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ABSTRACT Surface electromyography (sEMG) signals can reflect the body motion information and are
widely used in military, medical rehabilitation, industrial production. The lower limb motion classification
mainly includes feature extraction and classification model establishment. Firstly, we proposed a feature
extraction method based on the wavelet packet transform (WPT) and principal component analysis (PCA).
We used the wavelet packet method to decompose the sEMG signals of three muscles in the lower
limb and got the 24-dimensional eigenvector. To reduce the calculation and improve the speed of the
classification model, we used the PCA method to reduce the dimension of the feature vector and got the
3-dimensional eigenvector. Then, we proposed a method based on the scale unscented Kalman filter (SUKF)
and neural network (NN) for lower limb motion classification. Through the scale correction unscented
transform (SCUT) could optimize the neural network weight and improve lower limb motion classification
accuracy. Finally, the experimental results showed that the average accuracy was 93.7%. Compared with the
backpropagation neural network (BPNN) and wavelet neural network (WNN), this method could improve
the accuracy and reliability of the lower limb motion classification.

INDEX TERMS sEMG signals, lower limb motion classification, feature extraction, wavelet packet
transform, principal component analysis, unscented Kalman filter, neural networks.

I. INTRODUCTION
The sEMG is the bioelectric signal produced by muscle activ-
ity. It contains much information about muscle activity and
has the advantages of noninvasive recording [1]. In recent
years, it has become a research hotspot in human-machine
integrated intelligent equipment [2].

For example, rehabilitation training robots, boosting
exoskeleton robots, and intelligent prosthetics [3]–[5]. But,
the sEMG classification is very complex because of its non-
linearities and instability [6]. During the motion of the lower
limbs, the sEMG is susceptible to interference [7], [8]. It is
difficult to extract the feature that can accurately reflect
the lower limb motion, and the established classification
model is not reliable. Therefore, this paper focuses on the
new method of feature extraction and classification model
establishment.

The associate editor coordinating the review of this manuscript and

approving it for publication was Filbert Juwono .

In the process of the sEMG feature extraction, many
researchers used the time or frequency analysis methods
to extract feature vectors from sEMG signals [9]–[13].
For example, sEMG amplitude, root mean square (RMS),
zero-crossing (ZC), autoregressive-coefficient, mean abso-
lute value (MAV), fourier transform coefficient, cepstrum-
coefficients, peak frequency, and median frequency analysis
methods [14], [15]. However, the time-domain or frequency-
domain analysis can’t completely describe the change of
the sEMG signal [16]. Recent studies have shown that
the time-frequency analysis can extract more sEMG fea-
ture information [17]–[19]. Such as C. Sravani proposed
flexible analysis wavelet transform(FAWT) to decompose
the sEMG signal into 8 sub-bands, and extracted negative
entropy, mean absolute value (MAV), variance (VAR), mod-
ified mean absolute value type 1 (MAV1), waveform length
(WL), simple from the sub-bands features of squared inte-
gral (SSI), tsallis entropy, integral electromyography (IEMG)
as feature vectors [20]. S. Chada proposed an algorithm
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based on the adjustable Q-factor wavelet transform (TQWT),
which decomposed the signal into 8 sub-bands features [21].
Xugang Xi proposed a feature extraction method based on a
coherence analysis, which used wavelet transform to extract
a 32-dimensional wavelet coherence coefficient (WCC) as
feature vectors [22]. Although the above research could
improve the classification accuracy of the lower limb motion,
they generate high-dimensional feature vectors, which easily
introduce noise interference and reduce the stability of the
model. Therefore, we proposed a feature extraction method
based on the wavelet packet transform and PCA to reduce
the dimension of feature vectors and extract stable feature
vectors. Firstly, the wavelet packet transform was used to
extract the energy features, and then the PCA method was
used to rank the importance of the feature values to reduce
the raw feature vector dimension.

In the process of classification. The sEMG signals have
complex nonlinearity, strong coupling, and dynamic time-
varying characteristics [23]. Researchers have mainly stud-
ied linear discriminant analysis, bayesian networks, neural
networks, multilayer perceptrons, fuzzy approximation, sup-
port vector machines, fuzzy neural systems, backpropagation
neural networks, and wavelet neural network classification
methods [24]–[27]. Since the neural network has strong non-
linear approximation performance and the ability to handle
unknown internal mechanism problems [28], [29], which is
suitable for complex lower limb motion classification. How-
ever, in the process of complex lower limb motion classifi-
cation, the neural network model needs to learn iteratively
during the training process, resulting in slow convergence
and easily fall into a locally optimal solution. Therefore,
the accuracy of the model needs to be improved. In recent
years, the unscented Kalman filter is a new filter estimation
algorithm, which has been applied by researchers to adaptive
control of exoskeleton [30], [31]. Therefore, we applied the
UKF algorithm to lower limb motion classification and used
the scale correction to improve the UKF filtering accuracy.
Hence, we proposed a scale unscented Kalman neural net-
work (SUKFNN) lower limb motion classification method,
which improved the stability and classification accuracy.

As far as the author knew, the wavelet packet transforms
combined with the PCA feature extraction method and scale
unscented Kalman neural network classification method pro-
posed in this paper was the first time applied to the lower limb
motion classification.

In this study, we collected the three muscles’ sEMG signals
and extracted the time-frequency domain features using the
wavelet packet. For the raw feature vector, we used the PCA
method to extract the stable feature information as the input
of the classification model. The traditional feature extraction
methods were compared and analyzed through the feature
evaluation methods. We proposed a SUKFNN method to
establish a lower limb motion classification model to classify
five movements. The proposed classification algorithm was
also used to compare with the BPNN classification method
and the WNN classification method.

FIGURE 1. The biometrics wireless sEMG sensor system.

This paper was organized as follows. The second part
described the acquisition of the sEMG signals. The third
part introduced a new method for feature extraction. The
fourth part introduced the design of the classification model.
The fifth part gave the analyzed results. The sixth part gave
conclusions and follow-up work.

II. sEMG ACQUISITION
The sEMG signals is a bioelectrical signal recorded from
the surface of the human skeletal muscle through surface
electromyography electrodes, which is related to neuromus-
cular activity and contains much information related to limb
motion. The different limb movements have different muscle
contraction patterns, and the features of myoelectric signals
will also be different. By analyzing these features, different
movement patterns of the limbs can be distinguished.

We used an sEMG acquisition system developed and
manufactured by Biometrics UK to collect sEMG sig-
nals, as shown in Figure 1. The sampling frequency was
2000 Hz, and the amplifier’s input impedance was greater
than 100MOhms. The experimental computing platform pro-
cessor was Intel(R) Core (TM) i7-9750H CPU@ 2.60GHz,
the memory was 16G, and the data analysis software was
MATLAB2015b.

We chose five common movements of lower limbs: hori-
zontal walking (HW), crossing obstacles (CO), standing up
(SU), downing the stairs (DS), and going up the stairs (GU).
The literature [10] showed that medial gastrocnemius (MG)
is helpful for walking and running, while lateral femoral
muscle (VL) and semitendinosus muscle (ST) has the func-
tions of bending the knee and extending the hip. Therefore,
we selected the above three muscles as the source of the
myoelectric signal acquisition, as shown in Figure 2.

We used three sEMG sensors to classify five lower limb
movements. That were HW, CO, SU, DS, and GU, as shown
in Figure 3.

We selected five healthy subjects to participate in the
experiment: 23, 23, 25, 26, 24 years old. Their body fat rate
for 17 ± 3% and height for 170 ± 5 cm. All the healthy
subjects performed the above five lower limbmovements, and
eachwas cycled in the form of ‘‘relaxation-action-relaxation’’
with a completion time for two seconds. The five movement
tests were performed for each subject, and each subject tested
500 sets. A total of 2500 sEMG signals were collected to
verify the effectiveness of the algorithm.
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FIGURE 2. The sEMG signal sensor location. The Channel A was located in
the thigh semitendinosus (ST), The Channel B was located in the lateral
thigh muscle (VL), The Channel C was located in the gastrocnemius (MG).

FIGURE 3. The five movements of the lower limb. (a)HW. (b)CO. (c)SU.
(d)DS. (e)GU.

III. ALGORITHM DESCRIPTION
We proposed a new feature extraction algorithm based on the
wavelet packet transform combined with the PCA method.
Firstly, we used energy to extract complex sEMG signals to
obtain energy eigenvectors. Then, through the PCA method,
the feature vector dimension was reduced. Finally, we pro-
posed an sEMG signal classification method based on a

scale unscented Kalman neural network and given the design
process of the SUKFNN algorithm.

A. EFFECTIVE FEATURE EXTRACTION
The wavelet analysis only decomposed the low-frequency
space but did not decompose the high-frequency interval
containing a lot of details. The wavelet packet analysis
decomposed the high-frequency part, which could improve
the time-frequency resolution.

We used wavelet packet transform to extract sEMG sig-
nal features. Firstly, decomposing the raw signal into layer
j(j = 3) and get 2j subspaces of the same bandwidth.

snj (t) =
∑
k

Dj,nk 9j,k (t), k ∈ Z , n = 0, 1, . . . , 2j−1 − 1

(1)

where the Dj,nk was wavelet decomposition coefficient of
subspace, the 9j,k (t) was wavelet basis function, the k was
the number of sampling points, and the n was the number
of subspaces, as 8. The sum of the squared wavelet packet
coefficients in the subspace was the energy of the sub-signal,

as En =
∑
k

∣∣∣Dj,nk ∣∣∣ 2.The sum of the energy of all sub-

signals was the total energy of the sEMG signal, as E . The
wavelet packet energy Pn was the probability of the energy
distribution of the signal in each subspace and as defined as
Pn = En/E . The wavelet packet energy entropy was defined
as WPEE = −

∑
n
Pn lnPn. We calculated the wavelet packet

energy entropy for different movements to obtain the feature
value.

The different wavelet basis functions reflected different
characteristics for the sEMG signal. Therefore, we chose a
dmey wavelet basis function similar to the raw signal to
extract sEMG signal features. The raw signal was shown
in Figure 4. We used the dmey basis function to decom-
pose the raw signal into three layers and used three sEMG
sensors to obtain a 24-dimensional feature vector. As shown
in Figure 5.

We used the wavelet packet decomposition to obtain the
sEMG eigenvectors, but some eigenvalues in the vector could
not accurately reflect the change of the sEMG signals. If that
were brought into the classification model, it would reduce
the classification model accuracy. The PCA method could
linearly transform a set raw vector into a set vector with fewer
eigenvalues. These eigenvalues represented the most relevant
information in the raw vectors.

Therefore, we used the PCA method to reduce the redun-
dant information in the raw feature vector and improved the
classification model accuracy. As shown in Figure 6, we used
the PCA to reduce the three channels’ 24-dimensional eigen-
vectors. According to the PCA method, we ranked the
importance of the raw features and selected the top three fea-
tures to form a 3-dimensional feature vector. Then, we used
the 3-dimensional feature vector as the input vector for the
classification model.
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FIGURE 4. The sEMG raw signal, X-axes was the sampling point, Y-axes
was the sEMG voltage amplitude.

B. ALGORITHM DESIGN
Since the neural network has a strong nonlinear fitting ability,
it is widely used in modeling and optimization of complex
nonlinear systems [12], [22], [28]. However, the sEMG signal
of the lower limb has complex nonlinearity, strong coupling,
and dynamic time-variation, resulting in the lack of stability
of the neural network model. In recent years, the hot research

FIGURE 5. Three-layer wavelet packet decomposition feature extraction.
(a) The dmey wavelet basis function, X-axes was the sampling point,
Y-axes was the signal amplitude. (b) Eight segments of decomposed
signals were obtained by three-layer wavelet packet decomposition,
X-axes was the sampling point, Y-axes was the sEMG voltage
amplitude.
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FIGURE 5. (Continued.) Three-layer wavelet packet decomposition
feature extraction. (c) The feature vector of three muscles.

FIGURE 6. The sEMG feature extraction algorithm flow.

direction to solve nonlinear estimation is to use the unscented
Kalman filter (UKF) algorithm [30], [31]. Therefore, we used
the UKF algorithm to dynamically optimize the weights
of the neural network, enhancing the adaptive ability and
improving the accuracy of the model.

Since the UKF algorithm uses the symmetric sampling
strategy, it needs to calculate many sampling points, which
is easy to produce non-local effects of sampling. That will
lead to low accuracy of neural network weight estimation.

Therefore, we applied the scale modified sampling strat-
egy to symmetric sampling and proposed a scale unscented
Kalman neural network (SUKFNN) to improve classification
accuracy.

The SUKFNN structure was a three-layer neural network.
Where the I is input node of the network, and the O is output
node. The l is a constant greater than 1 and less than 10.
In the process of the WNN and BPNN classification, the
enumeration method was used to determine the training times

FIGURE 7. Three-layer SUKF neural network structure.

were set to 5000, and the learning rate was 0.01, the training
error was 0.00, according to equation 2, the node in the hidden
layer of the neural network was determined to be 12.

H =
√
I + O+ l (2)

The transfer function selected by the hidden layer was
a nonlinear unipolar excitation function was Sigmoid . The
output layer transfer function selected a linear function was
Purelin, which could output an arbitrary value. As shown
in Figure 7.

We used the UKF filtering algorithm to correct the three-
layer neural network connection weights. The input of the
neural network was X , constructing the state equation of the
UKF filtering algorithm. The output of the neural network
was taken as its measurement equation. Therefore, the state
equation and observation equation for the UKF algorithm
was:

wk+1 = wk + ωk (3)

yk = fk (wk , xk )+ vk (4)

where the wk was weight, the xk was input vector, the yk was
output of the neural network. the fk was transfer function of
the neural network. ωk , vk were input noise and measurement
noise of the neural network. All were obeying the mean
value of 0, and the variance was the normal distribution
of RW ,RV .

We assumed that the random variable formed by the weight
of the neural network was X . The initialization expectation
and covariance were X and Px , respectively. The correction
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algorithm as follows:

χi =


X + (

√
(D+ λ)Px)i, i = 1, . . . .,D

X − (
√
(D+ λ)Px)i, i = D+ 1, . . . .., 2D

X , i = 0

(5)

where the D was dimension of weight and the χi defined as
Sigma. The λ was defined as follows:

λ = α2(D+ κ)− D (6)

where the α was a scale factor and could adjust the distance
between the Sigma and the X . The value of α was 0.01. The
κ was a scaling parameter, set to 0.
Through we proposed a scale sampling correction algo-

rithm, the low filtering accuracy due to the high dimension-
ality of the state variable was solved.

We designed the steps of the SUKFNN algorithm as
follows:
(1) Initializing the neural network weights and

covariances.

x0 = E[x0] (7)

Po = E[(x0 − xo)(x0 − x0)T ] (8)

(2) Calculating points set the χi,k−1 and the weighting
parameters ωmi , ω

c
i .

χk−1=
⌊
x̄k−1 x̄k−1+

√
(D+λ)pk−1x̄k−1−

√
(D+ λ)pk−1

⌋
(9)

ωmi =

{
λ/D+ λ, i = 0
1/2(D+ λ), i = 1, . . . , 2D

(10)

ωci =

{
(λ/D+ λ)+ 1− α2 + β, i = 0
1/2(D+ λ), i = 1, . . . , 2D

(11)

Through experimental verification, the value of β was 2.
(3) Updating the time through the state of the neural net-

work and the measurement equation.

χi,k|k−1 = χi,k−1 (12)

xk,k−1 =
2n∑
i=0

ωmi χi,k|k−1 (13)

Pxk,k−1 =
2n∑
i=0

ωci [χi,k|k−1 − x i,k|k−1]

× [χi,k|k−1 − x i,k|k−1]T + Qk (14)

γi,k|k−1 = f (χi,k|k−1) (15)

yk,k−1 =
2n∑
i=0

ωmi γi,k|k−1 (16)

(4) Calculating the covariance of the weight variable and
the output variable.

Pyk =
2n∑
i=0

ωci [γi,k|k−1 − yk,k−1][γi,k|k−1 − yk,k−1]
T
+ Rk

(17)

Pxk,yk =
2n∑
i=0

ωci [χi,k|k−1 − xk,k−1][γi,k|k−1 − yk,k−1]
T (18)

where theQk was covariance of process noise and the Rk was
covariance of measurement noise.

Qk = E[ωkωTk ] (19)

Rk = E[vkvTk ] (20)

(5) Calculating the filter gain.

Kk = Pxk |ykP
−1
yk (21)

(6) Updating the neural network weight state estimates and
covariance.

xk = xk,k−1 + Kk (yk − yk,k−1) (22)

Pxk = Pxk,k−1 − KkPykK
T
k (23)

We used the UKF filtering algorithm to optimize the neural
network weight parameters and proposed a scale correction
algorithm to solve the UKF filtering divergence problem
caused by the high dimensional features.

IV. RESULTS
We compared the mean value (MAV), root mean square
(RMS), wavelet transform coefficient (WTC), and the
improved wavelet packet transform. The MAV, RMS and
WTC were popular methods for sEMG feature extrac-
tion [14], [15], [17]–[19].

In the time domain, the sEMG could be approximated as
a random signal with a mean value of 0. The mean absolute
value (MAV) was defined as:

MAV =
1
N

N∑
i=1

|xi|, i = 1, 2, 3, . . . ,N (24)

where the xi was sample data, theN was sample length, which
was 4000.

We calculated the MAV eigenvalues for the three muscles
to obtain 3-dimensional eigenvectors.

The root mean square (RMS) was a typical feature param-
eter in the time domain analysis. It was used to measure the
trend for SEMG signals. The root mean square was defined
as:

RMS =

√√√√ 1
N

N∑
i=1

x2i , i = 1, 2, 3, . . . ,N (25)

where the xi was sample data, the N was the sample length,
which was 4000.

We calculated the RMS eigenvalues for the three muscles
to obtain 3-dimensional eigenvectors.

The wavelet transforms coefficient (WTC) is a time-
frequency analysis method. Xugang Xi decomposed the raw
signal into five-layers and selected the maximum wavelet
coefficient as the sEMG signal feature [22].

WTCj =

√√√√ 1
K

K∑
k=1

W 2
j,k (26)
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FIGURE 8. (a) Scatter plot for five different motion features extracted using the wavelet packet and PCA.
(b) Scatter plot for five different motion features extracted using the MAV. (c) Scatter plot for five different
motion features extracted using the RMS. (d) Scatter plot for five different motion features extracted using the
WTC.

where the WTCj is the coefficient of wavelet energies. The
K is the number of the j-th layer decomposed coefficient.
The Wj,k is the k-th coefficient of the j-th layer decomposed
coefficient.

We calculated the WTC eigenvalues for the three muscles
to obtain 3-dimensional eigenvectors.

A. EVALUATION OF WAVELET PACKET COMBINED WITH
PCA METHOD FOR FEATURE EXTRACTION
Figure 8(a) was an sEMG feature scatter plot using
an improved wavelet packet feature extraction method.
The results were compared with the scatter plot for
the RMS (Figure 8(b)), the MAV (Figure 8(c)), and

the WTC (Figure 8(d)). Figure 8(a) has the best
performance.

The Euclidean distance (ED) was used to measure the dis-
tance for sample features. The longer the distance, the greater
the difference between sample features. The Standard devi-
ation (SD) was used to measure the dispersion for sample
features. The smaller the standard deviation, the more stable
the sample features. When the ED value was high, and the SD
value was low, we could extract the best feature value.

We used the ratio between ED and SD that we called RES
index as a feature statistic measured metrics. The ED(m, n)
was defined as

ED(m, n) =
√
(m1 − n1)2 + (m2 − n2)2 (27)
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TABLE 1. Statistical metrics for feature extraction algorithms.

FIGURE 9. The classification accuracy for the different algorithms.

where the m and n represented two of the three feature sets.
The SD was defined as

SD =

√∑NW
w=1 (rw − σ )

2

NW
(28)

where the rw represented eigenvalue and the NW represented
feature set size (NW = 50). The RES index was defined as

RES(m, n) =
ED(m, n)

SD
(29)

Also, we standardized the features. Then calculated the
RES index. The normalization for features Fnorm was per-
formed, it was defined as:

Fnorm =
F +min(F)

max(F +min(F))
(30)

The results showed that the RES index of the WPT com-
bined with PCA was 6.82, 9.65, and 6.74, respectively, which
was higher than RMS, MAV, and WTC methods, proved that
the improved WPT has the best class separability.

B. RESULTS ANALYSIS
We collected sEMG signals of the three muscles in the lower
limbs of five healthy subjects. That was divided that into
training samples and testing samples, which were 2000 and
500 samples, respectively. We trained three models with
2000 samples and selected 100 testing samples of each sub-
ject to verify the accuracy of five lower limb movements.

Since the WNN and BPNN were common methods of the
sEMG signal recognition research [24], [26], [27], We used
the WNN and BPNN to classify the five movements of
the lower limb. The classification accuracy was shown
in Figure 9. The SUKFNN model average accuracy

FIGURE 10. Box plot of the classification model.

TABLE 2. Average accuracy rate and standard deviations for three models.

was 93.7%. The WNN model average accuracy was 90.7%.
The BPNN model average accuracy was 89.3%. The mini-
mum accuracy of the SUKFNNmodel was 91.36%, theWNN
model was 87.34%, and the BPNNmodel was 85.79%. It was
proved that the SUKFNNmodel average accuracy was higher
than the WNN model and BPNN model.

We plotted a box diagram to visually describe the model
accuracy, as shown in Figure 10. The results showed that the
SUKFNN accuracy was higher than WNN and BPNN. The
dispersion for SUKFNN was lower than WNN and BPNN.
It was proved that the SUKFNN model has high stability.

Also, the robustness and real-time was an important metric
to evaluate the performance for the algorithm, so we calcu-
lated the standard deviation, average accuracy, and computa-
tional cost according to the results in Figure 9. Table 2 that
the SUKFNN was more stable than the BPNN and WNN.
The classifier SUKFNN with WPT features resulted in the
calculation time below 500ms.

The confusion matrix was an important method to evaluate
the accuracy and reliability, which could help us understand
the classification performance. The classifier with a low
false-positive rate could avoid falling due to the wrong classi-
fication of the motion, which was helpful to enhance the prac-
ticability and safety of the exoskeleton. This paper selected
1500 testing samples to calculate the confusion matrix for
the three algorithms and verified the proposed method’s
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TABLE 3. SUKFNN model confusion matrix.

TABLE 4. WNN model confusion matrix.

TABLE 5. BPNN model confusion matrix.

TABLE 6. Sensitivity metrics of the three Models.

advanced nature. Table 3 showed the confusion matrix for
the SUKFNN model. The classification accuracy of horizon-
tal walking (HW) was the lowest, being 90.5%. The false-
positive rate was 6.3%. Table 4 showed the confusion matrix
for the WNN model. The accuracy for motion classification
of the standing up (SU) was the lowest, being 88.7%. The
false-positive rate was 4.6%. Table 5 showed the confusion
matrix for the BPNN model. The accuracy for the horizontal
walking (HW) was the lowest, being 87.6%. It was easy to
misjudge the motion for the walking upstairs (GU), and the
false-positive rate was 5.4%. Also, the false-positive rate for
the SUKFNN model was lower than the WNN model and
BPNN model. It was proved that the algorithm proposed in
this paper has high accuracy and reliability.

The sensitivity metrics was an important parameter to eval-
uate reliability.We selected 1200 testing samples to verify the
sensitivity of the three models. Table 6 showed the sensitivity
metrics for the SUKFNN model, WNN model, and BPNN
model. The SUKFNN model has higher sensitivity. It was
proved that the SUKFNN model has a lower false-positive
rate and better reliability than the WNN model and BPNN
model.

Furthermore, we selected a female subject with a height
of 155cm and an age of 25 years. Then we collected 100 sam-
ples as the testing samples. Because of the difference between
the new subjects and the five subjects, the accuracy of the
new subjects was lower than the five subjects. However,

TABLE 7. Classification results of the three models.

the overall accuracy of the SUKFNN was still better than
WNN and BPNN. As shown in Table 7.

We compared the results to demonstrate the effectiveness
of our algorithm, as shown in Table 8. In these studies,
most researchers used more sEMG sensors to classify lower
extremity motions. From Table 8 that at least four muscle
sEMG signals need to be acquired to classify five lower limb
motions. However, we only need three sensors to classify five
lower limb motions, and the accuracy reaches 93.7%.

V. DISCUSSION
In this paper, we proposed the feature extraction method
based on the improved wavelet packet transform and a lower
limbmotion classification method based on SUKFNN. As far
as the author knew, this algorithm was the first time applied
to the lower limb motion classification.

In many studies, the lower limbmotion classification accu-
racy was improved by increasing the number of electrodes
[7], [9], [11], [13], [14], [29]. However, in the actual lower
limb movement process, the sEMG sensor will be disturbed
by noise, the more sensors will lead to the instability for clas-
sification accuracy, and the wearer will also feel uncomfort-
able. Secondly, with the increase in the number of electrodes,
more data dimensions must be processed, and the calculation
will increase. Therefore, this paper collected three muscle
sEMG signals in the lower limb, which was in accord with
the typical lower limb exoskeleton application.

Most studies have classified more than three different
movements of the lower limbs and achieved an accuracy
of 86%∼95%. In this paper, we used three sEMG sensors to
classification five lower limb movements, and the accuracy
could reach 93.7%. Since the complexity in sEMG signal cal-
culation, the accuracy and reliability will have an important
impact on the practicability for the lower limb exoskeleton.
In this paper, the SUKF filtering algorithm was used to esti-
mate the weight of the neural network, which solved the slow
convergence speed and easily fell into local optimal value.
Also improving the adaptive ability of the model.

The advantages of the proposed method were verified
offline. In the future, this method can classify various move-
ments for lower limbs online. Considering the algorithm’s
application in the exoskeleton, we first set the online acqui-
sition time to obtain the sEMG signal. Then the raw sig-
nal features were extracted, and the classification results
were given by classifier. Finally, the classifier’s results were
inputted the controller as control signals, and the exoskeleton
performs corresponding actions according to the control sig-
nals. Among them, from feature extraction to classification,
the computational cost does not exceed 500ms, as shown
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TABLE 8. This paper proposed a comparison of lower limb motion classification algorithms with other classification methods.

in Table 2. To prove that this method was suitable for more
people, the next study will analyze the influence of different
age and gender on the classification accuracy.

Also, the interference to the environment noise (electrode
deviation and power frequency interference) and muscle
fatigue can be considered in practical application to verify
the algorithm’s autonomous learning and model adjustment
ability.

VI. CONCLUSION
We proposed a method for lower limb motion classifica-
tion based on improved wavelet packet transform and scale
unscented Kalman neural network. Firstly, the wavelet packet
transform was used to extract the energy features of the
sEMG signal from the three channels, and the feature was
reduced by the PCA method. Then we proposed a scale
unscented Kalman neural network to classify five movements
of the lower limb. We proposed a RES feature extraction
evaluation method, compared with traditional feature extrac-
tion methods, which proved that we proposed the wavelet
packet combined with the PCA feature extraction method
has better feature correlation and separability. Experimental
results showed that the SUKFNN had achieved excellent
performance, the model has a low false-positive rate, and
the average classification accuracy was 93.7%. Its stability
and accuracy are higher than WNN and BPNN algorithms,
which proved that the method is advanced, reliable, and prac-
tical. This study is beneficial to the widespread application
of exoskeleton robots in daily life. Also, in future research,
we can increase the diversity of lower limb movements and
improve the accuracy of lower limb movement classification.
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