−3 were considered as discriminative ones.

The PCA was further applied to reduce dimensionality
by projecting high-dimensional data onto an equal or lower
amount of orthogonal variables termed principal components
(PCs). Let X be an n-by-d input matrix consisting of n data
points in each dimension d , the PCA algorithm could be
briefly summarized as:

1) Normalize the scale of the input matrix by subtracting
the respective mean in the respective column.

2) Calculate the covariance matrix of the normalized
matrix.

3) Using the singular value decomposition method, obtain
the eigenvalues and eigenvectors of the covariance
matrix, and then sort the eigenvectors in a descending
order of their eigenvalues.

4) To acquire the PCs, project the original matrix into the
directions of the ordered eigenvectors by taking the dot
product.

5) Choose several PCs depending on the containment of a
given percentage of variability.

In this study, the PCs that explained 95% of the total
variances were selected. Finally, regarding the RR and QT
interval time-series, 1 and 65 PCs were obtained from their
TQWT features, 13 and 50 PCs from the IE coefficients, and
1 and 3 PCs from the IF coefficients, respectively.

D. CLASSIFICATION AND EVALUATION
Statistical analyses were performed with the procedures of
statistical-based feature selection to study the differences in

clinical characteristics, HRV and QTV indices between the
healthy controls and CAD patients. A significant difference
was defined as a P-value < 0.05.
To assess the efficacy of features derived from theQT inter-

val time-series and the ST–T segment waveforms, the classi-
fication of healthy controls and CAD patients was performed
in five scenarios:

Scenario I: classification by three different ML classi-
fiers, using the combination of clinical parameters, HRV fea-
tures, and decomposition features derived from RR interval
time-series. The three ML classifiers were Gaussian naive
Bayes (GNB) [60], support vector machine (SVM) [61], and
extreme gradient boosting (XGBoost) [62].

Scenario II: classification by the same threeML classifiers,
using the combination of clinical parameters, QTV features,
and decomposition features derived from QT interval time-
series.

Scenario III: classification by the same three ML models,
using the combination of clinical characteristics, HRV and
QTV features, and decomposition features extracted from
both the RR and QT interval time-series.

Scenario IV: classification by the residual neural network
with 18-layer deep (ResNet-18) [63] using ST–T segment
waveforms.

Scenario V: classification by the ML classifier exhibiting
the best classification results among the above three models,
with the combining utilization of clinical parameters, HRV
and QTV features, decomposition features extracted from
both the RR and QT interval time-series, and morphologic
ST–T segment features derived by the ResNet-18 algorithm.

To evaluate classification performance in each scenario,
five-fold cross-validation was conducted, in which four out of
five parts of the dataset were utilized as a training set and the
rest as a test set. During the cross-validation process, the same
dataset split was adopted in each scenario. In scenarios IV and
V, ST–T segments were derived from the heart beats used for
constructing the RR and QT interval time-series, and prior
to analyses interpolation/decimation was applied to adjust all
segments to have the same length. Each feature was scaled
by mapping its minimum and maximum values into [0, 1]
prior to classification. Parameter setup for each used ML
method is presented in Supplementary Table 1. Final results
were reported as the average of accuracy (Acc), sensitivity
(Sen), and specificity (Spe) via the five-fold cross validation.
The raw ECG preprocessing, variability and decomposition
feature extraction were implemented using MATLAB 2018a,
and classification experiments were conducted in Python 3.7.
All experiments were performed on a PC with Intel Core i7
CPU, 16 GB RAM, NVDIA GeForce GTX 1080Ti GPU, and
Linux Ubuntu 14.04.

III. RESULTS
A. CHARACTERISTICS OF THE SUBJECTS
Clinical characteristics of all of the subjects are displayed
in Table 4, and the comparative results between the CAD
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TABLE 4. Clinical characteristics of the subjects.

patients and healthy controls are shown in Supplementary
Table 2. The CAD patients were taller (P < 0.05) and had
higher SBP (P < 10−3) compared with the healthy controls.
Meanwhile, the CAD patients had a remarkably increased
prevalence of a smoking history (P < 0.01), hypertension
(P < 10−10), and diabetes (P < 10−6) than the healthy con-
trol group. The concentration of TC was significantly lower
in the CAD patients than in the healthy controls (P < 10−4).
In contrast, the levels of LDL-C and GLU were markedly
higher in CAD patients than in healthy control subjects (P <
10−7 and 0.05, respectively).

B. VARIABILITY FEATURES
Comparative results of the studied HRV and QTV mark-
ers that showed statistically significant differences between
the healthy controls and CAD patients are exhibited
in Tables 5 and 6, respectively. As displayed in Table 5, sig-
nificant differences were expressed by 17 of 31HRV features,
and nearly all of these 17 HRV indices were markedly lower
in the CAD patients than in the healthy controls, except the
relatively high frequency power of HRV (HRVHFn). As dis-
played in Table 6, significant differences were exhibited by
17 of 19 QTV features, and all of these 17 QTV indices
were strikingly higher in the CAD patients compared with
the healthy controls.

C. DECOMPOSITION FEATURES
The TQWT-based decomposition features derived from the
example RR and QT interval time-series are shown in
Figs. 3 and 4, respectively. On the first level, the features
computed from both the RR andQT interval time-series of the
example CAD patient were higher than that derived from the
healthy control. Visually, on the other three levels, there were
more fluctuations among the coefficients obtained from the
CAD patient than in that extracted from the healthy control.

The IE coefficients derived from the example RR and QT
interval time-series are shown in Figs. 5 and 6, respectively.

TABLE 5. Comparative results of studied HRV indices between healthy
controls and CAD patients.

TABLE 6. Comparative results of studied QTV indices between healthy
controls and CAD patients.

As displayed in Fig. 5, on the IMF1 and IMF2 levels, the IE
coefficients of the CAD patient exhibitedmore upward spikes
than that of the healthy individual. However, there were no
visually significant changes between the two subjects on
the IMF3 level. Regarding to the results of the QT interval
time-series (Fig. 6), on all three levels, IE coefficients of the
CAD patient are strikingly higher compared with that of the
healthy control. Detailed coefficients of the healthy control
are shown in Fig. 10.

The IF coefficients derived from the example RR and
QT interval time-series on the basis of HHT are shown in
Figs. 7 and 8, respectively. On the IMF1 and IMF2 levels,
visually, the IF features derived from both the RR and QT
interval time-series of the CAD patient exhibited more down-
ward spikes than that of the healthy control. However, on the
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FIGURE 3. Tunable Q wavelet transform-based decomposition features of
the example RR interval time-series displayed in Figure 2. Shown upper
from a healthy control subject and bottom from a CAD patient.

FIGURE 4. Tunable Q wavelet transform-based decomposition features of
the example QT interval time-series displayed in Figure 2. Shown upper
from a healthy subject and bottom a CAD patient.

IMF3 level, no remarkable differences between the example
two subjects were observed for the IF features of the RR and
QT interval time-series.

FIGURE 5. Hilbert-Huang transform-based instantaneous energy
decomposition features of the example RR interval time-series shown
in Figure 2. Shown upper from a healthy control subject and bottom a
CAD patient.

FIGURE 6. Hilbert-Huang transform-based instantaneous energy
decomposition features of the example QT interval time-series shown
in Figure 2. Shown upper from a healthy control subject and bottom a
CAD patient.

D. CLASSIFICATION
Table 7 shows the classification results in five different sce-
narios. In general, the classification performances of all three
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FIGURE 7. Hilbert-Huang transform-based instantaneous frequency
decomposition features of the example RR interval time-series shown
in Figure 2. Shown upper from a healthy control subject and bottom a
CAD patient.

FIGURE 8. Hilbert-Huang transform-based instantaneous frequency
decomposition features of the example QT interval time-series shown
in Figure 2. Shown upper from a healthy control subject and bottom a
CAD patient.

applied ML methods improved from scenario I to III. A com-
parison between scenarios I and II indicated that the uti-
lization of features derived from QT interval time-series can

achieve better classification results than the utilization of that
derived from the RR interval time-series. Likewise, the com-
parisons among scenarios I, II and III suggested that, for one
thing, the QT interval time-series can provide additionally
helpful information as compared with the RR interval time-
series; for another, the combination of the features acquired
from both the RR and QT interval time-series can achieve
better classification performances than the utilization of that
derived from either the RR or QT interval time-series. Admit-
tedly, a direct analysis of ST–T segment waveforms with
ResNet-18 (scenario IV) did not achieve comparable results
with other four scenarios, but a comparison between the
scenarios III and V suggested the benefit of the utilization of
features derived from ST–T segment waveforms. A possible
interpretation may be that, although the information provided
by the ST–T segment waveform from single-lead ECGs was
limited, it can still potentially be helpful for automated CAD
detection. Based on the classification results of the scenario
V, a novel ECG-based automated system for detecting CAD
was further summarized in Fig. 9.

IV. DISCUSSION
To explore the efficacy of utilizing QT interval time-series
and ST–T segment waveforms for automated diagnosis of
CAD with ML methods, this study primarily constructed a
dataset consisting of related clinical parameters and 5-min
single-lead resting ECGs of 107 healthy controls and 93 CAD
patients. Based on this dataset, simultaneous analyses were
then conducted in five scenarios in which various features
derived from ST–T segment waveforms and the RR and
QT interval time-series were employed. The results showed
that the utilization of decomposition and variability features
derived from the QT interval time-series performed better
than the application of that derived from the RR interval
time-series. The results also indicated that, among the five
scenarios, the best classification performance was achieved
when using a combination of decomposition and variability
features derived from the RR and QT interval time-series,
ST–T segment waveform features extracted by the ResNet-
18 algorithm, and relevant clinical parameters, with 96.16%
accuracy, 95.75% sensitivity, and 96.40% specificity.

The most important finding of the present study was that,
in automated CAD diagnosis by applying ML methods with
single-lead resting ECGs, the utilization of features derived
from the QT interval time-series can enhance classification
performance than the application of that derived from the RR
interval time-series. QTV in body surface ECG is understood
as a measure of ventricular repolarization heterogeneity or
lability [31]. Elevated QTV in CAD patients compared with
healthy subjects has been attributed to a more heterogeneous
final phase of ventricular repolarization due to the reduced
coronary blood flow [39]. Previous research has reported
significant differences between ischemic and non-ischemic
episodes in QTVi and normalized QTV marker, but not in
normalized HRV index [40]. Additionally, ML methods have
been applied to characterize side effects of anti-arrhythmic
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TABLE 7. Results of classification in five different scenarios.

FIGURE 9. block diagram of the system stemmed from the scenario V for ECG-based automated diagnosis of coronary artery
disease (CAD).

FIGURE 10. Hilbert-Huang transform-based instantaneous energy (IE)
decomposition features of the example QT interval time-series of the
healthy control displayed in Figure 2.

drugs on the QT interval, and an excellent agreement has
been observed between QT interval changes predicted byML
models and that observed in a randomized clinical trial [64].
An ML process by applying the GNB model has been devel-
oped to distinguish children with and without long QT syn-
drome (LQTS) [65]. An ion channel-specific ML method
has also been proposed to predict the potential functional
influence of rare KCNQ1 genetic variants, one of the three
major LQTS-susceptibility genes [66]. With above progress
in applying ML algorithms with the QT interval analysis,

enhanced classification results by utilizing features from the
QT interval time-series and ST–T segment waveform in this
study, while preliminary, has important implications for the
clinical application of the QTV analysis and the development
of more comprehensible automated diagnosis of CAD for
cardiologists.

In addition, as a major physiological source of QTV [31],
HRV that reflects the autonomous nervous system (ANS)
activity also influences QTV at the cellular, tissue, and organ
levels [67]. QT intervals are affected by the preceding RR
intervals through the cellular dependency of APD, which
mainly consists of rapid and slow adaptation processes [67].
Decoupling between the RR and QT interval has been found
during myocardial ischemia episodes [31]. In experimentally
induced HF animals, QTV elevation has also been observed
when the sympathetic nerve was activated [31]. Though the
QT–RR relation is important for the QTV analysis, clinical
value of the dynamic response of the QT interval to the RR
interval in the CAD patient remains largely unknown [31].
Further research should be undertaken to explore the efficacy
of utilizing information about the QT–RR relation with ML
models in automatic detection of CAD.

Another important finding was that a comparison between
the classification results in scenario III and IV (Table 7)
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TABLE 8. Model parameter setup.

TABLE 9. Comparative results of clinical characteristics between included healthy controls and CAD patients.

suggested the benefit of utilizing ST–T segment waveforms
in ECG-based automated CAD detection. Clinically, when
ST–T abnormalities are manually detected, the cardiologists
need to take into account many other sources of information
(such as patient descriptions, anamnesis, and symptoms) and
all of the other differential diagnoses [68]. Since myocardial
ischemia-related ST–T abnormalities can also be found in
other cardiac and noncardiac conditions, a diagnosis based
on only ST–T abnormalities might result in high sensitivity
and poor specificity [68]. There are several studies that have
used decomposition features derived from ECGs [16], [25],
as shown in Table 1. The findings from the present study
suggested that a special focus on the ECG segment relevant
to myocardial ischemia may facilitate ECG-based automated
diagnosis of CAD. Despite this promising finding, further
work is required to develop a full picture of the advantages
of applying ST–T segments with ML algorithms.

Our study has several limitations. A dataset with a larger
subject population would certainly improve the results. Since
subjects older than 75 years old were excluded in the present
study, an extension on subjects with advanced ages would
also enhance the implications of this study. The investigation
was conducted on CAD patients without MI, in comparison

to healthy control subjects; thus, our findings might not be
applicable to MI patients. The findings were only tested on
the constructed database. Validation on other datasets would
definitely further confirm the usefulness of ST–T segment
waveforms and QT intervals in ECG-based automated CAD
detection. The possibility of medication effects on the results
cannot be excluded. The QT and RR interval time-series
derived from only 5-min single-lead ECGs were used in this
work. The utilization of 12-lead or long-term ECGs would
extend the clinical applications of our findings. Considering
that the T-wave end determination is still a challenge, the QT
interval measurement error might result in excess noises and
further impact the results.

V. CONCLUSION
To explore the efficacy of the information derived from
QT interval time-series and ST–T segment waveforms
in ECG-based automated CAD detection, this study first
constructed a dataset which consists of related clinical char-
acteristics and 5-min single-lead resting ECGs of 107 healthy
controls and 93 CAD patients. Based on this dataset, simul-
taneous analyses were then conducted in five scenarios,
in which differentMLmodels were applied to classify the two
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groups using various features derived from the RR and QT
interval time-series and ST–T segment waveforms. Decom-
position and variability features were extracted from the RR
and QT interval time-series, and a deep learning model,
ResNet-18, was applied to extract ST–T segment waveform
features. The classification results showed that better classifi-
cation results were observed utilizing features extracted from
the QT interval time-series compared with utilizing those
derived from the RR interval time-series. The best classifi-
cation results were achieved using a combination of above
features derived from the RR and QT interval time-series
and the ST–T segment waveforms, with 96.16% accuracy,
95.75% sensitivity, and 96.40% specificity. Based on the
best results, a novel automated diagnostic system for CAD
was developed. Our study results suggest that the features
extracted from QT interval time-series and ST–T segment
waveforms have potential in automated detection of CAD
based on single-lead resting ECGs and ML methods.

APPENDIX
See Tables 8 and 9.
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