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ABSTRACT Despite their rapid growth, the utilisation of application programming interfaces (APIs) poses
challenges for companies under pressure to yield productive systems integration. APIs of larger systems
tend to be large, complex and have reduced modularity and quality, which makes them cumbersome to
comprehend and use. These challenges can be addressed by static API analysis that focuses on studying
API code itself and deriving business entities and dependencies from operational signatures. However,
existing techniques for static analysis of APIs face the challenges in deriving a sufficient coverage of
business entity relationship types from implementation-oriented API operational signatures carrying limited
semantic insights. The paper aims to address such problems by supporting static analysis techniques for
APIs that improve their modularity. Our approach adopts an object-oriented paradigm where the concept of
‘‘object’’ is exemplified by the notion of business entity. It systematically applies interface analysis methods
and techniques for eliciting knowledge of business entities and their attributes, for deriving the temporal
order of calling operations across multiple business entities, and for learning and extracting various ways
of invoking a service via APIs. The approach is implemented as an open-source tool and applied to a group
of widely-deployed services in practice for validation. The research contributes to identifying key aspects
of both the structure and behaviour of APIs, which will lead to building a simplified but comprehensive
interface (presentation) layer to assist service users in understanding complex and overloaded interfaces as
well as to facilitate efficient and effective service integration.

INDEX TERMS Application programming interfaces, APIs, business entity, service interface analysis,
service interface synthesis, service variants, web services.

I. INTRODUCTION
Web-based application programming interfaces (APIs) are
critical for enabling organisations to open up software appli-
cations through partner ecosystems and the Internet. APIs
provide operational signatures to create, read, update and
delete data, related to business (or logical) entities, man-
aged in software applications, without revealing the software
implementation that supports the operations. Their descrip-
tions captured through widely supported interface description
languages in Web Services Definition Language (WSDL)
and Representational State Transfer (REST) API combined
with the encapsulated nature of operations they expose, pro-
mote flexible ways of accessing and composing software
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applications. The significance of APIs can be seen through
their support in Internet platforms, e.g. Facebook, Twitter,
YouTube, Amazon, eBay and Google Cloud Platform, as well
as enterprise systems prevalent in corporate sectors, e.g. SAP
Business Hub and Oracle Peoplesoft APIs. Moreover, central
API repositories, such as Programmable Web with around
19,000 APIs, are fuelling strategic interest in APIs as evident
by the notion of the API Economy [1].

Despite their rapid growth, the utilisation of APIs poses
challenges for companies under pressure to yield produc-
tive systems integration [2]. Their specifications are essen-
tially technical and the user documentation is targeted at
programmers, if available at all [3]. APIs of larger sys-
tems, especially, tend to be large, complex and have reduced
modularity and quality, given many maintenance cycles of
systems. This makes them cumbersome to comprehend and
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use. As examples, WSDL-based APIs of SAP and Ora-
cle enterprise resource planning (ERP) systems have up to
three hundred parameters per operation and multiple levels
of nesting while FedEx’s shipment service API has around
1000 parameters and 9 levels of nesting [4].

Techniques have been proposed to automatically analyse
APIs, reverse-engineer structural and behavioural properties,
and make recommendations for improvement. Many tech-
niques have focused on dynamic analysis, which concerns
the mining of executed API interactions recorded in systems
logs (such as send/receive interactions on operations and
the data payload). The service deployment data recorded
in systems logs can also be used to analyse non-functional
requirements of APIs. One aspect of dynamic API analysis
is deriving message formats of APIs [5], given that API
documentation may be missing, incomplete or inaccurate
regarding specific usage details. Another aspect is deriving
message correlations in service interactions (e.g., a set of
sales orders are related to a delivery order and a set of delivery
orders are related to an invoice). In [6], message correlations
are based on casually related request-response interactions,
through which different messages are passed (e.g., sales
order and delivery order). Other aspects involve discovery
of service interaction processes [7], [8] based on operation
sequences involving correlated messages, i.e., discovery of
service orchestration/choreography. Finally, the derivation of
business entities inherent in message types of API services
and their dependence can be inferred via analysis of log
data [9].

More recently, techniques have been developed for static
analysis of APIs. The static API analysis techniques target
procedural APIs and WSDL specifically. This is because this
style of API is the oldest and most difficult to comprehend,
use, and improve for quality. Procedural APIs have param-
eters which are based on simple and complex (nested) data
types, and lack data structure abstractions. As such, they
pose the greatest challenge for static API analysis techniques,
especially for the large sized operational signatures (in the
realm of hundreds of parameters). Existing techniques focus
on analysing API code itself and deriving business entities
and dependencies from operational signatures. Specifically,
they use heuristics for parameter cohesion [10] to identify
business entities, entity co-location in operations, and oper-
ation input and output dependencies to derive business entity
relationships [11]. This knowledge can be used to assess
problems of operation overloading and to make recommen-
dations for improved modularity, where operations concern
individual entities only. This is beneficial not only for improv-
ing flexible API access and composition, but also for evolving
older, procedure-oriented WSDL APIs into more contem-
porary document-oriented WSDL or REST APIs. Extracted
structural and behavioural properties from code can further
improve the productivity of semantic tagging of APIs based
on ontologies, to improve their search and access. In addi-
tion, static API analysis can help contextualise dynamic
analysis of execution data, e.g., for improved insights into

operational dependencies, based on business entity relation-
ships, and data exchange analysis. To date, the challenge of
static API analysis can be summarised as deriving a suf-
ficient coverage of business entity relationship types from
implementation-oriented API operational signatures carrying
limited semantic insights.

This paper provides a state-of-the-art exposition of static
API analysis. It aims to address the complexity of APIs by
proposing a systematic approach that supports static analysis
of API specifications for improved modularity. The approach
builds on the notion of business entity and systematically
applies interface analysis methods and techniques for elic-
iting knowledge of business entities and their attributes, for
deriving the temporal order of calling operations across mul-
tiple business entities, and for learning and extracting various
ways of invoking a service via APIs. It is implemented and
applied to a group of widely-deployed services in practice for
validation. The research contributes to identifying key aspects
of both the structure and behaviour of APIs, which will lead
to building a simplified but comprehensive interface (presen-
tation) layer to assist service users in understanding complex
and overloaded interfaces as well as to facilitate efficient and
effective service integration.

The research presented in this paper draws upon and
extending the techniques developed from our previous con-
tributions [12]–[14]. An earlier version of our method for
extracting business entities from a service interface specifica-
tion was proposed in [12], and our initial findings in deriving
the potential temporal order of operations that may be carried
out by different business entities was reported in [13]. In [14],
we presented a service variant analysis technique which can
be used to compute different ways of invoking a service
based on the service’s business entity model, and no further
extension is made to this technique in our current study.
However, given that this technique is an important part of
the overall systematic approach that we propose for static
analysis of Web APIs, a short introduction to the technique
published in [14] is included in the paper. Furthermore, hav-
ing a complete proposal of our systematic approach allows us
to present an overall tool implementation of the approach and
its application to several services that are widely deployed in
practice.

It is also worth noting that our approach focuses on
using WSDL as a specific procedural API language. The
choice of WSDL is twofold. Firstly, it is the most prominent
API description language and was designed as an indepen-
dent (API) definition language inspired by the CORBA IDL
specification. It maps into different languages such as Java,
RFC API, PHP (SoapClient). Importantly, previous static
API analysis techniques focused on procedural APIs and
WSDL specifically (e.g., [15]–[19]). Another reason that
our techniques have not supported REST API is that it is
not a procedural language, as the data types are reflected
through resources. As such, REST API fosters modular
design of APIs. There are other issues that can arise through
REST APIs, such as consistency of resource structure and
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decomposition addressed through research into REST API
anti-patterns by Palma et al. [20]. However, the problem that
we have specifically addressed is extracting entities from
overloaded API operation signatures with parameters that
relate to multiple entities or multiple variants of the same
entity. Such over-loading is less of a concern for REST APIs
given that HTTP CRUD operations (e.g., POST, GET, PUT,
DELETE) manipulate data through resource abstractions.

The rest of the paper is structured as follows. Section II
elaborates the research motivation via an exemplar scenario
and states the research problem. Section III presents our
approach consisting of three key building blocks, namely
structural interface analysis, behavioural interface synthesis,
and service variants analysis. Section IV discusses evaluation
of the approach via the implementation of a prototypical tool
and the experiment results of applying the tool to a group
of widely-deployed services in practice. Section V reviews
existing studies on API analysis. Section VI concludes the
paper and outlines the future work.

II. PROBLEM STATEMENT
Let us start with a motivating example about a shipping
service. A manufacturing company called Smith Brothers (a
fictional name) wished to incorporate a shipment service into
its web service enabled systems so that it can ship goods and
manage shipping orders through its systems. The company
identified a number of shipment service providers such as
FedEx, UPS and DHL, which all offered web service inter-
faces to their users, but these interfaces were very complex.
For instance, the FedEx Open Shipping service API spec-
ification written in WSDL has 7727 lines and more than
1000 parameters1 (see Listing 1 for a fraction of this spec-
ification). Many of these parameters are of a complex data
type and hierarchically structured. What FedEx has provided
is just a 645-page pdf document,2 which depicts the details
of what each parameter means for programmers.

The APIs of enterprise services, such as those from SAP,
FedEx, and Amazon, are often complex and overloaded
due to inherited complexity from legacy systems. Most ser-
vice providers, especially enterprise system vendors, simply
migrate their legacy systems to services with heavy opera-
tional signatures wrapped in WSDL specifications [21]. The
aforementioned FedEx Open Shipping service specification
is a typical example. These XML-based documents usually
contain thousands of lines of codes that attempt to describe
the input and output messages of each operation offered
by a service. For example, the aforementioned FedEx Open
Shipping service specifies thousands of parameters.

Often the APIs of enterprise services are a result of a
directmigration from legacy systems that have a large number
of input parameters catering for various needs and different

1https://github.com/jzempel/fedex/blob/master/
fedex/wsdls/OpenShipService_v9.wsdl

2https://www.fedex.com/templates/components/
apps/wpor/secure/downloads/pdf/201607/FedEx_
WebServices_OpenShipping_WSDLGuide_v2016.pdf

Listing. 1. An excerpt of FedEx Open Shipping service’s
CreateOpenShipmentRequest WSDL specification .

users. Significant examples of available Web services exist
that have complex and overloaded operational signatures. In
addition to the above FedEx’s web services for shipment
planning, SAP, the largest ERP vendor, has a repository of
Web services which demonstrates this. In the SAP R/3 ERP
system, the number of fields of LineItems for a Purchase
Order is numerous and the header of Purchase Order has hun-
dreds more fields.3 Also, the Procure-to-Pay service bundle
describes WSDL service for creating purchase orders. The
WSDL has operations with around 300 parameters and five
levels of nesting. The document describes several business
entities in the different operations of that service. Another
widely set of services are from Amazon which reflect sim-
ilar operation sizes, nesting and existent of business entities.
These legacy ERP fields discussed in [22] have been directly
turned into input parameters of web services that are related
to the creation of Purchase Order. This approach, referred

3http://www.stechno.net/sap-tables.html?view=
saptable&id=EKKO
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to as a ‘‘super-service approach’’ in [5], is a single instance
that provides all service capabilities required by all users,
while at the same time it yields many different variants –
multiple ways of invoking a service. Furthermore, empirical
research has shown that direct migration approaches result in
low quality service interfaces due to the fact that new systems
components often reuse existing systems components with
automatically generated WSDLs, which are hard to compre-
hend by developers [23].

Despite the complexity of APIs, there lacks a guidance to
service users about the service capabilities and valid ways of
invoking services. Hence, service users often find it hard to
understand what the services offer and how to invoke these
services. In reality, consuming and integrating enterprise ser-
vices usually requires manual effort and reliance on service
providers or domain specialists to provide insights into their
APIs [24]. As a result, service integration incurs significant
lead times and costly maintenance, and its productivity in the
context of dynamic service growth on the scale of the Internet
is restricted.

III. APPROACH
This research aims at addressing the complexity of APIs
via static analysis. Our approach adopts an object-oriented
paradigm where ‘‘objects’’ are exemplified by business arte-
facts. This section presents the approach.

A. RATIONALE
A traditional WSDL API specification (or API specifica-
tion for short) defines operations and their input and out-
put parameters using XML codes. In fact, each operation
is associated with one or more business artefacts, but these
are not specified in the XML codes of WSDL API speci-
fications. Considering the example of FedEx shipment ser-
vice in Section II, the ‘‘createOpenShipment’’ operation is
associated with the business artefact ‘‘ShippingOrder’’ which
is not specified in the FedEx Open Shipping service API
specification. Business artefacts entail what a service offers
in an object-oriented manner. Comparing to hundreds of lines
of XML codes, anAPI specification, if defined using business
artefacts associated with operations and their parameters, will
bemuch easier for service users to read thus leading to a better
understanding of the service capabilities.

Hence, we introduce the notion of business entity to refer to
a business artefact mentioned above. More precisely, a busi-
ness entity is a business-related object being created and hav-
ing evolved as result of a service invocation. The advantages
of applying the idea of business entity are threefold.

Firstly, business entities represent the explicit knowledge
concerning a business operational goal [3]. Again, taking the
FedExOpen Shipping service for example, ‘‘ShippingOrder’’
is a business entity and to create a shipping order is an oper-
ational goal associated with this business entity. Secondly,
business entities often are not standalone but relate to each
other, and the relations between business entities present
useful semantic information. For instance, ‘‘ShippingOrder’’

and ‘‘Track’’ are two correlated business entities that can be
derived from the FedEx Shipping service, and this informs the
service users that they can track a ‘shipping order’ using the
‘track’ operation. Finally, business entities and their relations
can be specified using business entity(-based data) models.
Comparing to XML coding in the existing API specifications,
a graphical representation of a business entity model will
provide service users with an articulated view of the internal
structure of the service and insights into what a service offers,
and hence it helps improve the comprehensibility of APIs.

B. OVERVIEW OF THE APPROACH
Our approach builds on the notion of business entity, and as
shown in Figure 1, it mainly consists of three stages. The
first stage is fundamental, in which an API specification is
analysed to extract the business entities and their relations.
This stage focuses on structural interface analysis, which
takes an API specification as an input and yields a business
entity model as the output. Figure 1 (a) depicts an abstract
example illustrating the main idea of this stage. Assume an
API specification s contains an operations op1, which has a
set of 13 input parameters at different levels of nesting. The
first step is to map each complex parameter of an operation
to a business entity and to map each nested parameter of
that complex parameter to an attribute of the corresponding
business entity. For example, parameter p1 is mapped to
business entity A, and the nested parameters p2 to p5 (of p1)
are mapped to the attributes a0 to a3 (of A and a0 is the
key attribute). In the second step, the structural relations (e.g.
nesting relation) between the complex parameters are used to
inform the relations between the derived business entities. For
example, the fact that parameter p5 is nested in p1 implies that
business entity A contains entity B. Following this two-step
derivation method, a business entity model representing API
specification s can be obtainedwhich comprises four business
entities (A to D) and their relations. Such a model presents a
simplified and modular representation of the complex API
of a service, along with the contextual insights into what
the service offers. Design of such a scientific method for
structural interface analysis is presented in Section III-C.

In the second stage, our focus proceeds to the derivation of
behavioural interface which is concerned with the temporal
order of invoking operations across multiple business enti-
ties. Given the business entity model extracted from an API
specification in the above stage, the business entities and their
relations specified in the model can be used to synthesise a
behavioural interface for API. Despite the fact that an API
often has a large amount of operations, these operations are
designed to create, read, update or delete business entities,
and thus can be categorised into CRUD operations. Assume
that business entity B is contained in (i.e. part of) business
entity A and two operation op1 and op2 are used to create A
and B, respectively. As for behavioural interface, operation
op2 must be invoked before op1 to ensure that B is created
before A can be created. Otherwise, without specifying such
order in invoking operations, it may be possible to end up in a
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FIGURE 1. Overall approach of static analysis of APIs.

deadlock scenario. For example, if op2 is to be invoked after
op1, then op1 can never be completed but waits for entity B
to become available (which however will not happen unless
op2 is invoked). Figure 1 (b) depicts an abstract behavioural
interface presented in some graphical modelling notation
(an abstract representation of a formal modelling language
known as Petri nets [25]). Design of behavioural interface
synthesis, including behavioural interfacemodel, is presented
in Section III-D.

In the third stage, our attention turns to the analysis of over-
loaded operational signatures and their combinations result-
ing in service variants, i.e. various ways of invoking a service.
The goal is to derive from API specifications all valid service
variants and capture them via so-called subtyping relation

between business entities. Subtypes of business entities are
prevalent in enterprise systems and they may be arbitrarily
nested in a type inheritance (or specialisation) hierarchy,
leading to complex structures. Given an API specification,
service variants are essentially a set of possible combinations
of input parameters of operations, which can be transformed
into subtypes of business entities. Hence, by extending a
business entity model (obtained from the first stage) with
subtyping relations, it can be used to specify service variants.
Figure 1 (c) depicts an abstract example of a business entity
model with subtyping, where business entity A has three
subtypes A1, A2, and A3, and furthermore, entity A2 has two
subtypes A21 and A22. The details of service variants analysis
are discussed in Section III-E.
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C. STRUCTURAL INTERFACE ANALYSIS
We propose a structural interface analysis method, which can
be used to systematically extract from an API specification
the (‘hidden’) business entities and their relations to form a
business entity model. Below, we formally define the con-
cepts of API specification, business entity, business entity
relations, and business entity model. The definitions serve
as a necessary preliminary for the design of our method and
algorithm to derive business entity models from API spec-
ifications. Also, the FedEx Open Shipping service WSDL
specification shown in Listing 1 is used to illustrate the formal
definitions.
Definition 1 (API Specification): An API specification s

is a tuple (OP,P, κ, γ, ξP, λP). OP is the set of operations
and P is the set of parameters. ∀p ∈ P, ∀op ∈ OP, κ :
P × OP → {input, output, na} indicates if p is an input
or output parameter of operation op, or p is not associated
(na) with op. γ : P → {primitive, complex} specifies
whether each p ∈ P is a primitive or complex parameter.
PC = P|γ (p)=complex is the set of complex parameters in P.
ξP ⊆ PC × P specifies the direct nesting relations between
parameters. ξP is intransitive (i.e. ∀(p,p′)∈ξP¬∃p′′∈P(pξ

Pp′′ ∧
p′′ξPp′)) and irreflexive (i.e. a parameter is not nested in
itself). λP : ξP → {mandatory, optional} indicates for each
(p, p′) ∈ ξP whether p′ is a mandatory or optional element
nested in p.
Remark: In a WSDL specification, the attribute value of

minOccurs of a parameter p′ within its parent parameter
p indicates whether the nesting relation between p and p′ is
mandatory (minOccurs>0) or optional (minOccurs=0).
Example: In Listing 1, the OpenShipService specifica-

tion has only one operation createOpenShipment, and this
operation has only one input parameter, CreateOpenShip-
mentRequest. The type of this input parameter isCreateOpen-
ShipmentRequest. It is a complex parameter and has two
nested parameters: Index and RequestedShipment, both being
optional (minOccurs=‘‘0’’). RequestedShipment is also a
complex parameter which further contains 14 parameters,
i.e., 14 nesting parameters of RequestedShipment.
Definition 2 (Business Entity): Let E be a set of busi-

ness entities. For each e ∈ E , Ne is the name of e, keye
the unique identifier of e, and Ae the finite set of attributes
associated with e. Given an API specification s, f : PC → E
captures the mapping from a complex parameter p ∈ PC
to a business entity e ∈ E , and ∀p∈PC∀p′∈PC ((p, p

′) ∈ ξP

⇒ f (p) 6= f (p′)) (i.e. two nested parameters cannot be
mapped to the same business entity). ξE ⊆ E × E spec-
ifies the direct nesting relations between business enti-
ties, and ∀(e,e′)∈ξE∃(p,p′)∈ξP (e = f (p) ∧ e′ = f (p′)) (i.e. the
nesting relations between business entities are informed by
the nesting relations between the corresponding parameters
in s). λE : ξE → {mandatory, optional} indicates, for each
(e, e′) ∈ ξE , whether e′ is a mandatory or optional element of
e, and λE (e, e′) = λP(p, p′) if e = f (p) and e′ = f (p′).

Example: Assume that the RequestedShipment parame-
ter is mapped to business entity ShippingOrder. As afore-
mentioned, RequestedShipment contains 14 parameters, and
accordingly ShippingOrder has 14 attributes. Assume that
the RequestedShipment further contains RequestedShipper
which is mapped to business entity Shipper. Then, Shipper
is nested in ShippingOrder because RequestedShipper is a
nesting parameter of RequestedShipment.
Definition 3: (Domination, adapted from [10]) Given an

API specification s and a set of business entities E , for two
business entities e, e′ in E where ∃ p ∈ PC ∃ p′ ∈ PC
s.t. e = f (p) and e′ = f (p′) (i.e. both e and e′ are derived
from s), e dominates e′, denoted as e 7→ e′, if: (1) ∀ op ∈ OP,
κ(p′, op) = input ⇒ κ(p, op) = input; and (2) ∃ op ∈ OP
s.t. κ(p, op) = input and κ(p′, op) 6= input .
Remark: Domination is defined between business enti-

ties and is derived from how the corresponding parameters
associate with each other in an API specification. Assume
business entity e is mapped from parameter p and e′ from p′.
If every operation in the service interface specification that
has p′ as an input parameter must also have p as an input
parameter, whereas at least one operation that has p as an
input parameter does not need to have p′ as an input param-
eter, then the corresponding business entity e dominates e′.
Domination is defined to assist in the definitions of the Exclu-
sive and Inclusive Containment relations below.
Example: As aforementioned, the RequestedShipment

parameter is mapped to business entity ShippingOrder.
Also, consider that the RequestedPackageLineItem param-
eter is mapped to business entity ShipmentLineItem.
Assume that every operation (e.g., modifyPackageInOpen-
ShipmentRequest) that requires ShipmentLineItem also needs
ShippingOrder, while there is at least one operation (e.g,
createOpenShipment) that requires ShippingOrder but does
not need ShipmentLineItem (e.g., because a ShippingOrder
can be created without a ShipmentLineItem). Then, Shippin-
gOrder dominates ShipmentLineItem.
Definition 4 (Exclusive and Inclusive Containment):Given

an API specification s, a set of business entities E and their
nesting relations ξE , Es = {e ∈ E|∃p∈PC (e = f (p))} is the
set of business entities derived from s, and ξEs = {(e, e

′) ∈
ξE |∃(p,p′)∈ξP (e = f (p)∧ e′ = f (p′))} specifies the entity nest-
ing relations derived from s. Then, ωs = {(e, e′) ∈ ξEs |e 7→
e′ ∧ ¬∃e′′∈Ese

′′
7→ e′} defines the exclusive containment

relations between business entities in Es, and ϕs = ξEs \ ωs
specifies the inclusive containment relations between them.
Example: Assume that the ShipmentLineItem entity is

nested in ShippingOrder entity and the latter is the only
business entity that dominates the former. Then, the Shippin-
gOrder entity exclusively contains ShipmentLineItem. Next,
as aforementioned, the Shipper entity is nested in Shippin-
gOrder, and also assume that the latter does not dominate
the former. Then, ShippingOrder entity inclusively contains
Shipper. Furthermore, if it is mandatory that Shipper is nested
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in ShippingOrder, then the relationship between the two enti-
ties is mandatory Inclusive containment.
Definition 5 (Business Entity Model): A business entity

modelm derived from anAPI specification s is a tuple (Es, ξEs ,
ωs, ϕs, λE ). It consists of the set of derived business entities
Es, their nesting relations ξEs which are further divided into
exclusive containment relationsωs and inclusive containment
relations ϕs, and λE specifying the mandatory or optional
attribute of a nesting/containment relation.

Next, we propose a three-step method (see Algorithm 1) to
derive business entity models for (complex) APIs specified in
interface description languages such as WSDL.

The first step (lines 4-16) is to map parameters to busi-
ness entities and their attributes using semantic matching
techniques. A key task is the derivation of business entities
from complex parameters. It is carried out by searching in
a repository of business entities (R) for one (e) that seman-
tically matches a given complex parameter (p), where the
repositoryR is a collection of pre-identified business entities
based on domain-specific knowledge. Users can designate an
ontology for a particular context at design time. This ontology
is stored in R, and the complex parameter is checked against
the repository to determine if there is a matching entry in
it. A number of existing semantic matching approaches with
tool support (e.g., COMA++,4 SimMetrics5) can be applied.
To measure the semantic similarity between a parameter and
an entry in the predefined ontology, this research adopts
COMA++, a tool that applies several different semantic
matching algorithms and provides an interactive and iterative
match process in which users can decide whether to confirm
or reject a proposed match based on matching results. The
matching operation takes two schemas as inputs, and pro-
duces a mapping between elements of these two resources.
The tool uses a variety of measures to calculate the similarity
between two schema elements or ontology concepts. The
similarity confidence is measured by a float number between
0 and 1, where the former denote entirely different (strong
dissimilarity) and the later denotes largely similar (strong
similarity).

In our algorithm, this search process is captured by func-
tion SemanticMatch(p,R) (line 5) which either returns a
business entity that semantically matches p or an empty
element (null) when no match can be found. Next, if a
matching entity e is retrieved, the mapping between e and the
corresponding parameter p is recorded (line 11), and all the
parameters p′ nested in p are mapped to the attributes of e
(lines 12-14). Mapping a parameter to an attribute is captured
by function ConvertToAttr(p′) (line 13).
The second step (lines 18-24) is to derive nesting relations

between business entities. By examining each pair of nested
parameters, the algorithm checks whether there are seman-
tically matching business entities for both parameters, and if
so, it records the pair of two business entities as nested entities

4http://dbs.uni-leipzig.de/de/Research/coma.html
5https://github.com/Simmetrics/simmetrics

Algorithm 1 DeriveBEModel

input: API specification s /∗ (OP,P, κ, γ, ξP, λP) ∗/
1: Es, ξEs ,F, λ

E
:= ∅

2: for each op ∈ OP do
3: /∗ Step 1: Map parameters to business entities and

attributes ∗/
4: for each p ∈ P s.t. κ(p, op) 6= na ∧ γ (p) = complex

do
5: e := SemanticMatch(p,R)
6: if e 6= null then
7: if e /∈ Es then
8: Es := Es ∪ {e}
9: A(e) := ∅

10: end if
11: F := F ∪ {(p, e)}
12: for each p′ ∈ P s.t. p ξPp′ do
13: A(e) := A(e) ∪ {ConvertToAttr(p′)}
14: end for
15: end if
16: end for
17: /∗ Step 2: Derive nesting relations between business

entities ∗/
18: for each (p, p′) ∈ ξP do
19: if ∃(p, e) ∈ F ∧ ∃(p′, e′) ∈ F then
20: ξEs := ξ

E
s ∪ {(e, e

′)}
21: λE := λE ∪ {(e, e′), λP(p, p′)}
22: end if
23: end for
24: end for
25: /∗ Step 3: Refine into exclusive and inclusive contain-

ment relations ∗/
26: ωs := ξ

E
s

27: ϕs := ∅
28: for each (e, e′) ∈ ξEs do
29: if CheckDomination(e, e′) then
30: E := Es \ {e, e′}
31: while E 6= ∅ do
32: select e′′ ∈ E
33: if CheckDomination(e′′, e′) then
34: E := ∅
35: ωs := ωs \ {(e, e′)}
36: ϕs := ϕs ∪ {(e, e′)}
37: else
38: E := E \ {e′′}
39: end if
40: end while
41: end if
42: end for
43: return (Es, ξEs , ωs, ϕs, λ

E )

(line 20). At the same time, the value of a parameter nesting
relation being mandatory or optional is also mapped to that
of the corresponding entity nesting relation (line 21).
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The third step (lines 26-41) is to refine business entity
nesting relations into exclusive and inclusive containment
relations. Initially, the algorithm assumes that all the nesting
relations are exclusive containment relations (lines 26-27).
Then, for each pair of nested entities, it checks whether
one (parent entity e) dominates the other (child entity e′) as
captured by function CheckDomination(e, e′) (line 29). If so,
the algorithm continues to inspect one by one the remaining
entities (e′′) and as soon as it discovers an entity e′′ that
dominates the above child entity e′, the pair of nesting relation
(e, e′) is removed from exclusive containment relations to
inclusive containment relations (lines 30-40). After this third
step, the business entity model of the given API is derived as
the output of Algorithm 1.

Finally, the run-time complexity of Algorithm 1 is cal-
culated by taking into account the complexity of all the
contained loops and their nested loops as follows. There are
two top level loops: loop-1 from line 4 to line 24, and loop-
2 from line 28 to line 42. For loop-1, the size of the input is
|OP|, and it has nested loops to implement the first and second
steps. In the first step (lines 4-16), the (maximum) size of the
input for each loop is: |P| at the first loop (lines 4-16), and
|P| − 1 at its nested loop (lines 12-14). In the second step
(lines 18-24), the size of the input for the loop (lines 18-23)
is |P|. For loop-2, the size of the input is |ξP|, and it has one
nested loop (lines 31-40) of which the (maximum) size of the
input is |P| − 2 (considering the most complicated scenario
where Es is the set of business entities derived from all
parameters in P). Therefore, the complexity of Algorithm 1
is O(|OP| · (|P|)2 + |ξP| · |P|).

D. BEHAVIOURAL INTERFACE SYNTHESIS
The business entity model derived from an API specification
via structural interface analysis can be used to synthesise
service behavioural interfaces, that is, the temporal ordering
of operations across multiple business entities. We propose
a three-phase method for behavioural interface synthesis and
an overview of the method is shown in Figure 2.

FIGURE 2. Overview of behavioural interface synthesis method for APIs.

1) CATEGORISING CRUD OPERATIONS
At first, the operations associated with the business entities
are analysed and categorised into CRUD (i.e. create, read,
update, and delete) operations. To launch an instance of busi-
ness entity e, a create operation is invoked requiring attributes
of e as input parameters, and upon the invocation it returns a

reference to e (referred to as key(e)). To retrieve an instance
of e, a read operation is involved requiring key(e) as an
input parameter, and upon the invocation it returns values of
attributes of e. Similarly, an update operation is for updating
an instance of e, of which the invocation requires key(e) and
the new values of the relevant attributes of e; and a delete
operation is for deleting an instance of e.

2) GENERATING MODEL FOR CREATE OPERATION
The second phase focuses on generating behavioural models
for create operations. These models represent the temporal
order of the operations invoked for the creation of a new
instance of a business entity, as derived from business entity
relations. Here are some examples of the derivation rules.
An exclusive containment relation between business entities
A and B indicates that A has an exclusive ownership of B. As a
result, an instance of B should be launched either as part of or
after creating an instance of A. If B is a mandatory part of A
(i.e. mandatory exclusive containment), an instance of Bmust
be launched upon or after creation of an instance of A. Next,
an inclusive containment relation between B and C indicates
that B has an inclusive ownership of C while C has its own
independent existence, meaning that launching an instance of
C does not necessarily rely on the existence of B.

Let us revisit the excerpt of FedExOpen Shipping service’s
WSDL specification in Listing 1 (Section II). A Shipping
Order exclusive contains Package Line Item(s) and it is a
mandatory containment. Hence, a Package Line Item should
be only created either as part of creating a Shipping Order
or after a Shipping Order is created. Next, a Shipping Order
inclusively contains a Shipper and it is mandatory, so a Ship-
per may exist before the creation of a Shipping Order. A Ship-
ping Order also inclusively contains a Shipping Label, which
is optional, and thereby a Shipping Order and a Shipping
Label may be created independently.

Algorithm 2 specifies the derivation rules for generating a
behavioural interface model for create operations in general.
At first, we define the notion of a behavioural interface
model. As specified in Definition 6, such a model is defined
as a Petri net, which is a mathematical modelling language
for precisely describing the behaviour of distributed systems
involving choice, iteration, and particularly concurrent exe-
cutions. A Petri net consists of places (Q), transitions (T ),
and flows (F). Transitions are used to model tasks or actions
of which the executions often change the state of a system.
Places represent pre-conditions required for a task or action
to occur as well as post-conditions upon the occurrence of
the task or action. Flows capture directed execution order
from places and transitions and vice versa. A Petri net is
mathematically defined and also offers a graphical notation
(e.g., places are drawn as circles, transition as rectangle, flows
as directed arcs). Readers interested in Petri nets can find
more details in [25].
Definition 6 (Behavioural InterfaceModel):A behavioural

interface model p is a Petri net (Q,T ,F) where:
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• T is a set of transitions capturing CRUD operations
(referred to as operation transitions) and non-CRUD
operations (referred to as silent transitions)6,

• Q is a set of places specifying the pre- and
post-conditions of each of the operations, and

• F ⊆ (Q×T ∪T ×Q) a set of flow relations that connect
a pre-condition to an operation or an operation to a post-
condition.

An elementary behavioural interface model p∗ consists
of at least one input place (qi), one start transition (τi),
one pre-condition place (qpre), one operation transition
(t), one post-condition place (qpost ), one end transition (τo),
and one output place (qo). An operation transition capturing
a create operation for business entity e is denoted as tce .

Algorithm 2 constructs a behavioural interface model pe
for creation of business entity e by iteratively performing
the derivation for all the business entities that are inclu-
sively and exclusively contained in e. After the initialisation
(lines 1-8), the algorithm performs computation in four steps.
The first step (lines 9-10) derives from mandatory inclusive
containment relations, the second step (lines 11-18) maps the
create operations to the corresponding operation transitions,
the third step (lines 19-20) deals with both mandatory and
optional exclusive containment relations, and the last step
(lines 21-22) handles optional inclusive containment rela-
tions. Each of the functions to derive from a containment
relation is a recursive function that incrementally computes
the behavioural interface model pe (for business entity e)
when traversing the containment relations in the given busi-
ness entity model m (involving e). The resulting behavioural
interface model pe captures the sequences of invoking the
operations related to the creation of entity e.
Algorithm 2 consists of a number of linear operations,

applies three other algorithms (lines 10, 20 and 22) for gen-
erating parts of the overall behavioural interface model that
can be derived from the corresponding containment rela-
tions between business entity models, and invokes them in
a sequential order. Its run-time complexity is calculated by
taking into account the complexity of each of those three
algorithms. Two algorithms on lines 10 and 22 deal with
inclusive containment relation and have the complexity of
O(|ϕ|), the algorithm on line 20 handle exclusive contain-
ment relation and has the complexity of O(|ω|). Therefore,
the complexity of Algorithm 2 is O(2|ϕ| + |ω|).
For an abstract demonstration of Algorithm 2, Figure 3

(a) depicts a business entity model comprising e1 the main
business entity, e2 exclusively contained in e1 (mandatory),
e4 inclusively contained in e2 (mandatory), and e5 inclusively
contained in e2 (optional). Figure 3 (b) shows the correspond-
ing behavioural interface model generated by Algorithm 2 for
creating the business entities in Figure 3 (a).

6Note that silent transitions are used to capture those operations or actions
that are not the focus of our study, and they are needed in a behavioural
interface model for specifying the overall execution behaviour.

Algorithm 2 GenerateBIModelForCreateOP

Input: business entity model m /∗ (E , ξE , ω, ϕ, λE ) ∗/
business entity e /∗ e ∈ E ∗/

1: /∗ initialise the behavioural interface model pe ∗/
2: pe := (Qe,Te,Fe)
3: /∗ an initial set of places in pe ∗/
4: Qe := {qei , q

e
o}

5: /∗ an initial set of transitions in pe ∗/
6: Te := {τ ei , τ

e
o }

7: /∗ an initial set of flow relations in pe ∗/
8: Fe := {(qei , τ

e
i ), (τ

e
o , q

e
o)}

9: /∗ Step 1: Derive from mandatory inclusive containment
∗/

10: pe := deriveMandaIncluContainment(m, e, pe)
11: /∗ Step 2: Process the creation ∗/
12: tce := ConvertToTransition(opce)
13: if tce =⊥ then
14: return nil
15: end if
16: Qe := Qe ∪ {qepre} ∪ {q

e
post }

17: Te := Te ∪ {tce }
18: Fe := Fe ∪ {(qepre, t

c
e ), (t

c
e , q

e
post )}

19: /∗ Step 3: Derive from exclusive containment ∗/
20: pe := deriveExclusiveContainment(m, e, pe)
21: /∗ Step 4: Derive from optional inclusive containment ∗/

22: pe := deriveOptIncluContainment(m, e, pe)
23: return pe

FIGURE 3. An abstract demonstration of Algorithm 2.

3) SYNTHESISING LIFECYCLE FOR ALL OPERATIONS
Finally, to capture the behaviour of invoking the relevant
operations, an overall behavioural interface model can be
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synthesised representing the life cycle of business entities and
the associated operations. With CRUD operations, the notion
of state can be introduced, and a business entity generally
has four states: ready, created, updated and deleted, in its
life cycle. A lifecycle model specifies the possible ways that
a business entity can evolve from an initial state to a final
state. Among these states, ready is defined as the very initial
state of a business entity, indicating it is ready for the entity
to be created. A business entity can be created if and only
if it is the ready state, and it may be updated or deleted
only after it is created. Accordingly, the behavioural interface
derivation method yieds two forms of models: business entity
creation model and lifecycle model. These models, presented
as Petri nets, capture the sequences of operations related to
the manipulation of business entities (such as the steps of
creating a shipment order or the life cycle of operating on a
shipment order), and thus they can be used to inform service
users about the invocation sequences that they should adhere
when invoking a service via an API.

E. SERVICE VARIANTS ANALYSIS
The business entity model derived from an API specification
via structural interface analysis can also be used to derive
service variants, that is, various ways of invoking a service.
By introducing a subtyping relation between business enti-
ties, the problem of deriving service variants can be related
to finding subsets of parameters corresponding to business
entity subtypes in API operations. We proposed an efficient
technique for traversing parameter sets and finding valid
subtype invocations, using a Monte Carlo method [26], based
on likelihood-free Bayesian sampling. The technique exploits
close proximity of parameters in each operation to determine
the most likely next parameter to find for a subset based on a
previous parameter probabilistic tree search. We herein give
a short introduction to this service variant analysis technique
proposed in our previous publication [14], where readers
interested in the technique can find more relevant details.

Figure 4 depicts an overview of our service variant analysis
technique (using an abstract example). A service variant is
a combination of input parameters that are accepted when
invoking an operation. Given a list of input parameters of an
operation and a known service variant (e.g. op1(p1, p2, p4)),
the method first initialises a tree with minimum number of
leaves. A node of the tree not only stores an input parameter
but also the probability of the parameter being a successor
of another. With the initial tree, the method searches for other
service variants. The key action of the search is to identify the
likeliest successor through aMonte Carlo search that employs
Bayesian updates and Importance Sampling [26].

The search process takes as input the current parameter
being processed, the current path (consisting of a number of
parameters traversed along the tree), the current tree node,
and a transition kernel variance. It recursively draws a single
random variable (i.e. a potential succeeding parameter) based
on probability distributions over the current node’s child
parameters. The search terminates when it reaches the last

FIGURE 4. Overview of service variant analysis technique.

parameter, and the path drawn from the search is tested there-
after. The test of a path is done via invoking the corresponding
operation with the parameters on the path, e.g. invoking
op1 with the sequence of parameters p1, p2, p3, p8, p9 shown
in Figure 4. If the combination of parameters is accepted,
the search then recursively updates the probabilities asso-
ciated with each of the parameters along the path. If it is
not accepted, the entire attempt is ignored and the algorithm
proceeds to the next search.

Once a service variant is derived from the above search
process, it is then transformed to a subtype of a business entity
in the business entity model obtained from structural interface
analysis. Recall that a service variant is specified as a set of
parameters. The transformation is mainly carried out in three
steps: firstly, to search for a business entity e in the business
entity model such that each parameter of a service variant v
can be mapped to an attribute of business entity e; secondly,
to create a subtype entity es of e; and thirdly, to map all the
parameters of v to the attributes of es.

Let us consider the example depicted in
Figure 1 (a) and (b). In Figure 1 (a), four business entities
are derived from operation op1 of API specification s. Busi-
ness entity A has five attributes a0 to a4, among which a3
and a4 are mapped from complex parameters p5 and p11,
respectively. Parameters p5 and p11 are further mapped to
business entities B and D, and in principle the attributes of
these two entities are also attributes of object A. Similarly,
the attributes of entity C are also attributes of entities B and
A. As a result, business entity A has in total 12 attributes a0 to
a11 (corresponding to parameters p2 to p13 of operation op1).
Next, we assume that the following five service variants have
been obtained: v1 = {p2, p3, p7}, v2 = {p3, p4, p7, p9, p10},
v3 = {p4, p6, p12, p13}, v4 = {p3, p4, p9}, and v5 = {p7, p10}.
These service variants are used to form the subtype entities
shown in Figure 1 (b). Let us start with variant v1. Three
parameters p2, p3 and p7 are mapped to three attributes a0,
a1 and a6, respectively. These attributes are a subset of the
attributes of entity A, and thus form subtype entity A1 (of A).
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FIGURE 5. Structure of the service interface analyser.

Similarly, v2 is used to form A2, v3 to form A3, and v4 and v5
to form A21 and A22 (subtypes of A2), respectively.
We also specify relations between entity subtypes as

inspired by subtype exclusion and exhaustion constraints in
Object Role Modelling [27]. As shown in Figure 1 (b), a col-
lective exhaustive relation between three subtype entities A1,
A2 and A3 indicates that all the attributes of business entity
A can be obtained as the union of the attributes of its three
subtypes. An exclusive relation between subtypes A1 and A3
means that the two entities do not share any common attribute.
Accordingly, an exclusive and collective exhaustive relation
holds between subtypes A21 and A22.

IV. EVALUATION
This section focuses on demonstration and validation of the
approach presented in the previous section. A prototypical
implementation of our approach, known as the Service Inter-
face Analyser, has been developed (using Java) and released
as an open-source tool.7 The experiments discussed in this
section were performed on QUT HPC.8

A. TOOL STRUCTURE
The Service Interface Analyser is divided into three modules
as shown in Figure 5. Below, we discuss these three modules

7The source code of the tool’s back end is available on https://
github.com/fuguowei/ServiceIntegrationAccelerator,
and that of the front end is on https://github.com/fuguowei/
SIAFrontEnd.

8The Queensland University of Technology high-performance
computing lab, see http://www.itservices.qut.edu.au/
researchteaching/hpc/.

and the details of each of the components in the tool’s struc-
ture can be found on the Service Interface Analyser’s page on
Github.

The structural interface analysis module takes APIWSDL
specifications as input, together with the knowledge of busi-
ness entity semantics (e.g. based on the input from domain
experts), and yield business entity models (BE models for
short). Existing API specifications (which are often complex
and overloaded) can be retrieved from the API specification
repository. The output business entity models capture sim-
plified representations of complex structural interfaces by
deriving business entities and their relations, and are stored
in the BE model repository.

Next, the behavioural interface synthesis module takes the
above BE model as a key input and generates valid sequences
of operations. The results are presented as behavioural inter-
face models involving entity creation and ultimately business
entity life cycle (BE lifecycle for short). The BE model and
BE lifecycle model constitute a simplified presentation layer
rendering business entities aligned APIs.

In addition, API WSDL specifications and BE models are
also input to the service variant analysis module for deriving
business entity subtyping relations and also service variants
which are stored in the service variant repository.

B. VALIDATION OF STRUCTURAL INTERFACE ANALYSIS
The source data for the experiments of structural interface
analysis were taken from three categories: Internet Services
(IS), Software-as-a-Service (SaaS), and Enterprise Services
(ES); while the complexity of their APIs increases from IS,
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TABLE 1. Structural interface analysis experiment results of 13 selected services specified in the following measures: operations each service provides
(N), input parameters (per operation) (NIP ), output parameters (NOP ), business entities derived (NBE ), exclusive containment pairs (NECP ), inclusive
containment pairs (NICP ), and false positive rate (FPR ).

SaaS to ES. Altogether 13 widely-deployed services were
drawn from xmethods (Weather Forecast,9 Find People,10 and
MailBoxValidator11), Amazon (S3,12 EC2,13 Advertising,14

and Mechanical15), and FedEx.16 Totally 272 operations,
12962 input parameters, and 29700 output parameters were
analysed by the Service Interface Analyser. Domain experts
were then asked to examine the analysis results, identify false
positives, and make any necessary adjustments.

According to the results in Table 1, Internet Services usu-
ally have only a few operations with a handful of param-
eters. For example, the Weather Forecast service has two
operations: ‘‘GetCitiesByCountry(Country)’’ and ‘‘GetFore-
castByCity(City, Country)’’. Although the Service Interface
Analyser can pick up and present the Internet services’
parameters for providing guidance on the structural interface
of these services, service users do not benefit significantly
from the analysis results because of their simple APIs.

As Table 1 shows, the APIs of the services in the SaaS
category present intermediate complexity. The number of
operations provided by the four AmazonWeb services ranges
from 9 to 157, and the average number of input parameters
is between 4 and 24. There are around 3 business enti-
ties derived per operation. It may appear that service users
can cope with this type of service, as the number of input
parameters for some operations is not very large, but the
number of operations is quite significant and service users
may find it difficult to understand the temporal order among

9www.restfulwebservices.net/wcf/
WeatherForecastService.svc?wsdl

10www.findpeoplefree.co.uk/findpeoplefree.asmx?
wsdl

11ws2.fraudlabs.com/mailboxvalidator.asmx?wsdl
12s3.amazonaws.com/doc/2006-03-01/AmazonS3.wsdl
13s3.amazonaws.com/ec2-downloads/ec2.wsdl
14webservices.amazon.com/AWSECommerceService/

AWSECommerceService.wsdl
15mechanicalturk.amazonaws.com/AWSMechanicalTurk/

2013-11-15/AWSMechanicalTurkRequester.wsdl
16www.fedex.com/us/web-services/

these operations. Hence, having a proper structural analysis
is essential to derive such order.

Finally, the category of Enterprise Services contains the
most complex APIs, which usually have operations with a
large of number of input and output parameters. Hence, it is
important to reduce the complexity so that service users can
understand the APIs. The experiment results of the six FedEx
services shown in Table 1 reveal that the corresponding com-
plex API specifications have been provided with simplified
representations, which demonstrates the Service Interface
Analyser works effectively for enterprise services.

For example, the Open Shipping service has 22 operations
and the average number of the input parameters is 309 and
that of the output parameters is 575. After the structural
interface analysis, on average, 11 entities per operation were
derived. One of the FedEx Open Shipping service’s oper-
ations, ‘‘createOpenShipment’’, has 1336 input parameters
and 596 output parameters. By analysing these parameters,
16 key business entities and their relationships were derived
(see Figure 6). This dramatically reduces the complexity as
users can now readily understand the interfaces by looking at
these business entities and their relationships.

C. VALIDATION OF BEHAVIOURAL INTERFACE SYNTHESIS
A total of 9 services drawn fromAmazon and FedEx (as those
used for structural interface analysis) are used as the source
data for the experiments of behavioural interface synthesis.
Table 2 lists the results from the experiments.

In the SaaS category, the number of operations provided by
the three Amazon web services ranges from 9 to 44. Based
on the business entity models generated and the operations
provided by these services, 3, 2 and 9 behavioural models
were generated for the creation of business entities involved
in the Amazon S3, Advertising, and Mechanical services,
respectively. The same number of life cycle models for these
entities were also derived.

Taking the Amazon S3 service as an example, Figure 7 (a)
depicts a Bucket centric business entity model. The produced
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TABLE 2. Behavioural interface synthesis experiment results of 9 selected services specified in the following measures: operations each service provides
(N), business entities (NBE ), behavioural models for entity creation (NBM ), and lifecycle models (NLC ), the time taken (in milliseconds) for generating
these models for each service (T ). The behavioural models for entity creation and lifecycle are detailed with number of places, transitions, and flows
(denoted by P/T /F ).

FIGURE 6. A screenshot of the structural interface analysis output of the
Fedex Open Shipping service generated by the Service Intergration
Accelerator, where each dot represents a business entity and the lines
between dots represent the relation between business entities.

behavioural interface model for the Bucket’s creation is
shown in Figure 7 (b). In this model, the transition ‘‘Create-
Bucket’’ has been identified as the one that creates an instance
of Bucket. Also, entity BucketLoggingStatus is exclusively
contained (as mandatory) in entity Bucket, meaning an
instance of BucketLoggingStatus has to be instantiated after
the creation of a Bucket instance. ‘‘SetBucketLoggingStatus’’
has been identified as the transition that creates an instance of
BucketLoggingStatus, so this operation is called after ‘‘Cre-
ateBucket’’ as shown in Figure 7 (b).

An enterprise service usually involves numerous business
entities and operations. The statistics for the six FedEx ser-
vices in Table 2 show the number of behavioural interface
models generated. For example, by analysing the 22 oper-
ations provided by the FedEx Open Shipping service, 4
behavioural models for the creation of 4 business entities
(ShippingOrder, ShipmentLineItem, PendingShipment, and
Consolidation) were derived. Correspondingly, 4 life cycle

FIGURE 7. The behavioural interface model for the creation of Bucket in
Amazon S3.

models were created for these business entities. The valida-
tion of these behavioural interface models was performed
by invoking the services with the sequences derived, and
the results show that the temporal sequences revealed in the
models are valid and match with what is described in the
FedEx OpenShipping reference.17

D. VALIDATION OF SERVICE VARIANTS ANALYSIS
A challenge for our method is to analyse services and their
APIs in the category of Enterprise Services, where the aver-
age number of input parameters is around 200. When design-
ing the experiments for service variants analysis, we have
simulated services with 20, 50 and 100 parameters, respec-
tively, and with structural complexities comparable to the
services analysed. In measuring the performance boost in
our service variants analysis method, we have compared it
against a brute-force search for problem sizes of 20, 50 and
100 parameters, respectively.

Brute-force search (a.k.a. exhaustive search) is very gen-
eral problem-solving technique that exhausts all possibilities
in order to reach a solution. In the context of deriving service

17https://images.fedex.com/templates/components/
apps/wpor/secure/downloads/pdf/201507/FedEx_
WebServices__DevelopersGuide_v2015.pdf
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variants, this method searches all possible service variants
in order to identify valid ones. This approach is prohibitive
and impractical, especially when the number of parameters is
as large as what enterprise services have, because the search
space is enormous and simply cannot enumerate all possible
parameter combinations.

In the simulated servers, variants were generated at ran-
dom, so that we could determine the success rates of recov-
ering those variants with our method. In each experiment,
the server generated sets of twenty service variants of differ-
ent lengths and deviations from one another. Experiments in
the problem stage of 20 parameters, involved variants selected
at random of lengths: 5, 8, 11, 14, and 17; in the problem stage
of 50 parameters, the lengths of variants were: 10, 15, 20, 25,
30, 35, and 40; and for the problem stage of 100 parameters,
the lengths were: 10, 20, 30, 40, 50, 60, 70, and 80. In cre-
ating statistical confidence, two-hundred experiments were
conducted for each problem stage, and experiments ran for
six days.

FIGURE 8. The performance comparison between the brute-force and
Monte Carlo methods given 20 parameters.

As depicted in Figure 8, the variant analysis method pro-
posed in this study fared worse than the brute-force one when
the total number of parameters is 20. On average, the variant
analysismethodwas able to identify from approximately 35%
to 46% of a total of 20 valid variants among the 5 sets given
(see the blue line in Figure 8). There is a standard deviation
for each set. The maximum percentage picked up by the
method is 90%, given 5 and 8 known input parameters, and
the minimum one is 10% given, 17 known input parame-
ters. Such differences between the results obtained using the
brute-force and Monte Carlo methods are due to the fact that
the more parameters a variant has, the more difficult it is
for the sampling method to identify the variant. The red line
in Figure 8 presents the performance of a brute-force method
given the first test case, where the method was able to derive
the majority of valid service variants, whereas the Monte
Carlo sampling could identify only approximately 40 per
cent of them. This is because the search space is still within
the reach of the capability of the brute-force method and

FIGURE 9. The performance comparison between the brute-force and
Monte Carlo methods given 50 parameters.

FIGURE 10. The performance comparison between the brute-force and
Monte Carlo methods given 100 parameters.

all combinations were traversed by a trial and error method
within a sensible amount of time.

However, when the number reached 50, 100, or greater,
the brute-force approach became ineffective, while theMonte
Carlo search method was more effective by contrast. This can
be seen by the performance comparison in Figures 9 and 10.
The brute-force method failed to identify anything when the
length of the given path was greater than 20 for a total number
of 50 parameters (see the red line in Figure 9). In all the
experiments, the percentage of the hit rate in the applications
of the Monte Carlo sampling method is greater than that of
the brute force approach, meaning that the proposed sampling
method is more likely to pick up a valid variant. The results
showed that the Monte Carlo sampling could find variants in
search spaces previously thought to be prohibitive.

In addition, we also evaluated the Monte Carlo-based
method on a simulated FedEx shipment service.18 While
this service involved seven operations, the server only simu-
lated the core ‘‘processShipment’’ operation. This operation
involved 1053 input parameters and 565 output parameters.
From which we have derived 34 business entities using the

18www.fedex.com/templates/components/apps/wpor/
secure/downloads/xml/Aug13/advanced/ShipService_
v13.xml
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structural interface analysis method (described in Section III-
C). From these, a cohesive set within the context of the ship-
ment service of 43 core parameters were selected to demon-
strate our method. The search method derived 11 of 20 valid
combinations and took 8602 minutes in total given a known
combination. An example of service variants of the simulated
FedEx Shipment service derived from our approach and pre-
sented in the form of business entity subtypes is illustrated
in Figure 11.

FIGURE 11. Service variants of simulated FedEx Shipment presented in
the form of business entity subtypes.

V. RELATED WORK
API analysis is significant, as seen through many commer-
cial products e.g. Microsoft BizTalk Mapper,19 Stylus Stu-
dio XML Mapping Tools,20 and SAP XI Mapping,21 and
has been the subject of ongoing research over many years.
It has been motivated originally by the challenges of sys-
tems interoperability through Web services, with the large
number of contributions relating to the utilisation of semantic

19https://docs.microsoft.com/en-us/biztalk/core/
creating-maps-using-biztalk-mapper

20http://www.stylusstudio.com/press/
2005-02-08-sleepycat.html

21https://wiki.scn.sap.com/wiki/display/XI/
Mapping+Concepts+in+SAP+XI

ontologies on Web service specifications to address goals of
service discovery [28], adaptation [29] and composition [30].
Both structural and behavioural aspects have been covered
in Semantic Web service techniques, with ontologies captur-
ing domain-based entity types and relationships. Moreover,
techniques have been proposed to exploit entity subtypes
underpinning service variants. For instance, Stollberg and
Muth [4] addressed this in the context of service variants in
the widely used SAP’s Enterprise Resource Planning system
while Tosic et al. [31] proposed a generalised language, Web
Service Offerings Language (WSOL), for service variants.
WSOL was specifically applied to annotate different variants
and versions of a service, which supports service discovery
applications.

Semantically annotated APIs also make it possible to sup-
port service behavioural interface derivation [32]. This form
of API typically includes preconditions and postconditions,
which define a set of requirements and restrictions such as
‘‘must have an existing account with this company’’, and
‘‘only US customers can be served’’ or ‘‘a new purchase order
will be created’’. The key limitation of this body of semantic
service analysis techniques is the dependency onmanual, user
effort to design and annotate API specifications, with upgrade
costs incurred as ontologies inevitably evolve. To improve the
degree ofmanual effort, information retrieval techniques have
been proposed for ontology conception derivation [33] and
schema matching between APIs [34].

Another prominent approach to API analysis involves
dynamic analysis (data mining) techniques, which focusses
on the analysis of API usage data through systems logs.
Of these, a number support the derivation of non-functional
properties such as average and variances of call frequen-
cies, data transfer sizes, return times, probability of sec-
ondary dependencies and other measures [9]. Other tech-
niques focus on functional aspects captured through recorded
service interactions including derivation of message types [5]
and message correlation [6]. The availability of API usage
data also makes it possible for sequences of service inter-
actions, and, thus, the temporal order of service operation
invocations - yielding behavioural models of services not
typically available API specifications [7], [8]. Nonetheless,
dynamic analysis techniques face the practical limitation that
not all possible cases and conditions of execution have been
covered in a log [35].

In recent years, static API analysis techniques have been
developed to analyse operational signatures only (and no
other parts of systems implementation such as source code
and execution logs). These techniques have been used to
assist developers in improving API structures and supporting
API translation to new languages. Static analysis of more
contemporary REST APIs has been on structural inconsisten-
cies and other issues concerning resources, e.g., anti-patterns
construed on the basis of inconsistencies of resource hier-
archies [20]. The focus of static analysis techniques on
older style procedural service interfaces, seen throughWSDL
APIs, has been on analysing various properties and problems
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in operational signatures for improving operational cohe-
sion and coupling. Earlier approaches pointed to the need
of heuristic search to overcome the combinatorial problems
of brute-force analysis of operations [36], [37]. Meanwhile,
Bertolino et al. [38] analysed API operations to derive their
dependencies, which was based on input and output param-
eter dependencies of the operations using type matching
heuristics. This is used to derive the behavioural protocol of
the API. The extracted entity models are limited to invoca-
tion dependencies and lack structural relationships between
entities. Kumaran et al. [10] formalised information enti-
ties based on the domination theory (utilising co-location
heuristics of parameters in operations) and uses this to derive
strict containment relationship of entities. Using extracted
domination graphs, behavioural models (i.e., state machines)
are derived for transitive closures of entities. The only rela-
tionship type studied is strict containment by Eshuis and
Van Gorp [39]. The work of [15] was one of the first to
extract entities from procedural API operation signatures
(WSDL based), using a natural language processing tech-
nique. Relatively modular operational signatures were used,
through which hierarchical relationships between entities
were derived, reflecting the hierarchical resource relation-
ships encountered in REST APIs. This reflected the wider
goal of the approach, for WSDL to REST API transla-
tion. Other text mining approaches for WSDL specifications
focus on detection of anti-patterns by Mateos et al. [16]
and Hirsch et al. [17], and quantification of WSDL speci-
fication readability by De Renzis et al. [18]. Furthermore,
a number of metrics were proposed to demonstrate the
quality of service interfaces in the context of legacy sys-
tems modernization, through the work of Mateos et al. [19]
which concerned COBOL to SOA migration. However, all
these approaches insufficiently treated the problem of over-
loaded signatures and the challenge of automated service
remodularisation.

Service interface remodularization was first addressed by
Athanasopoulos and Kontogiannis [15] and Ouni et al. [40],
based on structural similarity measures of operations in an
interface, e.g., similarity of message types used in oper-
ations and input/output dependencies of operations. Both
approaches analyse structural similarity of operations based
and optimization techniques to reason about operations split-
ting. Athanasopoulos and Kontogiannis [15] focussed on
dependencies within operations, operation cohesion, to iter-
atively split a service interface using a greedy algorithm.
Ouni et al. [40] focusses on the operation coupling or depen-
dencies across operations. Both approaches are based on
traditional algorithms of greedy search and graph partitioning
to address this problem. Boukharata et al. [41] extended
the work of Ouni et al. [40] to determine sequential simi-
larity (input/output dependency), communication similarity
(message types) and semantic similarity (data types related
to domain concepts). These extracted similarity measures
are used through multi-objective optimization (using NSGA-
II), to find optimal modularization of operations, reaching

the best trade-off between minimizing coupling, maximizing
cohesion, and minimizing the interfaces modifications.

Our paper extends upon the approach of
Kumaran et al. [10] and derives a comprehensive entity
model by comparison. Specifically, we extend the application
of domination theory to operation parameter co-location
analysis to derive different entity relationships types, i.e.
strict containment, weak containment and basic associa-
tions, each with mandatory and optional cardinalities. These
allow a more refined understanding of API operation struc-
ture allowing recommendations to be made for operation
restructure as published in [12], [42]. Our contribution to
intra-operational structural analysis, based on probabilistic
tree search of parameter space, has led to a novel technique
for service variants derivation fromAPI operations and there-
fore variant-based service restructure recommendations [14].
Using refined relationship insights of entity models, we have
also developed entity behavioural models, focussed currently
on entity existence operations (i.e. create and delete oper-
ations) [13]. For example, if one of an operation’s input
parameters depends on at least one of another operation’s out-
put parameters, determined through the dependency captured
through corresponding entities in the entity model, then that
operation should be invoked the other one.

We also note there have been contributions to systems
analysis using static and dynamic analysis techniques which
relate to APIs. For example, automata learning has proven
effective in constructing behavioural interfaces of event reac-
tive systems [43]–[45]. This method actively interrogates
target systems with queries, observes behavioural models
produced in response to the queries, and learns these mod-
els using machine learning algorithms. It is important to
handle the data dependencies between invocations, so anal-
ysis of data parameters and data flows for the deriva-
tion of behavioural models can be complemented by the
utilisation of automata learning [45]–[48]. For instance,
the work of Bertolino et al. [38] has been complemented
by active automata learning [45] to improve the accuracy of
behavioural models derived. By contrast our present paper
has focussed on reliance of API code for static analysis to
extract, as best as possible, structural and behavioural prop-
erties which can support API restructure. This, coincidentally,
reflects the reality that APIs are typically decoupled and
publicly available that software systems code.

VI. CONCLUSION
Despite the fact that Web-based APIs are complex and over-
loaded, there is a lack of sufficient knowledge about the struc-
tural composition as well as invocation sequences of these
interfaces. The research reported in this paper has presented
for the first time a systematic approach to yield a simplified
and insightful presentation of these complex interfaces with-
out requiring their comprehensive semantics. The approach
is composed of three building blocks, which are structural
interface analysis, behavioural interface analysis, and service
variants analysis.
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Future work on structural interface analysis can be seen
as follows. In this paper, the concepts of business entities and
their containment relationships have been introduced and for-
malised into a business entity model. Multiplicity, specifying
the number of instances of one business entity allowed in a
containment relationship with another business entity, leads
to iteration (i.e. allowing the creation of multiple instances)
in a service behavioural interface. This is to be studied in
future. Next, the idea of structural interface analysis involving
derivation of business entity models presented in this study
can be applied to RESTful service interfaces, which is worth
of investigation in future.

With regards to behavioural interface synthesis, a method
for deriving state-based behavioural interfaces upon a given
business entity model has been proposed in the paper. The
introduction of states into service behavioural interfaces
enables flexible service interactions. The notion of states
enables a declarative mechanism for interaction needs, with-
out prescribing which services or which order of interactions
should be taken. For future directions, this opens up the
possibility of a dynamically determined execution of inter-
action, such as the interactions relevant to advancing states,
the interactions involved in fulfilling interaction progress,
and the interleaving of interactions across different services.
Advanced operations, such as cancellations back to previous
states and replacements with new providers going forward,
also become possible.

Finally, in service variants analysis, a Monte Carlo-based
sampling method has been developed to search for service
variants. The primary significance of this method is that,
through experiments, good results can be produced even in
a very large search space. This is in stark contrast to conven-
tional methods such as a brute-force method, which cannot
derive any variants given a large search space. Another promi-
nent feature of the method is that, compared with existing
studies, it requires minimal human intervention and inputs –
only a known path (i.e., an acceptable service variant) – and it
can automatically identify other valid service variants. While
the Monte Carlo sampling method has sensible performance
results, importance sampling is currently the only variance
optimisation. Optimising this method by introducing addi-
tional mechanisms, such as Markov Blanket [49] remains a
future research objective.
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